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Abstract

Exchangeability within relational arrays signifies the fundamental property that the stat-

istical distribution of the relations is not affected by a reordering of the data. The exchange-

able attribute is often an intrinsic feature of relational data, which in turn systematically

presents interactions of pair-wise relationships. These arrays allow applicability in versatile

applications across diverse domains. This research builds upon prior work on exchangeable

relational arrays. Emphasis is placed on estimating the covariance structure in complex re-

lationships that accommodate dependencies among entities or within specific groups. The

exchangeability is exploited by performing both an intuitive and empirical clustering analysis

to enhance predictability by capturing the dynamics within clusters. Findings reveal that the

clustered exchangeable estimator enhances inference through interpretability and model fit.

Thereupon, the scope of the exchangeable estimator is extended to more heterogeneous data.

Key words: Clustering; Relational data; GEE; International trade
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1 Introduction

Relational arrays are characterised by pair-wise interactions between entities and are quantified

regarding the type of the relation. Relational arrays can be modeled by a binary relation, an

ordinal relation, which captures the strength of such an interaction, or a continuous relation,

which provides a spectrum of potential values. Hence, these can be used for a large scope of

instances.

In many applications, relational data occurs, e.g. transport networks (Chen et al., 2020),

marketing (Zahay et al., 2004), biological systems (Walsh et al., 2020), financial (Dicken et al.,

2001) and social networks (Attanasio et al., 2012). Using relational arrays has the advantage

of providing a structured representation of existing relations between entities. Applying stat-

istical and machine learning methods facilitates analysis and prediction, which necessitates the

formulation of models that effectively capture intricate relationships by estimating coefficients.

However, the core challenge for the estimation purpose lies in taking into account the interde-

pendence that arises among relations containing shared actors or belonging to specific groups.

Accommodating these interdependencies in the covariance structure poses another difficulty.

Moreover, precise estimation of standard errors calls for additional assumptions to alleviate the

complexity (Fosdick & Hoff, 2014).

In our research, we leverage an exchangeability assumption which is often inherent in rela-

tional arrays. Concisely, exchangeability refers to the property that the ordering of the observa-

tions does not influence the distribution of the relationships. This assumption has been prevalent

in the analysis of dyadic data such as Lloyd et al. (2013), Crane & Dempsey (2019), and Fan et

al. (2020). However, Marrs et al. (2023) only first used the assumption as a tool to adjust for

the dependencies. Due to this incorporation, the estimation of the covariance structure becomes

more homogeneous.

This paper commences with a replicative study on Marrs et al. (2023). The first part entails a

simulation study using multiple data generation techniques to compare confidence intervals. The

estimators considered are one that assumes exchangeability and one that does not, which is the

dyadic clustering estimator (Fafchamps & Gubert, 2007; Aronow et al., 2015). The second part

incorporates international trade data by Westveld & Hoff (2011) in an out-of-sample prediction

study using ordinary least squares (OLS) and the exchangeable estimator.

To extend to the aforementioned paper, we aim to investigate how to account for hetero-

geneity within an exchangeable framework. Hence, we dissect the data by means of k−means

clustering such that across clusters, the observations can not be permuted to maintain the same

probability density. However, within a cluster, there exists exchangeability. This can be under-

stood from the perspective of a social network in which diverse communities exist. Here, the

interactions in a certain group can have a different covariance structure than in another group,

yet within this particular group, there is homogeneity. The k clusters that follow each form an

exchangeable covariance estimator similar to Marrs et al. (2023).

This leads to the following research question: ”How can we effectively model and analyse ex-

changeable relational arrays that contain heterogeneity to capture the distinct relational patterns

exhibited by different subgroups?”. Finally, the clustered exchangeable estimator is compared to

the exchangeable estimator in terms of prediction error and model fit using the international
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trade data.

The conclusions that follow from this tripartite research are that: (1) The exchangeable

estimator has on average a much smaller bias compared to the dyadic clustering estimator in

both an exchangeable and non-exchangeable data setting. (2) When analysing real-world data,

the exchangeable estimator yields a much higher R2 than a simple linear regression. And, (3),

clustering the data has additional value to improve the fit of the model in comparison to non-

clustered analysis. The best way to incorporate information provided by the clusters proved to

be adding binary variables of the clusters, which resulted in a large increase in R2.

Our contribution to the current literature comprises extending the scope of the exchangeable

estimator of Marrs et al. (2023) for a wider variety of data. The clustered exchangeable estimator

addresses differences in the data but maintains the desirable properties. Above that, it enhances

interpretability due to the clusters that have distinct covariances. While an increasing amount of

literature is devoted to modelling exchangeable relational arrays, fewer models are available for

heterogeneous relational arrays (Fosdick, 2013). Therefore, we combine the two to ensure real-

world applicability. In addition, advanced models enhance prediction and inference on future

relationships, which in turn improves decision-making.

This paper proceeds in the following manner: First, the previous literature and the topic

of exchangeable relational arrays will be discussed in more depth in Section 2. Then, we will

touch upon the data used in Section 3. Furthermore, the methods are described in Section 4

after which the results are mentioned in Section 5. Consequently, we conclude in Section 6.

2 Theory

First, notation is introduced. A relational array is given by Y = [yijr], where i denotes the

sending actor, and j the receiving actor in a directed relation for i, j = 1, ..., n with i ̸= j.

r = 1, ..., R resembles the relational context r, or the time period, which in that case can also be

denoted by t = 1, ..., T . The relational array Y is composed of all the R matrices. These matrices

are of size (n × n) and each describes the paired relations in each context r out of the n actors.

Since the relations are directed, it holds that, in general, for a given r, yij ̸= yji. Therefore,

the matrix of Y is not symmetrical. However, there still exists a symmetric covariance matrix

structure.

The dependencies within relational data influence the parameters in the covariance matrix.

Beck et al. (2006) analysed these possible dependencies in a trade setting and found that there

exist more dependencies than just reverse dyad reliance. In Figure 1, the six potential pairs are

depicted for a distinct set of actors i, j, k, l represented by nodes. Each arrow embodies a directed

array. In each sub-figure, the arrows can either be corresponding to the same relational context

r = s, or two different contexts r ̸= s. From this follows a set of six distinct parameters when

r = s and six when r ̸= s. Therefore, there are twelve different parameters in the covariance

matrix Ω.

