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Abstract

In the last decade, the advent of big data has given investors of the stock market access to

much broader data sets, possibly leading to the usage of many predictors while constructing

forecasts. This often results in complex and computationally expensive models that use data

typically characterized by a high degree of noise. Our research investigates if we can solve this

issue by combining the RF method with PCA or sPCA to properly reduce the dimension

of a data set, leading to a less complex and computationally expensive ML model while

maintaining forecasting accuracy. We use the FRED-MD database proposed by McCracken

and Ng (2016) to forecast the monthly simple returns and volatility of the S&P-500 and

Nasdaq-100. We construct forecasts of these stock indices through PCR, sPCR, RF, PCA-

RF, and sPCA-RF. Our results show that the forecasts made through PCA-RF and sPCA-

RF do not significantly outperform each other. However, they consistently outperform the

forecasts of PCR, sPCR, and RF on a 1% significance level. Additionally, we find that when

RF is augmented with PCA and sPCA, there is not only a reduction in RF’s complexity and

computational expensiveness but also an improvement in performance, particularly during

crises, indicating the effectiveness of these methods in periods of high market volatility.
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1 Introduction

Hedge funds, investors, and financial analysts all have a common interest: Constructing accurate

stock market forecasts. Accurately predicting the market provides the opportunity to make tre-

mendous profits and prevent massive losses. With the rise of big data, these parties have access

to substantial databases containing viable input in forecasting models, leading to complex and

computationally expensive models. However, not all data is useful; in some cases, extra data

could worsen forecasting performance (Boivin and Ng, 2006; Heij et al., 2004). Consequently,

it is vital to look at techniques that can remove noisy, uninformative data from large data

sets, leading to less complex and computationally expensive models. This research addresses

this by integrating RF with both sPCA and PCA to forecast simple returns and volatility of

the S&P-500 and Nasdaq-100 using macroeconomic data. Thus, our central research question is:

How does the sPCA-RF method perform while forecasting stock indices, compared to PCA-RF

and RF?

Various results of the current literature regarding stock indices forecasting led us to our main

research goal. Firstly, even though PCA is a widely used dimension reduction technique, it has

a main drawback which is that when factors are strong, it fails to distinguish target-relevant

and irrelevant latent factors, which in turn means when reducing k amount of predictors to g

predictors, it does not mean that these g predictors can best forecast the target (Huang et al.,

2022). Furthermore, in a weak factor case, PCA could fail to extract signals from a big noisy

data set, resulting in biased forecasts even when using all factors (Huang et al., 2022). Con-

sequently, Huang et al. (2022) present a new approach to dimension reduction related to PCA,

namely, scaled PCA (sPCA), which addresses the problems PCA faces in weak and strong factor

cases, which makes sPCA interesting for our research since our macroeconomic data could con-

tain much noise. More specifically, we use macroeconomic data of the big FRED-MD database

proposed by McCracken and Ng (2016). Forecasting stock returns and volatility through mac-

roeconomic variables has great support within the literature (Chen, 2009; Maysami et al., 2004;

Pilinkus, 2009). Hence, the usage of FRED-MD in our research is warranted.

Furthermore, Huang et al. (2022) investigate the performance of sPCA while constructing one-

month-ahead forecasts for four target variables: Inflation, industrial production growth, un-

employment rate, and the S&P 500 index volatility. Of these four applications, this research

zooms in and extends the last application by forecasting simple returns and volatility of the

S&P-500 and Nasdaq-100 through the same macroeconomic data of FRED-MD. Furthermore,

Huang et al. (2022) constructs forecasts through PCR and scaled PCR, however another type

of method that has recently grown in popularity due to advances in technology and big data

is machine learning. There is extensive research on which ML methods are the most accurate

when forecasting stock markets. For instance, Rossi (2018) describes the good performances of

ML methods in forecasting stock returns and volatility at the monthly frequency compared to

other econometric models. In addition, Medeiros et al. (2021) found that RF performs excep-

tionally well in times of high volatility compared to other ML models. The result from Medeiros
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et al. (2021) is interesting since some studies show promising results when RF is augmented

with PCA (PCA-RF). For example, Waqar et al. (2017) find that ML techniques enhance fore-

casting performance through PCA while predicting the stock market. In addition to the results

of Waqar et al. (2017), Wang et al. (2022) forecasts wind power through various ML methods,

one of which is PCA-RF, and their results show that RF greatly benefits from the dimension

reduction of PCA. Consequently, Huang et al. (2022) would suggest that sPCA could be an

interesting contender to augment the RF method in a financial context. Next to the promising

results of RF augmentations, there also is evidence that RF without augmentations performs

well when predicting the stock market (Khaidem et al., 2016; Nti et al., 2019; Yin et al., 2023).

Furthermore, Nti et al. (2019) specifically shows that forecasting the stock market using macroe-

conomic data combined with RF gives good results. Consequently, we also look at RF without

augmentations. Therefore, we construct forecasts through an expanding window using five mod-

els: PCR, sPCR, RF, PCA-RF, and sPCA-RF. These forecasts are evaluated using MSE, MAE,

and, for subsample performance, CSSED. Additionally, we test for significant outperformance

by means of a modified DM-test proposed by Harvey et al. (1997). Subsequently, we find the

answer to our research question by investigating if there is a significant difference in forecasting

performance between sPCA-RF and PCA-RF and whether sPCA and PCA enhance the fore-

casting performance of RF. Additionally, we examine how the nonlinear sPCA-RF and PCA-RF

models perform compared to the linear PCA and sPCA models.

Our results show that the forecasts of PCA-RF and sPCA-RF do not significantly outperform

each other. However, they consistently outperform PCR, sPCR, and RF on a 1% significance

level while forecasting the returns and volatility of both S&P-500 and Nasdaq-100. Not only does

augmenting RF with PCA and sPCA significantly improve forecasting performance, but it also

greatly reduces the complexity and computational expensiveness of the model. The outperform-

ance of (s)PCA-RF is increased during unstable economic events, such as 9/11, which indicate

that PCA-RF and sPCA-RF especially perform well in times of high market volatility. Lastly,

we observe that variance explained by the chosen number of principal components says little

about forecasting performance, which makes variance thresholding a bad criterion for selecting

principal components while forecasting stock indices. The results of our research fill gaps in the

current literature because there are few studies about PCA-RF in a forecasting context (Liu and

Sun, 2019; Waqar et al., 2017; Wild Ali, 2021; Ziane et al., 2021), none of which is a financial

forecasting context. Moreover, there are even fewer studies about sPCA (Huang et al., 2022; Lu

et al., 2022; Wei and Ouyang, 2023), and, to our knowledge, no studies about sPCA-RF. Hence,

from an academic standpoint, there is still much to learn about sPCA and its merits. With our

promising results on forecasting performance of sPCA-RF and PCA-RF, we build further on

current literature (Chepurko et al., 2020; Cunningham, 2008; Waqar et al., 2017; Wong et al.,

2016) that show that augmenting ML methods with dimension reduction techniques enhances

forecasting performance, with Waqar et al. (2017) specifically showing this while predicting the

stock market. Moreover, we show that the results of Wang et al. (2022) for PCA-RF, while

predicting wind energy, also hold in a stock forecasting context. Next, we extend the results of

Huang et al. (2022) regarding forecasting performance of sPCA and PCA. Additionally, we show
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that RF performs well in times of high volatility, which is in line with Medeiros et al. (2021) and

Rossi (2018), but also show that PCA-RF and sPCA-RF perform significantly better than RF,

which is an extension of current literature. Lastly, our observation that variance thresholding

appears to be a bad criterion for selecting principal components extends the results of Ferré

(1995), who show similar results concerning variance thresholding as principal component selec-

tion criteria. However, scientific relevance is not the only motive for this research. There are

also some practical applications of this research. Investors can make a more educated decision

in constructing an accurate forecasting model for the S&P 500 and NASDAQ-100, which could

lead to better portfolio management and more profits (Pojarliev and Polasek, 2001). Therefore,

the findings of this paper could play a key role in portfolio management and investment plans

that contain these stock indices.

