
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operational Research

Three State Markov Transition Approach for the

p-ARP Maintenance Model

Bram Vader (534794)

Supervisor: Prof. dr. ir. R. Dekker

Second assessor: dr. R. Spliet

Date final version: 19th July 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

In this thesis, we extend the model described by Schouten et al. (2022), to further optimize

maintenance for wind turbines considering time-varying cost. Our method extends the used

Markov model using a three state transition approach. Daily wind velocities are used to

take the large variability of the weather into account. We estimate the power output curve

of a single wind turbine, to calculate the daily wind power output. For every week, we

divide the daily power distribution in three states: low, average and high wind conditions.

This classification is then used to estimate transition probabilities, which are necessary for

the linear programming (LP) formulation to determine the optimal maintenance policy. We

show that there is a total cost decrease using our policy.

Contents

1 Introduction 3

2 Literature Review 4

2.1 Structuring wind parks . 4

2.2 Maintenance optimization . 5

3 Problem statement 5

3.1 Markov Chain . 5

3.2 Transition probabilities . 6

3.3 Lifetime distribution . 6

3.4 Costs . 7

4 Data 7

4.1 Wind- and turbine data . 7

5 Methodology 8

5.1 Power function estimation . 8

5.2 Obtaining the Power Distributions for each week 8

5.3 Calculating the transition probabilities . 9

5.4 Markov Decision Process Mixed Integer Program Approach 9

5.5 Costs . 11

6 Results 11

6.1 Data Analysis . 11

6.1.1 Power Curve . 11

6.1.2 Weekly distributions and transition probabilities 12

6.1.3 Costs . 17

6.2 Optimization . 17

6.2.1 Optimization results . 18

6.2.2 Comparison with the model of Schouten et al. (2022) 18

7 Discussion 19

1

8 Conclusion 20

9 Appendix 22

9.1 Result Tables . 22

9.2 Programming code . 26

9.2.1 Replication code . 26

9.2.2 Extended p-ARP model . 33

9.2.3 Helper classes . 40

2

1 Introduction

Wind energy is becoming a more important source of renewable energy as countries are working

hard to mitigate climate change. Wind energy shows great potential due to its relatively low

environmental footprint. The global increase in demand in green energy has led to an upturn

in the deployment of wind turbines. For example, the Netherlands must produce at least 35

TeraWatt-Hour (TWh) of renewable energy by 2030 (Rijksoverheid (2020a)). Wind energy

contributes significantly to achieve this goal. By 2050, all energy used in the Netherlands must

be generated by renewable sources (Rijksoverheid (2020b)). Land to build new wind turbines

on is exhaustive, and therefore the Netherlands, among others, is increasing their wind energy

generation from sea. By 2030, the Netherlands plan to have wind farms that produce 21 Giga-

Watt of wind energy. These wind farms then supply 16% of the total used energy.

As the offshore wind industry advances, wind turbine technology will evolve. Wind turbines

are getting bigger, higher and generating more power than before and wind farms will move

further into sea. This leads to the importance of optimal maintenance planning. The goal is

to find the best approach to distribute preventive maintenance and corrective maintenance to

minimize the total costs over time. Due to the increasing distance of the offshore wind farms, it

is preferred that the number of maintenance visits is minimized, while keeping the probability of

the turbine shutting down due to deterioration low, where the more costly corrective maintenance

is needed. Planning maintenance in periods where the average wind speeds are high results in

a bigger loss in revenue compared to periods where the average wind speeds are low. Therefore

it is crucial to decide when and what type of maintenance to perform.

In Schouten et al. (2022), long-run cost optimal age-based policies (ARP) and block-based

maintenance policies (BRP) are investigated. These policies, the ARP, BRP and modified BRP,

are extended to be able to include time-varying costs. By discretizing time, the optimal ARP

is found using a linear programming (LP) formulation. This thesis provides an addition to the

research of Schouten et al. (2022).

The cost parameters are calculated by estimating the power output of the wind turbines.

Using historic wind velocity data, the daily power output is approximated. By taking the av-

erages over all years and within the week results in the average historic power output for each

week of the year. Furthermore, a cosine function is fitted to the resulting weekly averages. This

method is very practical, but can be less realistic in terms of the weather variability. By using

the wind data in the way it is described in Schouten et al. (2022), the variability in the wind

velocities are possibly neglected. This is concerning because a wind turbine’s power production

is a nonlinear function of wind speed. Therefore the aim is to further improve the maintenance

decision-making process by introducing a more realistic method in modelling the weather con-

ditions.

More specifically, it is investigated whether the used Markov Decision Process (MDP) could

be further improved. In Schouten et al. (2022), the MDP consists of two states, namely the

period when maintenance can be conducted, and the age of the wind turbine component. As

the weather is a fast-changing phenomena, a more specific, and therefore more realistic model

could improve the decision-making process. Therefore, we add a third state variable accounting

3

for the weather variability to the existing two state Markov decision process. Historic daily wind

data are gathered to estimate weekly power output distributions. These are used to calculate

new transition probabilities for the extended three state Markov Decision model. Subsequently,

the main research question is as follows: Is it possible to further optimize the decision-making

process to decrease the expected costs for a single wind turbine component under time-varying

costs by accounting for the high variability of the weather conditions? So in other words: What

is the impact of weather variability on maintenance costs for a single wind turbine component?

In this thesis we will focus on extending the Age Replacement Policy (ARP).

2 Literature Review

In almost every sector maintenance is necessary to optimize production. To optimize production

it is important that the right maintenance decisions are made. Subsequently, the topic of

maintenance optimization is extensively researched. Investigating the cost structure implies that

maintenance costs are one of the most important factors, as stated in Dinwoodie & Mcmillan

(2014). Offshore operating and maintenance costs imply 23% of the total investment cost of a

single wind turbine, compared to 5% of their onshore counterpart.

2.1 Structuring wind parks

The development of a wind park is a challenging and complex assignment, as optimization is

needed in every domain to keep the price of the generated power low. First, we look at the wind

farm layout problem. This consists of the optimal placement of the wind turbines with respect

to interference due to close proximity to other wind turbines, resulting in reduced air velocity.

Fischetti & Monaci (2016) introduced proximity search heuristics for optimal layout of wind

parks, that combines ad-hoc heuristics and mixed-integer linear programming. A mixed-integer

model is used, which focused on turbine distance constraints and on interference of the nearby

wind turbines.

Next, cable routing is the problem that arises when modelling wind parks. To solve this

problem, Fischetti & Pisinger (2018) introduced a Mixed Integer Linear Programming (MILP)

model adhering that all turbines connect to one (or more) offshore substation(s) while being lim-

ited by cable capacities, no-cross restrictions, connection-limits at the substation, and obstacles

at the site.

Lastly, the design of the wind turbine itself is also important in optimizing power output.

Negm & Maalawi (2000) described several optimization models for the design of a typical wind

turbine tower structure. The resulting optimization problem is then formulated as a nonlinear

programming problem, and solved using the interior penalty function technique. The model

succeeded in computing solutions that significantly improved the design with respect to system

performance compared to baseline designs.

4

2.2 Maintenance optimization

Maintenance is typically categorized as corrective maintenance and proactive maintenance as

stated in Shafiee (2015). Corrective maintenance is a failure based maintenance where main-

tenance is only executed when the failure of a component already has taken place. This type

of maintenance is favorable if the downtime is low, such that the system is running back at

normal circumstances in minimal time. However due to the marine environment of the offshore

wind parks, the reduced availability implies that this type of maintenance, on itself, is not the

most optimal choice. Proactive maintenance implies that the state of the system is periodically

inspected. Noticing or repairing a minor deterioration could save the system from completely

failing, and resulting in much greater costs.

Gonzalo et al. (2022) proposed a novel optimization problem, and is solved for real case

studies by using Genetic Algorithms and Particle Swarm Optimization algorithms to minim-

ize operational costs and maximize performance of the wind turbines. Wang & Deng (2022)

proposed an optimization model for offshore wind turbines maintenance under the multiple con-

straints of the strategy time window. This model accounts for several restrictions concerning

maintenance urgency. Aafif et al. (2022) investigates two models specifically for the wind turbine

gearbox. It takes the gearbox’ temperature into account, and decides its maintenance policy on

the number of times the temperature of the gearbox exceeds a threshold. Concluding, there has

been done significant amount of research. However, a notable deficiency in these studies is the

absence of highly changing wind conditions in their models.

3 Problem statement

In this section the extended model is introduced, which adjusts the original Markov Chain

defined in Schouten et al. (2022). Subsequently, we impose a new approach of determining the

costs relevant to the downtime of a wind turbine due to maintenance. We focus on a single

component system, where the lifetime of the component is modelled by a Weibull distribution.