First, (a) describes the dependence that exists when two relations share a common sender.

For instance, the dependence when Greece exports to the US and to the UK in the same period.

In this time period, Greece could for instance occur in a recession, and, therefore, there is an

interdependence in all arrays that originate from Greece. Additionally, the size of the flow is
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Figure 1: The six forms of dependencies between relational pairs

i j

k

i j

k

i j

k

(a) Same sender (b) Same receiver (c) Common actor

i j i j i j

k l

(d) Reciprocity (e) Observational (f) No dependence
dependence

Note. both directed arrows can either be corresponding to the
same relational context r = s, or to different contexts r ̸= s.

also dependent on the originating country, which maintains across different time periods. By

a similar argument, the dependence in (b) can be understood. Put differently, some countries

consume more than other countries. In (c) the situation with a shared actor is depicted. This

could differ across countries that have more open economies versus closed economies. Moreover,

(d) captures a twofold relationship. In case both the sender and the receiver are in a trade

agreement, this would result in a different parameter as compared to two nations that are in

conflict. Another form of dependence is given in (e) which mainly occurs when the two directed

arrows corresponding to r and s are unequal; r ̸= s. In this case, we encounter temporal

dependence of the directed array. Lastly, (f) is included for completeness, which represents the

independent case since there are no shared actors.

Furthermore, these twelve parameters affect the covariance matrix. Since we assume that

two non-overlapping pairs are independent, the parameters belonging to case (f) are set to zero.

We denote the set of parameters by ϕ
(η)
u , where u is equal to one of the six dependency cases

a, b, c, d, e, f , with ϕf = 0. η indicates whether the relational context is the same or not; η = 1

for r = s, and η = 2 for r ̸= s. In Table 1, the covariance structure is depicted for a single

relational context. These entries include the five non-zero parameters for r = s. The matrix can

be enlarged for the case when r ̸= s with the parameters ϕη=2.

2.1 Literature Review

Warner et al. (1979) wrote the seminal paper in this field of research and proposed a method of

moments procedure to estimate dyadic data. Hoff (2003) introduced a generalized linear model

for network data to deal with the three forms of data structures: binary, ordinal or continuous.

Additionally, an important breakthrough for relational modelling was the notion of statistical

dependencies. Often, the interconnected entities are treated as independent occurrences, how-

ever, Hoff & Ward (2004) illustrates that there might be a correlation with relationships with
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Table 1: The six different dependency parameters in the exchangeable covariance matrix
ΩE =

YAB YAC YAD YBA YBC YBD YCA YCB YCD YDA YDB YDC

YAB σ2 ϕa ϕa ϕd ϕc ϕc ϕc ϕb 0 ϕc ϕb 0
YAC ϕa σ2 ϕa ϕc ϕb 0 ϕd ϕc ϕc ϕc 0 ϕb

YAD ϕa ϕa σ2 ϕc 0 ϕb ϕc 0 ϕb ϕd ϕc ϕc

YBA ϕd ϕc ϕc σ2 ϕa ϕa ϕb ϕc 0 ϕb ϕc 0
YBC ϕc ϕb 0 ϕa σ2 ϕa ϕc ϕd ϕc 0 ϕc ϕb

YBD ϕc 0 ϕb ϕa ϕa σ2 0 ϕc ϕb ϕc ϕd ϕc

YCA ϕc ϕd ϕc ϕb ϕc 0 σ2 ϕa ϕa ϕb 0 ϕc

YCB ϕb ϕc 0 ϕc ϕd ϕc ϕa σ2 ϕa 0 ϕb ϕc

YCD 0 ϕc ϕb 0 ϕc ϕb ϕa ϕa σ2 ϕc ϕc ϕd

YDA ϕc ϕc ϕd ϕb 0 ϕc ϕb 0 ϕc σ2 ϕa ϕa

YDB ϕb 0 ϕc ϕc ϕc ϕd 0 ϕb ϕc ϕa σ2 ϕa

YDC 0 ϕb ϕc 0 ϕb ϕc ϕc ϕc ϕd ϕa ϕa σ2

Note. this structure represents the case for R = 1. The matrix is symmetric

and contains a zero for every pair of independent relationships.

the same actor in dyadic data that should be taken into account. Yet, the difficulty lies in how

to model these correlated error terms which capture the dependencies.

One approach is to impose a parametric latent variable structure on the errors (Hoff, 2005).

The downfall of this approach is that the specified parametric model is not always consistent

with true error structure (Fosdick & Hoff, 2014). Additionally, it is computationally heavy to

calculate these models since it often involves Markov Chain Monte Carlo.

The second, and more model-agnostic approach, accounts for the relational dependence by

empirically estimating the error structure based on residuals from the regression. This idea

originates from Conley (1999) and Fafchamps & Gubert (2007) further implemented this. In

Aronow et al. (2015), the dyadic clustering estimator was finally proposed as a sandwich-type

variance estimator. This estimator is non-parametric and should account for complex cluster

structures that are present within relational data. Hereafter, Carlson et al. (2021) published an

article using the dyadic clustering estimator to investigate international relations and find that

dyadic clustering leads to an underestimation of uncertainty. Moreover, this estimator rests on

multiple conditions to acquire consistency. On top of that, there still exist limitations in this

approach due to high variability in the standard errors.

Subsequently, we define a new approach to obtain more robust standard errors based on an

assumption that is fundamental to many relational datasets. Namely, we impose an exchange-

ability assumption. This property, which was first introduced by De Finetti, is desirable in

modelling since it simplifies the analysis and allows the use of more general models.

Exchangeability has been extended by Hoover and Aldous (1981) for relational arrays. The

idea is similar since it must hold that the distribution of the data remains the same after

any permutation or rearrangement of the rows and columns. The difference lies in that for

non-relational data, it is about the ordering and shuffling of individual observations, whereas

for relational data, the shuffling should only be applied to the arrangement of entities or a

simultaneous reordering of the third dimension. Formally, the probability distribution of the
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error array p(E) = p(Π(E)), where Π(E) = (ϵπ(i)π(j)ν(r)) indicates the reordered array of errors

according to permutation operators π and ν, should remain unchanged. Note that data with

time as the relational context can still be exchangeable if the majority of the temporal variability

is explained through the covariates.

