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Abstract

Principal component analysis (PCA) is a widely used statistical method for dimensionality reduc-

tion. However, when used for forecasting, its equal weighting of predictors may overlook important

information about the target variable. To address this limitation, scaled principal component ana-

lysis (sPCA) was introduced. sPCA incorporates target variable information into the dimensionality

reduction process by scaling predictors with their respective predictive slopes of the target variable.

This paper extends the application of sPCA by introducing the t-statistic and quantile regression

coefficient as a scalar. The aim of the research is to evaluate the use of the slope (sPCA-slope),

the t-statistic (sPCA-tstat), and the quantile regression coefficient (sPCA-quantile) as scalars to en-

hance the predictive power and robustness of the sPCA method. A simulation study compares the

performance of the PCA and three sPCA techniques in different scenarios. The results highlight

the accuracy of sPCA-stat in normal circumstances and the robustness of the sPCA-quantile to a

small number of extreme outliers. On the other hand, sPCA-slope demonstrates consistent results

in various conditions and robustness against larger errors. Empirical analysis using U.S. macroeco-

nomic variables confirms the superior predictive power of sPCA techniques compared to PCA, with

sPCA-tstat performing remarkable well in both in-sample and out-of-sample forecasting. Overall, this

research provides valuable insights for practitioners in selecting the most appropriate sPCA method

for different circumstances.

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Principal component analysis (PCA) is a well-established statistical method employed to reduce the

dimensionality of datasets. Its objective is to transform high-dimensional data into lower-dimensional

data while preserving the information contained in the original dataset. PCA is the oldest and most

widely used dimension-reduction technique, introduced by (Pearson, 1901). PCA can be a useful tool

for forecasting in various fields, including finance, marketing, and economics. The works by (Stock and

Watson, 2002), (Stock and Watson, 2006), (Huang et al., 2019), and (Skittides and Früh, 2014) are

examples of studies where PCA is used for forecasting. Although PCA can be useful as a dimensionality

reduction technique, it might not be the most appropriate technique for forecasting. PCA puts equal

weight on all predictors and therefore neglects the information of the target variable. Addressing this

limitation, (Huang et al., 2022) proposed a technique called scaled principal component analysis (sPCA),

which incorporates the information of the target variable into the dimensionality reduction process. This

technique scales each predictor with its predictive slope on the target to be forecasted and then performs

PCA on the transformed predictor set. By using the slope as a scalar, sPCA puts more weight on the

predictors with stronger forecasting power. (Huang et al., 2022) demonstrate, through a simulation and

an empirical study, that the sPCA outperforms the PCA forecast technique. The works by (He et al.,

2021) 1, (Ma et al., 2022), and (Wang et al., 2022) explore the application of the sPCA forecast approach

and provide evidence of its effectiveness in different fields.

This paper extends the application of sPCA by introducing new scalars and therefore new sPCA

techniques. Literature shows that the OLS estimator is prone to outliers and by incorporating different

scalars, this research aims to increase the predictive power and robustness of the sPCA method.

Firstly, the t-statistic of the predictive slope on the target variable is introduced as a scalar. The

use of the t-statistic as a scalar can offer an advantage by incorporating statistical significance. While

the regression slope provides information about the magnitude and direction of the relationship between

predictor and target variable, the t-statistic considers the precision and reliability of this relationship.

The t-statistic puts weight on predictors that have a higher level of significance and as a result potentially

improves the overall predictive performance of the sPCA method. The works by (Clark and McCracken,

2007) and (Magee and Veall, 1991) demonstrate the use of t-statistics in aspects of forecasting.