The rest of this paper is organized as follows. Section 2 gives insight into the data, its ori-

gins, and our alterations. Next, in Section 3, we discuss our models and techniques in detail.

After this, in Section 4, we show our results. Furthermore, in Section 5, we present the answer to

our research question and discuss theoretical and practical implications, after which we provide

suggestions for further research. Lastly, we have Appendix A, which contains a theoretical de-

rivation with regards to the size of an out-of-bag sample, and Appendix B, which contains our

replication of the results of Huang et al. (2022).

2 Data

2.1 S&P 500 and NASDAQ-100

In this research, we forecast four dependent variables connected to the S&P-500 and the NASDAQ-

100. The S&P-500 and the NASDAQ-100 are stock market indices from the U.S. of which we

forecast their returns and volatility. The S&P-500 is an index of the 500 largest U.S. companies,

and it is a representation of the U.S. economy, as opposed to the Nasdaq-100, which is more

specialized and consists primarily of tech and growth companies. We collect monthly data of the

variables: US500, NDX, VIX, and VXN, using investing.com. The US500 represents S&P-500

returns, and the data runs from February 1970 through December 2019, which leads to 599

monthly observations. Next, NDX represents Nasdaq-100 returns, of which the data runs from

October 1985 through December 2019, which leads to 411 observations. Furthermore, V IX

represents S&P-500 volatility, and the data runs from February 1990 through December 2019,

corresponding with 359 observations. Lastly, the V XN represents the Nasdaq-100 volatility, of

which the data runs from November 2003 through December 2019, which leads to 194 monthly

observations. The version of S&P-500 we currently know, which consists of 500 companies, was

launched in 1957. On the other hand, the NASDAQ-100 was launched in 1985, which is more

recent. In addition, the VIX and VXN were founded in January 1993 and January 2001, respect-

ively. Consequently, our target variables can not have the same amount of monthly observations

due to different founding dates. Furthermore, the database of investing.com is limited and does

not contain all the observations since the founding dates of the variables. The website provides

monthly simple returns and the percentual change of the stocks, which we utilize and forecast
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in this research. We use an in-sample period of 120 observations corresponding to 10 years. In

addition, we also use an expanding window to make our forecasts as realistic as possible; this is

explained more extensively in Section 3.

In addition to VXN, there is a stock called the VOLQ, which also represents the volatility

of the Nasdaq-100. However, we choose to use the VXN. The reason for this is that the VOLQ

is relatively new compared to the VXN (founded in October 2020). Therefore the usage of

VOLQ has less support within the literature. Alternatively, the VXN has a better and longer

track record backed by multiple papers. For example, Corrado and Miller (2005) found that the

VXN provides even higher quality forecasts of future volatility than the VIX. This is in line with

Arak and Mijid (2006) and Giot (2002), which show similar results when constructing forecasts

for the VXN.

2.1.1 Descriptive statistics of the target variables

Next, we look at the descriptive statistics of our target variables. The mean, standard deviation,

maximum, minimum, and number of observations per target variable are shown in Table 1. We

Table 1: Descriptive statistics of the target variables for the whole
sample period

Mean Std. Dev. Maximum Minimum Observations

US500 0.007 0.043 0.163 -0.218 599
NDX 0.013 0.069 0.250 -0.270 411
VIX 19.159 7.364 59.890 9.510 359
VXN 21.016 7.430 60.300 11.530 194

see that NDX has a higher standard deviation than US500. In addition, NDX has a higher

maximum and a lower minimum, indicating that the Nasdaq-100 returns are more volatile than

the S&P-500 returns. The higher volatility could be explained since Nasdaq-100 comprises

tech- and growth-oriented companies. These companies are characterized by higher volatility

due to rapid innovation, intense competition and are more sensitive to macroeconomic factors

and market sentiment. Moreover, when looking at V IX and V XN we see that the mean and

standard deviation of V XN is higher than that of V IX, which is consistent with the notation

that the Nasdaq-100 is more volatile than the S&P-500. The notion that some target variables

are more volatile than others is important. Recent literature concerning RF shows interesting

results in dealing with more volatile target variables. For example, Medeiros et al. (2021) found

that RF performs exceptionally well when there is high volatility compared to other forecasting

models. Therefore, it is interesting to see if we obtain similar results with these relatively volatile

target variables. Lastly, it is important to look at the number of observations of our target

variables. Some variables have fewer observations than others, whereas the VXN has the fewest

with 194 observations. A limited number of observations can negatively influence forecasting

models’ accuracy and lead to inconsistent results (Miko lajczyk and Grochowski, 2018; Raudys

et al., 1991). However, the results of Luan et al. (2020) show that the RF method gives decent

predictions of the target variables even with a limited sample size. Consequently, due to the

results of Luan et al. (2020) and the usage of an expanding window, we incorporate the VXN
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in our research despite the limited number of observations.

2.2 Macroeconomic dataset

This research follows Huang et al. (2022) and uses the FRED-MD database, which is a database

proposed by McCracken and Ng (2016), consisting of 128 macroeconomic variables which act as

the explanatory variables in our forecast construction. The database consists of macroeconomic

variables categorized into eight groups. The groups range from the stock market and prices

to interest rates& exchange rates and more. For a full description of all the macroeconomic

variables and their corresponding groups, we refer to McCracken and Ng (2016). Fred-MD

contains data from January 1959 up until December 2022. We use data from this database

between February 1970 through December 2019, depending on the specific target variable we

forecast. Forecasting stock index volatility with macroeconomic variables has support within

the literature (Chen, 2009; Maysami et al., 2004; Pilinkus, 2009). Therefore following Huang

et al. (2022) and using the FRED-MD database for our data is warranted.

2.2.1 Alterations of the dataset

The FRED-MD database originally consists of 128 macroeconomic variables, but the time series

of 5 variables are either missing or incomplete. The variables in question are: ACOGNO,

ANDENOx, TWEXMMTH, UMCSENTx and VXOCLSx. We decide to follow Huang et al.

(2022) and remove these five variables from our data set, which means we are left with 123

macroeconomic variables that act as our predictors during the construction of forecasting models.

In addition, to ensure the stationarity of our data, we follow McCracken and Ng (2016) and apply

various data transformations to certain variables of our data set. This leads to the time series

in the data set becoming stationary. The specific steps of these 7 data transformations are

described in the Appendix of McCracken and Ng (2016).

3 Methodology

In this Section, we examine the construction of forecasts through 5 different models, namely:

PCR, sPCR, RF, PCA-RF, and sPCA-RF. The usage of these models is inspired by current

literature, which is extensively discussed in Section 1. Furthermore, we discuss PCA and PCR in

Subsection 3.1. Next, in Subsection 3.2, we discuss sPCA and sPCR. Thereafter, in Subsection

3.4, we examine the Random Forest method. After this, we talk about the construction of

forecasts, their evaluation metrics, and the comparison between them in Subsections 3.5, 3.6,

and 3.7.