The assumption of exchangeability has widely been used in forecasting relational arrays, with

applications in machine learning and Bayesian models, (Hoff, 2009; Lloyd et al., 2013; Cai et al.,

2016).Yet, incorporation of this property in the covariance structure was only first introduced

by Marrs et al. (2023).

2.2 Clustered Exchangeability

Another field of research explored heterogeneous relational arrays and tackled the difficulty in

predicting these by forming clusters. Long et al. (2007) provides a probabilistic framework to

identify interaction patterns, among which one of the models is a k-means clustering algorithm.

In the book of Long et al. (2010) a wider variety of these types of methods are described.

The novelty of this research is combining the exchangeable covariance feature with clustering

analysis. It is essential to maintain exchangeability to keep the computation simple and efficient.

These clusters are also to be incorporated into the exchangeable covariance matrix in Table 1.

The key of this matrix stays the same, as interactions within a specified subgroup persist. Across

clusters, when an actor from cluster A interacts with an actor in cluster B, new parameters

should be designated. In this case, one can now interpret the directed array YAB as a cross-

cluster interaction, with its own parameter. So in total, the covariance structure can be divided

into a part with only interactions within a cluster, and a part with interactions outside of its

cluster, in a similar manner as the extension of multiple relational contexts.

3 Data

After having described the structures that are present within relational data, we introduce the

data we use, which is derived from Westveld & Hoff (2011). This dataset contains information

on international trade between 58 countries over the period from 1981-2000, hence R = T = 20,

which adds up to 66,120 observations. The dependent variable yij in this analysis is the log

volume of trade from exporting country i to importing country j, such that i ̸= j.

These data include six covariates and an intercept. The first two covariates represent the log

of Gross Domestic Product (GDP) for both the exporting and importing countries. The log of

the distance between the two countries is included and is inherently a constant. Additionally,

two variables for the polity of a nation on both sides of the relation are added. These variables

represent an ordinal relation with a measure ranging from 0, indicating a highly authoritarian,

to 20, indicating a highly democratic state, and can be time-varying. Lastly, the variable

cooperation in conflict captures whether, during a dispute, the nations were either on the same

side, coded by +1, or vice versa coded by −1. When no dispute has taken place, or the parties

did not take an active position in this, the value will be equal to zero.

Furthermore, this dataset is used as a starting point for the clustered exchangeable estimator.

For the k−means clustering analysis we add an extra binary operator if the country is a European
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Figure 2: Distribution of the mean standardized polity and logGDP

Union member state. Since most member states joined the EU between 1980-1995, we only take

the data from 1995-2000 into account. This also results in more representative clusters due to a

shorter, hence less fluctuating, time period to cluster over.

From the six covariates, we cluster on the logGDP and the polity of the exporting countries.

The imported values are omitted since the clustering is based on the countries, not on the pairs.

Therefore, also, the distance is left out, since this does not have an interpretation without a

pair. However, we assume that the EU variable can account for distance partially. Additionally,

cooperation in conflict is excluded since this variable is time-varying and we aim to find constant

clusters. This is also the reason why the mean of the polity and the mean GDP over time are

chosen.

Moreover, it is important to standardize the data when performing the cluster analysis due

to two reasons: (1) If the variables have different scales, the clustering algorithm is influenced by

the variables with larger scales. Since k−means clustering uses the Euclidean distance measure

to calculate the similarity between data points, those larger-scaled variables can dominate the

formation of clusters. Therefore, if standardization has been performed, all variables contribute

equally to the clustering analysis. (2) Secondly, standardized data enhances the interpretability

of clusters. Due to the similar scales, it is clear which observations are most influential and

which groups exist within the data.

In Figure 2, the distributions of the mean standardized polity and log GDP are given. Clearly,

polity is highly left-skewed, which influences the clustering analysis. The distribution of GDP

looks relatively normal, which is confirmed by the Jarque-Bera test with a p-value of 0.604.

4 Methodology

The relational arrays are estimated by linear regression, given by:

yijr = βTxijr + ϵijr for i, j = 1, ..., n, i ̸= j, r = 1, ..., R, (1)

where yijr measures the directed relation from i to j in context r, β contains the coefficients,

xijr is a column vector of covariates of size (p × 1), and ϵijr contains the unobserved errors.

The starting point to estimate the coefficients in the regression model is ordinary least squares
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(OLS). For simplicity, the model is written in matrix notation:

Y = Xβ + E , (2)

where Y is the R(n(n−1)) vector of relations and X represents a matrix of size (Rn(n−1) × p).

The OLS estimator is an unbiased estimator and has the smallest variance (BLUE) when there

is independence across observations. However, since we deal with dependencies among similar

actors, this is not the case. Therefore, we need to extend to the generalized least squares (GLS)

estimator. The GLS estimator yields a BLUE estimator when the true value of Ω is known. Yet,

this is in most practical instances not the case. Hence, we can account for this uncertainty in Ω

by estimating the matrix Ω̂. This procedure is called feasible generalized least squares (FGLS)

and proceeds as follows: first, OLS is performed to obtain the residuals ϵ̂ijr = (Y −Xβ̂OLS)ijr,

then Ω can be consistently estimated by the use of Ê . From this, the FGLS can be expressed as:

β̂FGLS = (XT Ω̂−1X)−1XT Ω̂−1y, (3)

with y being a vectorisation of (yijr). The estimate of the covariance matrix Ω = V (y|X) can

then be constructed as:

V̂FGLS = (XT Ω̂−1X)−1XT Ω̂−1ΩΩ̂−1X(XT Ω̂−1X)−1, (4)

this variance estimator is deduced as a sandwich estimator (Huber, 1967) due to the structure

of two similar terms at the left and right side ’sandwiching’ the FGLS and OLS estimator.

