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Abstract

Clustering High-Dimensional, Low Sample Size (HDLSS) data is an active area of re-

search with many applications, including the biological sciences and computer vision. With

standard methods often assumed not to be useful in HDLSS settings, alternative clustering

methods and dimensionality reduction techniques have been developed, designed for clus-

tering (non)dimensionally reduced HDLSS data specifically. Whilst their superiority over

standard methods has been shown, never have these state-of-the-art methods been empir-

ically compared to each other. Furthermore, it is generally thought that dimensionality

reduction prior to clustering discards important high-dimensional information, and thus,

nondimensionally reduced clustering is better. Therefore, for 9 (non)dimensionally reduced

HDLSS datasets, we create clusters using several standard and HDLSS-specific methods,

and we compare cluster quality across all methods with internal and external cluster valida-

tion. We conclude that in terms of performance and interpretability, dimensionally reduced

clustering of HDLSS data is better than nondimensionally reduced clustering. Furthermore,

we find that in practice, HDLSS-specific methods do not necessarily outperform standard

methods.

1 Introduction

Clustering High-Dimensional, Low Sample Size (HDLSS) data has been an active area of research

for several decades. With the increasing popularity of HDLSS microarray gene expression data

analysis, where scientists try to find groups of genes out of thousands with the goal of identify-

ing their relation with specific diseases, clustering of HDLSS data is used increasingly often in

the biological sciences (Yu et al., 2014). Another increasingly relevant application of clustering

HDLSS data is computer vision (Cheema et al., 2015), where clustering is used to group visual

patterns. Because Hall et al. (2005) show that theoretically, classical clustering methods suffer

in HDLSS conditions, researchers have created numerous methods that enable good clustering

performance over the years. Though most papers compare the novel method’s performance with

classical methods, a comparison of the performance to other novel methods is often overlooked.

Our research is, to the best of our knowledge, therefore the first to extensively compare state-

of-the-art HDLSS-specific methods.

Inspired by the paper of Renjith et al. (2021), we aim to compare the performance of clustering

methods on (non)dimensionally reduced HDLSS data. In their paper, they provide a road map

for a comparison of clustering methods and Dimensionality Reduction Techniques (DRTs). In

our research, we first try to reproduce their work using the same data. After, we use the road

map they suggest as inspiration for an equivalent experiment using HDLSS data. A similar

comparison of methods for high dimensional data has been made in Bouveyron and Brunet-

Saumard (2014). In their paper, they argue that dimensionality reduction should be avoided

when clustering high-dimensional data because lower-dimensional mappings inevitably discard

information about the geometric structure of the high-dimensional data, which they believe is

destructive for clustering performance. As an alternative, they promote the usage of methods

that perform implicit dimensionality reduction; parsimonious models, subspace clustering meth-

ods and variable selection methods designed for clustering. Though the context in their paper

is high dimensional data rather than HDLSS data, their argument should also hold for HDLSS
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settings. Performing our research almost a decade after their paper was published, a series of

DRTs have been developed that, in combination with standard clustering methods, show great

clustering performance for HDLSS data. Furthermore, clustering methods have been developed

that are designed to work well on HDLSS data. Therefore, while we do use the hypothesis from

Bouveyron and Brunet-Saumard (2014) that clustering nondimensionally reduced HDLSS data

is better than clustering dimensionally reduced HDLSS data, it is of interest to research whether

this holds using state-of-the-art methods in HDLSS settings. Our main research question thus is:

To what extent do clustering methods designed for HDLSS data outperform standard clustering

methods for dimensionally reduced HDLSS data?

To answer the research question, we use 9 HDLSS gene expression microarray datasets, obtained

from the popular R package datamicroarray (Ramey, 2016), and we evaluate whether clusters

created with HDLSS data are better than clusters created with dimensionally reduced HDLSS

data. We do this with internal and external cluster validation, analysing clustering perform-

ance based on both geometric structure and classification accuracy. Additionally, we try to

find (combinations of) methods that consistently perform well throughout the experiments. For

each dataset, we create dimensionally reduced versions, with the DRTs used in Renjith et al.

(2021) and several state-of-the-art DRTs, designed for HDLSS settings, which are introduced

in Section 2. On the dimensionally reduced data, we apply the standard clustering methods

proposed in Renjith et al. (2021). On the non-dimensionally reduced data, we use, besides the

latter standard clustering methods, several state-of-the-art, HDLSS-specific clustering methods.

We then show that both in terms of performance and interpretability, clustering dimensionally

reduced HDLSS data is actually better than clustering nondimensionally reduced HDLSS data,

contradicting our hypothesis. Furthermore, we show that HDLSS-specific DRTs and clustering

methods do not necessarily outperform (all) standard methods.

The paper continues as follows. In Section 2, we introduce additional literature on which our

research is based. Section 3 describes the data used in more detail. Then, in Section 4, we

explain all researched DRTs, clustering methods and validation indices in detail. Furthermore,

we provide specific information about how our research was performed and show in detail how

we replicate and extend Renjith et al. (2021). In Section 5, the results of the research are ex-

tensively covered. Finally, we exhibit our concluding findings, present the implications of our

research, and make suggestions for further research in Section 6.

2 Theory

To get an idea of how HDLSS-specific clustering methods outperform standard clustering meth-

ods for dimensionally reduced HDLSS data, we first want to answer the question: Which com-

binations of DRTs and clustering methods result in the best cluster quality for HDLSS data?

Multiple DRTs for HDLSS data have been developed and have been shown to be superior to

classical DRTs for clustering purposes. Mahmud et al. (2021) show that clustering of dimension-

ally reduced HDLSS data using a Variational Autoencoder gives superior results over clustering

of dimensionally reduced HDLSS data using a series of DRTs, including all methods in Renjith

et al. (2021). While they do not invent the method, nor its use for dimensionality reduction,

they are the first to research the superiority of a Variational Autoencoder over classical DRTs.
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Alternatively, Kosztyán et al. (2022) present a new method, Network-based Dimensionality re-

duction Analysis, and show that it outperforms some classical DRTs in both non-HDLSS and

HDLSS settings. Finally, Nakayama et al. (2021) theoretically and experimentally show that

dimensionality reduction using Gaussian kernel Principal Component Analysis is effective for

clustering HDLSS data, though not comparing its performance to classical DRTs in practical

applications. Alternatively, several methods have been developed that both dimensionally re-

duce and cluster the data simultaneously. One recent method is given in Cai et al. (2023),

which uses tensors to encode high-order relations to lower dimensions, and clusters the data

accordingly. Another method, often used specifically for microarray gene expression data, is

Biclustering (Mitra & Banka, 2006). While it simultaneously clusters both genes (features)

and observations, Q. Liu et al. (2014) show Biclustering’s limitations, and propose an improved

version using Sparse Clustering. Though interesting and supposedly useful for the data in our

research, we do not feel they fit the research question at hand, for which reason we leave their

investigation up to further research.

After identifying the combinations of DRTs and clustering methods that result in the best cluster

quality, we want to answer the question: Which clustering methods result in the best cluster

quality for nondimensionally reduced HDLSS data? Hall et al. (2005) proof that due to the

geometric representation of data points in HDLSS settings, popular clustering methods like k-

Means and hierarchical clustering suffer, due to their dependence on the Euclidean distance. A

first method proposed to overcome this issue is given in Ahn et al. (2012), where they propose

to use the Maximal Data Piling (MDP) distance instead of the Euclidean distance. Altern-

atively, Sarkar and Ghosh (2019) present a new dissimilarity index called the Mean Absolute

Difference of Distances (MADD), and they show that MADD-based clustering methods have

better performance than clustering algorithms based on the MDP distance or the Euclidean dis-

tance. Modarres (2022) creates a modified version of MADD called Mean Absolute Differences

of Modified Distances (MADMD) and shows that it obtains similar results in HDLSS settings.

A different distance measure is proposed in Terada (2013), who proposes a transformation of the

Euclidean distance matrix, using Distance Vectors. In the paper, it is shown both theoretically

and experimentally that Distance Vector clustering outperforms classical methods. Y. Liu et al.

(2008) provide a very different approach to clustering HDLSS data, using statistical tests to de-

termine the significance of clustering. Their method, called significance of clustering (SigClust),

though often used, uses the strong assumption of normality of the data, which often poses a

problem. Therefore, Valk and Cybis (2021) introduce a new clustering method using less chal-

lenging assumptions, called U-statistical Clustering (Uclust). In their paper, they demonstrate

the superiority of Uclust over SigClust. All methods that are used in our research are described

in detail in Section 4.

Finally, after finding the best (combinations of) methods, we want to compare the best clusters

of the dimensionally reduced and nondimensionally reduced HDLSS data, trying to find if there

is a significant difference between the two.
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3 Data

Having introduced HDLSS data, a formal definition is given as follows. Given an n× p dataset

X, X is an HDLSS dataset if p > n. In fact, in practice, it often holds that p >> n. HDLSS

data is especially common in medical applications, specifically in so-called microarray data.