Secondly, the quantile (median) regression coefficient of the target variable on the predictor is in-

troduced as a scalar. Quantile regression is a type of regression analysis. Whereas OLS estimates the

conditional mean of the target variable across values of the predictors, quantile regression estimates the

conditional quantile of the target variable. In this paper, we exclusively use the median as a quantile,

which represents the middle value of a dataset. Key references to quantile regression are (Koenker and

Bassett Jr, 1978) and (Koenker and Hallock, 2001). Quantile (median) regression provides robustness

against outliers and asymmetric data distributions, as it focuses on the centre of a distribution and

therefore is less affected by extreme values. Incorporating the median quantile regression coefficient

as a scalar in a sPCA method potentially provides a more robust forecasting technique. (Gaglianone

and Lima, 2012), (Bremnes, 2004), (Ma and Pohlman, 2008), (Nielsen et al., 2006), (Liu et al., 2015),

and (Taillardat et al., 2016) are researches that demonstrate an effective use of quantile regression for

forecasting.

The sPCA forecasting approach consists of two steps. Firstly, we derive the scalars for the predictor

set. This research evaluates the performance of three scalars: the slope, the t-statistic, and the quantile

(median) regression coefficient. Secondly, each predictor is scaled with its corresponding scalar and PCA

1First paper by (Huang et al., 2022) about scaled PCA is published in 2019.
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is applied to the adjusted predictor set. The derived principal components are used to create forecasts of

the target variable. This research uses different measures to evaluate the prediction performance of the

PCA and the three different sPCA techniques.

Theoretically, we perform a simulation study to evaluate the prediction power of the PCA and the

sPCA approaches (sPCA-slope, sPCA-tstat, and sPCA-quantile). This study considers a partially relev-

ant latent factor framework with strong and weak factors, representing relevant and irrelevant predictors,

respectively. The simulation covers three different scenarios. Firstly, the standard error scenario where

errors are generated from a normal distribution. Secondly, the larger error scenario, where errors are gen-

erated from a heavier tailed distribution, and lastly, the extreme outlier scenario where extreme outliers

are added to the data. The aim of this study is to investigate the predictive power and the robustness of

the sPCA techniques in these distinct scenarios. The findings indicate that sPCA-tstat exhibits superior

forecasting accuracy but is less robust against larger errors and extreme outliers. In contrast, the sPCA-

quantile proves to be the most robust against extreme outliers and the sPCA-slope method consistently

performs well in the three different scenarios and shows robustness against larger errors.

Empirically, we apply the sPCA techniques to forecast U.S. inflation, industrial production, unem-

ployment, and stock market returns (S&P 500), using 123 macroeconomic variables as predictors. We

employ PCA and the sPCA techniques in an in-sample and out-of-sample environment and evaluate

their forecast accuracy. The results demonstrate that all three sPCA approaches have superior predictive

power compared to PCA. Notably, among the sPCA techniques, sPCA-tstat exhibits greater predictive

power for both in-sample and out-of-sample forecasting.

In summary, this research highlights the characteristics of three different sPCA techniques: sPCA-

slope, sPCA-stat, and sPCA-quantile. The findings provide valuable insights for practitioners in selecting

the most appropriate method for specific circumstances.

The paper is structured as follows. Section 2 provides a detailed explanation of the methodology

employed, describing the methods and tools used in the research. Section 3 presents the simulation

study and its results, while Section 4 focuses on the empirical study, discussing the data, in-sample and

out-of-sample results. The paper ends with Section 5, which summarizes the findings and provides a

conclusion.

2 Methodology

In this section, we present the methods and techniques to conduct the three sPCA forecast approaches:

sPCA-slope, sPCA-tstat, and sPCA-quantile. We select a number of target variables denoted by yt+h,

where h indicates the forecast horizon. In this research, the focus is exclusively on the one-step-ahead

forecast h = 1. To create forecasts, we select a predictor set (X1,t, ..., XN,t) where N indicates the number

of predictors and t = 1, ..., T the number of observations.

In this paper, we consider a similar latent factor model structure as (Huang et al., 2022). For the

target variable yt+h and the N predictors Xt, this is given by

Xi,t = λ′ift + ei,t

= ϕ′igt + ψ′
iht + ei,t,

yt+h = α+ β′gt + ϵt+h.