4.1 Dyadic clustering estimator

Fafchamps & Gubert (2007) and Aronow et al. (2015) formed the dyadic clustering estimator

based on the single assumption that if two relations (i, j, r) and (k, l, r) do not share an actor, the

relations are independent. Mathematically, this means cov(yijr, ykls|X) = cov(ϵijr, ϵkls|X) = 0

when there is no overlap in actors. From this relationship follows a covariance matrix with

three types of inputs: (1) the diagonal elements represent the variance of relationship (i, j), (2)

the off-diagonal covariance elements are zero whenever there is no common actor, and (3) no

restrictions are placed when there is a common actor. The last property results in a variety of

possible covariance values. The variance-covariance matrix based on this assumption is denoted

by ΩDC . To estimate the non-zero elements cov(ϵijr, ϵkls) in ΩDC , Fafchamps & Gubert (2007)

suggested to use the product of residuals, namely eijrekls, where eijr = yijr− β̂Txijr, resulting in

the covariance matrix Ω̂DC . Sandwich variance estimation for var(β̂|X) is applied, which results

in the dyadic clustering estimator V̂DC :

V̂DC = (XTX)−1XT Ω̂DCX(XTX)−1. (5)

As mentioned before, the non-zero covariance elements are unrestricted and hence quite variable.

This uncertainty comes from the estimation of Ω̂DC , which has fewer observations than estimable

elements.
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4.2 Exchangeable estimator

Incorporating the exchangeability assumption in relational arrays, which is often inherent, yields

the estimator for the covariance matrix that is derived in this section. First, we need to find

estimates of the parameters ϕ
(η)
u for u = a, b, c, d, e, f and η = 1, 2, which represent the covari-

ances between relations. Since ϕf = 0, only ten parameters in Ω need to be estimated. The

parameters are approximated by taking an average of the products of the residuals with the

same indexes. For instance, ϕ
(2)
a , which is the covariance estimator of the same sender in two

different contexts, can be specified as:

ϕ(2)
a =

(
R

2

)−1 1

n(n− 1)(n− 2)

∑
r ̸=s

∑
i

∑
j ̸=i

eijr(
∑
k ̸=j

eiks − eijs). (6)

The nine remaining estimators can be determined analogously.

Secondly, the estimator of the exchangeable covariance estimator Ω̂E is constructed in the

following manner:

Ω̂E =

2∑
η=1

f∑
u=a

ϕ̂(η)
u S(η)

u , (7)

with S(η)
u denoting a binary matrix of size (Rn(n− 1)×Rn(n− 1)) which has the entry 1 for the

relations that are of the corresponding type u = a, b, c, d, e, f and η = 1, 2.

By similar reasoning, using the sandwich estimator, the estimator of V (β̂|X) under exchange-

ability is equal to:

V̂E = (XTX)−1XT Ω̂EX(XTX)−1. (8)

The exchangeable estimator posits a moment-based feature, hence, it is consistent. In ad-

dition, the dyadic clustering estimator is highly parameterised and thus there is efficiency gain

when using the exchangeable estimator in an exchangeable framework.

4.3 Simulation study

The two aforementioned estimators in Sections 4.1 and 4.2 are evaluated by means of a simulation

study where data will be drawn from a linear regression model with either an exchangeable error

model or a non-exchangeable error model. The regression model for both cases contains three

covariates:

yij = β1 + β21x2i∈C1x2j∈C + β3|x3i − x3j |+ β4x4ij + ϵij , (9)

with β1 being the intercept. 1 denotes an indicator function which returns one if both i and

j belong to a pre-specified subgroup C, and zero otherwise. β2 corresponds to the coefficient

belonging to the binary class-specific covariate. β3 and β4 respectively represent the coefficients

for the positive real-valued actor-specific and the real-valued pair-specific covariates. The cov-

ariate x2i is independently simulated from a Bernoulli(1/2) distribution, whereas x3i and x4ij

are independently drawn from a standard normal distribution.

In this analysis, the dyadic clustering estimator and the exchangeable estimator are compared
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in terms of the 95% confidence interval. This is repeated for n = 10, 20, 40, 80 with R = 1. For

each sample size n, the covariates are then randomly generated 100 times. Subsequently, both

error types are randomly simulated 1, 000 times.

The distribution of the exchangeable error can also be referred to as the bilinear mixed effects

model (Hoff, 2005) and has previously been used in literature for justifying the use of the dyadic

clustering estimator in simulation studies (Aronow et al., 2015).

Secondly, the generation of the non-exchangeable errors is done by means of adding a random

effect with mean zero to only one quadrant of the covariance matrix, such that a reordering causes

a different distribution.

Finally, the standard errors of the regression model are estimated using either the dyadic

clustering or the exchangeable sandwich variance estimator. This will result in four confidence

intervals for each combination of error settings and estimators for every n.

4.4 Empirical study

Next to the simulation study, the exchangeable estimator is also evaluated for real-world inter-

national trade data, as described in Section 3. The model to be estimated is given in equation

10 and possesses all the variables derived by Westveld & Hoff (2011). To assess the improvement

originating from the exchangeable estimator, we include OLS as a benchmark in this analysis.

log(Tradeijt) = β1t + β2tlogGDPjt + β3tlogGDPit + β4tlogDijt + β5tPolit

+ β6tPoljt + β7tCCijt + β8t(Polit × Poljt) + ϵijt (10)

The dependent variable, logTradeijt, represents the log volume of trade from country i to

j in year t = 1, ..., 20. There model includes a constant β1t and seven independent variables

which are: logGDPit and logGDPjt which denotes the log GDP of countries i and j; logDijt is

the distance between the countries in log; CCijt measures cooperation in conflict; and Polit and

Poljt respectively indicate the polity of countries i and j, and are also used in a product.

4.4.1 Out-of-sample prediction

The two approaches, exchangeable and OLS, are compared by one-year-ahead forecasts for the

years t = 5, ..., 20, i.e., the first point forecast is made at t = 4 for t+1 = 5 by fitting the model

on the first 4 years. While using an expanding window, the last forecast is made using 19 years

of trade data for t+ 1 = 20.

For OLS, the predictions are made with the assumption that there exists no auto-correlation.