In the optimization model, we minimize long run costs by using the expected costs in each state.

The goal is to develop a more specific approach that decides the optimal period to conduct

preventive maintenance.

3.1 Markov Chain

We begin by defining the Markov Decision Process. The Markov Chain is created with a three

dimensional state space, I “ I1 ˆ I2 ˆ I3, with i1 P I1, i2 P I2, i3 P I3, which differs from

Schouten et al. (2022), where only I1 and I2 are used. We define I1 Ď N`, where N` is the set

of positive integers. I1 is defined as the set of periods in a year. In this model, we discretize

the time into weeks. This results in I1 “ t1 . . . 52u. Next, the age of the component is defined

as I2 Ď N̄, where N̄ is the set of non-negative integers. Furthermore, I3 is defined as the

wind conditions, where we differentiate the wind in to three states: low, average and high wind

condition. In every time period i1, with component age i2, the wind is classified in one of the

three states defined below.

5

I3 “

$

’

’

’

&

’

’

’

%

0, Low wind conditions

1, Average wind conditions

2, High wind conditions

(1)

As the addition of the new state variable i3 does not affect the possible actions one could

take when conducting maintenance, the action space is unchanged. We therefore define it the

same way as stated in Schouten et al. (2022). There are two possible actions: replacing the

component pa “ 1q or doing nothing pa “ 0q. This results in the following definition:

Api1, i2q “

$

&

%

t1u, if i2 P t0,Mu

t0, 1u, otherwise
(2)

3.2 Transition probabilities

Now that the possible states in the model have been defined, the transition probabilities are

constructed. The transitions regarding the wind are independent of the age of the component,

and are dependent of the period of the year. Furthermore, the transition is independent of the

wind condition of the previous period. Let πpi1,i2,i3qpj1,j2,j3qpaq be the transition probability from

state pi1, i2, i3q to pj1, j2, j3q, under action a P A

πpi1,i2,i3qpj1,j2,j3qp0q “

$

’

’

’

&

’

’

’

%

1 ´ p̃i2,i3 for j1 “ i1 ` 1 (mod N), j2 “ i2 ` 1, i2 R t0,Mu

p̃i2,i3 for j1 “ i1 ` 1 (mod N), j2 “ 0, i2 R t0,Mu

0, else

(3)

πpi1,i2,i3qpj1,j2,j3qp1q “

$

’

’

’

&

’

’

’

%

1 ´ p̃1,i3 for j1 “ i1 ` 1 (mod N), j2 “ 1

p̃1,i3 , for j1 “ i1 ` 1 (mod N), j2 “ 0,

0, else

(4)

Where p̃i2,i3 is defined the product of P pI3 “ i3|I1 “ i1q and P pX “ i2|X ě i2q, where the

first term is the probability that the weather is in state i3 given period i1, and the second term

is the failure probability of the component of age i2.

3.3 Lifetime distribution

As frequently used in failure analysis, the Weibull distribution is used for modelling the lifetime

of the single component. The Weibull distribution has the property that the failure rate is easily

specified. Here, a Weibull distribution with scale parameter β ą 0 and shape parameter α ą 0

is used. As the model is defined in a way that we discretize time, a discrete Weibull distribution

has to be used. The CDF is defined as F pxq “ 1 ´ exp
␣

´p x
αq

(β
for x ą 0, and for every

non-negative x, the probability of failure is then calculated as derived in Schouten et al. (2022).

6

px “
P pX “ xq

P pX ě xq
“

exp
␣

´px´1
α q

(β
´ exp

␣

´p x
αq

(β

exp
␣

´px´1
α q

(β
(5)

3.4 Costs

A large proportion of the maintenance costs is due to the fact that the turbine is not operating.

As the wind turbine is getting serviced, the wind turbine is not able to produce electricity that

can be sold. We define the costs as the loss of production in a certain period, in which we take

the wind conditions in to account. In periods of high wind, the cost of maintenance is higher

than in periods where there is less wind. Therefore, the costs of maintenance depends heavily

on the period in which maintenance is conducted. In Schouten et al. (2022), it is stated that it

takes around ten days to conduct preventive maintenance, and that corrective maintenance on

average is almost four times the duration of preventive maintenance. We take this into account

when calculating the costs. One side note, in this thesis we define the costs by only taking the

loss of production into account. Other costs related to maintenance are not included, as well as

the time to conduct the maintenance.

4 Data

4.1 Wind- and turbine data

In this section we discuss the data that is used for this thesis. As in Schouten et al. (2022),

the daily weather data of the coastal city of Ijmuiden are used, provided by the KNMI (2023).

The dataset consists of several variables regarding the wind, rainfall and air pressure. In this

research, we use the daily wind velocities. The dataset originally consisted of 19117 observa-

tions, starting on the 1st of January 1971, and ending on the 4th of May 2023. Due to some

missing observations, incompleteness of the year 2023 and computational ease we discard the

observations after the 31st of December 2022. So the resulting dataset consists of 18849 obser-

vations, which is 52 years of daily data. The values of the daily averages in the original dataset

are measured in 0.1 m{s, which are converted to m{s. Next, a brief look in to the data for the

year 1980 is provided.

(a) Scatterplot of the daily wind velocities (b) Histogram daily wind velocities in m/s

Figure 1: 1980 wind data

7

As expected, there is a large variation in the daily wind velocities within a year. Figure

1b shows the distribution of the wind speeds in 1980. The highest frequency occurs at around

5m{s, while average velocities of 15m{s occur around 4 times less. Based on the scatter plot

in Figure 1a, the data is not showing any kind of pattern, since the variability of the data is

simply too high. Hence to analyze the data for our calculations in Section 6.1, weekly averages

over the 52 years are used.

The turbine power output with respect to the velocity is used to make an estimation of the

power output curve. We use data from the RVO (2023), which contains the output data from a

VESTAS V164-10.0MW wind turbine.

5 Methodology

This section provides a detailed explanation of the methods used to realize the maintenance

policies. First of all, the wind data has to be transformed into the estimated power output of a

wind turbine. Next we define distributions of the daily power output for each week of the year.

Lastly, the transition probabilities are calculated and the distributions are divided into the three

states required for the Markov Decision Model.

The first thing to notice is that we have to make adjustments to the wind data. We need

to consider that the height at which the wind data is observed, differs from the height of the

wind turbine’s rotor. Schouten et al. (2022) describes how the wind velocity changes when the

altitude increases. The daily wind data is measured at a height of 10m, while the height of a

wind turbine rotor is at a height of 138m. Following the logarithmic wind profile formulas in

Schouten et al. (2022), the wind velocity at rotor height increases by a factor of 1.181.

5.1 Power function estimation

To be able to compute the weekly power output distributions, we need to define the function that

maps the wind velocity to the generated power of the wind turbine. To estimate this function,

RVO (2023) provides the data for constructing the power curve of a Vestas V164-10.0MW wind

turbine. Using the statistical programming software R, we fit a model to the data. We observe

that the Power Curve consists of three separate functions that we can model, consisting of the

quadratic part, and two linear parts. For the quadratic part, we fit a quadratic regression model

using the lm function in R. This results in a continuous function P̂ pvq that gives the estimated

power output in kW for every wind velocity in the domain of the turbines output. As the

function is non-linear, we can not simply take the average wind velocity and then compute the

average power output. Hence we have to be careful in averaging the wind velocities, as this will

result in a different answer than if we reversed the order of operations.

5.2 Obtaining the Power Distributions for each week

As we now have estimated the Power Curve of the wind turbine, the curve is used to calculate

the corresponding daily output levels. The goal is to obtain 52 power distributions, one for

each week within the year. We calculate this by collecting all the observations which fall within

that week. As there are 7 days in a week, this results in 7 observations in each year, obtaining

8

7 ˆ 52 years “ 364 observations for each week over 52 years. We now have gathered 52 weekly

distributions consisting of 364 observations.

Alternatively, one could do this in a different manner. For example by examining the total

power output within a week, since the model makes maintenance decisions on a weekly basis.

For each week in a year, the total output is calculated by summing over the power output per

day within that week. Due to the number of weeks in a year, this results in 52 distributions.

Also, each distribution contains 52 observations, as we have 52 years of data.

Both methods can be applied for the calculation of the transition probabilities. In Section 6

we will compare both methods.