Microarray data is a collection of gene expression levels, extracted from genetic DNA or RNA

material. Using these gene expression levels, experts are able to identify certain patterns that

gain insights into how genes may be related to specific diseases. While the resulting datasets

contain thousands of gene expression levels, scientists often are able to collect up to only a

few hundred observations, due to natural limits in time, budget and experimental subjects.

Therefore, microarray data is a commonly used data source for examining the performance of

(machine learning) methods on HDLSS data. Further details regarding microarray data analysis

can be found in Quackenbush (2001).

The main data used in our research was extracted from the R package datamicroarray, from

which we used 9 pre-processed, pre-classified, and ready-to-use datasets. Implemented in the

package, in alphabetic order, we used the free and openly available data from Alon et al. (1999),

Christensen et al. (2009), Gravier et al. (2010), Khan et al. (2001), Pomeroy et al. (2002), Shipp

et al. (2002), Sørlie et al. (2001), Su et al. (2002) and West et al. (2001). For details regarding

each dataset, we refer to the respective paper. An overview of the datasets is given in Table 1.

Note that not all datasets refer to a specific disease, but rather some biological condition, which

is denoted by N/A.

Furthermore, reproducing the work in the paper of Renjith et al. (2021), we use the Jester

dataset 1 (Goldberg et al., 2001). It contains a large amount of joke ratings from users (-10 to

+10), extracted from an online joke recommender system. We first delete all observations with

missing data, and then randomly sample 5000 observations, similar to Renjith et al. (2021). This

is no HDLSS data, and it should therefore be noted that we do not use the results in answering

our research question. Further properties of the dataset are described in Table 1.

Paper n p Classes Disease

Goldberg et al. (2001) 73.421 100 Unknown -

Alon et al. (1999) 62 2000 2 Colon cancer
Christensen et al. (2009) 217 1413 3 N/A
Gravier et al. (2010) 168 2905 2 Breast cancer
Khan et al. (2001) 63 2308 4 SRBCT
Pomeroy et al. (2002) 60 7128 2 CNS tumor
Shipp et al. (2002) 58 6817 2 Lymphoma
Sorlie et al. (2001) 85 456 5 Breast cancer
Su et al. (2002) 102 5565 4 N/A
West et al. (2001) 49 7129 2 Breast cancer

Table 1: Overview of the datasets used in this research
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4 Methodology

4.1 Replication and extension of Renjith et al. (2021)

With this research, we aim to reproduce and extend the paper by Renjith et al. (2021), and we

propose some adjustments to their work. In their research, they perform a comparative analysis

of combinations of several often used DRTs and clustering methods and provide a general series

of steps to take to perform a similar experiment for various research purposes. In particular,

they suggest the following steps:

1. Determine the optimal cluster count using the NbClust R package.

2. Transform data using several DRTs; PCA, ICA, t-SNE and LLE. Retain a non-transformed

dataset.

3. Cluster each dataset resulting from the previous step with k-Means and AGNES.

4. Internally evaluate cluster quality of all clusters.

As a first step in our research, we replicate their work using the same data and methods. We

swap steps 1 and 2 in our research, as to us, it makes more sense to determine the optimal

cluster count after transforming the dataset, rather than before. It should be noted that in

their paper, while they do aim to offer clear guidance on how to perform a similar experiment,

they often lack exact specifications of their methods. Just one example of how their paper lacks

reproducibility is their use of the AGNES (Agglomerative Nesting) package in R. It provides a

wide range of linkage methods, but it is not specified in the paper which of these methods they

use. Additionally, it is not mentioned how hyperparameters were chosen for t-SNE and LLE.

Also, while we try to use the packages that are used in their paper, some of these have been

deprecated and/or are inapplicable to HDLSS data, one of which is NbClust. Therefore, we

manually determine the optimal cluster count by calculating the internal indices of step 4 for

all (non)dimensionally reduced clustering methods for a range of cluster counts, and we use the

cluster count that leads to the best internal index value for each individual method. Then, we

use a majority vote to determine the optimal cluster count.

After replicating their work, we extend it in several ways. First, we use the road map they

provide and extrapolate it to an HDLSS setting, repeating a similar experiment for 9 HDLSS

datasets, such that stronger conclusions about the superiority of methods can be made. Second,

as we use HDLSS data in our research, we extend the DRTs and clustering methods they propose.

While the methods they propose are generally good for the n > p Jester data, the literature

described in Section 2 tells us these methods don’t perform well in HDLSS settings, and different

methods should be used. These methods are described in detail in Sections 4.2 and 4.3. Third,

as we have access to the true class labels with our data, we do both internal and external cluster

quality evaluation. For external cluster evaluation, we skip step 1, as the optimal cluster count

is known to be equal to the true number of classes.

4.2 Dimensionality Reduction Techniques

In this section, we discuss the techniques used to dimensionally reduce the HDLSS datasets prior

to clustering.
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4.2.1 Principal Component Analysis (PCA) and CHull

First proposed in Hotelling (1933), PCA is the most well-studied and widely used DRT. PCA

decomposes the data into principal components; orthogonal, linear combinations of the original

variables that preserve the variation of the original data as much as possible. Given a dataset

X, it follows that the principal components are the eigenvectors of the matrix 1
nXXT . We refer

to Shlens (2014) for the proof and further detailed analyses. To implement PCA, we use the

method prcomp from the stats R package.

There are many ways to determine the amount of principal components to retain. A numeric

method that can be used to optimally choose the amount of principal components is called CHull

(Wilderjans et al., 2013). As a generic method, it is designed to optimally balance the goodness

of fit f and model complexity c. For PCA, the goodness of fit is the explained variance, and the

model complexity is the number of principal components to retain.

For each triplet of adjacent models (mi,mj ,mk), mj is excluded if fj ≤ fi + (cj − ci)
fk−fi
ck−ci

,

resulting in a set of models that lie above the line connecting the two other models mi and mk

(i.e., lie on the upper boundary of the convex hull). Then, the model is chosen with the highest

st value:

sti =

fi−fi−1

ci−ci−1

fi+1−fi
ci+1−ci

(1)

As the numerator and denominator are the slopes of the line connecting two adjacent models,

a large value implies a large increase in model fit going from mi−1 to mi, and a not so large

increase going from mi to mi+1. Therefore, the model is chosen where the increase in goodness

of fit levels off the most. An implementation (CHULL) can be downloaded from the website of

the authors as MATLAB code or standalone software.

4.2.2 Independent Component Analysis (ICA)

ICA, like PCA, is one of the most common linear DRTs. ICA assumes that the observed

variables X are linear combinations of underlying, non-Gaussian and independent components

S, and it aims to find these components. In matrix notation, ICA assumes that X = SA,

where A is a linear mixing matrix. ICA then attempts to get the underlying components S by

estimating an un-mixing matrix W such that XW = S. Due to the Central Limit Theorem, we

know that combinations of non-Gaussian components tend to be more Gaussian. Therefore, to

”reverse” the Central Limit Theorem, ICA searches for a W such that the non-Gaussianity of

the components is maximised. For a more detailed description of ICA, we refer to Hyvärinen and

Oja (2000). In that same paper, the authors propose a fast algorithm (FastICA) for maximising

non-Gaussianity. We use the method fastICA in R to implement this fast algorithm, using

all default settings, and retaining the same amount of components as PCA. Note that even

though we use the ”fast” algorithm, computation times were still huge and we had to skip ICA

dimension reduction for several datasets for that reason.
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4.2.3 t-Distributed Stochastic Neighbour Embedding (t-SNE)

Unlike ICA and PCA, t-SNE is a nonlinear DRT. For every observation, it creates a similarity

score pij in the original space using pij =
pj|i+pi|j

2n , where, given a Euclidean distance matrix D:

pj|i =
exp(−∥Dij∥2/2σ2

i )∑
k ̸=i exp(−∥Dij∥2/2σ2

i )
(2)

It also creates a similarity score qij in the low-dimensional space using the Cauchy distribution

(t-distribution with 1 degree of freedom):

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

(3)

For both similarity scores, higher scores/probabilities correspond to similar data points. Then,

the embedding onto the low-dimensional space is learned by changing the location of the y ob-

jects, with the objective of minimising the Kullback-Leibler divergence between the distributions

qij and pij . Because this minimisation is generally computationally expensive, Van Der Maaten

(2013) provide an alternative implementation called Barnes-Hut-SNE, which runs much faster

at the cost of slightly less exact approximations. We make use of this Barnes-Hut-SNE im-

plementation using the R package Rtsne, with the standard theta setting, which controls the

speed/accuracy trade-off. We map the data onto the same amount of dimensions as ICA and

PCA. For t-SNE, the most important parameter to tune is perplexity, for which we take
√
n,

based on the intuitive analysis in Appendix B. Finally, using a plot, we change the number of

iterations max_iter until we observe clear distinctions/clusters in the output data.

4.2.4 Locally Linear Embedding (LLE)

LLE is another nonlinear DRT, and it is the final standard DRT proposed in Renjith et al. (2021).