3.1 PCA and the selection of components

Principal component analysis (PCA), as described by Esbensen et al. (2002), reduces the dimen-

sion in a data set by reducing a large set of variables into a smaller one while preserving most

of the original set’s information. Dimension reduction attempts to exchange a little accuracy

for simplicity by reducing the number of variables, which typically results in a loss of accuracy.
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According to the literature, data augmentation techniques like PCA make it simpler and faster

to examine the data set for ML methods, which could improve the performance of the ML ap-

proach (Chepurko et al., 2020; Cunningham, 2008; Waqar et al., 2017; Wong et al., 2016).

PCA consists of multiple steps; we first standardize the data so that each variable contrib-

utes equally to the analysis, after which we compute the covariance matrix of the data set.

Next, we compute eigenvalues and eigenvectors of the covariance matrix to identify the prin-

cipal components (PC), with which we reduce the dimension of your data set by only retaining

a certain amount of PC’s, which are selected through a criterion. More specifically, let X =

(X1,X2, . . . ,Xk) be a n × k matrix representing our data set, where n is the number of obser-

vations, and k is the number of variables. We standardize each predictor Xi (∀i ∈ (1, . . . , k))

as

Zi =
Xi − µi√

σii
, (1)

where Zi represents the standardized predictor i, µi represents the mean of predictor Xi and
√
σii represents the standard deviation of Xi. Then we obtain our standardized n× k dataset Z

= (Z1,Z2,. . . ,Zk) of which we can compute the k × k covariance matrix Σ. Next, we solve the

characteristic equation

det(Σ− λI) = 0, (2)

where I is the k×k identity matrix. By solving the characteristic equation we find the eigenvalues

λi and eigenvectors vi of the covariance matrix. After which we pair each eigenvalue λi with an

eigenvector vi such that

(Σ − λiI)vi = 0. (3)

We now have the eigenvalues λi and the corresponding eigenvectors vi, with which we compute

the k × k matrix V = [v1, v2, . . . , vk] whose columns are the eigenvectors. Without loss of

generality, this matrix V is ordered in such a way that the first column corresponds to the

eigenvector with the largest eigenvalue. In addition, we can calculate the k× k diagonal matrix

Λ whose elements are the associated eigenvalues λi. Consequently, we can compute a diagonal

k × k matrix ΣV ar where the element on the diagonal in column i represents the variance

explained by principal component i. The computation of ΣV ar is given by

ΣV ar =
Λ

tr(Λ)
, (4)

where tr(Λ) denotes the trace of matrix Λ. Finally, we derive the Principal Components by

multiplying our matrix of standardized data Z by V

P = ZV. (5)

The resulting n× k matrix P has the principal components as columns, where the first column

corresponds to the principal component which explains the most variance of the data set Z. We

can now reduce the dimensions of our n × k data set by only retaining a selection of principal

components. With regards to matrix P, this means that we remove some of its columns if we
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aim to reduce the dimension of our data, resulting in a n × g matrix G that represents our

reduced data set, with g < k.

3.1.1 The selection of Principal components through 10-fold Cross-Validation

The selection of principal components to retain can be chosen through various criteria. Com-

monly used criteria within the literature are information criteria such as AIC and BIC (Bai and

Ng, 2002), kaiser’s rule (Dunteman, 1989), variance-explained thresholding (Dunteman, 1989),

and the elbow test (Dunteman, 1989). However, Ferré (1995) shows that kaiser’s rule, variance-

explained thresholding, and the elbow test often fail to select the correct amount of principal

components properly. In addition, Guo et al. (2023) show that no information criterion can

consistently identify latent factors when factor strength is too weak. Therefore, we use k-fold

cross-validation to select the number of principal components to retain and forecast. This pro-

cedure has support within the literature (Eastment and Krzanowski, 1982; Thomaz and Giraldi,

2010). Furthermore, we choose to perform k-fold cross-validation with k=10, where we restrict

the maximum number of factors at five, which is in line with Huang et al. (2022). Using ten

folds has proven to result in a low bias in a predicting context (Molinaro et al., 2005). The

cross-validation procedure is extensively described by Berrar (2019).

3.2 sPCA

Scaled principle component analysis, or sPCA, is a dimension reduction technique closely related

to PCA and is described by Huang et al. (2022). This method addresses a major problem that

PCA faces: Scaled PCA does not ignore the target variable when reducing the dimension of a

data set. It incorporates information on the target variable by putting more weight on predictors

with a higher forecasting power, which is done by regressing each predictor individually onto

the target variable and scaling this predictor by the predictive slope of the regression. This

leads to better detection of the signals of latent factors by sPCA, consequently leading to more

unbiased forecasts than the forecast of PCA. Before discussing sPCA we first introduce some

mathematical notation. Let X = (X1, X2, . . . , Xk) be a n× k matrix representing our data set,

where n is the number of observations and k is the number of predictors and let yt be the target

variable that we forecast. Then we follow Huang et al. (2022) by first standardizing our data

set X to Z in a similar manner as described in Subsection 3.1. Then we run, ∀i ∈ (1, . . . , k), the

predictive regression

yt+1 = αi + βiZi,t + ϵi,t+1, (6)

where yt+1 represents the target variable in period t+1, Zi,t represents the standardized predictor

i in period t and ϵi,t+1 represents the error term in period t + 1. Subsequently, we store,

∀i ∈ (1, . . . , k), the estimated coefficients β̂i within a vector, and we winsorize the vector to

diminish the effect of extreme values. Next, we scale our data set Zt with the vector of predictive

slopes. Finally, we follow the same steps PCA performs on the standardized data set Zt, after

which we obtain the scaled principal components, defined as sPCA factors.
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3.3 (Scaled) Principal Component Regression

Principal component regression (PCR) is a technique often used in forecasting and is proposed by

Stock and Watson (2002). It combines PCA and linear regression by using principal components

as predictors in a linear regression to forecast a target variable. We follow the model proposed

by Huang et al. (2022) to make one-step ahead forecasts with PCA and sPCA factors, computed

as

yt+1 = αPCA + πPCAgPCA
t , (7)

yt+1 = αsPCA + πsPCAgsPCA
t , (8)

where (αPCA, πPCA) and (αsPCA, πsPCA) are the respective slopes of the two predictive regres-

sions. Furthermore, gPCA
t and gsPCA

t represent the vector of PCA and sPCA which contain

the first r1 PCA factors and the first r2 sPCA factors respectively. The value of ri, (i=1,2), is

computed through 10-fold Cross-Validation and has a maximum value of five, as described in

Section 3.1.1.

3.4 Random Forest

In our research, we also use random forest (RF) to forecast the stock market. RF is a machine

learning technique introduced by Breiman (2001) and belongs to the ensemble methods. The

first step of RF is to perform bootstrap sampling on the data. More specifically, we create

k bootstrap data samples with replacement. Unfortunately, this means that the dependence

structure across series and the time series structure itself is ignored, which is a limitation in

our research. However, RF still can capture nonlinear relationships in the data and remain pre-

dictively accurate (Athanasopoulos et al., 2011; Breiman, 2001) when ignoring this structure.

Moreover, we use an expanding window while constructing our forecasts, which, although it does

not address the time series dependence structure directly, partially addresses it because a model

is always trained on past data. Therefore, it respects the temporal order of the time series data.

Additionally, the model can still adapt to changes in the underlying data over time because we

estimate and tune the model in each iteration. After we perform bootstrap sampling, we have k

samples that are the same size as our data set. Their observations are randomly chosen from the

original data, allowing for repetition. By allowing for repetition, our bootstrap samples contain,

in theory, approximately 63.2% of the data, which means that we have an out-Of-bag sample

that contains roughly 36.8% of the data. For the theoretical derivation of the bootstrap and

out-of-bag sample size, we refer to Appendix A. Via the k bootstrap samples, we can create the

so-called ’forest’. This forest consists of k decision trees, where k corresponds with the hyper-

parameter ntree. Furthermore, each tree corresponds to a unique bootstrap sample, where at

each split in the decision tree, a subset of all predictors is randomly chosen at the nodes. The

size of this subset corresponds to the hyperparameter mtry. Due to the randomness of choosing

a subset of predictors at each split, there is an increase in diversity between all trees, making

RF more robust and less at risk for overfitting.

