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Abstract. In order to find the ”best-performing” data transformation
technique this research makes use of two linear dimension reduction tech-
niques, namely Principal Component Analysis and Independent Com-
ponent Analysis, and four non-linear dimension reduction techniques,
called Isometric mapping, t-Distributed Stochastic Neighbor Embedding,
Locally Linear Embedding, and Uniform Manifold Approximation and
Projection. For the purpose of validating these dimension reduction tech-
niques, the clustering methods k-means and Agglomerative Hierarchical
Clustering were used. The obtained clusters were then internally vali-
dated with the Dunn Index, Calinski-Harabasz Index, Silhouette Index,
and Davies-Bouldin Index. Intriguingly, the optimal cluster count k = 2
showed promising results. There also were some implications that the
dimension reduction technique t-Distributed Stochastic Neighbor Em-
bedding was the ”best” method, but more research was needed due to
di↵erent perplexity values influencing the t-SNE results.

Keywords: Cluster Optimization · Clustering Validation · Principal
Component Analysis · Independent Component Analysis · t-Distributed
Stochastic neighbor Embedding · Locally Linear Embedding · k-means
Clustering · Agglomerative Hierarchical Clustering · Clustering Analysis
· Dimensionality Reduction



1 Introduction

The data science and business analytics fields have become more refined through-
out the years. That causes business owners to obtain very useful information from
their tremendously huge data set. An example is the killer app for the field of
data mining, made by a team from an e-commerce company [19,20]. The huge
data sets obtained by the e-commerce company due to the clicking history of
Web activity [21], results in the need for various complex data analytic tech-
niques. These huge data sets can result in some problems, such as the curse of
dimensionality which occurs when data scientists try to visualize and analyze
high-dimensional data.

Therefore, this research reproduces the results found in [35], which took many
data analytic techniques into consideration in order to tackle the problems that
can occur during the use of huge databases, mainly focusing on dimension re-
duction and clustering techniques. This work extends the work of [35] by also
implementing the dimension reduction techniques, Isometric mapping, and Uni-
form Manifold Approximation and Projection. This work aims to validate the
quality of the k-means and the Agglomerative Hierarchical clustering techniques
by using multiple dimension reduction techniques to find the best-performing
technique.

Hence the research question in this work is: which method is the best
dimension reduction technique? This is researched by using a multiple-
step approach. Starting with obtaining the optimal cluster count for the data
set in Sect. 3. Then, the data transformation is either done through Principal
Component Analysis, Independent Component Analysis, Isometric Mapping, t-
Distributed Stochastic neighbor Embedding, Locally Linear Embedding, or Uni-
form Manifold Approximation and Projection. The clustering step is done with
the k-means or the Agglomerative Hierarchical clustering techniques. Lastly, end
with the internal cluster validation techniques to find the best performing tech-
niques.

Due to the results found in the work of [35], the t-Distributed Stochastic
neighbor Embedding is expected to be the best-performing dimension reduction
technique. But other results could occur during the process of this research
because the Isometric mapping and Locally Linear Embedding techniques are
also recognized as well-performing techniques.

This work consists of Sect. 2, which summarizes the results of relevant re-
search. Sect 3 gives an elaborate explanation of the used data. Sect 4 dives deep
into the four-step research approach in this work and gives a detailed description
of the used methods. Sect 5. shows the obtained results in this work. Lastly, Sect.
6 gives a summary and concludes the found results in Sect. 5.

2 Related Work

There are many dimensionality reduction techniques available, both linear and
non-linear. Each technique has its own requirements for the di↵erent types of
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data available. The t-Distributed Stochastic neighbor Embedding (t-SNE) intro-
duced by [27,26], which is based on the Stochastic neighbor Embedding (SNE)
developed by [17], is an example of a non-linear technique. This technique showed
very intriguing results in the recent work of [35]. The results of [35] showed that
the t-Distributed Stochastic neighbor Embedding technique is indeed a state-of-
the-art approach for dimensionality reduction, even more so if combined with
the k-means and Agglomerative Hierarchical clustering methods.

Besides the t-Distributed Stochastic neighbor Embedding technique there
are many other well-performing non-linear dimensionality reduction methods as
well in order to resolve the limitations of Principal Component Analysis [28].
Another example of a non-linear technique is Isometric Mapping, which makes
use of Dijkstra’s algorithm [7] or the Floyd-Warshall algorithm [9]. The work of
[28] showed that the non-linear techniques, such as Isometric Mapping, perform
worse on real-world tasks but do very well on artificial tasks. This means that
techniques such as Isometric Mapping do have some limitations. An example of
a limitation of Isometric mapping is that this technique has fixed viewing angles,
often a 30-degree angle. This limitation makes it di�cult to portray objects from
di↵erent angles, which means that this method is not the best at expressing the
relationships in a huge data set [45]. This limitation also shows that Isometric
Mapping may be improved.

The work of [11] noted that Principal Component Analysis [1,18] and Hier-
archical Clustering Analysis [23] is a widely used combination of techniques in
research. The work of [25] tries to optimize the Principal Component Analysis
technique. The results of [25] show that optimization of the Principal Component
Analysis is successful and shows that the technique performs very accurately.
[25] also stated that Principal Component Analysis performs better if used for
dimensionality reduction in the deep learning framework. Therefore, it is very
intriguing to see how this technique performs on a rating data set discussed in
Sect. 3.