LLE is performed in three distinct steps, with as input an n× p matrix X. In the first step, the

neighbours of each data point xi are determined. The second step is then to compute the weights

wij that best reconstruct each data point, minimising E(W ) =
∑

i |xi −
∑

j wijxj |2. Finally,

in the third step, the embedding coordinates yi that are best reconstructed by the weights

wij are computed, minimising the embedding cost function Φ(Y ) =
∑

i |yi −
∑

j wijyj |2. The

method is implemented using the do.lle method in the R package Rdimtools. It offers built-in

regularisation parameter tuning based on the literature, and we refer to Roweis and Saul (2000)

for more details regarding both the algorithm and hyperparameter tuning. Again, we choose

the same amount of target dimensions as PCA, ICA and t-SNE.

4.2.5 Gaussian kernel Principal Component Analysis (Gaussian kPCA)

Gaussian kPCA is the first DRT that should be effective for HDLSS data, specifically for clus-

tering (Nakayama et al., 2021). Similar to PCA, kernel PCA (kPCA) is a DRT that relies on

eigenvalue decomposition. Suppose we are given a data vector xi ∈ Rn, i = 1, ..., n, and Φ

an implicit nonlinear mapping of the data from the data space Rn into the higher-dimensional

feature space F : Rn → F , x → Φ(x). Then, the dot product of Φ(xi) and Φ(xj) for any i, j

7



in F can be computed with the kernel function k(xi,xj) = ΦT (xj)Φ(xi). As the choice of Φ

is implicit, the choice of the functional form of k(xi,xj) is free. We use the Gaussian kernel,

such that k(xi,xj) = exp(−∥xi −xj∥2/γ), γ > 0. Then, the eigenvectors of the resulting matrix

K are determined, and the eigenvectors with the largest eigenvalues are retained. For a more

detailed analysis of kPCA, we refer to Zheng et al. (2005).

In their paper, Nakayama et al. (2021) study asymptotic properties of kPCA in HDLSS settings,

and they prove that for 2 and 3 underlying clusters, asymptotically, as p → ∞ with n fixed,

observations can be perfectly clustered based on the sign of their PC scores. While no proofs

are given for populations with more than 3 underlying clusters, they imply that the same results

should apply for k ≥ 4. Furthermore, the authors show that the scale parameter γ is important

for Gaussian kPCA to give good results for clustering purposes. In their paper, they provide R

code to optimally choose this parameter, and this code was used in our research. The number

of eigenspaces we retain is the same as for the previously mentioned DRTs.

4.2.6 Variational Autoencoder (VAE)

A very different approach to dimensionality reduction uses a Variational Autoencoder (VAE).

It is a neural network-based method, with applications in generative modelling of images and

videos, image manipulation, outlier detection, data imputation and finally, dimensionality re-

duction. Given an input dataset X, the goal of VAE is to map this dataset to a latent space Z,

from which PDF P (z) we can then sample to get, with high probability, samples that are close

to the original data in X. Mathematically, we want to optimise the parameters θ in a family of

deterministic functions f(z; θ), f : Z ×Θ → X such that we can sample z from P (z) and get

f(z; θ) similar to X. Therefore, we want to maximise P (X), given by:

P (X) =

∫
P (X|z; θ)P (z)dz (4)

Where P (X|z; θ) = N(X|f(z; θ), σ2I). The optimisation of the integral in Equation 4 uses

a new function Q(z|X), which takes a value of X as input, and produces a distribution over

z values that are likely to produce similar values to X. Starting from the definition of the

Kullback-Leibler divergence (KL) between P (z|X) and Q(z), for some arbitrary Q:

KL(Q(z)∥P (z|X)) = Ez∼Q(logQ(z)− logP (z|X)) (5)

Doersch (2016) shows that this can be rewritten to:

logP (X)−KL(Q(z|X)∥P (z|X)) = Ez∼Q(logP (X|z))−KL(Q(z|X)∥P (z)) (6)

Relating this to Equation 4, we see that the equation on the left in Equation 6 is the term that

we want to maximise; logP (X) plus an error term, which makes Q produce z’s such that they

can reproduce X well. It is usual practice to take Q(z|X) = N(z|µ(X; θ̃),Σ(X; θ̃)), where µ and

Σ are deterministic functions that are learned via neural networks. Using the technique called

the ”reparameterization trick”, we can optimise Equation 6, learning the functions µ and Σ, such

that we can use the function Q(z|X) to dimensionally reduce our data X to a lower-dimensional
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latent space Z.

In their paper, Mahmud et al. (2021) implement a VAE as a DRT and compare its performance

to traditional DRTs. In their research, they use similar microarray data and the structure and

hyperparameter choices of their VAE are described in detail. Focusing their research on the

VAE, they optimise the structure and hyperparameters for optimal results, and therefore, given

that the data is of a similar nature as ours, we copy their VAE structure. We first ”regularly”

normalise our data. Then, in the first layer of the encoder, we apply batch normalisation

(Santurkar et al., 2018). We use a second intermediate layer, mapping the data to 0.1p, with p

the initial amount of features. Then, we map the data to the low-dimensional latent space Z,

where the dimension of Z is one of [2, 10, 50, 100, 200, 300]. The decoder has the inverse structure

(without batch normalisation). We use a batch size of 100, 200 epochs, and Adam optimisation

with a learning rate of 0.0005. Based on external validation indices, we use the number of latent

dimensions that results in the best cluster quality. Even though we store more information in

the dimensionally reduced data than the other DRTs this way, due to the mathematical nature

of the method, we believe this is the right procedure for choosing the optimal VAE. The VAE

was built using the Keras package in Python, using Google Colab’s free GPU connection.

4.2.7 Network-based Dimensionality reduction Analysis (NDA)

The final DRT we will use is NDA. Being a network-based method, it is again very different from

previously proposed DRTs. Introduced in Kosztyán et al. (2022), it is the first nonparametric

DRT solution for HDLSS data. NDA is performed in three steps.

In the first step, the correlation graph between features is specified. Denote here G(N,A,W)

as the undirected weighted correlation graph, where N is the set of nodes, A the set of arcs,

W the set of arc weights, and node i represents feature i, i = 1, 2, ..., p. The weight of an arc

is defined as the squared correlation between two features (ρ2i,j = wi,j ∈ W). For ρi,j , we take

Pearson’s correlation coefficient between two features (vi,vj):

ρi,j =
E((vi − µi)(vj − µj))

σiσj
(7)

In the second step, we apply modularity-based community detection to G(N,A,W), which

aims to find network modules, subgraphs whose vertices are more likely to be connected than

those outside the graph. NDA uses the modularity measure introduced in Newman (2006), in

combination with the Leiden algorithm for community detection (Traag et al., 2019). For details

regarding Newman’s modularity measure and the Leiden algorithm, we refer to the respective

papers.

The third and final step involves calculating the latent variables using the eigenvector centrality

(EVC). The EVC measures the influence of a node in a network and assigns relative scores to

all nodes in the network. A high eigenvector score means that that particular node is connected

to many nodes with high eigenvector scores themselves. The EVC for feature vi is given by

ci =
1
R

∑
j ri,jcj , where R is a constant, and ri,j the edge weight, here the squared correlation,

between nodes (features) i and j. Then, the latent variable score LV for the module CI is given
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by:

LVI =

∑
i∈CI

cizi∑
i∈CI

ci
(8)

where zi = (vi − µi)/σi is the standardised feature vi.

Due to the nonparametric nature of modularity-based community detection, the number of

modules can not be influenced (negatively). Further dimensionality reduction can be achieved

by feature selection though, but as we do not perform feature selection for any other method, we

did not use this procedure to further reduce the number of dimensions to retain. Therefore, while

we have restricted other DRTs (except for the VAE) to retain the same number of dimensions

for a fair comparison, this is not appropriate for NDA. Furthermore, NDA allows for the usage

of orthogonal rotation methods (Browne, 2001). While these rotation methods aim to achieve a

more clearly separated factor structure, this may give adverse effects if the unrotated LV matrix

is highly correlated. As this is unclear prior to performing the method, we use both a rotated

and non-rotated dataset. NDA was implemented using the R package nda.

4.3 Clustering methods

In this section, we discuss the clustering methods, where standard clustering methods (k-Means

and AGNES) are used to cluster both dimensionally reduced and nondimensionally reduced

HDLSS data, and the other HDLSS-specific clustering methods are used to cluster nondimen-

sionally reduced HDLSS data only.

4.3.1 k-Means Clustering

k-Means is the most often used clustering method, first introduced in Steinhaus et al. (1956).

Given a set of p-dimensional observations (x1, ...,xn), k-means clusters these observations into

k sets S = {S1, ...,Sk}, where the within-cluster sum of squares is minimised:

minS

k∑
i=1

∑
x∈Si

∥x− µi∥2 (9)

Where ∥ · ∥ is the Euclidean norm. We use the specific k-Means algorithm of Hartigan et al.

(1979), which we refer to for details. It is implemented in the R package stats using the function

kmeans. This is the same algorithm used in Renjith et al. (2021).