The construction of our forecast ŷt+1 starts by making a prediction with each unique decision

tree. Within an individual decision tree, we randomly choose a subset of predictors at each
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node and select an optimal partition (split point) of the bootstrap sample for this subset. The

optimal split point is determined by minimizing an impurity measure, such as Gini impurity or

the variance of the child nodes. The usage of Gini impurity has support within the literature

(Kim et al., 2018; Qiu et al., 2017). However, we opt to minimize the variance in the child nodes

to determine the optimal split point due to the good results of Lahouar and Slama (2017) and

Wang et al. (2022), who use this criterion in the context of both forecasting and the usage of

augmented RF (PCA-RF). Hence, we utilize the R package randomForest to implement RF,

which determines the split point based on minimizing the mean squared error in the child nodes.

This results in two child nodes, onto which we recursively perform the same steps as the first

node. We follow Arsham et al. (2022) and use node purity and minimum node size as stopping

criteria for building extra nodes. Subsequently, when the decision tree is fully grown, we give

the observation xt to our tree, and the value of the leaf node (node that has no child nodes)

that is reached gives the prediction fi(xt) of the decision tree i. We repeat this process for all

k different decision trees. Finally, the computation of our prediction ŷt+1 is given by

ŷt+1 =
1

ntree

ntree∑
i=1

fi(xt) (9)

where fi(xt) represents the prediction made by the i-th decision tree when given observation xt,

and ntree corresponds to the amount of trees in our forest. More specifically, we average the

predictions made by all decision trees to make our final prediction of yt+1.

3.4.1 Hyperparameter tuning

Implementing the RF method through the R package randomForest does not automatically

tune the model. Hence we optimize our model manually by tuning the hyperparameters ntree

and mtry. The results of Probst et al. (2019) and Salles et al. (2015) show that tuning hyper-

parameters using the OOB sample enhances model performance. The OOB sample consists of

observations that are not used within a specific bootstrap sample, therefore it differs for each

tree. We utilize the sample as test data, with which we can tune certain parameters to improve

forecasting performance. The test error, which is crucial in tuning our hyperparameters, is ap-

proximated quite well by the OOB error (Salles et al., 2015). Therefore, we use the OOB error

to tune our hyperparameters ntree and mtry. The default values of these hyperparameters are

500 for ntree and p
3 for mtry, where p represents the number of predictors. We opt to tune

the hyperparameter ntree first since RF models are generally insensitive to the value of mtry

(Breiman, 2001), as opposed to ntree, which is a crucial hyperparameter because too many trees

make the model inefficient, while just the right number of trees stabilize the error (Probst et al.,

2019). We begin by estimating a RF model with the default values, after which we determine the

value of ntree, which minimizes the OOB error. After that, we construct a RF model with the

optimized ntree hyperparameter and still the default value for mtry. Then we can determine

the optimal value of mtry by minimizing the OOB error for various values of mtry. Finally, with

the optimal values for both hyperparameters, we construct our tuned RF model with which we

make our prediction.

9



3.4.2 RF augmentation

In addition to the standard RF method, described in Section 3.4, this research also augments

the RF method by PCA and sPCA. We follow the steps described in Sections 3.1 and 3.2 to

apply PCA or sPCA on our data set and reduce its dimension. Consequently, we follow the

steps described in Section 3.4 to utilize RF on the augmented data. Thereafter, we obtain the

PCA-RF or sPCA-RF method, depending on the factors used, while reducing the dimension of

the data.

3.5 Forecasting

Our research forecasts the returns and volatility of the S&P-500 and NASDAQ-100, which are

described in Section 2. The forecasts are 1-month ahead, and we consider the model

yt+1 = h(Ft) + ut+1, (10)

where yt+1 is the target variable in month t + 1, Ft represents either a vector of the 123 mac-

roeconomic variables in the FRED-MD or (s)PCA factors, and the h in the formula stands for

the specific model/function used for forecasting our target variables. More specifically, h can

represent PCR, sPCR, RF, PCA-RF, and sPCA-RF, which are described in Subsections 3.3,

3.4, and 3.4.2. Lastly, ut+1 is a zero-mean random error. Consequently, we have the following

model for forecasting our target variables, which we use in our research:

ŷt+1 = ĥ(F̂t) (11)

3.5.1 Expanding window

When estimating the models described in Subsections 3.3, 3.4 and 3.4.2 and Equation (11), we

utilize an expanding window, this means that we recursively estimate and update all the coef-

ficients within our model as we predict more observations. We have an in-sample period of 120

observations, corresponding to 10 years, and the rest of the data is used as an out-of-sample.

More specifically, we train our models with the observations up to time t and then predict yt+1

with the data of Ft. Consequently, meaning that for each prediction, we re-estimate the coeffi-

cients as our ’training data’ expands. For RF, this means we keep tuning the hyperparameters

(ntree and mtry), which makes our model more robust. With regards to PCR and sPCR, this

consequently means that we recalculate the sPCA and PCA factors before each prediction to

update our model. Lastly, Table 2 shows the exact in- and out-of-sample periods per target

variable. The V XN has a relatively short out-of-sample period, corresponding to little training

Table 2: In- and Out-Of-Sample periods of the target variables.

In-sample period Out-Of-Sample period

US500 February 1970 - January 1980 February 1980 - December 2019
NDX October 1985 - September 1995 October 1995 - December 2019
VIX February 1990 - January 2000 February 2000 - December 2019
VXN November 2003 - October 2013 December 2013 - December 2019
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and few predictions. This could lead to inconsistent results in Section 4, as few observations neg-

atively influence the interpretability of the results. For example, Davydenko and Fildes (2013)

shows that traditional evaluation metrics of forecasting models such as MAE and MSE can be

misleading when forecasting with small data sets.

3.6 Forecasting evaluation

3.6.1 MAE and MSE

Two commonly used forecast evaluation metrics are the mean squared error (MSE) and the

mean absolute error (MAE). The MAE and MSE can be computed as

MSE =
1

n

n∑
t=121

(yt − ŷt)
2, (12)

MAE =
1

n

n∑
t=121

|yt − ŷt|, (13)

where yt represents the actual value of the target variable, ŷt represents the predicted value

and n is the number of observations. Even though Hyndman and Koehler (2006) advocates for

both evaluation metrics, they also discuss some strengths and weaknesses. The MSE penalizes

large errors more, which is a good thing when that is desirable, but it also makes the evaluation

metric sensitive to outliers. On the other hand, the MAE does not penalize large errors more

and gives each error the same weight due to taking the absolute value of the errors, which can

be desirable. The downside of taking the absolute value of errors is removing the consideration

of over- and under-prediction of the target variable.

3.6.2 Subsample performance: CSSED

To evaluate relative subsample performance between two forecasts we use the cumulative sum of

squared error differentials (CSSED), which is proposed by Welch and Goyal (2008). The CSSED

between forecasts i and j is calculated as

CSSEDi,j =

n∑
t=121

(e2i,t − e2j,t), (14)

where n is the number of observations and ei,t is the error of forecast i of observation t. Sub-

sequently, we plot the value of CSSEDi,j through time, after which we can observe and evaluate

the relative subsample performance between forecasts i and j. When the value of CSSED is

positive and rising, the plot shows that the line has a positive slope, which indicates that forecast

j is more accurate than forecast i.