5.3 Calculating the transition probabilities

Next, we want to calculate the transition probabilities based on the weekly distributions. The

goal is to divide the daily power output into three states, for every i3 P I3. For every week, we

look at the power output distribution. We divide that distribution into three states based on the

mean of that week. As the distributions differ greatly each week because of the wind variability,

it is not fair to apply one single condition that differentiates one state from another. For each

week, we calculate the mean of the power distribution. We define the three states as follows:

first, let the set Di1 be the set containing all the observations di1 in week i1. Based on the mean

of that week, we define i3 “ 1 if an element di1 is contained in the interval of 20% under and 20%

above the mean. So di1 P p0.8P̄i1 , 1.2P̄i1q. Where P̄i1 is the average power output in week i1. For

i3 “ 0 and i3 “ 2, the intervals are defined as r0, 0.8P̄i1q and p1.2P̄i1 , P̄maxs respectively. The

20%-rule of dividing the distribution in to three classes is arbitrary, and chosen for simplicity.

We also examined using the median instead of the mean for this purpose. However, we found

that due to the large amount of observations near the cut-off point of the wind turbines power

output, the median would be such that almost all of the probability was in state i3 “ 2.

i3 “

$

’

’

’

&

’

’

’

%

0 if di1 P r0, 0.8P̄i1q

1 if di1 P p0.8P̄i1 , 1.2P̄i1q

2 if di1 P p1.2P̄i1 , P̄maxs

(6)

Next, we determine the frequency fi1,i3 for all observations di1 for which the power output

is in state i3 for a given week i1. We calculate the proportions which are equivalent to the

transition probabilities. pi1,i3 =
fi1,i3
ni1

, where ni1 is the total observations in week i1.

However, it may be possible that the probability of being in state i3 depends on the week

before. If there is a dependence between two consecutive weeks, the transition probabilities

are not valid. We use the Pearson Correlation test to examine if two consecutive weeks are

significantly correlated with each other. When this is not the case, then we can assume that the

calculated probabilities are valid, and use them in the Linear Program.

5.4 Markov Decision Process Mixed Integer Program Approach

The same approach is used as in Schouten et al. (2022), where the long run probabilities are

calculated using a Mixed Integer Programming formulation. In this thesis, the same formulation

9

is used, but some minor changes have been made to accommodate for the new approach. The

objective and constraints have the same interpretation as in Schouten et al. (2022). The third

set of constraints ensures that maintenance in a certain period can be done in only one of the

three states.

min
ÿ

i“pi1,i2,i3qPIzIb

cppi1, i3qxi,1 `
ÿ

i“pi1,i2,i3qPIb

cf pi1, i3qxi,1

s.t.
ÿ

aPApiq

xi,a ´
ÿ

jPI

ÿ

aPAj

πjipaqxj,a “ 0 @i “ pi1, i2, i3q P I

ÿ

i2PI2

ÿ

aPApi1,i2q

xi1,i2,i3,a “
1

N
@i1 P I1, i3 P I3

ÿ

i3PI3

xi1,i2,i3,1 “ mint
ÿ

i3PI3

xi1,i2,i3,1u @i1 P I1, i2 P I2

xi,a ě 0, @i “ pi1, i2, i3q P I, a P Apiq

xi0 “ 0 @i “ pi1, i2, i3q P I : i1 P t0,Mu

(7)

As the third set of constraints is not linear, we will have to transform these constraints.

@i1 P I1, i2 P I2, define
ř

i3PI3 xi1,i2,i3,1 “ mint
ř

i3PI3 xi1,i2,i3,1u as the function we want to make

linear. We introduce a new variable z to represent the minimal value. We define M as a large

positive value, and finally α, β, γ P B

z ď xi1,i2,0,1

z ď xi1,i2,1,1

z ď xi1,i2,2,1

z ě xi1,i2,0,1 ´ Mp1 ´ αq

z ě xi1,i2,1,1 ´ Mp1 ´ βq

z ě xi1,i2,2,1 ´ Mp1 ´ γq

α ` β ` γ “ 1

z P N

α, β, γ P B

(8)

The terms Mp1 ´ αq, Mp1 ´ βq, and Mp1 ´ γq penalize the selection of xi1,i2,0,1, xi1,i2,1,1,

xi1,i2,2,1 respectively, when they are not the minimum. The last constraint ensures that only one

variable can be equal to 1, while the others are forced to be 0. This represents the selection of

the minimum.

10

5.5 Costs

To calculate the costs, we differ from the model in Schouten et al. (2022), as this method takes

the weather variability into account in a more specific manner. We model the costs by examining

the loss of production when maintenance is executed. This depends on the period of the year,

and the state of the weather. To calculate the costs, we therefore look at the distribution of

the estimated power output in that week. The loss of production is defined for every i1 and

every i3. There are other factors which will increase the total costs such as replacement parts,

transportation and costs of the maintenance crew. In this research we will only take the costs

of loss of production into account.

For every week i1 and every wind state i3, we select the observations that are included in the

interval. This results in a distribution of daily power output for week i1 P I1 and state i3 P I3.
Next, we take the average power output as the amount of power the turbine will not generate

as it is being maintained.

We model the decisions on a weekly basis and taking the average preventive maintenance

duration into account. We assume that the preventive maintenance consists of one week, that is

seven days. We therefore have to multiply the average output by seven days to get the weekly

output. Assuming the wind turbine operates 24 hours a day and a price of €0.06/kWh, the

guaranteed price in a 2018 German project, see Ten Brinck (2018), we have to multiply the costs

by 24 ˚ 7 ˚ 0.06 to get to the costs in euros.

CostsPMpi1, i3q “ Pelc
w
i1,i3 (9)

Where Pel is the electricity cost, and cwi1,i3 is the average cost of maintaining calculated as

described above. As mentioned in the paper by Schouten et al. (2022), on average the duration

of the corrective maintenance is about four times as long. Hence for simplicity, we take for

corrective maintenance four times the cost of preventive maintenance.

6 Results

In this section we present the results of the analysis and optimization. We will discuss the

estimated power curve, the weekly distributions and the costs. Furthermore we discuss the

optimization of the main model, followed by a comparison with the model from Schouten et al.

(2022).

6.1 Data Analysis

6.1.1 Power Curve

To estimate the Power curve, we use the data that relates the wind velocities in m/s to the

power output in kW.

11

Figure 2: Actual and estimated Power Curve of the VESTAS V164-10.0MW turbine

In Figure 2, the first thing one may notice is a steep increase in marginal output until the

maximum output of 10kW is reached at a velocity of 11m{s. We also observe that the turbine

stops operating at velocities greater than 28 m{s. This is due to safety reasons. We estimate

the first part of the curve with quadratic regression, using the first nine observations. This

results in the following function P̂ pvq “ 111.46v2 ´ 203.46v ´ 511.86 for v ě 3 and v ď 11,

with R2 “ 0.9859. The estimated function is shown as the red line. For v ą 11 the function is

constant. The resulting function is then as follows:

Powerpvq

$

’

’

’

&

’

’

’

%

P̂ pvq if v ě 3 and v ď 11

10.000 if v ą 11 and v ă 28

0 if v ď 3 and v ě 28

(10)

6.1.2 Weekly distributions and transition probabilities

There are multiple ways to determine the weekly power distributions of which two were described

in Section 5.3. In one method, the distributions are based on the daily power output, while in

the other method the distributions are derived from the total weekly power output. We first

discuss the method where the total weekly output is used. Figure 3 below gives an insight in

the pattern of the total wind output in a week. For each week, the total weekly output averaged

over 52 years is shown. We observe that during wintertime, the average total weekly output is

higher than during summertime.

12

Figure 3: The averaged total weekly output over all weeks.

When examining the distributions of the total weekly output of a certain week, we find that

in the weeks where we would expect lots of high total output, that this is not the case. For

example in wintertime, as shown in 4a and 4b we observe that the majority is not at the higher

end of the distribution. The same happens for the weeks during summertime, where you would

expect low total output, as shown in Figure 4c and 4d. The majority of the observations is not

on the lower end of the distribution.

(a) Week 1 (b) Week 7 (c) Week 25

(d) Week 29

Figure 4: Distribution of the total weekly output over the years

One explanation for this behavior is that the intra-week variance of the daily output is high.

Due to large differences in wind output for each day of the week, it is unlikely that the weekly

total output over the years will follow the described pattern. For example, we examine this

for week 20 in the year 2000, where the large differences in daily power output results in high

13

variance (See Table 1).

Date 15-05 16-05 17-05 18-05 19-05 20-05 21-05

Daily output in kW 95 1916 10000 10000 10000 3482 819.9

Variance: 21.349.540

Table 1: Daily output for week 20 in year 2000

The high variance is also noticeable over all the years. We take a look at the year 2000 again,

but now over all weeks. In Figure 5 it is can be seen that large variances of the intra-week daily

output exist, and may influence the usability of total weekly power output for the distributions.

Figure 5: Variances of the daily output in a week in the year 2000.

These distributions resulted in transition probabilities that did not exhibit the pattern of

more wind output in wintertime and lower output in summertime. As shown in Figure 6,

the probabilities are roughly constant over time. In the light of our model, these transition

probabilities may lose their meaning as they fail to capture the behavior of the power output

over time.