Hence, the variance-covariance matrix Et is independent to Et+h for any h. Additionally, the

matrices Et are identically distributed. This results in the following one-step-ahead estimate

with OLS:

EOLS(yT+1|ℑT ) = XT+1β̂T , (11)

where ℑT is the information set at time T , containing all available information at that time.
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The exchangeable estimator rests on the assumption that the relations {yt}Tt=1 are joint

normally distributed. Above that, some specifications are necessary. We denote the covariance

structure between relations in the same relational context, in this case, years, by var(yt) = Ω1

for t = 1, ..., T . When r ̸= s, hence the year, is different, the covariance structure is denoted

by cov(yt, yt+h) = Ω2 for all h. What follows is that the variance of the concatenated vector

zT−1 = (y1, y2, ..., yT−1), contains Ω1 along the diagonal blocks and Ω2 on the off-diagonal

blocks. After taking the inverse of var(zT−1), the diagonal blocks are denoted by Ψ1 and the

off-diagonals by Ψ2. Based on this, the exchangeable estimate of yT+1 is constructed as follows:

EE(yT+1|ℑT ) = XT+1β̂T +Ω2(Ψ1 + (T − 1)Ψ2))
T∑
t=1

(yt −Xtβ̂t). (12)

4.5 Clustering heterogeneity within the data

Furthermore, since Marrs et al. (2023) described that their proposed exchangeable estimator

might not work as well when the data is heterogeneous, our paper suggests forming clusters

within the data such that each clustered dataset holds the assumption of exchangeability. We

propose two ideas to base the clusters on: one is empirical by k−means clustering and the second

option is intuitive by clustering based on recognized connections.

After obtaining the clusters, the subgroups are each individually estimated by using the

exchangeable estimator. The benchmark in this case is the exchangeable estimator when con-

sidering the complete unclustered dataset. To see if there has been an improvement with the

additional clusters, the R2 and the Mean Squared Prediction Error (MSPE) can be consulted.

4.5.1 k−means clustering

In order to partition the data into clusters, k-means clustering is performed as proposed by

Hartigan & Wong (1979). The goal of this method is to minimise the within-cluster sum of

squares (WCSS) such that optimal clusters are formed. In this paper, clustering is done based on

the countries rather than based on the observations, for which clustering should be performed on

the pairs. In the last case, clustering is less intuitive compared to clustering based on countries.

Also, clustering on pairs is more difficult due to time-variant trade flows between the countries.

The plus side to clustering based on countries is the easy interpretability. Additionally, we can

cluster based on variables included in the dataset such as GDP and polity. However, we wish to

incorporate a distance variable as well, which is not possible in country-based clustering.

The algorithm proceeds as follows: First, k points are randomly selected from the dataset as

initial centroids. Second, all n observations are assigned to the nearest centroid such that the

Euclidean distance from each observation to the centroid is minimal. This second step results in

k clusters. Third, the cluster centroids are updated by taking the mean of all observations that

lie within the cluster. Repeat steps two and three iteratively until convergence, which happens

when the assignments of the cluster no longer change significantly, or when a maximum number

of iterations is met. The final output of the k−means clustering algorithm are k cluster centroids

with a set of observations assigned to each.

The downside to k−means clustering is the dependence on the initial random selection of
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centroids. Therefore, the initial distribution can lead to different results. To overcome this, the

algorithm is run multiple times to select the solution with the lowest WCSS.

The number of clusters can be based on either the Elbow method or interpretability. When

investigating trade data, a prior analysis of the data can be done by identifying certain trade

agreements, and based on this k can be chosen. The European Union is an example of a

supranational organisation on which an interpretable selection of clusters can be formed.

4.5.2 F-test

The dataset contains 7 predictors, of which none of them take trade agreements into account.

To see whether a European Union binary variable has a significant effect on the fit of the model,

an F-test is conducted. The F-test compares two nested models, where one can be denoted as

the smaller or the restricted model, and the other the larger or the unrestricted model. The

null hypothesis suggests that both models perform equally well and it can be specified that the

coefficients for the extra variables are equal to zero β = 0, or have no explanatory power. If the

null is rejected, there is significant proof that the addition of the variable significantly improves

the fit of the model.

To perform this test, first, both models are estimated with OLS. Based on this, the Sum of

Squared Residuals can be computed for the restricted (SSRr) and the unrestricted (SSR) model.

Then, the following test statistic can be calculated:

F =
(SSRr − SSR)/g

SSR/(n− k)
∼ F (g, n− k). (13)

where g is the number of restrictions, n the number of observations, and k the number of

predictors in the full model. Under the null, the test statistic follows an F-distribution with

degrees of freedom g and n− k.

4.5.3 Model comparison

Finally, the models’ predictive abilities are measured in a two-fold analysis. The first encom-

passes the Mean Squared Prediction Error (MSPE) that calculates the difference between the

real value, yi, and the predicted value ŷi. The MSPE is calculated for the individual clusters to

see if there is a gain from analysing a cluster on its own.

MSPE =
1

n

n∑
i=1

(yi − ŷi)
2 (14)

Then, after performing a series of F-tests to look for variables that significantly improve the

model fit, the coefficient of determination, denoted by R2, is consulted. R2 describes the good-

ness of fit of a model and ranges from zero to one. These are compared for OLS, the exchangeable

model and the clustered exchangeable model. The R2 is computed in the following manner:

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (15)

where ȳi stands for the mean value of the dependent variable.
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Figure 3: Estimated coverages that the true coefficient falls within the 95% confidence interval.
Binary Positive real-valued Real-valued

Note. the dark lines indicate the exchangeable estimator and the green lines indicate the dyadic
clustering estimator when the errors are either generated from an exchangeable (circles) or

non-exchangeable (triangles) distribution. The points represent the mean estimated coverage.

5 Results

The three analyses are now discussed. First, simulated data is used to compare the bias and vari-

ance of the exchangeable estimator against the dyadic clustering estimator. Secondly, real-world

data enables forming and evaluation of predictions for the exchangeable model and ordinary least

squares (OLS). Lastly, our contribution to the literature of a clustered exchangeable estimator

is tested against one of Marrs et al. (2023).

5.1 Comparison of the exchangeable to the dyadic clustering estimator

In this analysis, the dyadic clustering estimator is compared to the exchangeable estimator.

Since the latter is specified with the assumption of exchangeability, it is expected that it is

more accurate when the data exhibits this property. On the other hand, the dyadic clustering

estimator does not rest on this assumption. Therefore, we check for both cases when the data

is exchangeable and when it is not. The dyadic clustering estimator contains more parameters

which lead to a higher variance but a lower bias in the case of non-exchangeability.

In Figure 3, the simulation study is presented for binary, positive real-, and real-valued

covariates, for n = 10, 20, 40, 80 and for a single relational context R = 1. The vertical lines

stand for the estimated probability of the middle 95% of coverage intervals. When this interval is

shorter, there is less variance in the prediction. The points, either circles or triangles, represent

the estimated mean coverage. A point closer to the dashed 95% line indicates a lower bias.