4.3.2 k-Means Clustering with Mean of Absolute Differences of Distances (MADD)

While k-Means is intuitive and easy to implement, Hall et al. (2005) show that common clustering

methods based on the Euclidean distance suffer in HDLSS settings. Therefore, Sarkar and

Ghosh (2019) propose a new dissimilarity index, MADD, which they show is effective in HDLSS

situations. As they show that MADD is a dissimilarity index, rather than a distance metric or

a norm, we need a new definition for the k-Means criterion described in Section 4.3.1, such that

we can use any dissimilarity matrix to perform k-Means, an example of which is given in Vera

and Maćıas (2021). Consider ∆ any n× n symmetric dissimilarity matrix related to the initial

n× p data matrix X and denote ∆2 for the squared dissimilarities matrix. Furthermore, let E
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be an n × k partition matrix of ∆2 in k clusters, whose elements eik are 1 if row i belongs to

cluster k and zero otherwise. Then, they show that under certain conditions, it holds that:

minEW (E|k,∆2) = minE

k∑
l=1

1

2nl

n∑
i=1

n∑
j=1

eilejlδ
2
ij (10)

defines an equivalent k-Means clustering criterion for∆2 to that ofX. Intuitively, and equivalent

to regular k-Means, Equation 10 shows that we minimise the within-cluster sum of squared

dissimilarities. The MADD dissimilarities δij proposed in Sarkar and Ghosh (2019) between

rows xi and xj are given by:

δij =
1

n− 2

1
√
p

∑
z∈X\xi,xj

| ∥xi − z∥ − ∥xj − z∥ | (11)

We implemented k-Means with MADD using the R package HDLSSkST, with the gMADD method

using all default settings.

4.3.3 Agglomerative Hierarchical Clustering (AGNES)

AGNES is a bottom-up hierarchical clustering method; each observation starts as a cluster

itself, then clusters are merged moving up the hierarchy until one large cluster remains. At

every iteration, the two nearest clusters are combined, based on the distance between each

cluster, called the linkage. There exist a series of linkage methods, both simple and more

advanced. Distances between single observations are determined with methods such as the

Euclidean distance, which is our distance measure of choice. As the linkage method, we use

Unweighted average linkage:
1

|A| · |B|
∑
a∈A

∑
b∈B

d(a,b) (12)

Where A and B are two clusters, and d(a,b) is the Euclidean distance. For further details, we

refer to Kaufman and Rousseeuw (2009). AGNES is implemented in the R package stats using

the function agnes, the choice of methods is, again, the same as Renjith et al. (2021).

4.3.4 Distance Vector Clustering

Quite similar to MADD, Distance Vector clustering proposes a new distance measure, replacing

the standard Euclidean distance in standard clustering methods. Terada (2013) proposes this

new, Euclidean distance-based measure, and proposes to use it with standard hierarchical clus-

tering, using (for example) Unweighted Average or Single Linkage. Given a centred n× p data

matrix X, and its n × n Euclidean distance matrix D, the paper proposes the distance matrix

Ξ = (ξij)n×n, with ξij =
√∑

t̸=i,j(dit − djt)2. Then, using this distance measure, we use both

Unweighted Average and Single Linkage to cluster with AGNES. With A and B two clusters,

and d(·, ·) the Distance Vector distance between two observations, the Single Linkage criterion

is given by mina∈A,b∈Bd(a,b). The Unweighted Average criterion is given in Equation 12. We

calculated the Distance Vector distance matrix in R using the above-described algorithm, and

hierarchical clustering was performed using the R function agnes.
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4.3.5 U Clustering (Uclust) and U-Hierarchical Clustering (UHclust)

An alternative approach to clustering, Uclust, uses statistical tests to iteratively find clusters in

the data with significant differences. Let X = (x1, ...,xn) be a sample of p-dimensional vectors

divided into groups G1 and G2 of sizes n1 and n2, where n = n1 + n2. Valk and Cybis (2021)

then show that an unbiased estimator of the within-group distance is a generalised one-sample

U-statistic U
(g)
ng (Hoeffding & Robbins, 1948). Similarly, an unbiased estimator of the between-

group distance is a generalised two-sample U-statistic U
(1,2)
n1,n2 . Then, they show that it holds

that:

Un =
2∑

g=1

ng

n
U (g)
ng

+
n1n2

n(n− 1)
(2U (1,2)

n1n2
− U (1)

n1
− U (2)

n2
) = Wn +Bn (13)

Which leads to the statistic Bn = n1n2
n(n−1)(2U

(1,2)
n1n2 −U

(1)
n1 −U

(2)
n2 ). It’s easy to see that high values

of Bn correspond to high values for the between-group distance, and low values for the within-

group distances. Using a series of assumptions explained in Valk and Cybis (2021), the authors

then show that as p → ∞:
Bn√

var(Bn)
→ N(0, 1) (14)

Uclust uses this asymptotic property of Bn to test for homogeneity among each partition. Even-

tually, the partition with the highest value for Bn/
√

var(Bn) among all significant partitions

is chosen, and the initial sample X is split into two groups G1 and G2. If we wish to split

the sample into a known number of k groups, we can iteratively perform Uclust on each group,

choosing the partition with the highest Bn statistic, until we reach k groups. This procedure is

close to what the hierarchical version of Uclust, UHclust, does; it keeps partitioning the groups

moving up the hierarchy, choosing the partition with the highest Bn statistic until no significant

partitions remain. For further details and proofs regarding Uclust and UHclust, we refer to Valk

and Cybis (2021).

Uclust and UHclust are implemented in the R package uclust. For external cluster validation,

we used the method uclust, and iteratively split the sample, partitioning with the largest Bn

statistic, until we reached the known number of classes. For internal cluster validation, we used

the method uhclust, testing at alpha = 0.05, splitting until no significant partition was found.

4.4 Cluster Validation

With our research, we try to answer to what extent clustering methods designed for HDLSS data

outperform standard clustering methods for dimensionally reduced HDLSS data. Therefore, we

need cluster validation indices to assess clustering performance. Because we have access to

the true class labels of our data, we can perform external cluster validation, which assigns a

value to the classification of observations, relative to the true classifications. More often used

in practice, because in general one does not have access to the true class labels of observations,

we also perform internal cluster validation, which assigns a value to the geometric structure

of clusters. A wide range of internal indices exist, though it is unclear which of these indices

is best. Therefore, we use 4 popular internal indices, which are the same indices that are

used in Renjith et al. (2021). For external validation, Steinley (2004) shows the properties of
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the Adjusted Rand Index for cluster validation and argues its superiority over other often-used

external indices. Therefore, we only use the Adjusted Rand Index for external cluster validation.

4.4.1 External validation

Consider a set of n observations X = {x1, ...,xn} and suppose that U = {U1, ...,Uk} are

the resulting clusters of the clustering methods, and V = {V1, ...,Vk} are the true clusters,

according to each observations’ class label. Then, consider each ( n2 ) possible combinations of

pairs of observations xi and xj in X. We can then define the following values:

• a: the number of pairs in X that are in the same cluster in U and in the same cluster in

V

• b: the number of pairs in X that are in the same cluster in U and in different clusters in

V

• c: the number of pairs in X that are in different clusters in U and in the same cluster in

V

• d: the number of pairs in X that are in different clusters in U and in different clusters in

V

Note that these definitions can be related to True (False) Positive (Negative) classifications.

Then, a first intuitive index is the Rand Index, where RI = a+d
a+b+c+d = a+d

(n2 )
. It is easily observed

that this can be interpreted as the percentage of correctly clustered observations. Its corrected-

for-chance version proposed in Hubert and Arabie (1985) is called the Adjusted Rand Index

(ARI), which is the index that we will be using for external validation. The ARI can take

values between -1 and 1, with 0 implying equal performance to random clustering, and 1 perfect

clustering. Using the previously defined definitions, the ARI is given by:

ARI =
( n2 )(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)]

( n2 )
2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]

(15)

We implemented the ARI using the ClusterR R package, with the external_validation

method.

4.4.2 Internal validation

Now, we consider a set of n observations X = {x1, ...,xn} and suppose that U = {U1, ...,Uk}
are the resulting clusters of the clustering methods, using the number of clusters that we have

found to be optimal. The first internal validation index we use is the Silhouette Index, intro-

duced in Rousseeuw (1987). For an observation xi ∈ UI , define a(xi) as the mean (Euclidean)

distance of xi to all other observations in the same cluster UI . Furthermore, define b(xi) as the

smallest mean dissimilarity of xi to another cluster UJ , using the mean distance from xi to all

observations in UJ , where UJ is the cluster that has the minimum mean distance:

b(xi) = minJ ̸=I
1

|UJ |
∑

xj∈UJ

d(xi,xj) (16)
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Then, the Silhouette value of observation xi is given by:

s(xi) =
b(xi)− a(xi)

max{a(xi), b(xi)}
, if |UI | > 1 (17)

Finally, the Silhouette Index is obtained by taking the mean Silhouette value of all observations.