The techniques described above show very interesting results in the research
mentioned. For that reason, it is very enlightening to combine those methods
with other linear and non-linear dimensionality reduction techniques in order
to see which technique performs the best. To add more depth to the research
di↵erent clustering methods are used as well. Further explanation of the dimen-
sionality reduction techniques and clustering methods can be found in Sect. 4.2
and Sect. 4.3 respectively.

3 Data

For this research, the Jester data set 1 from the work of [10] is used. The data can
be downloaded from here: https://eigentaste.berkeley.edu/dataset/. The
data consists of the Jester jokes data set and the Jester rating data set. A brief
explanation of these data sets can be found in Table 1 and Table 2 respectively.
The jokes data set of the Jester data set 1 contains in total 100 HTML files,
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where each file contains the joke that an user gave a rating to, which resulted in
the Jester rating data set from the period between April 1999 to May 2003.

Table 1: Jokes data of the Jester data set 1 - a brief explanation
Data set Jester dataset 1 joke texts
File count 100 files
File format HTML (.html)
File name explanation Every file has the name init1.html, ..., init100.html, where

the number refers to the ID of the jokes in the Excel file

The rating data set retrieved from the Jester data set 1 [10] is an Excel file
that contains the ratings of 73,421 users in total, where each user rates 100 jokes.
The ratings ranged from -10.00 to +10.00 with a value of 99 corresponding to
a joke not being rated. Due to missing ratings because of users not rating all
100 jokes, there are approximately 4.1 million useful anonymous ratings from
the 73,421 users used for this work. For this research, the full rating data from
the Jester data set is cleaned from the 99 values. Thereafter, a random sample
of 5,000 observations were taken from the 4.1 million useful anonymous ratings.

The resulting data set was used for conducting the whole research in this
paper. Table 2 shows the descriptive statistics of the 5,000 random samples from
the Jester rating data set 1. Table 2 shows that the rating range is between
-9.81 and 9.22, the standard deviation is -5.15, and on average, the users gave
a rating of 1.86. These descriptive statistics indicate that the user ratings are,
on average, positively skewed because the mean value is closer to the maximum
value instead of the minimum value. This means that on average the users have
a tendency to be more positive in their ratings. The standard deviation of 5.15
gives insights into the dispersion of the used rating data. Due to the standard
deviation being moderately centered in the middle of the rating range, it shows
that there is a moderate degree of variability in the ratings obtained from the
users.

Table 2: Descriptive statistics of the subset of the Jester rating data set
Data set Subset from jester dataset full.xlsx
File format Excel (.xls)
Observations 5,000
Minimum Rating -9.81
Maximum Rating 9.22
Mean Rating 1.86
Standard Deviation 5.15

4 Methodology

This research used the same four-step approach as [35]. For a visualization of the
used steps, see Fig. 1. starting with Sect. 4.1 which explains how the optimal clus-
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ter count (k) was obtained. Thereafter Sect. 4.2 explains the data transformation
methods used for dimensionality reduction. Sect. 4.3 follows by describing the
clustering analyzing methods used to verify the data transformation methods.
Afterwards, in Sect 4.5 we find the explanation for the internal cluster validation
methods used for evaluating the quality of the clustering methods. Lastly Sect.
4.5 explains the tools used to implement the whole research. A short overview
of the four-step approach in this work can be seen from Fig. 1.

Fig. 1: Four-step approach used in this research

4.1 Optimization of Cluster Count (Step 1)

Before the clustering algorithms in Sect. 4.3 can be used, the cluster count (k)
needs to be specified. In order to obtain the optimal cluster count in this work the
NbClust() function from the NbClust package in R was used. The determination
of the optimal cluster count is supported by the 30 indices provided by the
NbClust package and by varying combinations of cluster counts. The optimal
cluster count was then validated by the majority rule, Dunn Index, and Hubert
index. A more elaborate explanation of the R package NbClust can be found in
[4].

4.2 Data Transformation with Dimensionality Reduction (Step 2)

This section elaborates more on the used linear and non-linear dimension reduc-
tion techniques. In total six methods were used for the data transformation step.
Two of the six dimension reduction techniques are linear, and the remaining four
are non-linear.

Principal Component Analysis. Principal Component Analysis (PCA) was
invented by [33] and later further developed by [18,1]. PCA is the first linear
dimension reduction technique in this work, that is very useful for large data
sets. The objective of data transformations by means of PCA is to transform the
existing variables into a di↵erent set of variables by means of a linear combination
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of the existing variables, without losing useful information [30]. This work makes
use of the prcomp() function in R [43], which was pre-installed in the R program.
The steps followed for PCA can be found in Algorithm 1.

Algorithm 1 Principal Component Analysis
Input: Data matrix (X) with n observations and p variables
Output: Matrix (Y ) containing the principal components of the transformed
data

–
Step 1 - Standardise: Standardise all the variables in X.
Step 2 - Covariance Matrix: Calculate the covariance matrix Cxx such that
the correlations can be identified.
Step 3 - Eigenvectors: Calculate the eigenvalues �k and corresponding eigen-
vectors uk of Cxx in order to identify the principal components.
Step 4 - Feature Vector: Create the feature vector in order to select the
principal components that will be kept.
Step 5 - Principal Components: Remodel the data along the axes of the
found principal components.

In Algorithm 1 the X was the rating data from the Jester data set 1. Y
was the reduced data set obtained after performing the PCA technique. The
number of observations n, also known as the users, is 73,421 and there are 100
variables p each representing the number of the joke. Step 3 in Algorithm 1 for
the PCA technique is based on the eigenvalue equation in Eq. (1). Cxx was the
covariance matrix, calculated in step 2. �k was the k

th eigenvalue with uk as its
corresponding k

th eigenvector and I being an identity matrix.