For each n, the first two lines, which are accompanied by a circle, show the simulation of data

from an exchangeable dataset. The third and fourth lines, which are dashed and denoted by a

triangle in each case, represent the non-exchangeable data.

In almost every instance, the coverage intervals for the exchangeable data are smaller than

those for the dashed lines of the non-exchangeable data, which is easily clarified by the more

restrictive nature of exchangeable data. Also, across all three figures, the blue points, thus the

mean coverage of the exchangeable estimator, lie closer to the 95% level than the green points.

This means that the exchangeable estimator is less noisy than the dyadic clustering estimator
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in all cases.

Especially in the left panel, where the binary data is given, the exchangeable estimator

is much closer to the nominal level of 0.95. This is due to the noisiness of binary data. In

comparison to the paper of Marrs et al. (2023), almost all coverage intervals are the same except

for the exchangeable estimator for non-exchangeable data. In our case, the length of those

intervals is longer. This can be explained through the fact that we work with a simulation study,

which could cause different means across simulations. Additionally, the difference becomes more

pronounced for binary data.

The middle panel represents the positive real-valued data. For both types of simulations,

the exchangeable estimator performs better while increasing n. This is exactly in accordance

with Marrs et al. (2023).

The last panel contains real-valued data and is similar to the seminal paper of our research

except that the lengths of the estimated confidence intervals of the non-exchangeable data are

a bit shorter in our plots. Again, we can account for this difference by simulation.

5.2 Out-of-sample prediction study

Real-world data is used to evaluate the fit of the exchangeable estimator compared to OLS,

which uses dyadic clustering standard errors, as a benchmark. We have international trade data

of n = 58 countries over a period of R = T = 20 years, which has been derived by Westveld &

Hoff (2011). By means of an out-of-sample prediction study the two models are compared with

one-year-ahead forecasting. The forecasts will be made for t+ 1 = 5, ..., 20. The goodness of fit

can be analysed with the coefficient of determination R2, which measures the proportion of the

variance that can be explained by the dependent variables.

In Figure 4, the R2’s are plotted against the prediction years. The blue line represents the

R2 over the out-of-sample window for the exchangeable estimator and the green line shows the

R2 for the benchmark, OLS. It is clear that the exchangeable approach yields a better fit for

the model. The mean R2, in this case, is equal to 0.80, while OLS has a mean of 0.59. In

the beginning, this difference in R2 is larger (around 0.30), but for the higher t, the difference

declines. Especially in 2000 (t = 20) the difference is only 0.12, meaning that there is more

equal performance. The very apparent drop in fit for both models from 1999-2000 could be

explained by the establishment of the Euro by the European Monetary Union on January 1st,

1999. Similarly, in 1991 (t = 11) there is a visible drop as well. The cause of this can be clarified

by the end of the Cold War. In 1991 the Soviet Union dissolved and caused the end of a period

of reduced trade due to barriers. After this, global economies were enhanced again but first

caused worse predictability.

We notice an exact resemblance to the results of Marrs et al. (2023).

5.3 Clustered exchangeability

We want to improve upon the exchangeable estimator proposed by Marrs et al. (2023) by

separately estimating the clusters that are present within the data. To this end, we commence

with extracting clusters from the data. k−means clustering optimizes similarity within a cluster

by minimizing the distance between all the data points and the cluster’s center. At the same

14



Figure 4: R2 of the exchangeable estimator and OLS

Note. the one-year-ahead predictions for t+ 1 = 5, ..., 20, for the
exchangeable estimator (blue circles) and OLS (green triangles).

time, dissimilarity is maximized between clusters. Clustering is based on the countries, and not

on the pairs, hence only relevant variables on the exporting country are included. These are the

standardised variables logGDPi and Poli per country i = 1, .., 58. Additionally, the variables

are averaged over the time periods to obtain constant clusters.

Initially, we perform this analysis for k = 2, 3, 4, 5 as seen in Figure 6 in the Appendix. It

follows that at first, the most important divider is GDP. This Figure is also in line with the

heavy-tailed distribution of the polity of the country, as was visible in Figure 2.

Interestingly, all European Union member states (except for Cyprus, which was not yet a

member state during the prediction window) lie in the upper right quadrant. These countries

also remain in the same cluster (cluster 2) until k = 3. As a result, we examine the explanatory

power of a binary variable indicating whether a country is a member state of the EU. Since

several countries joined the EU during 1980-1995, we limit our analysis to 1995-2000.

Two linear regressions are performed: (1) OLS on the original model, (2) OLS on the original

model plus an extra binary variable, which is equal to 1 if both the exporting country i and

importing country j are member to the EU. The results from these regressions are presented

in Table 2. All variables are highly significant (p-value < 0.000) meaning that each variable

contains valuable information to the model. It follows that countries with higher GDPs, both

exporting or importing, trade more. Moreover, the distance between countries negatively in-

fluences the amount traded between them. Particularly, the larger model has a significant but

negative coefficient for the extra EU variable, which can partially be explained by the size of

the economies.

The R2 for the small and the large model are respectively 0.612 and 0.614, hence there is only

a two-thousandths increase. The partial F-test is consulted to check for a significant increase in

the coefficient of determination. The test statistic is equal to 116.919 with a p-value of < 0.000,

suggesting that the model with the additional EU variable provides a better fit. This implies

that the variable should be included in the model and therefore we can rectify the decision to
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Table 2: The regression results including a binary EU variable
Original Model Model with EU
Estimate P-value Estimate P-value

Intercept -51.120 (0.444) 0.000* -51.690 (0.446) 0.000*
logGDPi 1.464 (0.012) 0.000* 1.477 (0.012) 0.000*
logGDPj 1.194 (0.012) 0.000* 1.207 (0.012) 0.000*
logDij -1.410 (0.026) 0.000* -1.516 (0.028) 0.000*
Poli 0.088 (0.005) 0.000* 0.093 (0.005) 0.000*
Polj 0.097 (0.005) 0.000* 0.101 (0.005) 0.000*
CCij -0.647 (0.059) 0.000* -0.523 (0.060) 0.000*
EUij -1.290 (0.119) 0.000*

R2 0.612 0.614
Note. On the left, the coefficients for the variables of the original model with the standard
deviation in brackets and the corresponding p-value are given. The right model represents

the model with the extra binary EU variable. At the bottom, the R2’s are given.

form an EU cluster. By first splitting the dataset into EU and non-EU, the distance variable

can partially be taken into account, which could otherwise not happen based on the clustering

of individuals.