Figure 6: Transition probabilities for every state, using the weekly total output

Hence, we will continue with the weekly distributions where the daily output levels are used.

14

In Figure 7 we show the same weeks as in Figure 4. We see that in Figure 7a and 7b the majority

of the density is in the upper end of the distribution, and for Figure 7c and 7d in the lower end of

the distribution. This method will result in transition probabilities that will follow the pattern

of the power output over time.

(a) Week 1 (b) Week 7 (c) Week 25

(d) Week 29

Figure 7: Distribution of the total weekly output over the years

In Figure 7a and 7b, the densities represent the 1st and the 7th week respectively. The x-axis

is defined as the output in kW. The figure shows that the density is left skewed, as the majority

of the observations are on the upper end on the domain of the possible output values. This

indicates that during week one and seven the power output is high. In comparison to 7c and 7d,

we observe that the majority of the observations are located at the lower end on the domain,

therefore the output generated by the turbine is much lower. The remainder of the distributions

are found in Appendix 9.1, where the differences between the distributions are visible. We can

clearly see differences in distribution per week, hence it could be useful to differentiate the costs

on a weekly basis.

Next, we show how the transition probabilities are calculated for a given week. We use the

method which classifies three states, as explained in Section 5.3. For example in Figure 8, the

power distribution for week 22 is shown. The distribution of week 22 has an average output of

4742.64 kW.

15

Figure 8: Distributions of the daily wind output for week 22

This results in the following intervals for i3:

i3 “

$

’

’

’

&

’

’

’

%

0 if di1 P r0, 3794.11q

1 if di1 P p3794.11, 5691.17q

2 if di1 P p5691.17, 10000s

(11)

Which then results in the following distributions per state as shown in Figure 9.

(a) State 0 (b) State 1 (c) State 2

Figure 9: Distributions of daily wind output for week 22

Next, the transition probabilities for Week 22 are calculated. There are 364 observations

resulting in the distribution as shown in Figure 8. Recall that the probabilities pi1,i3 are cal-

culated as follows: pi1,i3 =
fi1,i3
ni1

, where fi1,i3 is the frequency for which the power output is in

state i3 for a given week i1, and ni1,i3 is the total observations in week i1. So, p22,0 “ 180
364 “ 0.49,

p22,1 “ 51
364 “ 0.14 and p22,2 “ 133

364 “ 0.37.

Subsequently, we present the transition probabilities for all weeks, since these are necessary

for the Markov transition model. In Figure 10 the transition probabilities are shown. The

probability being in state i3 “ 0 is the highest in week 13 up to week 40. For i3 “ 2, this pattern

is as expected as it is during wintertime. State i3 “ 1 stays about constant over the weeks. See

the Appendix for the actual transition probabilities.

16

Figure 10: Transition probabilities in state i3 for every week of the year

Lastly, the Pearson correlation for the independence between two subsequent weeks resulted

for 77% of the time in insignificant correlation. As the majority of the weeks are independent,

we therefore assume overall independence between any two subsequent weeks.

6.1.3 Costs

The costs per week per state when preventive maintenance is performed are presented in Figure

11 below. It shows that the costs of conducting preventive maintenance in state 2 are the highest

for all weeks. This is as expected since the wind power output during wintertime is greater than

during summertime.

Figure 11: Total weekly costs for all states for every week of the year

6.2 Optimization

In this section we present the results of the optimization. We first summarize the results obtained

from the replication. Next, the results from the extended p-ARP model are compared with the

original p-ARP model of Schouten et al. (2022).

17

6.2.1 Optimization results

First, we present the results obtained from the replication. Using the p-ARP model, we let

c̄f “ 50, c̄p “ 10, the scale parameter α “ 52 (weeks), shape β “ 2 and M “ 52. We use

∆ “ 0%, which refers to the constant cost case. Using these parameters, the resulting costs are

€39092. These costs differ from the €40098 obtained in Schouten et al. (2022). The maintenance

policy follow Schouten et al. (2022), which is the same across every period, in this case every

week. The optimal maintenance is after 27 weeks, or equivalently after 6 months.

In the extended model, instead of using cost-parameters we directly used the weather data

for determining the costs and maintenance policy. We used scale parameter α “ 52 (weeks),

shape β “ 2 and M “ 52. The model described by Equation 7 first resulted in an infeasible

solution. The problem arises from the third set of constraints, which ensures that in a period

i1, maintenance is performed in only one state i3 P I3. After removing those constraints, the

model resulted in a yearly cost of €561340. The optimal maintenance policy depends on the

week of the year. It is optimal to perform preventive maintenance as described in Table 2 below.

For example, in week 5, preventive maintenance should be done if the age of the component

is at least 28 weeks. Due to the violation of the third set of constraints when maintenance is

performed, the long-run probability xi1,i2,i3,1 ą 0 @i3 P I3, for i1 & i2. This implies that the

yearly costs are on average three times as high.

6.2.2 Comparison with the model of Schouten et al. (2022)

As explained in Section 5, instead of using cost-parameters we directly used the weather data

for determining the costs and maintenance policy. Hence, the results of the extended model can

not be compared directly to the constant cost model in Schouten et al. (2022).

To solve this problem, the same dataset is used in both models, as well as the same parameters

for the lifetime distribution. The only difference is the way the data is handled to provide the

expected costs based on the average output used for the three state approach.

To be able to compare the yearly costs, we divide the costs of the extended p-ARP model

by three, resulting in yearly maintenance costs of €187113. This is due to the violation of the

third set of constraints.

The optimization with the model of Schouten et al. (2022) results in the total maintenance

costs of €187598. Maintenance policy is as shown in Table 2 below. We observe that the

extended p-ARP model performs less maintenance with respect to the standard p-ARP model.

Also, the period in which maintenance will be conducted differs between the two models. Next,

the cost difference between the two models is negligible. Due to the more specific approach in the

cost procedure described in Section 5.5, the small difference in costs can indicate that the model

of Schouten et al. (2022) already gives an accurate reflection of the total yearly maintenance

costs.

Both models appear to be effective in minimizing the total yearly maintenance costs, but

the adjusted p-ARP model takes weather fluctuations more into account than Schouten et al.

(2022). As the goal is to make the mathematical models as close to reality as possible, the

extended model p-ARP could be preferred. Also, a difference was found in maintenance policy.

This might be due to the transition probabilities being defined as the product of the probability

18

of failure and the probability of observing average, low or high wind velocities.

extended p-ARP

Week 5 15 16 31 38 42

Age 28 33 24 28 19 20

p-ARP

Week 10 15 16 31 33 38 41 48

Age 35 33 24 30 31 18 20 23

Table 2: Optimal critical maintenance ages

7 Discussion

The aim of this research was to implement a more specific model to better incorporate the

weather conditions with respect to the p-ARP model described in Schouten et al. (2022). In

this paper we introduced a three state Markov transition model, where it was investigated if the

thee state model performs better than the original model. Data on a Vestas V164-10.0MW wind

turbine was used for the power curve. Next, we used a different method for the analysis of the

daily wind data to obtain the induced costs when preventive maintenance in a certain period is

conducted. We had to estimate the transition probabilities to incorporate a third state, which

takes the weather variability into account.

Each model executed on the same dataset resulted in different maintenance policies. The

total costs were lower in the extended model. This can be explained due to the fact that the

model has more accurate estimates of the average wind velocities. Hence, the policies resulting

from the model may be more realistic.

The resulting maintenance policy consists of critical maintenance ages for certain weeks in

a year. We found that it is optimal to conduct maintenance in weeks 5, 15, 16, 31, 38 and

42, with component ages 28, 33, 24, 28, 19 and 20 respectively. The optimal replacement ages

can differ from eachother in the weeks of the year. The decision regarding the age at which

maintenance is performed on the component depends on the week. The model resulted in yearly

total maintenance costs of €187113.

Despite the results from our study, several limitations should be discussed. First of all, the

cost specification is general and only concerns the costs due to the loss of production. This

could be improved by including the costs of maintenance, namely replacement parts, labour

and other related costs. Second, due to the infeasibility of the third set of constraints, we

had to provide a sub-optimal solution by dividing the total maintenance costs as described in

Section 6.2.2. Lastly, the chosen percentage above and below the mean for classifying states I3
is arbitrary. Therefore, it is possible that alternative approaches for dividing a distribution are

more appropriate.

19

8 Conclusion

In this paper, the aim was to improve the model for optimal maintenance policies for wind tur-

bines under time-varying costs. We extended the age replacement policy model by a three state

Markov decision process which takes the the high variability of the wind velocities into account.