(Cxx � �kI)uk = 0 (1)

Independent Component Analysis. Independent Component Analysis (ICA)
is the second linear dimension reduction technique in this work, first introduced
by [13] in a very general form. Later, this technique was further researched and
developed by [14,15,16]. But ICA only got popular a few years later through
the work of [5]. More recent findings on ICA can be found in [32,42]. The goal
of ICA is to linearly rotate the data while retrieving statistically independent
components. In order to do ICA it needs to be assumed that there are non-
Gaussian attributes and that these attributes need to be independent from each
other. This research used the fastICA() function from the fastICA package in
the program R [43]. The steps followed in order to implement ICA can be found
in Algorithm 2.
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Algorithm 2 Independent Component Analysis
Input: Data matrix (X) with n observations and p variables
Output: Matrix (Y ) containing the independent components of the transformed
data
Assume: (i) independent attributes and (ii) non-gaussian attributes

–
Step 1 - Decomposition Decompose matrix X into the mixing matrix A of
the components and signal matrix s, where s ⇡ ŝ in Eq. (2), such that X = As.
Step 2 - Whitening Whitening of X with the help of Eq. (3) such that the ET

rotates such that the entropy of Eq. (4) is maximized, resulting in non-gaussian
attributes and a whitened data set XW .
Step 3 - Independent Components The independent components, used for
Y , are obtained.
Step 4 - Reduced Data The output matrix Y is made, where Y = Ak.Sk.

ŝ = WX (2)

XW = (D� 1
2E

T )X (3)

In Algorithm 2 W is an approximation of A�1. E and D were the eigenvectors
and eigenvalues obtained from the covariance matrix of X. For more information
on the whitening step consult [39]. Y is the reduced data set obtained by select-
ing the top independent components through Ak and sk, the mixing and basis
matrices containing the top independent components. The number of observa-
tions n, also known as the users, is 73,421 and there are 100 variables p each
representing the number of the joke. Non-gausianity in Algorithm 1, used in the
fastICA() function, was obtained through maximizing negentropy (J). Eq. (4)
and Eq. (5) show how J was found.

J(v) = H(vgaussian)�H(v) (4)

where,

H(v) = �
Z

f(v)log(f(Y ))dv (5)

with v = (v1, ..., vn) which was a vector containing random variables, where
the random variable has density f(.). vgaussian is a Gaussian random variable.
vgaussian has the same density structure as v.

Isometric Mapping. Isometric Mapping (Isomap) is the first non-linear di-
mensionality reduction technique in this work. This method is used when low-
dimensional embeddings need to be calculated from high-dimensional data points
in a data set. Isomap might not be as accurate as LLE according to [40], but it
is still a very e�cient technique that can be used to interpret a wide range of
dimensionalities and data sets. This research makes use of the isomap() function
from the vegan package in R [43]. In order to implement Isomap the isomap()
function made use of the steps in Algorithm 3.
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Algorithm 3 Isometric Mapping
Input: Data matrix (X) with n observations and p variables
Output: Matrix (Y ) containing the principal components of the transformed
data

–
Step 1 - Neighborhood Graph Use the k Nearest neighbor (KNN) approach
the find the nearest neighbor for each data point. Then develop the neighborhood
graph, where the data points are connected to each other if they are neighbors.
Step 2 - Geodesic Distance Obtain the geodesic distances, also known as the
shortest path between two data points.
Step 3 - MDS Apply Multi Dimensional Scaling (MDS) in order to obtain the
lower-dimensional embeddings, then resulting in the reduced data set Y .

MDS visualized the similarities between individual points within a data set.
More information about the MDS method can be found in [12].

t-Distributed Stochastic neighbor Embedding. t-Distributed Stochastic
neighbor Embedding (t-SNE) is the second non-linear dimension reduction tech-
nique in this work. This technique reduces the data from a higher-dimension to
a lower-dimensional, such that the data can be visualized into a three- or less-
dimensional space. t-SNE is based on the SNE technique developed by [17].
Later, followed by the t-distributed version created by [27,26]. An advantage of
the technique developed by [27] is that t-SNE keeps the local structure intact
during the dimension reduction phase meaning that the overall geometry of the
data does not change after the transformation. Thus, t-SNE works well in visu-
alizing high-dimensional data. In order to obtain an optimal lower dimensional
space gradient descent is used. Note that starting with lowering the data di-
mension and then followed by clustering could give varying results, due to the
di↵erent perplexity values that could be used for t-SNE. This research makes
use of the Rtsne() function from the Rtsne package in R [43], with a perplexity
of 10. Where the perplexity balances the aspects between the local and global
structure of the used data set. Therefore, changing this value would a↵ect the
obtained t-SNE results. The t-SNE technique minimizes the Kullback-Leibler
formula, Eq (6), from the similarities between data points i and j. In the low
dimensional space defined as qij , Eq. (7), and in the high dimensional space
defined as pij , Eq. (8). The steps that were taken in order to implement t-SNE
can be found in Algorithm 4.

Kullback.Leibler =
X

i 6=j

pij log(
pij

qij
) (6)

where,

pij =
exp �||xi�xj ||2

2�2

P
k 6=l exp

�||xk�xl||2
2�2

(7)

qij =
exp�||yi � yj ||2P
k 6=l exp

�||yk�yl||2
2�2

(8)
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Algorithm 4 t-Distributed Stochastic neighbor Embedding
Input: Data matrix (X) with n observations and p variables
Parameters: Set perplexity to value 10
Output: Matrix (Y ) containing the transformed low-dimensional data

–
Step 1 - Pairwise A�nities Compute pij with perplexity 10, with Eq. (7).