3.7 Comparing two forecasts: Modified Diebold-Mariano test

After constructing forecasts with various models, we compute the values of our evaluation met-

rics, described in Section 3.6, with which we can compare forecasts. However, a ’better’ value of

an evaluation metric does not necessarily indicate a significant out-performance. This means we
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cannot make definite conclusions about the accuracy of different forecasts through evaluation

metrics alone. Consequently, we perform a proper test to do this. One of the most common

methods for testing equal prediction accuracy is the Diebold-Mariano (DM) test (Diebold and

Mariano, 1995). However, this test is seriously oversized for moderate numbers of sample ob-

servations, and even though the test is more versatile than any alternative test of equality of

forecast performance, this problem grows bigger as the forecast horizon increases (Harvey et al.,

1997). Harvey et al. (1997) describes a modified DM-test, which is closely related to the original

DM-test, but it alleviates the oversized test problem and performs better in all cases (Harvey

et al., 1997). Their results specifically show a drastic improvement in test performance at the

smallest sample sizes, which is interesting for our research because our target variable, Nasdaq-

100 volatility, only has a small sample size. Therefore, we choose to perform a modified version

of the DM-test, as described by Harvey et al. (1997).

We first introduce notation before discussing the modified DM-test. Let ei,t be the error of

forecast i at time t which is computed as

ei,t = ŷi,t − yi,t for i = 1, 2. (15)

Furthermore, we introduce a loss function dt and average loss d̄, computed as

dt = e2it − e2jt and d̄ =
1

n

n∑
t=1

dt, (16)

where n represents the amount of observations made. Next we calculate the variance of our loss

function V̂ (dt) and µ, the expected value of dt, as follows

V̂ (dt) =
1

n

n∑
t=1

(dt − d̄)2 and µ = E[dt], (17)

where E[dt] represents the expected value of dt. Furthermore, the hypothesis that we test is

equal prediction accuracy, that is E[dt]=0. Hence we are formally testing

H0 : µ = E[dt] = 0 vs. Ha : µ = E[dt] ̸= 0. (18)

The test statistic of the modified DM-test is similar to the DM test statistic described by Diebold

and Mariano (1995). The modified DM-test statistic DM∗ is computed as

DM∗ =

√
n + 1 − 2h + n−1h(h− 1)

n
∗DM

h=1
=

√
n− 1

n
∗ d̄− µ√

V (dt)
n

H0=

√
n− 1

n
∗ d̄√

V (dt)
n

∼ t(n−1),

(19)

where h represents the forecast horizon (h-step ahead forecast), which is equal to 1 in our

research, and t(n−1) is the Student’s t distribution with (n−1) degrees of freedom. Finally, for

a formal proof and further description of the DM∗-test statistic and its distribution, we refer to

Harvey et al. (1997).
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4 Results

4.1 In-sample results

We perform PCA and SPCA on our data to determine what type of macro variables are most

important within the principal components and, consequently, our forecasts. The variance ex-

plained by each of the first five principal components is shown in Table 3.

Table 3: Variance explained by the first five factors of each respective method

sPCA

PCA S&P-500 returns S&P-500 volatility Nasdaq-100 returns Nasdaq-100 volatility

1st 0.15 0.18 0.26 0.18 0.40

2nd 0.07 0.15 0.17 0.10 0.07

3rd 0.07 0.08 0.10 0.09 0.06

4th 0.05 0.06 0.07 0.06 0.04

5th 0.04 0.04 0.05 0.05 0.04

Note: When the eigenvalues are normalized to have sum of one, this table also reports the 1st to 5th

eigenvalues in a descending order for the covariance matrixes of the (scaled) macro variables, where the

scaling parameter is the predictive slope of the variable on the forecasted target (as described in Section

3.2).

We see that there is clear a difference in variance explained by the principal components of

PCA and sPCA. The first few principal components of each sPCA factor explain more variance

than that of PCA. Whereas sPCA, regarding the two volatility target variables, explains the

most variance with a single PC. This is consistent with the results of Huang et al. (2022),

where the factors of sPCA explain more variance with fewer principal components. Due to the

differences in variance explained by the PC’s, we look further into the factors by investigating the

loadings of all the first factors. Figure 1 shows the loadings of the first PCA factor. We see that

Figure 1: Loadings of the first PCA factor
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macro variables corresponding with output, labor, housing, and money contribute significantly

to the PCA factor. Consequently, apart from the variables related to interest rates and prices,

we see that many variables are important in the first PCA factor and that no individual group

is the most important for this PC. In terms of learning which specific kind of macro variables

is good for predicting target variables, we do not learn much. Next, we look at Figure 2, which

shows the loadings of the first sPCA factor regarding S&P-500 returns. In this sPCA factor,

we can see two groups of macro variables that are the most important for the PC: money

and interest rates. More specifically, securities in bank credit at all commercial banks, the

effective federal funds rate, and macroeconomic variables regarding the T-bill and treasury rate
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Figure 2: Loadings of the first sPCA factor with regards to S&P-500 returns
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contribute significantly to this PC. The fact that these specific two groups are the most important

could be since the return of a S&P-500 stock is closely related to variables corresponding with

money and interest rates. For example, if the interest rate declines, buying stocks becomes

more attractive, as opposed to other buying bonds or saving, increasing the demand and price

of stocks. Furthermore, we look at Figure 3 that shows the loadings of the first sPCA factor

regarding S&P-500 volatility. Figure 3 shows that nearly all groups are of importance for the

Figure 3: Loadings of the first sPCA factor with regards to S&P-500 volatility
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first factor, with loadings of housing, labor, output, money, and interest rates all having variables

with significant loadings. Variables belonging to these groups can all affect consumer spending

behaviour and, therefore, volatility in the market, which in this case means an effect on the stock

volatility of the S&P-500. For example, labor-related variables, such as unemployment rates or

wage growth, can clearly affect consumer sentiment and spending when the unemployment rate is

high or wage growth is low. Next, we look at Figure 4, which shows the loading of the first sPCA

factor regarding Nasdaq-100 returns. We see that mainly labor and housing-related variables

Figure 4: Loadings of the first sPCA factor with regards to Nasdaq-100 returns
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are important in this factor. However, variables related to money and interest rates also play a

minor role. Even though money and interest rates still contribute, the biggest contributors to this

factor are variables related to labor and housing, which is different than for the sPCA factor with

regards to S&P-500 returns (shown in Figure 2). This could be explained due to the fact that

the Nasdaq-100 consists of different types of companies than the S&P-500. More specifically, it

14



consists of technology and innovative companies, which can significantly be affected by changes

in the labor market because tech companies often rely on highly skilled labor. Furthermore,

the housing market affects consumer spending and confidence in the economy. Technological

and innovative companies, some of which are start-ups, are often very growth-oriented and rely

on external financing for growth. This external financing is sensitive to consumer spending

and confidence in the economy, which could be why housing-related variables contribute a lot

to this factor. Lastly, we look at Figure 5, which shows the loadings of the first sPCA factor

concerning Nasdaq-100 volatility. When looking at Figure 5 and comparing it to the loadings of

Figure 5: Loadings of the first sPCA factor with regards to Nasdaq-100 volatility
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the sPCA factor regarding Nasdaq-100 returns (Figure 4), we observe a similarity, which is that

we see that this sPCA factor is significantly influenced by labor-related variables, which can be

explained through the same reasoning as to why labor-related variables influence Nasdaq-100

returns. However, we also see two key differences within the sPCA factor regarding Nasdaq-100

volatility: Housing-related variables do not contribute significantly, and there is a significant

contribution of an individual money-related variable to the PC. The first difference can be

explained due to the fact that housing-related variables often relate to the general health of an

economy, thus directly influencing returns. The effect on volatility might be more indirect and

thereby quieted. Furthermore, the individual money-related variable is securities in bank credit

at all commercial banks. A drastic change of securities in bank credit might signal upcoming

instability of the economy, which in turn leads to panic on the market, and thereby, it has a

direct effect on volatility but a lesser direct effect on returns.