Small values for the Silhouette Index indicate small between-cluster dissimilarities and large

within-cluster dissimilarities. Therefore, with boundaries [−1, 1], higher values indicate better

clustering. We implemented the Silhouette Index using ClusterR’s method

silhouette_of_clusters.

The second internal index is the Dunn Index, proposed in Dunn (1973). It is defined as the

ratio of the smallest distance between observations that are not in the same cluster, to the

largest within-cluster distance. Defining the maximum within-cluster (Euclidean) distance as

∆I = maxxi,xj∈UI
d(xi,xj), and the minimum distance between observations not in the same

cluster as δ(UI ,UJ) = minxi∈Ui,xj∈Ujd(xi,xj),where I ̸= J , the Dunn Index of the clustering

is then given by:

Dunn =
minI,Jδ(UI ,UJ)

maxI∆I
(18)

With a lower boundary at 0, larger values indicate better clustering. The Dunn Index was

implemented using the package clValid, with the dunn method.

The third internal index, proposed in Caliński and Harabasz (1974), is the Calinski-Harabasz

Index. It is based on the ratio between the between-cluster covariance and the within-cluster

covariance. Defining the between-cluster covariance as B(k) =
∑k

I=1 |UI |∥x̄I − x̄∥2, and the

within-cluster covariance as W (k) =
∑k

I=1

∑
J ̸=I ∥x̄I − x̄J∥2, the Calinski-Harabasz Index is

then given by:

Calinhara =
B(k)(n− k)

W (k)(k − 1)
(19)

Higher values for the index imply high between-cluster differences and small within-cluster

differences. Therefore, higher values indicate better clustering. The Calinski-Harabasz Index

was implemented using the fpc package, with the method calinhara.

The final index is Davies-Bouldin’s Index, proposed in Davies and Bouldin (1979). Given

AI the centroid of cluster UI , define the average within-cluster centroid distance

SI = 1
|UI |

∑
xi∈UI

∥xi − AI∥, where ∥ · ∥ denotes the Euclidean norm. Furthermore, define the

between-cluster centroid distance as MIJ = ∥AI−AJ∥. Then, Davies-Bouldin’s Index is defined

as:

DB =
1

k

k∑
I=1

maxJ ̸=I
SI + SJ

MIJ
(20)

Here, low values for the Davies-Bouldin Index imply low within-cluster distances to the clusters’

centroids and high distances between the centroids of each cluster. Therefore, lower values

indicate better clustering. The Davies-Bouldin Index was implemented using the clusterSim

package, with the index.DB method.
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5 Results

In this section, the results of our research are presented. First, we briefly discuss the results of

our replication of the research in Renjith et al. (2021). Then, we discuss the clustering results

of the (non)dimensionally reduced HDLSS datasets, which are the results used to answer our

research question: To what extent do clustering methods designed for HDLSS data outperform

standard clustering methods for dimensionally reduced HDLSS data?

5.1 Replication of Renjith et al. (2021)

The results of our replication of the research in Renjith et al. (2021) are given in Table 2.

Comparing the results of our replication to their work, we find some clear inconsistencies. In

their research, they find that using the Jester dataset, dimensionality reduction with t-SNE

results in the best clusters, with the best values for the Silhouette Index, the Dunn Index, and

the Calinski-Harabasz Index. While in our results, the performance of dimensionality reduction

with t-SNE is in general good, performance across indices is quite different and it is not easily

said which DRT, or combination of DRT and clustering method, is best. Furthermore, in our

research, it was found that the optimal cluster count is 2, while in their research the same

optimal cluster count is 3. The reason why our results differ compared to their results may be

due to the lack of explanation on the precise execution of their methods, which we discussed in

Section 4.1. Furthermore, differences may be due to randomness. The main issue here lies with

the fact that a random sub-sample of 5000 observations is taken from the initial dataset, and

the random seed they use is unknown.

PCA ICA t-SNE LLE

k-Means AGNES k-Means AGNES k-Means AGNES k-Means AGNES k-Means AGNES

Silhouette 0,14 0,35 0,37 0,57 0,22 0,41 0,46 0,43 0,22 0,43

Dunn 0,15 0,32 0,02 0,12 0,01 0,14 0,03 0,04 0,01 0,14

Calinski-
Harabasz

188,18 14,56 828,43 29,65 273,49 4,64 1397,76 1055,18 276,16 4,86

Davies-
Bouldin

2,30 1,15 1,09 0,38 1,87 0,46 0,84 0,80 1,90 0,45

Table 2: Internal cluster validation indices for clustering (non)dimensionally reduced data from
the Jester dataset

5.2 Clustering (non)dimensionally reduced HDLSS data

A complete collection of computed cluster validation indices for all methods and datasets used

are found in Appendix A, in Tables 6 to 14. We first want to answer the question: Which com-

binations of DRTs and clustering methods result in the best cluster quality for HDLSS data?

An overview of the best 3 combinations of DRTs and clustering methods for both internal and

external cluster validation for each dataset is given in Table 3. Clearly, it can be concluded

that t-SNE is the best-performing DRT in our experiment. Both with internal and external

validation, clustering data which is dimensionally reduced using t-SNE often results in one of

the best clusters, more than any other DRT. Additionally, NDA, PCA and Gaussian kPCA
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Alon et al.
(1999)

Christensen
et al. (2009)

Gravier et
al. (2010)

Khan et
al. (2001)

Pomeroy et
al. (2002)

Shipp et
al. (2002)

Sorlie et
al. (2001)

Su et al.
(2002)

West et
al. (2001)

Internal
Validation
Rank

1
NDA
Rotated
AGNES

PCA
AGNES

t-SNE
k-Means

Gaussian
kPCA
AGNES

NDA
AGNES

t-SNE
AGNES

t-SNE
AGNES

t-SNE
k-Means

NDA
AGNES

2
ICA
AGNES

ICA
AGNES

t-SNE
AGNES

Gaussian
kPCA
k-Means

t-SNE
AGNES

t-SNE
k-Means

Gaussian
kPCA
k-Means

t-SNE
AGNES

NDA
Rotated
AGNES

3
NDA
k-Means

ICA
k-Means

NDA
AGNES

t-SNE
AGNES

Gaussian
kPCA
AGNES

PCA
AGNES

LLE
k-Means

NDA
k-Means

PCA
AGNES

External
Validation
Rank

1
Gaussian
kPCA
k-Means

PCA
AGNES

Gaussian
kPCA
k-Means

t-SNE
k-Means

t-SNE
k-Means

VAE
AGNES

PCA
k-Means

t-SNE
AGNES

t-SNE
k-Means

2
VAE
k-Means

ICA
AGNES

ICA
k-Means

LLE
k-Means

NDA
Rotated
k-Means

t-SNE
AGNES

Gaussian
kPCA
AGNES

PCA
AGNES

t-SNE
AGNES

3
t-SNE
k-Means

ICA
k-Means

PCA
AGNES

NDA
Rotated
k-Means

NDA
Rotated
AGNES

t-SNE
k-Means

t-SNE
k-Means

PCA
k-Means

LLE
AGNES

Table 3: Top 3 best-performing combinations of dimensionality reduction techniques and clus-
tering methods with internal and external cluster validation, for clustering of each dimensionally
reduced dataset

often produce good clustering performance, both with internal and external clustering. While

NDA without rotation has good clustering results with internal cluster validation, it is not once

found to be in the top 3 of best combinations of DRTs and clustering methods for external

cluster validation. Interestingly, NDA with rotation performs worse than NDA without rotation

with internal validation, while it is clearly better with external validation. Also, while having

obviously better performance than both LLE and VAE, the worst performing methods, ICA

underperforms compared to the first mentioned DRTs. It should be noted though that ICA

was excluded from the experiment for certain datasets, due to infeasible computation times.

Lastly, while for internal validation, AGNES clustering clearly outperforms k-Means clustering,

k-Means outperforms AGNES clustering with external validation. These differences in perform-

ance across internal and external validation imply that in general, better geometric structures

of clusters, assessed with internal validation, do not necessarily mean more accurately classified

clusters, assessed with external validation. Which of the two is more important depends on

the context, and is up to the user to decide. Furthermore, Table 3 shows that we should not

refrain from using classical DRTs for dimensionally reducing HDLSS data for clustering, and in

fact, t-SNE and PCA show better or similar performance compared to most DRTs designed for

dimensionally reducing data in HDLSS settings. The HDLSS-specific DRTs NDA and Gaussian

kPCA show good performance as well, rather than VAE.