In this structure the factors ft = (f1,t, ..., fN,t) = (g′t, h
′
t)

′ are divided into the relevant factors gt an

the irrelevant factors ht. The relevant factors imply predictive power and are associated with the target
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variable yt+h. In contrast, irrelevant factors lack any meaningful connection with the target variable.

λi = (ϕ′i, ψ
′
i) denote the loadings of the factors.

2.1 Principal Component Analysis (PCA)

An evident method to derive the factors is PCA, a dimension reduction technique that transforms high-

dimensional data into lower-dimensional while preserving the most important patterns. To perform PCA

on a predictor set, we consider the sample covariance matrix of Xt = (X1,t, ..., XN,t)
′ given by

V̂ =
1

T

T∑
t=1

X∗
t (X

∗
t )

′,

where X∗
t = (X∗

1,t, ..., X
∗
N,t). In this case X∗

i,t = Xi,t − X̄i and X̄i = 1
T

∑T
t=1Xi,t. Note that we

standardize the predictors before performing PCA. This helps to stabilize the variances of the predictors

and it allows for a meaningful comparison by putting them on a common scale. PCA finds those linear

combinations of Xt that are uncorrelated and have maximum variance which can be elaborated by the

following steps:

1. The first principal component (PC) is the linear combination f1,t = a′1Xt, maximizing Var(f1,t) =

a′1V̂ a1 subject to a′1a1 =
∑N

j=1 a
2
1j = 1.

2. The j-th PC fj,t = a′jXt maximizes Var(f1,t) = a′j V̂ aj subject to the constraints a′jaj = 1 and

Cov(fj,t, fi,t) = a′j V̂ ai = 0 for i = 1, ...., j − 1.

In order to find the first PC, we solve the maximization problem max
a1

a′1V̂ a1 such that a′1a1 = 1. We

solve this by forming the Langragian L = a′1V̂ a1 − l(a′1a1 − 1), where l is the Lagrange multiplier. The

derivative with respect to a1 is equal to 2V̂ a1 - 2la1. Setting this equal to zero gives the first order

condition which can be rewritten as V̂ a1 = la1. This shows that the solution a1 is an eigenvector of V̂ .

Now let (λ1, e1), ..., (λN , eN ) be the eigenvalue-eigenvector pairs of V̂ in order that λ1 ≥ ... ≥ λN > 0.

Given that the eigenvalues are the solution to the maximization problems, we can write the j-th principal

component of Xt as

fj,t = e′jXt = ej,1X1,t + ej,2X2,t + ....+ ej,NXN,t

for j = 1, ...., N.

This gives, using PCA, that the variance of the factor is given by Var(fj,t) = e′j V̂ ej = λj for j = 1, ..., N

and the covariance of the factors are given by Cov(fj,t, fi,t) = e′j V̂ ei = 0 for all i ̸= j. We denote the

fraction
λj∑N
i=1 λi

as the fraction of the total ’variance explained’ in Xt by the j-th factor. The variance

explained is a relevant measure for evaluating PCA techniques as it quantifies the proportion of data

variability that can be accounted for by the extracted components. A high variance explained indicates

that the PCA technique can capture a larger proportion of the total variability in the data. This suggests

a more effective representation of the underlying patterns or structure.

2.2 Scaled PCA (sPCA)

When the model is specified as the latent factor model, PCA can overlook the influence of the target

variable on the predictors. PCA is a technique that distributes equal forecasting power to each predictor,

regardless of the information of the target variable. sPCA is a technique that addresses this issue by
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multiplying each predictor by a scalar that puts more weight on predictors with more forecasting power.

In this paper, we investigate the performance of three different scalars: the regression coefficient (slope),

the t-statistic, and the median quantile regression coefficient. These sections explain the three different

types of scalars and how to use the principal components to forecast the target variable.