4.2 Out-of-sample results

In this subsection, we investigate and evaluate our forecasts through various evaluation metrics

and other characteristics. We have five models with which we construct forecasts for four target

variables. In Tables 4 through 7, we show the relative MSE, MAE, and runtime of these forecasts

while taking PCR as the benchmark. Runtime indicates the duration of running each model

and constructing the forecast. In addition, we also report the mean variance explained, which

represents the average percentage of variance explained by the chosen number of PC’s in each

iteration. Next, to evaluation metrics and characteristics, we include the p-values of modified

DM-tests to draw accurate conclusions while comparing the forecasts. Lastly, we also report the

number of predictions made, denoted by n. Table 4 shows the evaluation of the forecasts of S&P-

500 returns. When looking at Table 4, there are five main takeaways. First, when looking at

relative MSE and MAE, we see that the forecast made with the PCR model is the least accurate

compared to all other models and, more specifically, it shows when looking at the p-values of the
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Table 4: Relative forecasting performance and Diebold-Mariano test results for all
models with regard to S&P-500 returns, using PCR as benchmark model

n = 479 PCR sPCR RF PCA-RF sPCA-RF

MSE 1.00 0.98 0.96 0.28 0.30
MAE 1.00 0.99 0.98 0.53 0.54
Variance Explained 0.28 0.34 - 0.27 0.26
Runtime 1.00 1.11 61.62 1.59 2.73

P-value DM∗ Test (vs. PCR) - 0.034∗∗ 0.040∗∗ < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. sPCR) - - 0.309 < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. RF) - - - < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. PCA-RF) - - - - 0.297

Note: Statistical significance for α = 0.1, 0.05 and 0.01 is denoted by *, ** and *** respectively.
Furthermore, the values of MSE, MAE and runtime are the relative values while taking PCR as
benchmark.

DM∗ test versus PCR, that this forecast is significantly outperformed by all other models on a

5% significance level and outperformed by PCA-RF and sPCA-RF on a 1% significance level. In

addition, we also see that the forecast of sPCR is significantly outperformed by both PCA-RF

and sPCA-RF on a 1% significance level. Secondly, we look at the p-values of the DM∗ test

versus RF and observe that the forecasts of PCA-RF and sPCA-RF significantly outperform RF

on a 1% significance level. The reason for PCA-RF and sPCA-RF outperforming the forecast

of RF could be due to three different reasons: high dimensionality, multicollinearity among

predictors, and noise within the data. High dimensionality possibly leads to the usage of many

redundant variables and, consequently, a less accurate and more complex model. Furthermore,

multicollinearity among predictors can cause instability in estimating the relationship between

each predictor and the target variable, making it difficult to construct a model accurately.

Lastly, even though noise reduction is not the main strength of (s)PCA, it still addresses the

problem, leading to the model responding better to unseen data. We address all these problems

by combining RF with PCA or sPCA. Not only do we enhance forecasting performance by

combining RF with PCA or sPCA, it also greatly reduces the computation time of RF, resulting

in a much faster construction of forecasts. A decrease in runtime is because both PCA and sPCA

reduce the number of predictors, and therefore RF has fewer nodes and smaller tree depth within

the constructed forest, which leads to a lower computation time. Next, our third takeaway is

that when looking at the DM∗ test versus PCA-RF, we see that PCA-RF does not significantly

outperform the forecast of sPCA-RF. This suggests that the differences between PCA and sPCA

are insignificant when combining the methods with a ML method while forecasting. Moreover,

our fourth takeaway is that constructing forecasts for S&P-500 using PCA or sPCA without a

ML method leads to sPCR significantly outperforming PCR (while restricting the number of

factors chosen at 5). This is consistent with the results of Huang et al. (2022). Lastly, our fifth

main takeaway is that the variance explained by the chosen number of principal components

says little about forecasting performance. For example, PCR nearly has the same percentage

of variance explained as both PCA-RF and sPCA-RF (0.28 vs. 0.27), but all other models

significantly outperform the forecast. Next, we look at Table 5, which shows the evaluation of

the forecasts of S&P-500 volatility. We observe that while forecasting the S&P-500 volatility,

the forecasts made by RF, PCA-RF, and sPCA-RF significantly outperform the forecasts of

PCR and sPCR on a 1% significance level. In addition, we see that the forecasts of PCA-RF
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Table 5: Relative forecasting performance and Diebold-Mariano test results for all
models with regard to S&P-500 volatility, using PCR as benchmark

n = 239 PCR sPCR RF PCA-RF sPCA-RF

MSE 1.00 0.95 0.47 0.19 0.24

MAE 1.00 1.00(!) 0.66 0.40 0.42
Variance Explained 0.41 0.41 - 0.37 0.37
Runtime 1.00 1.24 19.38 1.08 2.51

P-value DM∗ Test (vs. PCR) - 0.154 < 0.001∗∗∗ < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. sPCR) - - < 0.001∗∗∗ < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. RF) - - - < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. PCA-RF) - - - - 0.435

Note: Statistical significance for α = 0.1, 0.05 and 0.01 is denoted by *, ** and *** respectively.
Furthermore, the values of MSE, MAE and runtime are the relative values while taking PCR as
benchmark. (!): This value is lower than 1.00 when rounded to three decimals.

and sPCA-RF also outperform the RF forecast but do not significantly outperform each other.

Furthermore, the variance explained still says little about forecasting performance. This is all in

line with the results of Table 4; however, a difference we now observe is that the forecast of sPCR

does not significantly outperform the forecast of PCR. A possible explanation could be that the

loadings of the sPCA factor do not mainly consist of 1 or 2 groups, as opposed to the first sPCA

factor with regards to S&P-500, which singles out variables related to money and interest rates

as shown in Section 3 (Figures 2 and 3. This means that the characteristics of the sPCA loadings

are similar to the PCA factors, whose loadings also consist of various groups (Figure 1 in Section

3). Next, we see that the forecast of RF significantly outperforms the benchmark and sPCR on

a 1% significance level when forecasting S&P-500 volatility, as opposed to only on a 5% level

when forecasting S&P-500 returns. This could be explained since RF performs well with high

volatility ((Medeiros et al., 2021)). Lastly, we observe that the runtime of RF is greatly reduced

when RF is augmented with PCA or sPCA. Subsequently, in Table 6, we show the results of

the relative forecasting performance and modified DM tests concerning Nasdaq-100 returns. We

Table 6: Relative forecasting Performance and Diebold-Mariano test results for
all models with regard to Nasdaq-100 returns, using PCR as benchmark

n = 291 PCR sPCR RF PCA-RF sPCA-RF

MSE 1.00 0.98 0.96 0.27 0.29
MAE 1.00 0.99 0.99 0.52 0.53
Variance Explained 0.16 0.22 - 0.18 0.18
Runtime 1.00 1.15 25.16 1.28 2.57

P-value DM∗ Test (vs. PCR) - 0.137 0.231 < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. sPCR) - - 0.472 < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. RF) - - - < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. PCA-RF) - - - - 0.648

Note: Statistical significance for α= 0.1, 0.05 and 0.01 is denoted by *, ** and *** respectively.
Furthermore, the values of MSE, MAE and runtime are the relative values while taking PCR
as benchmark.