Next, we want to answer the question: Which clustering methods result in the best cluster qual-

ity for nondimensionally reduced HDLSS data? An overview of the 3 best clustering methods for

HDLSS data, for both internal and external cluster validation for each dataset is given in Table

4. An obvious observation here is that AGNES has the best performance for internal cluster

validation. For external validation though, its performance lacks, and its HDLSS-adjusted ver-

sion using Distance Vectors is clearly better. Distance Vector clustering seems to be the best
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Alon et al.
(1999)

Christensen
et al. (2009)

Gravier et
al. (2010)

Khan et
al. (2001)

Pomeroy et
al. (2002)

Shipp et
al. (2002)

Sorlie et
al. (2001)

Su et al.
(2002)

West et
al. (2001)

Internal
Validation
Rank

1 AGNES AGNES AGNES AGNES AGNES
k-Means
MADD

AGNES k-Means AGNES

2
Distance
Vector
Single

Distance
Vector
Avg

Distance
Vector
Single

Uclust
Distance
Vector
Avg

AGNES k-Means
k-Means
MADD

Distance
Vector
Avg

3 k-Means
Distance
Vector
Single

Distance
Vector
Avg

Distance
Vector
Single

Distance
Vector
Single

Distance
Vector
Avg

Uclust AGNES
Distance
Vector
Single

External
Validation
Rank

1
Distance
Vector
Avg

Distance
Vector
Avg

k-Means
MADD

k-Means
Distance
Vector
Avg

k-Means Uclust k-Means AGNES

2
Distance
Vector
Single

Distance
Vector
Single

k-Means Uclust
Distance
Vector
Single

Uclust k-Means Uclust
Distance
Vector
Avg

3
k-Means
MADD

Uclust
Distance
Vector
Avg

Distance
Vector
Avg

Uclust
Distance
Vector
Avg

Distance
Vector
Avg

AGNES
Distance
Vector
Single

Table 4: Top 3 best-performing clustering methods with internal and external cluster validation,
for clustering of each nondimensionally reduced dataset

clustering method overall, showing good performance with both internal and external cluster

validation. Generally, Distance Vector clustering using Unweighted average linkage is better

than Distance Vector clustering using Single linkage, especially with external validation. On

the contrary, k-Means clustering has better performance than its HDLSS-adjusted version using

MADD as a dissimilarity index, k-Means with MADD having the least good performance out of

any of the clustering methods. Uclust finally has good performance with external cluster valid-

ation, though it underperforms compared to all other methods with internal cluster validation.

The issue with Uclust is that one needs access to the true number of clusters, as with external

cluster validation, and use that to iteratively split the sample according to the split with the

highest Bn statistic. Therefore, if we do not have access to the true number of clusters, as with

internal cluster validation, UHclust can be used to split the sample until no significant partitions

are found. In our experiment though, we have found that the number of clusters is grossly over-

estimated for all datasets. Similar to the results in Table 3, we again find significant differences

between performances with external and internal validation, and it depends on the context of

the problem which of the two is more appropriate. Overall, Table 4 shows that hierarchical clus-

tering, either with AGNES or Distance Vector clustering, is better than k-Means clustering. If

internal validation is more appropriate, AGNES has the best performance for clustering HDLSS

data, while in the cases where external validation is equally or more appropriate, Distance Vec-

tor clustering using Unweighted average linkage is best. Additionally, we again find, similar to

clustering dimensionally reduced HDLSS data, that HDLSS-specific methods do not necessarily

outperform classical methods. Finally, it is found that Uclust is a good method if and only if

the primary goal is to accurately classify observations, and the number of true clusters is known.

Finally, we aim to answer our research question: To what extent do clustering methods designed

for HDLSS data outperform standard clustering methods for dimensionally reduced HDLSS

data? Given the knowledge that clustering methods designed for HDLSS data do not neces-
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sarily outperform classical methods in HDLSS settings, we are mainly interested in evaluating

whether clustering HDLSS data has better overall performance than clustering dimensionally

reduced HDLSS data. An overview of the best cluster validation indices for clustering all dimen-

sionally and nondimensionally reduced HDLSS datasets is given in Table 5. With better index

Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

ARI

Alon et al.
(1999)

no DR 0,36 0,50 22,22 0,90 0,00
DR 0,60 0,60 62,30 0,31 0,40

Christensen
et al. (2009)

no DR 0,41 0,55 121,44 1,01 0,99
DR 0,81 0,37 1490,75 0,31 1,00

Gravier et
al. (2010)

no DR 0,46 0,80 14,23 0,43 0,05
DR 0,63 0,77 500,92 0,32 0,15

Khan et
al. (2001)

no DR 0,17 0,65 8,06 0,73 0,34
DR 0,88 1,19 98798,58 0,10 0,25

Pomeroy et
al. (2002)

no DR 0,32 0,66 14,46 0,53 -0,01
DR 0,53 0,38 871,77 0,44 0,04

Shipp et al.
(2002)

no DR 0,63 1,13 13,05 0,27 0,16
DR 0,42 0,24 1012,37 0,69 0,18

Sorlie et al.
(2001)

no DR 0,11 0,62 7,68 0,74 0,62
DR 0,46 0,43 2175,79 0,69 0,57

Su et al.
(2002)

no DR 0,16 0,70 20,65 0,76 0,95
DR 0,69 0,95 262,73 0,40 0,92

West et al.
(2001)

no DR 0,31 0,81 5,63 0,56 0,00
DR 0,79 0,90 69,50 0,19 0,03

Table 5: The best cluster validation indices for clustering each dataset, with and without di-
mensionality reduction (DR)

values highlighted in Table 5, it is evident that overall, dimensionally reduced clustering has

better performance than nondimensionally reduced clustering, both with internal and external

validation. It is interesting to see that there are usually large differences in internal index values

between dimensionally reduced and nondimensionally reduced clustering, while the ARI does

not differ as much. This is partly due to the nature of certain DRTs. For example, t-SNE pro-

duces highly unstable low-dimensional encodings, with slight adjustments in hyperparameters

resulting in large scale differences, which may bias internal index values. In our research, it is

found that especially the Calinski-Harabasz Index seems to be highly sensitive to these scale

differences, resulting in enormous differences in index values across methods, while other indices

only show small differences compared to other methods. Even though internal validation may

be biased towards dimensionally reduced clustering, clustering dimensionally reduced HDLSS

data generally seems to be slightly better than clustering nondimensionally reduced HDLSS

data with external validation as well. Regardless, the results show that we can conclude that in

terms of clustering performance, clustering methods on HDLSS data do not outperform stand-

ard clustering methods for dimensionally reduced HDLSS data.
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Besides clustering performance, interpretation plays an important role in the clustering of

HDLSS data in certain practical implementations, particularly with microarray data. In practice,

the goal of microarray data clustering mainly lies with ”class discovery” (Dopazo, 2006), both of

similar samples and closely related genes. In that case, true class assignments are unknown, and

therefore unsupervised, internal cluster validation is used. Furthermore, as it is important to

get an idea of how certain genes interact, it is important that the observations from thousands

of individual genes are somehow grouped to enable human interpretation. Therefore, given the

practical use of cluster analysis on microarray data, clustering of dimensionally reduced data

makes more sense. Together with the finding that in general, the clustering quality of dimension-

ally reduced microarray data is better than that of nondimensionally reduced microarray data,

we recommend using combinations of DRTs and standard clustering methods for clustering of

microarray data. In general, we believe that for any application where the interpretation of

the clustered observations plays an important role, the results of our research suggest that one

should use standard clustering methods on dimensionally reduced HDLSS data, instead of using

HDLSS-specific clustering methods on non-dimensionally reduced HDLSS data.

6 Conclusions

In this paper, we try to answer the question of whether, and to what extent, clustering methods

designed for HDLSS data outperform standard clustering methods on dimensionally reduced

HDLSS data. Firstly, we found that clustering methods designed for HDLSS data do not ne-

cessarily outperform standard clustering methods in HDLSS settings. Secondly, we found that

in general, clustering on HDLSS data does not outperform clustering on dimensionally reduced

HDLSS data. In fact, we found that in terms of both performance and interpretability, clustering

dimensionally reduced HDLSS data is better than clustering nondimensionally reduced HDLSS

data, both with internal and external cluster validation.

Clustering dimensionally reduced HDLSS data, we found that with internal and external cluster

validation, dimension reduction using t-SNE generally results in the best clusters. Other good

DRTs are NDA, Gaussian kPCA and PCA. This goes to show that one should not refrain from

using classical DRTs in clustering situations, as their performance is often similar to or better

than HDLSS-specific methods. Furthermore, we found big differences between internal and ex-

ternal cluster validation performances across methods, which demonstrates that clusters with

better geometric structures do not necessarily imply more accurately classified clusters.

Clustering nondimensionally reduced HDLSS data, we found that overall, hierarchical clustering

is better than k-Means clustering. For applications where internal validation is most appropriate,

the best clustering method is AGNES. For applications where external and internal validation is

equally important, or external validation is more important, the best clustering method is Dis-

tance Vector clustering with Unweighted average linkage. Furthermore, we found that, similar

to clustering dimensionally reduced HDLSS data, classical methods are not necessarily outper-

formed by their HDLSS-specific versions, and there are significant differences in performances

between internal and external validation. Finally, we demonstrated that Uclust should only be

used if the true clusters are known, and the goal is to cluster with the best accuracy.

Other than the performance of clustering methods on (non)dimensionally reduced HDLSS data,
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we found that the Calinski-Harabasz Index is highly sensitive to scale. Therefore, our research

demonstrates that the Calinski-Harabasz Index should not be used when comparing the internal

performance of combinations of DRTs and clustering methods, as some DRTs, such as t-SNE,

show large scale differences with slight hyperparameter adjustments.