Step 2 - Initialization Set pij =
pi|j+pj|i

2n and have an initial solution for Y .
Step 3 - Low-Dimensional A�nities Compute qij with Eq. (8).
Step 4 - Gradient Minimize Eq. (6) and use that result to find a new Y .
Step 5 - Repetition Repeat step 3 and step 4 for a 1000 times, resulting in a
final Y .

Locally Linear Embedding. Locally Linear Embedding (LLE) is the third
non-linear dimension reduction technique used in this work, which was developed
by [38,36]. LLE is sensitive to outliers and noise, therefore the data set is cleared
from these before the use of the LLE technique. The LLE technique transformed
the high-dimensional space of the Jester rating data into a smaller dimension,
through the use of linear combinations from multiple points in the data set, also
known as neighbors. This work used the lle() function from the lle package in R,
in order to implement the LLE technique. The exact steps for the LLE technique
can be found in Algorithm 5.

Algorithm 5 LLE
Input: Data matrix (X) with n observations and p variables
Output: Matrix (Y ) containing the the transformed data

–
Step 1 - KNN: Use the k Nearest neighbor (KNN) approach the find the
nearest neighbor for each data point.
Step 2 - Weight Matrix: Construct the weight matrix W . Determine W by
minimizing the error of the cost function, see Eq. (9), where each point is found
through a linear combination of its neighbor.
Step 3 - Positioning: Find the positioning of each data point in the newly
found lower dimensional embedding. This is done by minimising cost function
Cy, see Eq. (10)

Step 2 in Algorithm 5 for the LLE technique is based on the cost function
in Eq. (9), where xi was data point i from X and wij was element i, j from W

Step 3 in Algorithm 5 is based on minimizing the cost function Cy in Eq. (10).

W =
nX

i=1

||xi �
nX

j=1

wijxj ||2 (9)

Cy =
nX

i=1

||yi �
nX

j=1

wijyj ||2 (10)
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Uniform Manifold Approximation and Projection. The Uniform Man-
ifold Approximation and Projection (Umap) is the last non-linear dimension
reduction technique used in this research. Umap developed by [31] has no em-
bedding dimension restrictions, making it a very useful dimension reduction
technique. This work makes use of the umap() function in the umap package in
R [43]. Algorithm 6 shows the steps taken in order to implement Umap.

Algorithm 6 Uniform Manifold Approximation and Projection
Input: Data matrix (X) with n observations and p variables
Output: Matrix (Y ) containing the the transformed data

–
Step 1 - KNN Use the k Nearest neighbor (KNN) approach the find the nearest
neighbor for each data point
Step 2 - Neighbor Graph Develop the neighborhood graph, where the data
points are connected to each other if they are neighbors
Step 3 - Dimensional representation Find the low-dimensional representa-
tion through the minimum distances between the data points and then obtain
the reduced data set Y .

Note that Umap and t-SNE have a similar workflow according to [2]. These
methods are even considered approximately the same if the ⇢ in Eq. (3) in [2] is
manipulated correctly.

4.3 Clustering (Step 3)

This research checked the e↵ect of dimensionality reduction techniques on the
clustering quality by using two clustering methods. These techniques are k-means
Clustering and Agglomerative Hierarchical Clustering. R packages were used in
order to implement these algorithms.

k-Means Clustering. k-means clustering is an unsupervised machine learning
method by [41,29,22] that makes use of a vector quantization technique. This
method clusters the data set, consisting of p observations, into k. This work
made us of the kmeans() function that is pre-installed in R [43]. Algorithm 7
shows the steps that were taken by the kmeans() function in order to implement
k-means clustering.

The iterations in the k-means clustering method are done such that the Total
Within-Cluster Variation (TWCV) in Eq. (11) was minimized, for the chosen
clustering count k. In Eq. (11) K is the used cluster count k, Ei is the in-cluster
object of Ck, with centroid µk. K-means is sensitive to local minima. Thus in
order to find the best cluster assignments Algorithm 7 has been repeated 1000
times in this work.
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TWCV =
KX

k=1

X

Ei=Ck

(Ei � µk)
2 (11)

Algorithm 7 k-Means
Input: Matrix (Y ) containing the the transformed data
Output: Vector (Q) containing the clustering information

–
Step 1 - Cluster Count Select the optimal cluster count k.
Step 2 - Centroids Randomly select k centroids.
Step 3 - Form Clusters Assign each observation from the Y to their closest
centroid, in order to form the k clusters.
Step 4 - Variance Find the variance in order to find new centroids.
Step 5 - Repeat Repeat step 3 and 4 until there is no more reassignment of
clusters.

Agglomerative Hierarchical Clustering. Agglomerative Hierarchical Clus-
tering (AGNES) is a clustering technique introduced by [24]. AGNES makes
a cluster hierarchy through the bottom-up approach. The bottom-up approach
means that each data point starts a cluster. Then these clusters are merged
when the data point is moved up in the hierarchy, from the bottom. This work
made use of the agnes() function from the cluster package in R [43]. Algorithm
8 shows the steps that were taken by the agnes() function in order to implement
the AGNES clustering in this work.