see that the forecast of PCR is only significantly outperformed by the forecasts of PCA-RF

and sPCA-RF but not by those of sPCR and RF. RF not significantly outperforming PCR and

sPCR might be because the relationship between Nasdaq-100 returns and our macroeconomic

predictors is linear; this leads to a problem because RF is a non-linear model. Moreover, we

see that the forecasts of PCA-RF and sPCA-RF do not significantly outperform each other, but
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they outperform the RF forecast on a 1% significance level. Lastly, we observe that runtime

decreases when augmenting RF with PCA or sPCA and that variance explained says little about

forecasting performance while forecasting Nasdaq-100 returns. Next, we look at Table 7, which

shows the results of the relative forecasting performance and modified DM tests with regard

to Nasdaq-100 volatility. We see that the forecast of PCR is significantly outperformed by the

Table 7: Forecasting Performance and Diebold-Mariano test results for all models
with regard to Nasdaq-100 volatility, using PCR as benchmark

n = 74 PCR sPCR RF PCA-RF sPCA-RF

MSE 1.00 1.08 0.65 0.23 0.21
MAE 1.00 1.01 0.77 0.43 0.41
Variance Explained 0.47 0.44 - 0.46 0.27
Runtime 1.00 1.11 18.37 1.68 2.79

P-value DM∗ Test (vs. PCR) - 0.076∗ 0.013∗∗ < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. sPCR) - - 0.01∗∗ < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. RF) - - - < 0.001∗∗∗ < 0.001∗∗∗

P-value DM∗ Test (vs. PCA-RF) - - - - 0.285

Note: Statistical significance for α = 0.1, 0.05 and 0.01 is denoted by *, ** and *** respectively.
Furthermore, the values of MSE, MAE and runtime are the relative values while taking PCR as
benchmark.

forecasts of all other models. More specifically, the forecast of sPCR outperforms on a 10%

significance level, the forecast of RF outperforms on a 5% level, and the forecasts of PCA-RF

and sPCA-RF on a 1% level. In addition, we see that the forecasts of PCA-RF and sPCA-Rf

do not significantly outperform each other but do significantly outperform the forecasts of RF

and sPCR on a 1% significance level. Lastly, we see that runtime drastically decreases when

PCA-RF and sPCA-RF augment RF, and that variance explained says little about forecasting

performance. For example, PCR and PCA-RF almost have the same average percentage of

variance explained, but they perform significantly different.

4.2.1 Subsample performance

Due to the forecasts of PCA-RF and sPCA-RF consistently outperforming all other models

on a 1% significance level, we examine subsample performance to investigate whether there

are specific periods that contribute to the outperformance. Through means of the CSSED, as

described in Section 3.7, we construct Figures 7 through 9, where we display the loss differential

dt through time for all the models compared with our benchmark model PCR. We see that

in Figure 6, the CSSED value is consistently growing, which is, for the most part, also true

for the other figures. However, there are some periods in Figures 7, 8 and 9 where the line

suddenly becomes steep, thus indicating a period where the forecasts of PCA-RF and sPCA-RF

outperform the forecasts made by PCR even more. Figure 7 shows, for PCA-Rf and sPCA-RF,

an increase in CSSED of nearly 3000 in a 6-month time period, starting in September 2001.

An explanation for this is the September 11 attacks (9/11), which significantly impacted the

stock market. The exchanges were closed for four training sessions. By the time they reopened,

the prices on the stock market had decreased drastically due to increased economic uncertainty,

which led to increased market volatility and, thus, increased S&P-500 volatility. Next to PCA-

RF and sPCA-Rf, we also see that the RF model responded to these events better than PCR.
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Figure 6: Cumulative sum of squared
forecast error differentials: S&P-500 returns
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Figure 7: Cumulative sum of squared
forecast error differentials: S&P-500
volatility
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Figure 8: Cumulative sum of squared
forecast error differentials: Nasdaq-100
returns
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Figure 9: Cumulative sum of squared
forecast error differentials: Nasdaq-100
volatility
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These results are consistent with current literature that RF models relatively perform well when

there is high volatility (Medeiros et al., 2021). Secondly, Figure 8 shows a relatively big increase

in CSSED between 2002 and 2007, which could be a repercussion of the Dot-com Bubble Burst

that occurred between 2000 and 2002, which was characterized by the rapid devaluation of tech

stocks. In the years after this burst, there was a period of growth (2002-2007) where investor

confidence increased, which resulted in positive returns, especially in the tech sector due to the

rise of internet-based businesses. This event affects the relationship between our predictors and

Nasdaq-100 returns, which probably means that this relationship becomes nonlinear, favoring

RF models such as PCA-RF and sPCA-RF instead of PCR. Lastly, we observe in Figure 9 that

in 1996, the CSSED of PCA-Rf and sPCA-RF quickly grows from nearly 0 to 1000. This could

be explained by the fact that the start of the Internet boom was in 1996. The sudden growth

of this sector led to a price increase of stocks related to the tech sector, which in turn could

lead to a sudden increase in Nasdaq-100 volatility. This increase in volatility is handled better

by the (augmented) RF models compared to the PCR and sPCR models. Overall we see that

even though crises or big economic events drastically, but briefly, contribute to the significant

forecasting outperformance of PCA-RF and sPCA-RF, the outperformance is also consistent

without major events as the lines in Figures 6 through 9 continuously have positive slopes.

5 Conclusion

In this research, we perform PCA and sPCA on a macroeconomic data set of predictors and

subsequently utilize RF to estimate the models PCA-RF and sPCA-RF, with which we construct

forecasts of the simple returns and volatility of the S&P-500 and Nasdaq-100 stock indices. Sub-

sequently, we investigate the effects on forecasting performance compared to regular RF, PCR,
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and sPCR, which leads to our central research question:

How does the sPCA-RF method perform while forecasting stock indices, compared to PCA-RF

and RF?

Our results show that forecasts of both PCA-RF and sPCA-RF consistently outperform PCR,

sPCR, and RF on a 1% significance level while forecasting both the returns and volatility of

S&P-500 and Nasdaq-100. However, the forecasts made by sPCA-RF never significantly outper-

form PCA-RF forecasts. We also see that the augmented variants of RF are computationally

less expensive than RF but more expensive than PCR and sPCR. Nonetheless, the significant

gain in forecasting accuracy when using PCA-RF or sPCA-RF, is a great trade for the loss in

computation time when compared to PCR and sPCR. Therefore, to answer our main research

question, the forecasts of sPCA-RF and PCA-RF significantly outperform those of RF on a 1%

significance level, but sPCA-RF does not significantly outperform PCA-RF when forecasting

stock indices. More specifically, the outperformance of PCA-RF and sPCA-RF with regards to

PCR, sPCR, and RF is higher in times of crises that affect the target variables. However, also in

stable economic times, both models consistently outperform the other models when constructing

forecasts for our target variables. This implies that parties who aim to forecast the returns and

volatility of the S&P-500 or Nasdaq-100, such as investors and hedge funds, should utilize either

of the relatively computationally inexpensive PCA-RF or sPCA-RF models, to construct the

most accurate forecasts. In addition to the results concerning our research question, we also see

that when forecasting stock indices, the percentage of variance explained by a chosen number

of principal components in a forecasting model says little about the forecasting performance of

that model. This implies that variance explained is a bad criterion for determining the number

of PC’s to retain when reducing the dimension of a data set in a forecasting context.