We examined if it was possible to improve the maintenance decision making process by model-

ling the behavior of the weather in a more accurate manner. We found that there are at least

two possible ways to handle the wind data, namely by creating wind-power output distributions

using daily or total weekly wind output levels. We found that due to the high variance of the

wind data, the second method failed to show relevant patterns that are required for the Markov

model. Also, we found that the extended p-ARP model performs less maintenance compared

to the standard p-ARP model, which resulted in lower costs. However, the cost difference is

negligible. Furthermore, the period in which maintenance is conducted also differs between the

two models.

Future research could focus on the restriction that results in an infeasible solution to im-

prove the minimization of the total maintenance costs. Additionally, one could look at other

implementations of modelling the lifetime of components. For example by including sensory

input data to gain more insight or by including a model for the deterioration of the wind turbine

components. Also, the model can be incorporated in different fields or industries where decisions

regarding maintenance depend on the weather conditions, for example in aviation.

However, the weather is and will be hard to predict, especially for long-term predictions.

The high variance of the wind output in a week results in an even harder decision regarding

maintenance. Data from the past gives an indication what the best moment could be to conduct

maintenance. Nevertheless, it is not guaranteed that history will repeat itself.

References

Aafif, Y., Chelbi, A., Mifdal, L., Dellagi, S. & Majdouline, I. (2022). Optimal preventive

maintenance strategies for a wind turbine gearbox. Energy Reports, 8 , 803–814.

Dinwoodie, I. & Mcmillan, D. (2014). Operation and maintenance of offshore wind farms. Eng.

Technol. Ref , 1 (1).

Fischetti, M. & Monaci, M. (2016). Proximity search heuristics for wind farm optimal layout.

Journal of Heuristics, 22 , 459–474.

Fischetti, M. & Pisinger, D. (2018). Optimizing wind farm cable routing considering power

losses. European Journal of Operational Research, 270 (3), 917–930.

Gonzalo, A. P., Benmessaoud, T., Entezami, M. & Márquez, F. P. G. (2022). Optimal main-

tenance management of offshore wind turbines by minimizing the costs. Sustainable Energy

Technologies and Assessments, 52 , 102230.

KNMI. (2023). Royal netherlands meteorological institute. Retrieved 7-05-2023, from

https://www.knmi.nl/nederland-nu/klimatologie/daggegevens

20

Negm, H. M. & Maalawi, K. Y. (2000). Structural design optimization of wind turbine towers.

Computers & Structures, 74 (6), 649–666.

Rijksoverheid. (2020a). Windenergie op land. Retrieved 7-05-2023, from

https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/windenergie-op-land

Rijksoverheid. (2020b). Windenergie op zee. Retrieved 7-05-2023, from

https://www.rijksoverheid.nl/onderwerpen/duurzame-energie/windenergie-op-zee

RVO. (2023). Rijksdienst voor ondernemend nederland. Retrieved 21-06-2023, from

https://www.rvo.nl/sites/default/files/2021/02/MER-HKW-VI-Bijlagen20-10-11.pdf

Schouten, T. N., Dekker, R., Hekimoğlu, M. & Eruguz, A. S. (2022). Maintenance optimiz-

ation for a single wind turbine component under time-varying costs. European Journal of

Operational Research, 300 (3), 979–991.

Shafiee, M. (2015). Maintenance logistics organization for offshore wind energy: Current progress

and future perspectives. Renewable energy , 77 , 182–193.

Ten Brinck, T. (2018). Opnieuw wind op zee zon-

der subsidie in duitse tender. Retrieved 17-07-2023, from

http://www.wattisduurzaam.nl/9119/featured/nieuw-record-offshore-wind-zakt-zakt-naar-6-cent-per-kwh/.

Wang, Y. & Deng, Q. (2022). Optimization of maintenance scheme for offshore wind turbines

considering time windows based on hybrid ant colony algorithm. Ocean Engineering , 263 ,

112357.

21

9 Appendix

9.1 Result Tables

(a) Week 1-4 (b) Week 5-8

(c) Week 9-12 (d) Week 13-16

(e) Week 17-20 (f) Week 21-24

Figure 12: Weekly distributions

22

(a) Week 25-28 (b) Week 29-32

(c) Week 33-36 (d) Week 37-40

(e) y “ 3 sinx (f) y “ 5{x

(g) y “ 5{x

Figure 13: Weekly distributions

23

Week p 0 p 1 p 2

1 0.324 0.157 0.519

2 0.376 0.107 0.516

3 0.382 0.126 0.492

4 0.371 0.115 0.514

5 0.409 0.096 0.495

6 0.379 0.11 0.511

7 0.426 0.121 0.453

8 0.407 0.168 0.426

9 0.42 0.168 0.412

10 0.453 0.137 0.409

11 0.426 0.14 0.434

12 0.464 0.11 0.426

13 0.456 0.104 0.44

14 0.412 0.17 0.418

15 0.478 0.162 0.36

16 0.478 0.135 0.387

17 0.492 0.146 0.363

18 0.47 0.162 0.368

19 0.453 0.168 0.379

20 0.489 0.165 0.346

21 0.489 0.157 0.354

22 0.495 0.14 0.365

23 0.456 0.198 0.346

24 0.486 0.173 0.341

25 0.473 0.146 0.382

26 0.464 0.151 0.385

27 0.462 0.195 0.343

28 0.453 0.168 0.379

29 0.497 0.129 0.374

30 0.495 0.115 0.39

31 0.533 0.115 0.352

32 0.459 0.181 0.36

33 0.489 0.132 0.379

34 0.448 0.181 0.371

35 0.47 0.115 0.415

36 0.519 0.102 0.379

37 0.453 0.129 0.418

38 0.503 0.115 0.382

39 0.451 0.121 0.429

40 0.404 0.184 0.412

41 0.473 0.093 0.434

42 0.409 0.198 0.393

43 0.385 0.151 0.464

44 0.418 0.132 0.451

45 0.404 0.113 0.484

46 0.396 0.115 0.489

47 0.398 0.121 0.481

48 0.437 0.107 0.456

49 0.33 0.124 0.547

50 0.401 0.099 0.5

51 0.379 0.115 0.505

52 0.321 0.162 0.516

24

Week State 0 State 1 State 2

1 44.09 72.33 94.5

2 38.09 69.04 90.34

3 35.85 67.43 92.03

4 33.89 67.51 92.47

5 28.89 60.18 87.05

6 40.94 64.16 93.36

7 36.15 59.07 86.64

8 38.12 58.58 83.77

9 33.53 59.02 84.57

10 30.53 58.06 83.37

11 33.42 60.79 85.39

12 26.65 58.66 84.17

13 28.65 54.56 81.03

14 39.21 60.02 83.23

15 27.41 51.93 70.08

16 25.81 49.34 71.9

17 30.96 52.13 76.18

18 28.2 52.38 75.53

19 31.38 54.71 76.16

20 33.21 52.07 70.11

21 29.85 50.5 73.39

22 26.4 46.33 69.55

23 23.84 46.16 69.23

24 32.47 48.54 74.85

25 27.94 50.98 69.9

26 29.19 52.81 73.49

27 28.57 49.51 77.77

28 30.91 53.46 78.11

29 25.41 47.96 73.39

30 27.85 46.98 71.31

31 25.5 45.24 66.46

32 27.48 49.49 72.8

33 26.52 48.05 72.62

34 27.77 50.4 76.12

35 30.39 54.37 78.27

36 26.64 51.23 83.57

37 31.56 57.53 81.39

38 26.1 50.86 74.39

39 28.48 52.13 85.69

40 31.9 58.75 85.28

41 30.84 58.12 82.95

42 32.27 57.81 78.32

43 41.89 65.3 89.34

44 34.6 59.66 89.18

45 35.33 64.95 90.93

46 38.74 61.98 89.2

47 31.87 65.97 91.01

48 36.68 63.06 89.55

49 38.53 71.59 94.22

50 34.79 65.3 90.82

51 36.68 66.28 92.94

52 43.42 72.26 93.19

Table 3: Weekly costs in thousands per state

25

Week p-value Week p-value

1 0.022 27 0.846

2 0.024 28 0.040

3 0.451 29 0.283

4 0.003 30 0.969

5 0.388 31 0.000

6 0.588 32 0.220

7 0.056 33 0.283

8 0.010 34 0.201

9 0.134 35 0.757

10 0.060 36 0.580

11 0.059 37 0.232

12 0.282 38 0.101

13 0.526 39 0.715

14 0.036 40 0.367

15 0.818 41 0.955

16 0.628 42 0.716

17 0.839 43 0.013

18 0.239 44 0.126

19 0.878 45 0.785

20 0.041 46 0.002

21 0.721 47 0.217

22 0.706 48 0.000

23 0.106 49 0.011

24 0.644 50 0.874

25 0.572 51 0.267

26 0.314

Table 4: P-values from the Pearson Correlation test.