Algorithm 8 Agglomerative Hierarchical clustering
Input: Matrix (Y ) containing the the transformed data
Output: Vector (Q) containing the clustering information

–
Step 1 - Distance Matrix Find the distance matrix of Y.
Step 2 - Minimum Distance Calculate the minimum distance in the matrix
of Y.
Step 3 - Combine Combine the two clusters that are nearest to each other,
using the linkage method average.
Step 4 - Center Find the centroid of the new;y obtained cluster.
Step 5 - Repeat Repeat steps 2 up until and including step 4, until one cluster
remains.

4.4 internal Cluster Validation (Step 4)

In order to check the quality of the clusters, obtained through the di↵erent
clustering techniques combined with the dimensionality reduction techniques,
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cluster validation methods were used. This work made use of the Dunn Index
[8], Calinski-Harabasz Index [3], Silhouette Index [37], and Davies-Bouldin Index
[6].

Dunn Index. The Dunn Index is the ratio between the smallest distance be-
tween two centroids and the largest distance between two objects in any cluster.
In this work the Dunn Index was obtained by using the dunn() function of the
clValid package in R [43]. Eq. (12) shows how the Dunn Index of object i was
calculated. min1ijm �(Ci, Cj) was the smallest among-cluster distance object
i and object j. max1km 4k was the largest intra-cluster distance.

DIndex =
min1ijm �(Ci, Cj)

max1km 4k
(12)

Calinski-Harabasz Index. The Calinski-Harabasz Index is the ratio between
the sum of inter-cluster dispersion and the sum of the intra-cluster dispersion.
The Calinski-Harabasz Index is also called as the Variance Ratio Criterion
(VRC). In this work the Calinski-Harabasz Index was obtained by using the
calihara() function of the fpc package in R [43].

Eq. (13) shows how the Calinski-Harabasz Index was obtained in this re-

search. In Eq. (13)
PK

k=1 nk||Ck � C||2 was the inter-cluster dispersion. The
inter-cluster dispersion is also called the in-between group sum of squares, with
nk being the observation count in cluster k, Ck being the centroid of cluster k,
C being the centroid of the whole data set, and K were the number of clus-
ters.

Pnk

i=1 ||Xik � Ck||2 was the intra-cluster dispersion, which is also known
as the within-group sum of squares, with Xik being observation i in cluster k.
Lastly, the sum of all individual within-group sums of squares is calculated withPK

k=1

Pnk

i=1 ||Xik � Ck||2.

CHindex =

PK
k=1 nk||Ck � C||2

PK
k=1

Pnk

i=1 ||Xik � Ck||2
N �K

K � 1
(13)

Silhouette Index. The Silhouette Index has a range from �1 to 1. A high
value of the Silhouette Index shows that a specific object matches well with a
cluster of its own. In this work the Silhouette Index was obtained by using the
silhouette() function of the cluster package in R [43].

Eq. (14) shows how the Silhouette Index of object i was obtained. dneari was
the average distance from i to all objects in the nearest cluster. dwithini was the
average distance from i to all objects within the same cluster as object i.

SIndex =
dneari � dwithini

max(dneari , dwithini)
(14)
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Davies-Bouldin Index. The Davies-Bouldin Index is the average of the simi-
larity measures of every cluster with greatest similarity. In this work the Davies-
Bouldin Index was obtained by using the index.DB() function of the clusterSim
package in R [43].

Eq. (15), Eq. (16), and Eq. (17) show how the Davies-Bouldin Index was
obtained in this research. N were the total number of clusters. Rij is a measure
that shows how accurate the clustering is, with Si and Sj being the within-cluster
scatters for cluster i and j respectively, and Mij was the separation between the
clusters i and j.

DBIndex =
1

N

NX

i=1

Di (15)

with,
Di = max

j 6=i
Rij (16)

Rij =
Si + Sj

Mij
(17)

4.5 Extra Extension

If time allows I would like to conduct a similar four-step approach research,
described above, as an extra extension. However, this research will start with the
data transformation step. This step also contains the two non-linear dimension
reduction techniques Isomap and Umap. The next step is the cluster optimization
step, then followed by the clustering step done by k-means and AGNES. Ending
with the internal cluster validation step. Fig. 3 shows a visualization of the steps
conducted in the extension of this research.

Fig. 2: Four-step approach used in the extension of this research

5 Results

This section shows the results obtained from doing the research described in Sect.
4. Sect. 5.1 elaborates on the optimal cluster count obtained from the full Jester
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rating data set and from a random sample consisting of 5,000 samples from the
Jester rating data set. Sect. 5.2 show the results of the internal cluster validation
from the di↵erent data transformation techniques, with optimal cluster count
k = 2 and k = 3 respectively. Sect. 5.3 shows the internal validation results of
the extension from this work. Sect. 5.4 elaborates more on the intriguing findings
of this research. The second, third, and fourth columns of Table 3 up until and
including Table 8 show the values for the Dunn Index, Calinski-Harabasz Index,
and Silhouette Index respectively. Table 8 also includes the values for the Davies-
Bouldin Index.

5.1 Optimal Cluster Count

Fig. 3 shows the graphical representation of the optimal cluster count on the
full Jester joke rating data set. Fig. 3 shows the optimal cluster count using the
Hubert index and the Dunn index. From Fig. 3 can be seen that the optimal
cluster count for the full data set is k = 2. The optimal cluster count is also used
in the results of Sect. 5.2.