For further research, it is interesting to see how the results would differ if one made differ-

ent choices regarding used data, criteria for retaining a number of PC’s, and which ML method

to augment with PCA and sPCA. In our research, we use data from FRED-MD. However, this

data has one slight drawback: A forward-looking bias. Therefore it would be interesting to ex-

tend our research by using the ALFRED-MD database, which consists of the actual data known

at some point in the past which is the most realistic when constructing forecasts. Next, we

utilize cross-validation to select a number of PC’s to retain while reducing the dimension of our

data, while the maximum of allowed factors is five. It is interesting to see if results change when

one opts to use a different way than CV to select the number of PC’s or a different maximum

factor restriction. Furthermore, our RF models ignore both the time series structure and the

dependence structure across series, which is a limitation of our research. Even though this is

partly addressed by utilizing an expanding window, it would be interesting to see if our results

change when the dependence and time series structures are incorporated in the RF, PCA-RF,

and sPCA-RF models. Lastly, we only look at RF in this research, but it would be interesting

to investigate if the forecasting performance of other ML methods changes when combining said

method with PCA or sPCA.
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Appendices

A Derivation out-of-bag sample size

As described in Section 3.4, we perform bootstrap sampling on our data, where each sample has

observations randomly chosen from the original data while allowing for repetition. Consequently,

certain observations are not chosen within a specific bootstrap sample, resulting in an OOB

sample. We can derive the percentage of observations not picked when filling the bootstrap

sample with observations of the original data. Let there be N observations in the training data

set, then the probability of not picking an observation in a random draw is given by

N − 1

N
. (20)
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We use sampling with replacement, so the probability of not picking an observation in a random

draw N times is then given by

(
N − 1

N
)N . (21)

Which in limit of large N is equal to

lim
n→∞

(1 − 1

N
)N = e−1 = 0.368. (22)

We conclude that when N becomes large, the probability of not picking an observation that is

already in the bootstrap sample is 36.8%. Consequently, an out-of-bag sample consists approx-

imately of 36.8% of the training data and the corresponding bootstrap sample roughly consists

of 63.2% of the original training data, as N becomes large.

B Replication

B.1 Data

Regarding the replication of Huang et al. (2022), we have four target variables. Namely: U.S.

Inflation, industrial production growth, change in unemployment rate, and S&P-500 volatility.

We obtain the data on U.S. inflation and unemployment rate through the FRED-MD website.

These variables correspond with the following names on the site: CPIAUCSL and UNRATE,

respectively. Moreover, we obtain the industry production levels from the data released with

the paper by Huang et al. (2022). Furthermore, we are not able to retrieve the data used by

Huang et al. (2022) for the S&P-500 volatility because the origins of that data are undisclosed.

The Erasmus Data Service Centre could not help us in our search for the correct data either, so

we decide not to include the S&P-500 volatility target variable in our replication.

Additionally, the time series CPIAUCSL and UNRATE of the FRED-MD website differ from

the time series used by Huang et al. (2022). The value difference starts from January 2016 up

until and including December 2019. We believe this is due to an adjustment of the variables

within the database that happened after the start of the research by Huang et al. (2022). This

could lead to minor differences concerning CPIAUCSL and UNRATE in the replication results

shown in Section 4.

Finally, we perform a data transformation on our remaining three target variables to obtain

the required values of our target variables. The time series CPIAUCSL, UNRATE, and IP

levels do not represent the required percentual changes, so we take the log difference of the

variables as transformation, computed as

∆ log(Xt) = log(Xt) − log(Xt−1) (23)

where Xt and Xt−1 represents a target variable at periods t and t-1 respectively.
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B.2 Results

In this Subsection, we present our replication results of the paper by Huang et al. (2022). In

Table 8 we show the replication of Table 3 of the paper.

Table 8: Eigenvalues of the Covariance Matrixes of the Raw and
Scaled Macro Variables.

sPCA

PCA Inflation IP Unemploy Volatility(!)

1st 0.147 0.191 0.326 0.362(**) 0.22

2nd 0.074 0.143 0.105(*) 0.105 0.10

3rd 0.070 0.132 0.069 0.070 0.08

4th 0.054 0.085(*) 0.067 0.059 0.08

5th 0.043 0.063 0.060 0.042 0.06

6th 0.035(*) 0.033 0.032 0.030 0.04

7th 0.030 0.030 0.028 0.026 0.03

8th 0.024 0.025 0.020 0.022 0.03

9th 0.021 0.024 0.018 0.020 0.03

10th 0.020 0.020 0.018 0.019 0.02

11th 0.020 0.018 0.017 0.017 0.02

12th 0.020 0.015 0.015 0.016 0.02

13th 0.017 0.015(*) 0.014 0.014 0.02

14th 0.017 0.012 0.014 0.013 0.02

15th 0.016 0.011 0.014 0.012 0.02

Note: When the eigenvalues are normalized to have sum of one,

this table also reports the 1st to 5th eigenvalues in descending order

for the covariance matrixes of the (scaled) macro variables, where

the scaling parameter is the predictive slope of the variable on the

forecasted target (as described in Section 3.2). Moreover, (!) indicates

that the values of this column are copied from Huang et al. (2022).

(*): When rounding these values to two decimals instead of three,

the replicated values correspond with Huang et al. (2022).

(**): This value differs 0.029 from the value of the paper.

We observe that nearly all the values match the results of the paper; however, there are some

exceptions. In our Table, we round to 3 decimals instead of the two decimals used in Huang

et al. (2022). Consequently, the values in the Table with an asterisk (∗) seem to differ from the

results of the paper, but this is not the case. In addition, the first eigenvalue of sPCA Unemploy

column has two asterisks (∗∗) since it differs by 0.029 from the paper. Section B.1 mentions that

the time series of UNRATE, which represents the unemployment rate, differs slightly from the

time series used by Huang et al. (2022). This could explain the difference in results concerning

the first eigenvalue in the sPCA Unemploy column. Next, we observe the loadings of our PCA

and sPCA factors shown in Figures 10 through 13. We start by looking at Figure 10, which

shows the loadings of the first PCA factor.
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Figure 10: Loadings of the first PCA factor
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We see similar results as Huang et al. (2022). However, the sign of our loadings appears to

differ (the absolute value is the same, but the non-absolute value differs). More specifically, the

loadings are multiplied by -1. This does not matter since the sign of the loading does not change

the interpretation of the contribution of a variable with regards to the principal component

(Peres-Neto et al., 2003). It only changes the direction of the components in the PC feature

space. Next, we look at Figure 11, which shows the loadings of the first sPCA factor concerning

inflation.

Figure 11: Loadings of the first sPCA factor with regard to inflation
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The loadings of this factor are similar to the loadings shown by Huang et al. (2022), in

the sense that the same type and same variables contribute significantly to the PC. However,

there still is a difference in signs of the loadings when looking at the loadings of labor-related,

housing-related, and price-related variables. But, as mentioned before, this does not influence

the interpretation and meaning of the PC. This sign could also result from using a more recent

version of the data regarding inflation, as opposed to Huang et al. (2022). Next, we look at

Figure 12, which shows the loadings of the first sPCA factor with regard to industrial production

growth. We see that the same variables contribute significantly to the sPCA factor concerning

Figure 12: Loadings of the first sPCA factor with regard to industrial production growth
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industrial production growth. However, we still see that the sign of these loadings differs from

the results of Huang et al. (2022). Lastly, we look at Figure 13 that shows the loadings of the

sPCA factor with regard to unemployment rate change.

Figure 13: Loadings of the first sPCA factor with regard to unemployment rate change
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We see that the loadings of the first sPCA factor, with regard to unemployment rate change,

are similar to the loadings of the factor reported by Huang et al. (2022). This time the factor

loadings do not differ that much reported by Huang et al. (2022). The only difference is that

the signs of the 4th through 9th labor variables are different, but their contribution is similar

to the results of Huang et al. (2022).
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