2.2.1 Slope Scalar

The slope is the regression coefficient of the target variable on a predictor. The slope can be used as

a scalar for sPCA because it serves as an indicator of the predictor’s predictive power. It reveals the

magnitude and direction of the predictor on the target variable. A larger absolute coefficient implies a

stronger influence, indicating that small changes in the predictor’s value can result in significant changes

of the target variable. Furthermore, the sign of the coefficient provides information about the direction

of the relationship. Positive coefficients indicate a positive association, while negative coefficients suggest

an inverse relationship. This sPCA technique is explored by (Huang et al., 2022) and their findings

demonstrate that incorporating the regression coefficient as a scalar improves predictive power. We

employ sPCA with the slope as a scalar (sPCA-slope) to forecast the target variable. This approach

involves incorporating the following steps into the prediction process:

1. Firstly, we derive the regression coefficient of the target variable on each predictor. yt+h denotes the

target variable (h = 1) and (X1,t, ..., XN,t) the set of standardized predictors. We obtain estimates

of the slopes by regressing the target variable on each predictor i, yt+h = αi + βiXi,t + ϵt+h, where

αi and βi represent the intercept and slope coefficients, respectively. Ordinary least squares (OLS)

is used to obtain the estimates α̂i and β̂i.

2. Secondly, we take the estimated regression coefficient, β̂i, and multiply it by the corresponding pre-

dictorXi,t for every i = 1, ..., N . This results in a set of scaled predictors (β̂1X1,t, β̂2X2,t, ..., β̂NXN,t).

We then apply PCA to this set of scaled predictors to extract r relevant factors. These factors are

used to predict the target variable. The sPCA-slope forecast for yt+h is given by

ỹsPCAs

t+h = γ̂sPCAs + (π̂sPCAs)′ĝsPCAs
t ,

where we select ĝsPCAs
t as the relevant factors that are associated with the target variables and

(γ̂sPCAs , (π̂sPCAs)′)′ are the OLS estimates.

2.2.2 T-statistic Scalar

The t-statistic of the regression coefficient provides valuable insights into the predictive power of a pre-

dictor. It measures the strength of the association between the predictor and the target variable, consid-

ering both the magnitude of the coefficient and its significance. A higher absolute t-statistic indicates a

stronger and more significant impact of the predictor on the target variable, suggesting greater predictive

power. By considering the t-statistic, we can quantitatively assess the significance of the relationship and

prioritize predictors with stronger predictive capabilities in modeling and forecasting tasks. We employ

sPCA with the t-statistic as a scalar (sPCA-tstat) to forecast the target variable. This approach involves

incorporating the following steps into the prediction process:

1. Firstly, we derive the t-statistic of the regression coefficient of the target variable on each predictor.

The estimation of β̂i follows a similar approach as described in step 1 of the sPCA-slope technique
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(Section 2.2.1). The t-statistic is denoted by tβ̂i
= β̂i

SE(β̂i)
, where the denominator indicates the

standard error of the regression coefficient.

This research uses the Newey-West estimator to estimate the standard error of the regression

coefficient. This estimator is particularly useful when the standard assumptions of the residuals,

such as homoskedasticity and no autocorrelation, do not hold. By accounting for heteroskedasticity

and/or autocorrelation in the residuals, the Newey-West estimator enhances the accuracy and

reliability of the standard errors of the regression coefficients. It was devised by (Newey and West,

1986) and there are several lateral variants by (Andrews, 1991), (Newey andWest, 1994) and (Smith,

2005). In OLS regression, the estimation of regression coefficients in the model y = Xβ+ ϵ is given

by the formula β̂ = (X ′X)−1X ′y. The covariance matrix of the coefficient estimates is given by

Cov(β̂) = σ2(X ′X)−1. It is important to note that under the assumption of homoskedasticity and

no autocorrelation, the value σ2 represents the common variance of the residuals. The covariance

matrix is denoted by

Cov(β̂) = (X ′X)−1X ′SX(X ′X)−1 , where S = σ2I.