Fig. 4 shows the graphical representation of the optimal cluster count on
the random sub-sample from the Jester joke rating data set, consisting of 5,000
samples. Fig. 4 also shows the optimal cluster count using the Hubert index and
the Dunn Index. From Fig. 4, can be seen that the optimal cluster count for the
sub-sample is k = 3.

(a) (b)

Fig. 3: (a) Optimal cluster count found through the Hubert index method from
the full data set (b) Optimal cluster count found through the Dunn Index method
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(a)

(b)

Fig. 4: (a) Optimal cluster count found through the Hubert index method from
the 5,000 samples (b) Optimal cluster count found through the Dunn Index
method from the 5,000 samples

5.2 Results of Dimension Reduction Techniques

Table 3 and Table 4 show the results obtained from the internal cluster vali-
dation of this work for k-means and AGNES clustering, for k = 2 and k = 3
respectively. Fig. 5 and Fig. 6 show a visualization of the obtained clusters from
the dimensionality reduction techniques.

From Table 3 can be seen that both PCA and t-SNE are performing best
among all the dimension reduction techniques for k-means clustering, for the
case k = 2. Do note that t-SNE might have a slightly better performance than
PCA, as t-SNE has the highest index values for both the Calinski-Harabasz
Index and the Silhouette Index. From Table 3 it is also apparent that both ICA
and t-SNE are the best-performing data transformation techniques for AGNES
clustering, for the case k = 2. Note that in the case of AGNES clustering, ICA
is performing slightly better than t-SNE as ICA has the highest index values for
both the Dunn Index and the Silhouette Index.
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Fig. 5: Visualisation of dimension reduction techniques with k-means clustering

Table 3: Results of the internal cluster for k = 2
Technique D-Index CH-Index S-Index
PCA with k-means 0.2935 19.9400 0.1518
ICA with k-means 0.0975 18.5867 0.2860
Isomap with k-means 0.2848 30.9340 0.2911
t-SNE with k-means 0.1030 72.7000 0.4908
LLE with k-means 0.1256 22.7461 0.3709
Umap with k-means 0.1816 69.1797 0.4703
PCA with AGNES 0.5666 4.8139 0.2837
ICA with AGNES 0.9923 14.1777 0.5709
Isomap with AGNES 0.5226 3.1335 0.3071
t-SNE with AGNES 0.1941 66.5873 0.4710
LLE with AGNES 0.6818 21.8517 0.5506
Umap with AGNES 0.1809 59.9661 0.4543

Fig. 6: Visualisation of dimension reduction techniques with AGNES clustering
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From Table 4 it is apparent that PCA, t-SNE, and LLE are the three best-
performing dimension reduction techniques for k-means clustering with k = 3.
However, the found results in Table 4 can not be used in order to conclude
which dimension reduction method performs best for the data transformation
step. Therefore, in order to conclude which data transformation technique further
research will be needed. From Table 4 can be seen that PCA, t-SNE, and LLE are
the three best-performing dimension reduction techniques for AGNES clustering
with k = 3 as well. It is intriguing to see that PCA, t-SNE, and LLE are the best-
performing methods for both k-means and AGNES clustering, as seen in Table
4. This could be an indication that there is not a ”best-performing” dimension
reduction technique for the case k = 3. Instead, there could be multiple well-
performing methods. However, in order to conclude this further research will be
needed.

Table 4: Results of the internal cluster validation for k = 3
Technique D-Index CH-Index S-Index
PCA with k-means 0.3432 13.0197 0.1525
ICA with k-means 0.1136 16.9591 0.3270
Isomap with k-means 0.2069 20.7316 0.2794
t-SNE with k-means 0.0615 49.4460 0.3771
LLE with k-means 0.1034 26.0257 0.4688
Umap with k-means 0.1570 48.0723 0.4102
PCA with AGNES 0.5378 4.6632 0.2295
ICA with AGNES 0.2284 9.3764 0.2520
Isomap with AGNES 0.3799 4.1743 0.2310
t-SNE with AGNES 0.1787 49.1483 0.3470
LLE with AGNES 0.2323 31.3228 0.4290
Umap with AGNES 0.1807 44.0077 0.3906

5.3 Results of extension

Table 5 show the results obtained from the internal cluster validation for the ex-
tension of this work using the 5,000 samples, for k-means and AGNES clustering
respectively.

From Table 5 it is apparent that for k-means clustering PCA, Isomap, and
t-SNE are all well-performing data transformation techniques for their respec-
tive optimal cluster counts, which are 8, 2, and 2 clusters respectively. A best-
performing method can not be concluded from Table 5, as not every dimen-
sion reduction technique has obtained the same optimal cluster count. Table 5
also shows that PCA and ICA are both well-performing dimension reduction
techniques for AGNES clustering. Looking only at the techniques with optimal
cluster count 2 in Table 8, it can be concluded that ICA performs best in this
specific case.

Table 5 indicates that the optimal cluster count k = 2 appears most fre-
quently. This could mean that the optimal cluster count of k = 2, found in Sect.
5.1, is a better optimal cluster count than k = 3. The reasoning could be because
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the optimal cluster count is obtained from the full Jester joke rating data set
instead of a smaller subset, consisting of 5,000 samples.