The EU cluster provides a starting point for our further clustering analysis. Based on the 45

countries that remain, k−means clustering is again performed. The following two clusters are

formed and given in Figure 5. The first cluster, now denoted by cluster A, can be characterised

by low levels of polity and relatively low levels of GDP. The second cluster, now called cluster

B, has a wider variety of GDP levels but high polity. In Table 6 in the Appendix, the complete

list of countries and which cluster they are in is given.

Figure 5: Clusters of the non-EU countries

The summary statistics for the clusters are given in Table 3. The three columns denoted by

cluster indicate within cluster trade, meaning that both the importing and exporting countries

need to be in the same cluster. Noticeable is the low levels of trade in cluster A. By looking at

Table 6, cluster A contains some Mid-American countries or countries that are far away from

each other and unrelated. This is confirmed by investigating the data since the traded amount

between several pairs of countries is equal to zero during multiple time periods. In comparison to

16



Table 3: Summary statistics for the full sample, clusters, and cross-clusters
Original Cluster Cross clusters

EU A B EU A EU B A B

Trade 15.721 21.423 11.576 16.295 17.366 18.322 13.852
Polity 0 0.717 -1.660 0.308 -0.164 0.532 -0.275
GDP 0 0.690 -0.485 -0.118 0.197 0.418 -0.177

the full sample, denoted by the original model, trade is higher for clusters EU and B. Especially

the EU has a large volume of trade flow. This is in line with its GDP, which is positively

correlated with traded volume. Note that the mean variables for polity and GDP for the full

sample are equal to zero due to standardisation. Overall, cluster B has averages lying closest to

the mean value of the full sample.

Additionally, we are interested in the cross-cluster data for the estimation of the model.

Similar to the covariance estimation of relational arrays, we assume the parameter ϕAB of the

directed array yij where i ∈ A, j ∈ B to be the same as ϕBA. Hence, cross-cluster AB contains

both directions. Again, in cluster AB, several trade flows are equal to zero, leading to a low

average of trade flow in Table 3.

In accordance with the (cross-)clusters, we form six new datasets, after which each model

is separately estimated. First, the coefficients are estimated, analogously to the exchangeable

method as described in the previous section. Then, the one-step-ahead predictions can be made.

To sufficiently train the model years 1995-1998 are used as an in-sample. The years 1999-2000

are out-of-sample and are predicted one-step-ahead. These two years are also interesting due to

the drop in R2 that was visible in Figure 4.

By separating the data into clusters, different problems are encountered. Cluster A only

contains zeroes for the conflict variable, hence this column causes a singular matrix. Therefore,

to preserve fairness in comparison, the variable conflict is omitted. Additionally, the polity

causes linearly dependent columns for the EU dataset. This is due to the fact that almost all

polity values are equal to 20 for both the importing and exporting countries. To erase problems

caused by this, dependent columns can be combined into one: a product of the two values.

Finally, to see if there has been an improvement from incorporating clusters, we compare the

predicted value to the observed value by means of the Mean Squared Prediction Error (MSPE).

The results from the estimation are given in Table 4. The first column shows the MSPE of the

original model, containing no clusters. The full dataset has 6 years of observations of 58 ∗ 57

pairs. The MSPE is clearly higher for the year 2000 than in 1999, which was visible in Figure

4. Moreover, the average MSPE of these two years is equal to 7.095.

Interestingly, the predictive performance of the EU model is increased. The clustered ex-

changeable estimator is able to make accurate forecasts and shows it is profitable to separately

estimate this cluster. On the contrary, cluster A behaves extremely poorly and explains a major

part of the worse behaviour overall. Cluster B creates a larger bias on average for the year 1999

than the full sample, but outperforms the full sample in terms of MSPE in 2000.

In comparison to the average of the weighted MSPEs, the clustered exchangeable estimator

creates a lower bias than the unclustered one. However, this gives a distorted image of pre-

dictability since the cross-clusters are not considered. It is plausible reasoning to assume that
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Table 4: MSPEs for the original model and the clusters
Original Cluster

full EU A B

Observations 19836 936 792 5952
MSPE1999 4.680 0.432 35.002 8.392
MSPE2000 9.509 0.280 26.499 5.554
Mean MSPE 7.095 0.356 30.723 6.973

Weighted average 7.095 7.071

forecasting trade flows from a country from one cluster to a country in another is more arduous

since there is less similarity. Yet, since the weighted average is mainly influenced by the high

MSPE of cluster A, it is unsure how much harder this actually is. Cluster A is characterised

by unrelated countries, therefore, this might just as well be the hardest to predict out of the

cross-clusters as well.

The final approach to testing whether incorporating clusters adds value to the model is

by comparing the R2. In Table 5, the R2’s are given for the exchangeable estimator as we

determined in 5.2 for the last three years of the sample. In Figure 4, there was a clear drop in

model fit in the last year, which could be explained by emerging differences between countries.

The euro was implemented in 1999 and started having its global effect. Secondly, the burst

of the dotcom bubble polarised more- and less-advanced countries. Additionally, there were

numerous financial crises in the late 1990s which intensified differences between suffering and

thriving states. In consequence, incorporating clusters is able to explain fluctuations.

There is a noticeable difference when comparing the values of the original model to the

exchangeable model that includes binary variables for the clusters. The increase to the R2 when

the EU variable is added amounts to 0.18. Therefore, the F-test yields a significant difference.

Secondly, we add the cluster A variable since this cluster deviates the most from the mean and

therefore could have explanatory power to outlying observations. There is a slight increase in

comparison to the model with only EU, yet, it is a significant increase with p-value < 0.000.

Finally, we form a model with all three clusters. When investigating the decimals it turns

out that including B yields a lower R2. Thus, the best option for predicting is to include the

EU and A binary variables. In general, there is a significant gain from adding clusters to the

exchangeable model when investigating trade flows.