9.2 Programming code

9.2.1 Replication code

1 import com.google.common.collect.Sets;

2 import ilog.concert .*;

3 import ilog.cplex.IloCplex;

4 import org.apache.commons.math3.distribution.WeibullDistribution;

5

6 import java.io.FileNotFoundException;

7 import java.util .*;

8

9 public class pARP {

10

11 public static double delta = 0.0;

26

12 public static double cp_hat = 10;

13 public static double cf_hat = 50;

14 public static int N; // periods

15 public static int M; // max age

16

17

18 public static void solvepARP(WeibullDistribution weib , int periods ,

int maxAge) throws IloException , FileNotFoundException {

19 IloCplex cplex = new IloCplex ();

20 // VARIABLE DEFINITIONS

21

22 Double [][] costmatrix = ReaderClassARP.getCostMatrix ("/ Users/

bramvader/Documents/Econometrie/B3/Scriptie/src/

weekycoststate_mainmodel.csv");

23 IloNumVar [][][] x_matrix = new IloNumVar[periods +1][maxAge

+1][2];

24 for (int i = 1; i <= periods; i++){

25 for (int j = 0; j <= maxAge; j++) {

26 for (int k = 0; k <= 1; k++) {

27 x_matrix[i][j][k] = cplex.numVar(0, Double.

POSITIVE_INFINITY , "x_matrix (" + i + "," + j + ",

" + k + ")");

28 }

29 }

30 }

31

32 Double [][][][][] pi_matrix = new Double[periods +1][maxAge +1][

periods +1][maxAge +1][2];

33 double p_1 = Distribution.hazfunc(1, weib);

34 double oneMinusP_1 = (1.0 - p_1);

35

36 // a = 1 case

37 for (int i = 1; i <= periods; i++) {

38 for (int j = 0; j<= maxAge; j++) {

39 for (int k = 1; k <= periods; k++) {

40 for (int l = 0; l <= maxAge; l++) {

41 if ((k == i+1 && l == 0) || (k == (i+1) %

periods && l == 0))

42 {

43 pi_matrix[i][j][k][l][1] = p_1;

44 }

45 else if ((k == i+1 && l == 1) || (k == (i+1) %

periods && l == 1))

46 {

47 pi_matrix[i][j][k][l][1] = oneMinusP_1;

48 }

49 else pi_matrix[i][j][k][l][1] = 0.0;

50 }

27

51 }

52 }

53 }

54 // a = 0 case

55 for (int i = 1; i <= periods; i++) {

56 for (int j = 0; j <= maxAge; j++) {

57 for (int k = 1; k <= periods; k++) {

58 for (int l = 0; l <= maxAge; l++) {

59 if (j != 0 && j!= maxAge) {

60 double p_j = Distribution.hazfunc(j, weib);

61 double oneminusp_j = (1.0-p_j);

62 if ((k == i+1 && l == 0) || (k == (i+1) %

periods && l == 0)) {

63 pi_matrix[i][j][k][l][0] = p_j;

64 }

65 else if ((k == i+1 && l == j+1) || (k == (i

+1) % periods && l == j+1)) {

66 pi_matrix[i][j][k][l][0] = oneminusp_j;

67 }

68 }

69 else pi_matrix[i][j][k][l][0] = 0.0;

70 }

71 }

72 }

73 }

74

75 for (int i = 1; i <= periods; i++) {

76 for (int j = 0; j <= maxAge; j++) {

77 for (int k = 1; k <= periods; k++) {

78 for (int l = 0; l <= maxAge; l++) {

79 for (int m = 0; m <= 1; m++){

80 if (pi_matrix[i][j][k][l][m] == null) {

81 pi_matrix[i][j][k][l][m] = 0.0;

82 }

83 }

84 }

85 }

86 }

87 }

88

89 // SET DEFINITIONS

90 Set <Integer > I_1 = new HashSet <>();

91 for (int i = 1; i <= periods; i++) {

92 I_1.add(i);

93 }

94

95 Set <Integer > I_2 = new HashSet <>();

96 for (int i = 0; i <= maxAge; i++) {

28

97 I_2.add(i);

98 }

99

100 Set <List <Integer >> I_12 = Sets.cartesianProduct(I_1 , I_2);

101 Set <Integer > zero = new HashSet <>();

102 zero.add (0);

103 Set <List <Integer >> I_b = Sets.cartesianProduct(I_1 , zero);

104 Set <List <Integer >> I_noZero = Sets.difference(I_12 , I_b);

105

106

107 IloNumExpr costsPM = cplex.constant (0);

108 IloNumExpr costsCM = cplex.constant (0);

109

110 for (List <Integer > element : I_noZero){

111 costsPM = cplex.sum

112 (costsPM , cplex.prod(cplex.constant(costmatrix[

element.get (0)][1]), x_matrix[element.get (0)][

element.get (1)][1]));

113 }

114

115 for (List <Integer > element : I_b){

116 costsCM = cplex.sum

117 (costsCM , cplex.prod(cplex.constant (4* costmatrix[

element.get (0)][1]), x_matrix[element.get (0)][

element.get (1)][1]));

118 }

119

120 IloNumExpr objective = cplex.sum(costsPM , costsCM);

121 cplex.addMinimize(objective);

122

123 // Restrictions:

124 for (int i = 1; i <= periods; i++) {

125 IloNumExpr sumX = cplex.constant (0);

126 for (int j = 0; j <= maxAge; j++) {

127 for (int k = 0; k <=1; k++) {

128 sumX = cplex.sum(sumX , x_matrix[i][j][k]);

129 }

130 }

131 cplex.addEq(sumX ,cplex.constant (1.0/ periods));

132 }

133

134 for (int i = 1; i <= periods; i++) {

135 for (int j = 0; j <= maxAge; j++) {

136 if (j == 0 || j == maxAge) {

137 cplex.addEq(x_matrix[i][j][0], 0);

138 }

139 }

140 }

29

141

142 for (int i = 1; i <= periods; i++)

143 {

144 for (int j = 0; j <= maxAge; j++) {

145 IloNumExpr sumX = cplex.constant (0);

146 IloNumExpr sumPiX = cplex.constant (0);

147

148 // X variable

149 if (action(i, j).size() != 1) {

150 sumX = cplex.sum(sumX , x_matrix[i][j][0]);

151 }

152 sumX = cplex.sum(sumX , x_matrix[i][j][1]);

153

154 // X-PI variable: voor elke mogelijke staat (j1 ,j2)

bepaal de x variablen wrt acties ,

155 for (List <Integer > element : I_12) {

156 if (action(element.get (0), element.get (1)).size() !=

1) {

157 sumPiX = cplex.sum(sumPiX , cplex.prod(pi_matrix[

element.get (0)][element.get (1)][i][j][0],

158 x_matrix[element.get(0)][element.get(1)

][0]));

159 }

160 sumPiX = cplex.sum(sumPiX , cplex.prod(pi_matrix[

element.get (0)][element.get (1)][i][j][1],

161 x_matrix[element.get(0)][element.get(1)][1])

);

162 }

163 IloNumExpr lhs = cplex.sum(sumX , cplex.prod(-1, sumPiX))

;

164 cplex.addEq(lhs , 0);

165 }

166 }

167

168

169 cplex.solve();

170

171 Set <List <Integer >> I_LP = new HashSet <>();

172

173 for (int i = 1; i <= periods; i++) {

174 for (int j = 0; j <= maxAge; j++) {

175 if (action(i, j).size() != 1) {

176 if (cplex.getValue(x_matrix[i][j][0]) > 0)

177 {

178 ArrayList <Integer > indices = new ArrayList <>();

179 indices.add(i);

180 indices.add(j);

181 I_LP.add(new ArrayList <>(indices));

30

182 }

183 }

184 if (cplex.getValue(x_matrix[i][j][1]) > 0)

185 {

186 ArrayList <Integer > indices = new ArrayList <>();

187 indices.add(i);

188 indices.add(j);

189 I_LP.add(new ArrayList <>(indices));

190 }

191 }

192 }

193

194 Set <List <Integer >> I_leftover = Sets.difference(I_12 , I_LP);

195 Set <List <Integer >> I_LPtemp = new HashSet <>();

196

197 for (List <Integer > leftover : I_leftover)

198 {

199 for (List <Integer > lp : I_LP){

200 if (action(leftover.get (0), leftover.get (1)).size()

!= 1)

201 {

202 if (pi_matrix[leftover.get (0)][leftover.get (1)][

lp.get (0)][lp.get (1)][0] > 0)

203 {

204 ArrayList <Integer > temp = new ArrayList <>();

205 temp.add(leftover.get (0));