Table 5: Results of the internal cluster validation of the extension
Technique D-Index CH-Index S-Index Optimal Cluster
PCA with k-means 0.0152 26008.7601 0.5577 8
ICA with k-means 0.0974 18.5867 0.2860 2
Isomap with k-means 0.2848 30.9340 0.2911 2
t-SNE with k-means 0.1030 72.6999 0.4908 2
LLE with k-means 0.1437 47.9631 0.4899 4
Umap with k-means 0.1816 69.1797 0.4703 2
PCA with AGNES 0.0151 23252.3982 0.5263 8
ICA with AGNES 0.9923 14.1777 0.5709 2
Isomap with AGNES 0.5226 3.1335 0.3071 2
t-SNE with AGNES 0.1941 66.5873 0.4710 2
LLE with AGNES 0.2487 52.0143 0.4622 4
Umap with AGNES 0.1809 59.9661 0.4543 2

5.4 Intriguing Findings

An intriguing finding is that the dimension-reduction technique t-SNE is the
best-performing technique for both k = 2 and k = 3. This could be an indi-
cation that t-SNE does in fact perform ”slightly” better than the other ”well-
performing” techniques found in Sect. 5.2 and Sect. 5.3. But looking at the
di↵erent perplexities for t-SNE indicates that further research is needed in or-
der to conclude this with certainty. Because for this work, a perplexity of 10 is
used for the t-SNE technique. Changing the perplexity value for t-SNE results
in di↵erent internal validation indexes, as seen in Table 6 up until Table 8. For
example, from Table 6 and Table 8 can be seen that a perplexity of 10 gives
the highest index results for k = 2, while for k = 3 both perplexities 6 and
10 show high internal validation index values. These changing results for the
t-SNE technique show that more research is needed on whether the t-SNE is the
”best-performing” technique.

Table 6: Comparison of internal validation of t-SNE with di↵erent perplexities
for k = 2

Perplexity D-Index CH-Index S-Index
4 with k-means 0.0619 50.2538 0.3989
6 with k-means 0.1026 55.8035 0.3942
8 with k-means 0.0870 42.6315 0.3830
10 with k-means 0.1030 72.7000 0.4908
4 with AGNES 0.2260 50.7682 0.3705
6 with AGNES 0.2621 57.6237 0.3563
8 with AGNES 0.1967 50.5354 0.3551
10 with AGNES 0.1941 66.5873 0.4710

18



Table 7: Comparison of internal validation of t-SNE with di↵erent perplexities
for k = 3

Perplexity D-Index CH-Index S-Index
4 with k-means 0.0619 50.2538 0.3989
6 with k-means 0.1026 55.8035 0.3942
8 with k-means 0.0870 42.6315 0.3830
10 with k-means 0.1034 26.0257 0.4688
4 with AGNES 0.2260 50.7682 0.3705
6 with AGNES 0.2621 57.6237 0.3562
8 with AGNES 0.1967 50.5353 0.3551
10 with AGNES 0.1787 49.1483 0.3470

Table 8: Comparison of internal validation of k-means with di↵erent perplexities
for the t-SNE extension

Perplexity D-Index CH-Index S-Index DB-Index
4 with k-means 0.1265 62.2177 0.4671 0
6 with k-means 0.1969 72.4891 0.4671 0
8 with k-means 0.2528 60.4512 0.4610 0
10 with k-means 0.1030 72.6999 0.4908 0
4 with AGNES 0.2260 50.7682 0.3705 0.2956
6 with AGNES 0.2621 57.6237 0.3563 0.2804
8 with AGNES 0.1967 50.5354 0.3551 0.2517
10 with AGNES 0.1941 66.5873 0.4710 0

From Table 3 up until Table 7 can be seen that there are no reported Davies-
Bouldin Index values, while Table 8 has them for AGNES clustering with t-
SNE. The reasoning for this result could be that the davies-bouldin does not
incorporate the euclidian distance correctly for the other techniques, even though
the Euclidian distance metric has been explicitly used in the agnes() function in
R. Therefore, future research on this specific aspect has to be done.

It is also noteworthy that the recently found dimension reduction technique
Umap never obtained the highest index value for internal validation among all
the given techniques. In order to dive deeper into this finding, further research
is needed. Future work could also check whether Umap needs more fine-tuning
for this specific data set.

6 Conclusion

This research tried to validate the quality of the k-means and the AGNES clus-
tering techniques, by means of six dimension reduction techniques. The used
linear dimension reduction techniques were PCA and ICA, whereas the used
non-linear techniques were Isomap, t-SNE, LLE, and Umap. These dimension-
reduction techniques were combined with the clustering techniques in order to
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answer the question: which method is the best dimension reduction tech-
nique?

From the results in Sect. 5 it is apparent that PCA, ICA, t-SNE, and LLE
performed best among the given data transformation techniques. However, from
the results, it could be seen that there was no explicit ”best-performing” di-
mension reduction technique. There were however some implications that t-SNE
performs best among the found ”well-performing” techniques. But further re-
search is needed in order to validate this finding. Therefore, other researchers
that want to conduct similar research have to take into account some of these
findings, in order to find even better results.

Sect. 5 also showed some intriguing findings on the di↵erent perplexity values
for the t-SNE method. The main finding was that the change in perplexity for
t-SNE does influence the obtained results of the internal validation indexes,
meaning that more research is needed in order to find the best perplexity value
for this specific data set.