Table 5: R2 for the exchangeable and the clustered exchangeable estimator
Exchangeable Clustered exchangeable

EU EU and A EU, A and B

R2
1998 0.788 0.848 0.850 0.850

R2
1999 0.791 0.855 0.856 0.856

R2
2000 0.648 0.868 0.870 0.870

Note. the last three columns respectively show the R2 of the model with the EU binary variable,
the EU and A variable, and the model with all three binary variables for the years 1998-2000.
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6 Conclusion

In this research, the main objective is to develop a regression framework for predicting exchange-

able relational arrays while leveraging the exchangeability property to obtain a symmetric and

parsimonious covariance matrix. This yields a covariance matrix that contains at most ten

parameters to be estimated. To extend the state-of-the-art literature, we apply this framework

to the same dataset but acknowledge the heterogeneity within the data by extracting clusters,

both empirically and intuitively.

First of all, the exchangeable estimator was compared to the dyadic clustering estimator in an

analysis of confidence intervals with simulated data. The results were unanimous and in favour

of the exchangeable estimator even when the data was non-exchangeable. When analysing the

fit of the exchangeable and ordinary least squares model for international trade data, there was

again clear evidence that the exchangeable approach was beneficial. When including the clusters,

dubious results followed. For the European Union cluster, it followed that it is advantageous to

estimate and predict the model only using the pairs which were in the EU.

The most important contribution to the research question of how to best model exchangeable

relational data when there is heterogeneity in the data is by incorporating binary variables for

the clusters in the regression. This leads to the conclusion that investigation and inclusion of

clusters within the data are lucrative to predicting trade flows one-year-ahead.

However, there are some limitations. The decision to cluster based on countries also has

a downfall since it does not incorporate trading treaties or distances, even though the EU

cluster was included. Furthermore, we initiated constant clusters for simplicity, yet, time-varying

clusters over larger samples are wiser since countries are developing. Above that, for ease of

deductibility, we only used a small number of clusters. This leads to the fact that cluster A

contains a wide variety of unrelated nations. Lastly, it would be wise to cluster based on more

information, since polity and GDP are only two influential variables. A possible suggestion for

further research would be to also cluster based on the trade between countries, since in our case

sometimes there were no trade flows between countries i and j even though they were in the

same cluster.

Based on these limitations, we suggest further enhancing a clustering algorithm that optim-

ises the data available and makes sure the countries in each cluster are in fact affiliated.

Even though our research focuses on international trade data, the clustered exchangeable

estimator can be applied to a wider variety of datasets. The exchangeable estimator provides

a parsimonious way of estimating relational arrays that are better explained by an additional

set of clusters. To finalise, our research provides the building blocks for incorporating clusters

in the setting of relational arrays that leverage exchangeability. Consequently, predictability is

enhanced and more profound structures within the data can be understood.
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A Appendix

The appendix comprises additional figures and tables as well as a more in-depth explanation of

the alterations made to the data and code.

Table 6: The list of countries and the clusters in which they belong

Countries Cluster Countries Cluster

EU A B EU A B

1 Algeria x 30 Jamaica x
2 Argentina x 31 Japan x
3 Australia x 32 Republic of Korea x
4 Austria x 33 Malaysia x
5 Barbados x 34 Mauritius x
6 Belgium x 35 Mexico x
7 Bolivia x 36 Morocco x
8 Brazil x 37 Nepal x
9 Canada x 38 The Netherlands x
10 Chile x 39 New Zealand x
11 Colombia x 40 Norway x
12 Costa Rica x 41 Oman x
13 Cyprus x 42 Panama x
14 Denmark x 43 Paraguay x
15 Ecuador x 44 Peru x
16 Arabic Republic & Egypt x 45 Philippines x
17 El Salvador x 46 Portugal x
18 Finland x 47 Singapore x
19 France x 48 Spain x
20 Germany x 49 Sweden x
21 Greece x 50 Switzerland x
22 Guatemala x 51 Thailand x
23 Honduras x 52 Trinidad and Tobago x
24 Iceland x 53 Tunisia x
25 India x 54 Turkey x
26 Indonesia x 55 United Kingdom x
27 Ireland x 56 United States x
28 Israel x 57 Uruguay x
29 Italy x 58 Venezuela x

Total 13 12 33

A.1 Data

In order to use the data derived by Westveld & Hoff (2011), some alterations were necessary.

Since the delimiter in this case was an empty space, countries such as El Salvador are to be

changed to ElSalvador. Furthermore, the column names contain points as separators, which

should be altered to spaces. Above that, the first column is unnecessary and quotation marks

can be deleted.

Then, as the clustering is based on the polity and GDP, these should be standardized to

have equal influence. Then, the mean is also calculated over 20 years of time. For the clustering
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analysis, a careful approach should be chosen to deal with the right indexes for the countries.

Since we treat the EU separately, these indexes are saved in a vector. Then, the clustering

analysis is performed for which it is important to use the same ordering, excluding the EU

countries. Noteworthy is that the countries are not ordered alphabetically.

Lastly, for the analysis including the EU, the years 1995-2000 are considered. Therefore,

indexes 15-20 should be changed to 1-6 in order to maintain the code’s usefulness. This is also

necessary for the clusters and cross-clusters.

A.2 Code

In this section, we mention some important explanations for the code.

Marrs et al. (2023) has made a significant contribution to the code used in this paper.

Therefore, important alterations are mentioned. In the simulation study, exchangeable and

non-exchangeable errors are simulated. The authors of the code use the

Furthermore, for each implemented dataset, with either a single cluster or the full model

with binary variables, new directories, and results should be formed accordingly such that the

estimates β’s are put in the right place and the estimation is based on the correct set. Addition-

ally, with every other set, the amount of nodes changes. When the fits are formed for the model

with binary variables, this means an extra variable is included such that the size of X increases.

Therefore, β also enlarges and the number of columns should be modified. It is important that

when switching to another dataset, the environment is cleaned.

When fitting the clustered models individually, we deal with singularity issues. Since the

column of conflict only contains zeroes for cluster A, this column should be omitted such that

the columns are not linearly dependent. A similar issue happens for the cross-cluster EUB since

the polity has the same value for t = 3. The singularity occurs due to the strongly correlated

variables especially in the EU cluster due to more similarity.
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Figure 6: k−means clustering for various k for the whole dataset

Figure 7: The countries and where they are positioned in the GDP vs. polity spectrum
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