Theoretically, our research contradicts the conclusion of Bouveyron and Brunet-Saumard (2014),

who recommend refraining from dimensionality reduction when clustering high-dimensional

data. Furthermore, our research contradicts the hypothesis that standard dimensionality re-

duction techniques and clustering methods should not be used on HDLSS data. This is perhaps

one of the most interesting findings, given the vast amount of research that uses this hypothesis

to build new methods that are supposed to perform well on HDLSS data specifically. Addition-

ally, trying to replicate Renjith et al. (2021), we demonstrated how the lack of detailed method

specification in their paper results in it being very hard, if not impossible, to replicate.

Further researchers may use the solutions in this research for choices failed to mention in Renjith

et al. (2021), alongside our adjusted version of the road map they provide, for a similar ana-

lysis. Furthermore, as our research was limited both in terms of computing power and time,

certain choices were made to speed up the research process. For example, while a vast amount

of free-to-use HDLSS datasets exist, we were only able to repeat the research for 9 relatively

small-sized datasets, with a number of columns up to about 7000. Even then, for the larger

datasets used, ICA was not feasible due to extremely long computation times. Further research

may use better hardware to be able to scale the experiment using a larger variety of HDLSS

data, including datasets with larger dimensionality. Under the same time and computing power

restrictions, hyperparameters, if applicable, were not tuned to optimality. Our implementation

of the VAE copies the architecture and hyperparameters of previous research and was not tuned

for each dataset. Also, we use a simple analysis for the hyperparameter optimisation of t-SNE.

Therefore, further research may involve an even more thorough tuning of hyperparameters for

every dataset. Moreover, showing substantial empirical proof that the Calinski-Harabasz In-

dex is inappropriate for a similar experiment to ours, it would be of our interest to investigate

whether there is a classification to be made in internal indices, with the aim of finding one

index that has the most desirable properties, similar to ARI. Finally, it would be of our interest

to investigate whether methods that simultaneously reduce dimensionality and cluster observa-

tions, such as Biclustering, result in better or worse cluster quality than the methods we have

discussed. Including this type of clustering method would be an interesting subject for further

research as well.
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A Supplementary tables

External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means -0,03 0,31 0,39 22,22 1,58
k-Means
MADD

-0,03 0,32 0,35 15,89 1,87

AGNES -0,05 0,36 0,50 12,40 1,23
Distance
Vector
Avg

0,00 0,31 0,29 18,09 1,80

Distance
Vector
Single

-0,03 0,30 0,38 4,92 0,90

Uclust -0,03 0,05 0,26 7,35 1,84

PCA
k-Means -0,03 0,40 0,16 36,27 1,23
AGNES -0,05 0,45 0,31 29,36 1,11

ICA
k-Means -0,04 0,16 0,06 10,43 2,29
AGNES -0,01 0,50 0,60 6,16 0,40

t-SNE
k-Means 0,01 0,42 0,19 52,98 0,91
AGNES 0,00 0,40 0,11 50,58 1,01

LLE
k-Means -0,03 0,15 0,13 10,60 2,35
AGNES -0,01 0,41 0,55 4,48 0,46

Gaussian
kPCA

k-Means 0,40 0,17 0,18 12,21 2,21
AGNES -0,01 0,32 0,41 8,50 0,80

VAE
k-Means 0,06 0,06 0,19 4,09 2,65
AGNES -0,01 0,26 0,31 2,47 0,63

NDA
k-Means -0,02 0,51 0,11 62,30 0,92
AGNES -0,05 0,55 0,24 57,83 0,85

NDA
Rotated

k-Means 0,00 0,29 0,07 18,34 1,79
AGNES -0,01 0,60 0,58 9,88 0,31

Table 6: Cluster validation indices for clustering (non)dimensionally reduced data from Alon et
al. (1999)
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External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means 0,64 0,35 0,31 121,44 1,21
k-Means
MADD

0,79 0,31 0,23 48,78 1,91

AGNES 0,24 0,41 0,55 62,20 1,01
Distance
Vector
Avg

0,99 0,39 0,36 119,79 1,09

Distance
Vector
Single

0,99 0,39 0,36 119,79 1,09

Uclust 0,98 0,03 0,15 20,29 1,86

PCA
k-Means 0,66 0,65 0,09 206,65 0,54
AGNES 1,00 0,81 0,37 1490,75 0,31

ICA
k-Means 1,00 0,77 0,32 1057,96 0,36
AGNES 1,00 0,77 0,32 1057,96 0,36

t-SNE
k-Means 0,79 0,62 0,36 589,35 0,53
AGNES 0,79 0,62 0,36 589,35 0,53

LLE
k-Means 0,47 0,60 0,09 243,53 0,73
AGNES 0,05 0,59 0,14 240,01 0,73

Gaussian
kPCA

k-Means 0,68 0,64 0,07 435,67 0,57
AGNES 0,67 0,66 0,14 487,63 0,57

VAE
k-Means 0,97 0,39 0,37 120,11 1,09
AGNES 0,97 0,39 0,37 120,11 1,09

NDA
k-Means 0,31 0,44 0,06 138,66 1,01
AGNES 0,13 0,40 0,15 44,71 0,66

NDA
Rotated

k-Means 0,27 0,37 0,12 0,12 1,26
AGNES 0,01 0,38 0,18 42,72 0,95

Table 7: Cluster validation indices for clustering (non)dimensionally reduced data from
Christensen et al. (2009)
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External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means 0,05 0,09 0,21 14,23 3,40
k-Means
MADD

0,10 0,20 0,37 5,55 5,28

AGNES 0,01 0,46 0,80 5,41 0,43
Distance
Vector
Avg

0,05 0,36 0,55 6,25 3,07

Distance
Vector
Single

0,01 0,46 0,80 5,41 0,43

Uclust 0,00 -0,08 0,15 3,22 2,44

PCA
k-Means 0,00 0,37 0,05 85,66 1,38
AGNES 0,02 0,60 0,35 27,27 0,63

ICA
k-Means 0,10 0,32 0,05 61,88 1,62
AGNES 0,02 0,55 0,22 33,24 0,83

t-SNE
k-Means 0,00 0,63 0,36 500,92 0,57
AGNES 0,00 0,63 0,36 500,92 0,57

LLE
k-Means 0,00 0,24 0,06 46,40 1,80
AGNES 0,02 0,30 0,13 21,77 1,23

Gaussian
kPCA

k-Means 0,15 0,29 0,05 62,63 1,60
AGNES -0,01 0,31 0,11 27,92 1,23

VAE
k-Means 0,00 0,03 0,17 4,85 5,83
AGNES 0,00 -0,12 0,20 1,00 3,46

NDA
k-Means 0,00 0,21 0,12 23,49 2,22
AGNES 0,01 0,59 0,77 9,58 0,32

NDA
Rotated

k-Means 0,00 0,08 0,07 12,56 3,63
AGNES 0,01 0,56 0,75 8,37 0,34

Table 8: Cluster validation indices for clustering (non)dimensionally reduced data from Gravier
et al. (2010)
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External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means 0,34 0,10 0,44 8,06 2,56
k-Means
MADD

0,09 0,08 0,34 1,93 5,24

AGNES -0,01 0,17 0,65 1,84 0,73
Distance
Vector
Avg

0,10 0,07 0,44 3,55 2,40

Distance
Vector
Single

0,06 0,03 0,49 2,39 1,18

Uclust 0,17 0,13 0,48 5,07 1,53

PCA
k-Means 0,07 0,49 0,14 94,61 0,83
AGNES 0,07 0,50 0,30 92,57 0,61

ICA
k-Means 0,07 0,50 0,14 89,12 0,71
AGNES 0,07 0,51 0,32 94,28 0,61

t-SNE
k-Means 0,25 0,54 0,27 5123,52 0,64
AGNES 0,18 0,54 0,32 6024,26 0,52

LLE
k-Means 0,25 0,45 0,17 84,71 0,79
AGNES 0,08 0,47 0,25 76,43 0,67

Gaussian
kPCA

k-Means -0,03 0,84 0,13 98798,58 0,20
AGNES -0,03 0,88 1,19 64666,87 0,10

VAE
k-Means 0,05 0,00 0,36 2,45 4,88
AGNES 0,01 -0,04 0,07 2,37 4,28

NDA
k-Means 0,14 0,33 0,25 27,95 1,03
AGNES -0,02 0,33 0,27 26,46 0,97

NDA
Rotated

k-Means 0,23 0,32 0,22 19,95 1,05
AGNES 0,02 0,24 0,30 13,44 1,01

Table 9: Cluster validation indices for clustering (non)dimensionally reduced data from Khan
et al. (2001)

27



External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means -0,01 0,18 0,38 14,46 1,99
k-Means
MADD