206 temp.add(leftover.get (1));

207 temp.add (0);

208 I_LPtemp.add(temp);

209

210

211 }

212 }

213 if (pi_matrix[leftover.get (0)][leftover.get (1)][lp.

get(0)][lp.get(1)][1] > 0)

214 {

215 // if (leftover.get (0) ==

216 // {

217 ArrayList <Integer > temp = new ArrayList <>();

218 temp.add(leftover.get (0));

219 temp.add(leftover.get (1));

220 temp.add (1);

221 I_LPtemp.add(temp);

222 // }

223 }

224 }

225 }

226 I_LP.addAll(I_LPtemp);

31

227 cplex.exportModel ("ARP.lp");

228

229 if (cplex.getStatus () == IloCplex.Status.Optimal) {

230 System.out.println (" Found optimal Solution !");

231 System.out.println ("Long -run total average cost = " + N*

cplex.getObjValue ());

232 System.out.println ("Long -run probabilities: ");

233

234 for (int i = 1; i <= periods; i++) {

235 for (int j = 0; j <= maxAge; j++) {

236 for (int k = 0; k <=1; k++){

237 if (k == 1)

238 System.out.println ("x(" + i + "," + j + "," + k +

") = " + cplex.getValue(x_matrix[i][j][k]));

239 }

240 }

241 }

242 }

243

244 else

245 {

246 System.out.println ("No optimal solution found");

247 }

248 cplex.close();

249 }

250

251 public static double costsPM(int period)

252 {

253 double result = Math.cos (((2.0* Math.PI)*(period -1))/N);

254 return cp_hat *(1+(delta*result));

255 }

256

257 public static double costsCM(int period)

258 {

259 double result = Math.cos (((2.0* Math.PI)*(period -1))/N);

260 return cf_hat *(1+(delta*result));

261 }

262

263 public static ArrayList <Integer > action(int period , int age) {

264 ArrayList <Integer > ints = new ArrayList <>();

265 int a = 0;

266 int b = 1;

267

268 if (age != 0 && age != M) {

269 ints.add(a);

270 ints.add(b);

271 } else {

272 ints.add(a);

32

273 }

274 return ints;

275 }

276

277 public static int numberOfActions(int period , int age) {

278 int number;

279 if (action(period , age).size() == 1) {

280 number = 1;

281 } else {

282 number = 2;

283 }

284 return number;

285 }

286

287 public static void main(String [] args) {

288

289 N = 52;

290 M = 52;

291 int shape = 2; // beta 2

292 int scale = N; // alpha 52

293 WeibullDistribution weib = new WeibullDistribution(shape ,

scale);

294

295 try {

296 solvepARP(weib , N, M);

297 } catch (IloException e) {

298 System.out.println ("A Cplex exception occured: " + e.

getMessage ());

299 e.printStackTrace ();

300 } catch (FileNotFoundException e) {

301 e.printStackTrace ();

302 }

303

304 }

305

306 }

9.2.2 Extended p-ARP model

1 import com.google.common.collect.Sets;

2 import ilog.concert .*;

3 import ilog.cplex.IloCplex;

4 import org.apache.commons.math3.distribution.WeibullDistribution;

5

6 import java.io.FileNotFoundException;

7 import java.util .*;

8

9 public class pARP_ext {

33

10 public static int N; // periods

11 public static int M; // max age

12 public static Double [][] costmatrix;

13

14 public static void solvepARP_ext(WeibullDistribution weib , int

periods , int maxAge) throws IloException , FileNotFoundException {

15 IloCplex cplex = new IloCplex ();

16 // VARIABLE DEFINITIONS

17 IloNumVar [][][][] x_matrix = new IloNumVar[periods +1][maxAge

+1][3][2];

18 for (int i = 1; i <= periods; i++){

19 for (int j = 0; j <= maxAge; j++) {

20 // w is index voor de weer -state

21 for (int w = 0; w <= 2; w++){

22 for (int k = 0; k <= 1; k++) {

23 x_matrix[i][j][w][k] = cplex.numVar(0, Double.

POSITIVE_INFINITY , "x_matrix(" + i + ", " + j

+ ", "+ w + ", " + k + ")");

24 }

25 }

26 }

27 }

28

29 // (i,j,w) -> (k,l,w^) onder actie {1}

30 Double [][][][][][][] pi_matrix = new Double[periods +1][maxAge

+1][3][periods +1][maxAge +1][3][2];

31 Double [][] w_matrix = CSVReader.calcProbMatrix("/Users/bramvader

/Documents/Econometrie/B3/Scriptie/src/probabilities.csv");

32 Double [][] costmatrix = CSVReader.getCostMatrix("/Users/

bramvader/Documents/Econometrie/B3/Scriptie/src/

weekycoststates.csv");

33 double p_1 = Distribution.hazfunc(1, weib);

34

35 double oneMinusP_1 = (1.0 - p_1);

36

37 // a = 1 case

38 for (int i = 1; i <= periods; i++) {

39 for (int j = 0; j<= maxAge; j++) {

40 for (int w1 = 0; w1 <=2; w1++){

41 for (int k = 1; k <= periods; k++) {

42 for (int l = 0; l <= maxAge; l++) {

43 for (int w2 = 0; w2 <= 2; w2++)

44 {

45 if ((k == i+1 && l == 0) || (k == (i+1) %

periods && l == 0))

46 {

47

48 pi_matrix[i][j][w1][k][l][w2][1] = p_1

34

* w_matrix[i][w2];

49 }

50 else if ((k == i+1 && l == 1) || (k == (i+1)

% periods && l == 1))

51 {

52

53 pi_matrix[i][j][w1][k][l][w2][1] =

oneMinusP_1 * w_matrix[i][w2];

54 }

55

56 else pi_matrix[i][j][w1][k][l][w2][1] = 0.0;

57 }

58 }

59 }

60 }

61 }

62 }

63 // a = 0 case

64 for (int i = 1; i <= periods; i++) {

65 for (int j = 0; j <= maxAge; j++) {

66 for (int w1 = 0; w1 <= 2; w1++) {

67 for (int k = 1; k <= periods; k++) {

68 for (int l = 0; l <= maxAge; l++) {

69 for (int w2 = 0; w2 <= 2; w2++) {

70 if (j != 0 && j != maxAge) {

71 double p_j = Distribution.hazfunc(j,

weib);

72 double oneminusp_j = (1.0 - p_j);

73 if ((k == i + 1 && l == 0) || (k ==

(i + 1) % periods && l == 0)) {

74 pi_matrix[i][j][w1][k][l][w2][0]

= p_j * w_matrix[i][w2];

75 } else if ((k == i + 1 && l == j +

1) || (k == (i + 1) % periods &&

l == j + 1)) {

76 pi_matrix[i][j][w1][k][l][w2][0]

= oneminusp_j * w_matrix[i][

w2];

77 }

78 } else pi_matrix[i][j][w1][k][l][w2][0]

= 0.0;

79 }

80 }

81 }

82 }

83 }

84 }

85 for (int i = 1; i <= periods; i++) {

35

86 for (int j = 0; j <= maxAge; j++) {

87 for (int w1 = 0; w1 <= 2; w1++) {

88 for (int k = 1; k <= periods; k++) {

89 for (int l = 0; l <= maxAge; l++) {

90 for (int w2 = 0; w2 <= 2; w2++) {

91 for (int m = 0; m <= 1; m++) {

92 if (pi_matrix[i][j][w1][k][l][w2][m]

== null) {

93 pi_matrix[i][j][w1][k][l][w2][m]

= 0.0;

94 }

95 }

96 }

97 }

98 }

99 }

100 }

101 }

102

103 // SET DEFINITIONS

104 Set <Integer > I_1 = new HashSet <>();

105 for (int i = 1; i <= periods; i++) {

106 I_1.add(i);

107 }

108

109 Set <Integer > I_2 = new HashSet <>();

110 for (int i = 0; i <= maxAge; i++) {

111 I_2.add(i);

112 }

113

114 Set <Integer > I_3 = new HashSet <>();

115 for (int i = 0; i <= 2; i++)

116 {

117 I_3.add(i);

118 }

119

120 Set <List <Integer >> I_123 = Sets.cartesianProduct(I_1 , I_2 , I_3);

121 Set <Integer > zero = new HashSet <>();

122 zero.add (0);

123 Set <List <Integer >> I_b = Sets.cartesianProduct(I_1 , zero , I_3);

124 Set <List <Integer >> I_noZero = Sets.difference(I_123 , I_b);

125

126

127 IloNumExpr costsPM = cplex.constant (0);

128 IloNumExpr costsCM = cplex.constant (0);

129

130 for (List <Integer > element : I_noZero){

131 for (int i = 0; i <= 2; i++){

36

132 costsPM = cplex.sum

133 (costsPM , cplex.prod(cplex.constant(costsPM(

costmatrix , element.get(0), element.get(2))),

x_matrix[element.get(0)][element.get (1)][i][1]));