For future research, di↵erent extensions of the use of dimension reduction
techniques or clustering analysis techniques can be used, such as the Linear
Discriminant Analysis guided by Unsupervised Ensemble Learning (LDA-UEL)
from [36]. LDA-UEL can be used to lower the dimensionality of more complex
and higher-dimensional data sets. LDA-UEL is also very robust against outliers,
which can be problematic for PCA and ICA according to [36]. As outliers could
influence the principal components and independent components for PCA and
ICA, LDA-UEL is a very intriguing technique to use in future research. Another
possible extension for future research is to interpret the obtained clusters for k-
means and AGNES. This can be done by researching the jokes that are put into
certain clusters and then interpreting these findings. The fully written jokes can
be found on https://eigentaste.berkeley.edu/dataset/. Lastly, the same
four-step approach is repeated on a very di↵erent data set to validate the found
results, as there are di↵erent data sets available at the Jester site.
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3. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Communications
in Statistics 3, 1–27 (1974)

4. Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A.: Nbclust: An r package for
determining the relevant number of clusters in a data set. Journal of Statistical
Software 61, 1–36 (2014)

5. Comon, P.: Independent component analysis, a new concept? Signal Processing
36, 286–314 (1994)

6. Davies, D.L., Bouldin, D.W.: A cluster separation measure. Transactions on Pat-
tern Analysis and Machine Intelligence 1, 224–227 (1979)

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269—-271 (1959)

20



8. Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact
well-separated clusters. Journal of Cybernetics 3, 32–57 (1973)

9. Floyd, R.W.: Algorithm 97: Shortest path”. communications of the acm. Commu-
nications of the Association for Computing Machinery 5, 345 (1962)

10. Goldberg, K.Y., Roeder, T., Gupta, D., Perkins, C.: Eigentaste: A constant time
collaborative filtering algorithm. Information Retrieval 4, 133–151 (2001)

11. Granato, D., Santos, J.S., Escher, G.B., Ferreira, B.L., Maggio, R.M.: Use of princi-
pal component analysis (pca) and hierarchical cluster analysis (hca) for multivari-
ate association between bioactive compounds and functional properties in foods:
A critical perspective. Trends in Food Science Technology 72, 83–90 (2018)

12. Green, P.E.: Marketing applications of mds: Assessment and outlook. Journal of
Marketing 39, 24–31 (1975)
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A Appendix - Programming code

Hardware information: For this research, the open-source programming
language R [43] and the development environment Rstudio [44,34] are used.
The whole research has not yet been conducted therefore it could be that
other programming languages were used as well. The Packages used for this
research can be found in the methodology of the final Thesis paper. The
used hardware in this work is Intel Core i7-8550U, 2.40 GHz, and 5.00 GHz
dual-core x64-based processor with 8.00 GB RAM.
Prepare hardware:
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Step 1: Download R version 4.3.0, from https://cran.rstudio.com/
Step 2: Dowload the IDE compatible with R version 4.3.0 called Rstudio, from

https://posit.co/download/rstudio-desktop/
Step 3: Download Rtools43, from https://cran.rstudio.com/bin/windows/Rtools/rtools43/rtools.html
Step 4: Download code from Github, from https://github.com/XDilalaX/Thesis_

code/tree/main
Step 5: Run the code!

Program inoformation: The whole program used for this research consists
of 13 R program files, each fulfilling their own task, as explained below:
1. Thesis code pca.R This program shows step 2 up until 4 for the re-

search of the thesis for k-means and AGNES clustering with PCA as its
dimension reduction technique.

2. Thesis code ica.R This program shows step 2 up until 4 for the re-
search of the thesis for k-means and AGNES clustering with ICA as its
dimension reduction technique.

3. Thesis code isomap.R This program shows step 2 up until 4 for the
research of the thesis for k-means and AGNES clustering with Isomap
as its dimension reduction technique.

4. Thesis code tsne.R This program shows step 2 up until 4 for the re-
search of the thesis for k-means and AGNES clustering with t-SNE as
its dimension reduction technique.

5. Thesis code lle.R This program shows step 2 up until 4 for the re-
search of the thesis for k-means and AGNES clustering with LLE as its
dimension reduction technique.

6. Thesis code isomap.R This program shows step 2 up until 4 for the
research of the thesis for k-means and AGNES clustering with Isomap
as its dimension reduction technique.

7. Thesis code pca extension.R This program shows the code for the
extension part of the thesis. This code consists of step 0 up to 4 for the
research of the thesis for k-means and AGNES clustering with PCA as
its dimension reduction technique.

8. Thesis code ica extension.R This program shows the code for the
extension part of the thesis. This code consists of step 0 up to 4 for the
research of the thesis for k-means and AGNES clustering with ICA as
its dimension reduction technique.

9. Thesis code umap extension.R This program shows the code for the
extension part of the thesis. This code consists of step 0 up to 4 for the
research of the thesis for k-means and AGNES clustering with Umap as
its dimension reduction technique.

10. Thesis code tsne extension.R This program shows the code for the
extension part of the thesis. This code consists of step 0 up to 4 for the
research of the thesis for k-means and AGNES clustering with t-SNE as
its dimension reduction technique.

11. Thesis code lle extension.R This program shows the code for the
extension part of the thesis. This code consists of step 0 up to 4 for the
research of the thesis for k-means and AGNES clustering with LLE as
its dimension reduction technique.
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12. Thesis code isomap extension.R This program shows the code for
the extension part of the thesis. This code consists of step 0 up to 4
for the research of the thesis for k-means and AGNES clustering with
Isomap as its dimension reduction technique.

13. Thesis code optimalclusters.R This is the code used in order to ob-
tain the optimal cluster count for this research, also known as step 1.
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B Appendix - Visualization of the dimension reduction

techniques for k = 2

Fig. 7: (a) Visualization for PCA (b) Visualization for ICA (c) Visualization for
Isomap
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Fig. 8: (d) Visualization for t-SNE (e) Visualization for LLE (f) Visualization
for Umap
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