-0,03 0,19 0,38 12,08 2,05

AGNES -0,02 0,32 0,66 3,42 0,53
Distance
Vector
Avg

-0,01 0,30 0,59 6,87 1,19

Distance
Vector
Single

-0,01 0,30 0,59 6,87 1,19

Uclust -0,01 0,07 0,49 5,70 1,62

PCA
k-Means -0,01 0,45 0,11 53,59 0,83
AGNES -0,01 0,43 0,18 45,85 0,83

ICA
k-Means NA NA NA NA NA
AGNES NA NA NA NA NA

t-SNE
k-Means 0,04 0,42 0,14 277,56 1,03
AGNES -0,02 0,53 0,34 871,77 0,66

LLE
k-Means -0,01 0,43 0,09 43,10 0,83
AGNES -0,03 0,41 0,22 40,23 0,86

Gaussian
kPCA

k-Means 0,00 0,31 0,07 22,55 1,11
AGNES -0,02 0,46 0,18 49,80 0,78

VAE
k-Means 0,00 0,07 0,26 4,94 3,35
AGNES 0,02 0,12 0,31 3,45 3,10

NDA
k-Means 0,00 0,39 0,15 38,04 0,88
AGNES -0,01 0,47 0,38 15,84 0,44

NDA
Rotated

k-Means 0,04 0,28 0,16 18,51 1,25
AGNES 0,03 0,27 0,21 15,22 1,19

Table 10: Cluster validation indices for clustering (non)dimensionally reduced data from
Pomeroy et al. (2002)
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External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means 0,16 0,39 0,37 11,82 1,70
k-Means
MADD

0,05 0,63 1,13 13,05 0,27

AGNES 0,05 0,63 1,13 13,05 0,27
Distance
Vector
Avg

0,05 0,54 0,78 8,07 0,35

Distance
Vector
Single

0,05 0,54 0,78 8,07 0,35

Uclust 0,12 -0,01 0,30 4,86 1,96

PCA
k-Means 0,11 0,33 0,08 26,40 1,15
AGNES 0,05 0,25 0,24 14,10 0,71

ICA
k-Means NA NA NA NA NA
AGNES NA NA NA NA NA

t-SNE
k-Means 0,15 0,42 0,09 1012,37 0,84
AGNES 0,17 0,42 0,19 780,49 0,69

LLE
k-Means 0,06 0,26 0,15 23,89 1,17
AGNES -0,02 0,20 0,21 8,80 0,83

Gaussian
kPCA

k-Means 0,00 0,30 0,18 25,07 1,30
AGNES 0,09 0,34 0,19 35,23 1,00

VAE
k-Means 0,12 0,03 0,14 2,99 4,91
AGNES 0,18 0,26 0,23 7,08 1,76

NDA
k-Means 0,00 0,32 0,08 38,75 1,08
AGNES 0,05 0,32 0,14 19,62 0,78

NDA
Rotated

k-Means -0,01 0,31 0,09 36,88 1,00
AGNES 0,05 0,36 0,14 15,50 0,71

Table 11: Cluster validation indices for clustering (non)dimensionally reduced data from Shipp
et al. (2002)
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External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means 0,54 0,08 0,41 7,68 2,58
k-Means
MADD

0,13 0,04 0,36 3,01 4,92

AGNES -0,01 0,11 0,62 1,87 0,74
Distance
Vector
Avg

0,18 0,02 0,44 3,74 3,09

Distance
Vector
Single

0,02 -0,12 0,31 1,87 1,17

Uclust 0,62 0,04 0,38 3,89 2,24

PCA
k-Means 0,57 0,41 0,06 87,20 0,82
AGNES 0,34 0,40 0,14 67,65 0,75

ICA
k-Means 0,45 0,42 0,09 91,33 0,83
AGNES 0,24 0,37 0,12 57,32 0,76

t-SNE
k-Means 0,50 0,43 0,08 2024,44 0,84
AGNES 0,41 0,46 0,17 2175,79 0,69

LLE
k-Means 0,41 0,45 0,05 121,94 0,72
AGNES 0,30 0,40 0,14 99,16 0,80

Gaussian
kPCA

k-Means 0,41 0,46 0,13 114,39 0,73
AGNES 0,55 0,38 0,15 71,84 0,76

VAE
k-Means 0,20 -0,01 0,30 3,53 4,27
AGNES 0,23 0,01 0,43 3,43 4,34

NDA
k-Means 0,24 0,21 0,18 22,77 1,32
AGNES 0,19 0,18 0,21 12,04 1,07

NDA
Rotated

k-Means 0,39 0,26 0,18 25,50 1,22
AGNES 0,12 0,22 0,20 14,78 0,99

Table 12: Cluster validation indices for clustering (non)dimensionally reduced data from Sorlie
et al. (2001)
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External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means 0,95 0,16 0,66 20,65 1,70
k-Means
MADD

0,63 0,16 0,66 20,65 1,70

AGNES 0,68 0,14 0,68 1,69 0,76
Distance
Vector
Avg

0,31 0,12 0,70 8,14 1,21

Distance
Vector
Single

0,31 0,12 0,70 8,14 1,21

Uclust 0,95 0,05 0,44 5,76 2,26

PCA
k-Means 0,65 0,43 0,42 66,55 0,80
AGNES 0,68 0,43 0,42 66,55 0,80

ICA
k-Means 0,37 0,08 0,54 7,23 3,03
AGNES 0,58 0,08 0,54 5,67 2,46

t-SNE
k-Means 0,61 0,69 0,95 262,73 0,40
AGNES 0,92 0,69 0,95 262,73 0,40

LLE
k-Means 0,59 0,19 0,13 19,10 2,26
AGNES 0,55 0,24 0,24 22,16 1,71

Gaussian
kPCA

k-Means 0,27 0,19 0,14 19,15 2,21
AGNES 0,59 0,23 0,23 13,13 0,99

VAE
k-Means 0,49 0,12 0,55 10,81 2,89
AGNES 0,37 0,10 0,54 9,50 2,40

NDA
k-Means 0,49 0,45 0,13 90,64 0,91
AGNES 0,40 0,45 0,16 83,08 0,84

NDA
Rotated

k-Means 0,44 0,25 0,09 31,42 1,74
AGNES 0,43 0,27 0,14 19,64 1,20

Table 13: Cluster validation indices for clustering (non)dimensionally reduced data from Su et
al. (2002)

31



External
Validation

Internal
Validation

DRT
Clustering
Method

ARI Silhouette Dunn
Calinski-
Harabasz

Davies-
Bouldin

k-Means -0,02 0,31 0,74 5,63 1,84
k-Means
MADD

0,00 0,31 0,74 5,63 1,84

AGNES 0,00 0,31 0,81 3,11 0,56
Distance
Vector
Avg

0,00 0,31 0,74 5,63 1,84

Distance
Vector
Single

0,00 0,31 0,74 5,63 1,84

Uclust 0,00 0,03 0,47 3,43 2,29

PCA
k-Means 0,00 0,32 0,07 17,00 1,49
AGNES 0,01 0,63 0,52 20,99 0,51

ICA
k-Means NA NA NA NA NA
AGNES NA NA NA NA NA

t-SNE
k-Means 0,03 0,53 0,47 69,50 0,73
AGNES 0,03 0,53 0,47 69,50 0,73

LLE
k-Means 0,00 0,25 0,17 16,84 1,53
AGNES 0,02 0,26 0,31 6,77 0,79

Gaussian
kPCA

k-Means 0,01 0,30 0,12 17,81 1,53
AGNES 0,00 0,49 0,47 18,83 0,84

VAE
k-Means 0,00 0,31 0,74 5,63 1,84
AGNES 0,00 0,31 0,74 5,63 1,84

NDA
k-Means 0,00 0,32 0,02 10,08 1,94
AGNES 0,00 0,79 0,90 26,65 0,19

NDA
Rotated

k-Means -0,01 0,30 0,03 10,83 1,92
AGNES 0,00 0,71 0,82 15,49 0,25

Table 14: Cluster validation indices for clustering (non)dimensionally reduced data from West
et al. (2001)
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B t-SNE perplexity tuning

This analysis is based on the analysis in https://towardsdatascience.com/how-to-tune-

hyperparameters-of-tsne-7c0596a18868.

The goal of t-SNE is to minimise the Kullback-Leibler divergence between the distributions qij

and pij . Furthermore, we know that in general, largerN implies larger optimal Perplexity. Plot-

ting the KL divergence as a function of perplexity, while keeping all other parameters fixed, Fig-

ure 1 shows that the KL divergence decreases monotonically, behaving like KL = 1/Perplexity.

If we want to optimise with respect to Perplexity, we should create a function that looks like

the following:

Score ∼ 1

Perplexity
+ Penalty (21)

An intuitive penalty term, that leads to a function we can minimise, is taking Penalty =

Perplexity. Though this formulation will be dominated by the penalty term, which naturally

increases with N , and therefore we should normalise the penalty term:

Score ∼ 1

Perplexity
+

Perplexity

N
(22)

Minimising this function with respect to Perplexity, we get:

∂Score

∂Perplexity
= − 1

Perplexity2
+

1

N
= 0 (23)

Which leads to Perplexity ∼
√
N .

Figure 1: Kullback-Leibler divergence against Perplexity, keeping all other parameters fixed
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