134 }

135 }

136

137 for (List <Integer > element : I_b) {

138 for (int i = 0; i <= 2; i++) {

139 costsCM = cplex.sum

140 (costsCM , cplex.prod(cplex.constant(costsCM(

costmatrix , element.get(0), element.get(2))),

x_matrix[element.get(0)][element.get(1)][i

][1]));

141 }

142 }

143 IloNumExpr objective = cplex.sum(costsPM , costsCM);

144 cplex.addMinimize(objective);

145

146 // Restrictions:

147 for (int i = 1; i <= periods; i++) {

148 IloNumExpr sumX = cplex.constant (0);

149 for (int j = 0; j <= maxAge; j++) {

150 for (int k = 0; k <=1; k++) {

151 for (int w = 0; w <= 2; w++)

152 sumX = cplex.sum(sumX , x_matrix[i][j][w][k]);

153 }

154 }

155 cplex.addEq(sumX ,cplex.constant (1.0/ periods));

156 }

157

158 for (int i = 1; i <= periods; i++) {

159 for (int j = 0; j <= maxAge; j++) {

160 for (int w = 0; w<=2; w++){

161 if (j == 0 || j == maxAge) {

162 cplex.addEq(x_matrix[i][j][w][0], 0);

163 }

164 }

165 }

166 }

167

168

169 for (int i = 1; i <= periods; i++) {

170 for (int j = 0; j <= maxAge; j++) {

171 IloNumExpr xvars = cplex.sum(x_matrix[i][j][0][1] ,

x_matrix[i][j][1][1] , x_matrix[i][j][2][1]);

172 IloNumExpr minimum = cplex.min(x_matrix[i][j][0][1] ,

x_matrix[i][j][1][1]);

37

173 IloNumExpr minimum2 = cplex.min(minimum ,x_matrix[i][j

][2][1]);

174 cplex.addEq(xvars , minimum2);

175 }

176 }

177

178 for (int i = 1; i <= periods; i++)

179 {

180 for (int j = 0; j <= maxAge; j++) {

181 for (int w1 = 0; w1 <= 2; w1++) {

182 IloNumExpr sumX = cplex.constant (0);

183 IloNumExpr sumPiX = cplex.constant (0);

184 // X variable

185 if (action(i, j).size() != 1) {

186 sumX = cplex.sum(sumX , x_matrix[i][j][w1

][0]);

187 }

188 sumX = cplex.sum(sumX , x_matrix[i][j][w1][1]);

189

190 // X-PI variable: voor elke mogelijke staat (j1 ,

j2) bepaal de x variablen wrt acties ,

191 for (List <Integer > element : I_123) {

192

193 if (action(element.get (0), element.get (1)).

size() != 1) {

194 sumPiX = cplex.sum(sumPiX ,

195 cplex.prod(pi_matrix[element.get

(0)][element.get(1)][element.

get(2)][i][j][w1][0],

x_matrix[element.get(0)][

element.get (1)][element.get

(2)][0]));

196 }

197 sumPiX = cplex.sum(sumPiX ,

198 cplex.prod(pi_matrix[element.get(0)

][element.get (1)][element.get (2)

][i][j][w1][1], x_matrix[element.

get(0)][element.get(1)][element.

get(2)][1]));

199 }

200 IloNumExpr lhs = cplex.sum(sumX , cplex.prod(-1,

sumPiX));

201 cplex.addEq(lhs , 0);

202

203 }

204 }

205 }

206

38

207

208 cplex.solve();

209

210 cplex.exportModel("ARP_ext.lp");

211

212 if (cplex.getStatus () == IloCplex.Status.Optimal) {

213 System.out.println("Found optimal Solution!");

214 System.out.println("Long -run average cost = " + cplex.

getObjValue ());

215 System.out.println("Long -run probabilities: ");

216

217 for (int i = 1; i <= periods; i++) {

218 for (int j = 0; j <= maxAge; j++) {

219 for (int w1 = 0; w1 <= 2; w1++){

220 for (int k = 0; k <=1; k++){

221 if (k == 1)

222 System.out.println("x(" + i + "," + j + ","+

w1 + ","+ k + ") = " + cplex.getValue(

x_matrix[i][j][w1][k]));

223 }

224 }

225 }

226 }

227

228 } else

229 {

230 System.out.println("No optimal solution found");

231 }

232 cplex.close();

233 }

234

235

236 public static double costsPM(Double [][] costs , int period , int

state)

237 {

238

239 double dailycost = costs[period][state];

240 // calculate costs per week for PM:

241 // 7 days * 24h * kWh price

242 double result = dailycost *7*24*0.06;

243 return result;

244 }

245

246 public static double costsCM(Double [][] costs , int period , int

state)

247 {

248 double dailycost = costs[period][state];

249 // calculate costs per week for CM:

39

250 // 7 days * 24h * kWh price

251 // Account for longer duration: 4 weeks

252

253 double result = dailycost *7*24*0.06*4;

254 return result;

255 }

256

257 public static ArrayList <Integer > action(int period , int age) {

258 ArrayList <Integer > ints = new ArrayList <>();

259 int a = 0;

260 int b = 1;

261

262 if (age != 0 && age != M) {

263 ints.add(a);

264 ints.add(b);

265 } else {

266 ints.add(a);

267 }

268 return ints;

269 }

270

271

272 public static void main(String [] args)

273 {

274 N = 12;

275 M = 12;

276 double shape = 2.0;

277 double scale = N; // 1

278 WeibullDistribution weib = new WeibullDistribution(shape ,scale);

279

280

281

282 try {

283 solvepARP_ext(weib , N,M);

284 } catch (IloException e)

285 {

286 System.out.println("A Cplex exception occured: " + e.

getMessage ()); e.printStackTrace ();

287 } catch (FileNotFoundException e) {

288 e.printStackTrace ();

289 }

290 }

291

292

293 }

9.2.3 Helper classes

40

1

2 import org.apache.commons.math3.distribution.WeibullDistribution;

3

4 public class Distribution {

5

6 public static void main(String [] args) {

7 int shape = 3; // beta 2

8 int scale = 80; // alpha 52

9

10 System.out.println("Weibull distribution with scale " + scale +

" And shape " + shape);

11 WeibullDistribution weib = new WeibullDistribution(shape , scale)

;

12 System.out.println(weib.getNumericalMean ());

13

14

15

16 }

17 // Failure probability at age x

18 public static double hazfunc(int x, WeibullDistribution weib){

19

20 // geeft objective lager maar juiste policy

21 double exp = Math.exp(-Math.pow (((x-1)/weib.getScale ()),weib.

getShape ()));

22 double exp2 = Math.exp(-Math.pow (((x)/weib.getScale ()),weib.

getShape ()));

23

24 // geeft output dichter bij de objective maar policy schuift op

25 // double exp = Math.exp(-Math.pow (((x)/weib.getScale ()),weib.

getShape ()));

26 // double exp2 = Math.exp(-Math.pow (((x+1)/weib.getScale ()),weib.

getShape ()));

27

28 return (exp - exp2)/exp;

29 }

30

31

32 }

33

34 import java.io.*;

35 import java.util.Scanner;

36

37 public class CSVReader {

38

39 public static void main(String [] args) throws Exception

40 {

41 calcProbMatrix("/Users/bramvader/Desktop/probabilities.csv")

;

41

42 }

43

44

45

46

47 public static Double [][] calcProbMatrix(String pathname) throws

FileNotFoundException {

48 Double [][] transProbs = new Double [53][3];

49

50 Scanner sc = new Scanner(new File(pathname));

51 // parsing a CSV file into the constructor of Scanner class

52 sc.useDelimiter(",");

53 // setting comma as delimiter pattern

54 for (int i = 1; i<= 52; i++)

55 {

56 for (int j = 0; j <= 2;j++)

57 transProbs[i][j] = Double.valueOf(sc.next());

58 }

59 sc.close();

60 return transProbs;

61 }

62

63 public static Double [][] getCostMatrix(String pathname) throws

FileNotFoundException {

64 Double [][] costmatrix = new Double [53][3];

65

66 Scanner sc = new Scanner(new File(pathname));

67 // parsing a CSV file into the constructor of Scanner class

68 sc.useDelimiter(",");

69 // setting comma as delimiter pattern

70 for (int i = 1; i<= 52; i++)

71 {

72 for (int j = 0; j <= 2;j++)

73 costmatrix[i][j] = Double.valueOf(sc.next());

74 }

75 sc.close();

76 return costmatrix;

77 }

78 }

42