The Newey-West method follows a similar approach but with a different calculation for X ′SX. The

resulting standard errors are known as Heteroskedasticity and Autocorrelation Corrected (HAC)

standard errors. In the presence of autocorrelation with lags up to l > 0, the term X ′SX is

computed as follows:

X ′SX =
n

n− k

n∑
i=1

e2iX
′
iXi +

n

n− k

l∑
i=1

(1− i

l + 1
)

n∑
j=i+1

ejej−i(X
′
jXj−i +X ′

j−iXj),

where n represents the number of observations, k is the number of variables, ei denotes the i-th

residual, and Xi represents the i-th row in the design matrix X. The first term in the formula

corresponds to the value of X ′SX when there is no autocorrelation. The second term incorporates

the Newey-West method to handle autocorrelation up to a lag of l. It assumes that lags beyond l

can be disregarded. This research uses exclusively autocorrelation with lags up to l = 1.

2. Secondly, we take the t-statistic tβ̂i
and multiply it by its corresponding predictor Xi,t. This results

in a set of scaled predictors (tβ̂1
X1,t, ..., tβ̂N

XN,t). Apply PCA to this set of scaled predictors to

extract r relevant factors and use them to predict the target variable. The sPCA-tstat forecast for

yt+h is given by

ỹsPCAt

t+h = γ̂sPCAt + (π̂sPCAt)′ĝsPCAt
t ,

where we again select ĝsPCAt
t as the relevant factors and (γ̂sPCAt , (π̂sPCAt)′)′ are the OLS estimates.

2.2.3 Quantile Regression Scalar

Quantile regression is a statistical method used to estimate the relationship between variables at different

quantiles of the conditional distribution. It extends the concept of traditional regression, which focuses

on estimating the conditional mean. In quantile regression, instead of estimating the conditional mean,

we estimate the conditional quantiles. The quantiles represent specific points in the distribution that

divide the data into equal-sized portions. The median, which corresponds to the 50th percentile, is a

commonly used quantile that we exclusively use in this paper. A significant coefficient suggests that the
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predictor carries predictive power for predicting the target variable. This coefficient is more robust to

outliers, making it useful in capturing predictive power. Section 2.3 provides a detailed description of

quantile regression. We employ sPCA with the median quantile regression coefficient as a scalar (sPCA-

quantile) to forecast the target variable. This approach involves incorporating the following steps into

the prediction process:

1. Firstly, we derive the quantile regression coefficients of the target variable on each predictor using

the median as the quantile. The quantile regression model can be expressed as qyt+h
(τ) = αi(τ) +

βi(τ)Xi,t, where we employ the median quantile with τ = 0.5. Here, qyt+h
denotes the conditional

median of the target variable.

2. Secondly, we take the estimated quantile regression coefficient, denoted as β̂i(τ), and multiply it

by the corresponding predictor Xi,t for every i = 1, ....N . This results in a set of scaled predictors

(β̂1(τ)X1,t, β̂2(τ)X2,t, ..., β̂N (τ)XN,t). We then apply PCA to this set of scaled predictors to extract

r relevant factors and use these to predict the target variable. The sPCA-quantile forecast for yt+h

is given by

ỹ
sPCAq

t+h = γ̂sPCAq + (π̂sPCAq )′ĝ
sPCAq

t ,

where we again select ĝ
sPCAq

t as the relevant factors and (γ̂sPCAq , (π̂sPCAq )′)′ are the OLS estim-

ates.

2.3 Quantile Regression

Quantile regression is a technique that differs from traditional OLS regression. While OLS regression

estimates the conditional mean of the target variable given the predictor variables, quantile regression

estimates the conditional quantile of the target variable. A quantile is a specific value that divides a

dataset into equal-sized subsets. It represents the threshold below which a certain proportion of the data

falls. For example, when the data of U.S. inflation lies within the τ -th quantile, it means that it is higher

than τ of the observations and lower than (1− τ) of the observations. A common quantile is the median

(exclusively used in this research), setting τ = 0.5.

Quantile regression is useful when the assumptions of linear regression are not satisfied or when there

is interest in understanding the relationship between predictors and specific quantiles of the dependent

variable. An advantage of quantile regression relative to OLS regression is that the quantile regression

estimates are more robust against outliers. Figure 3 in the Appendix displays a scatterplot of a variable

y against x with the presence of an outlier. It illustrates the difference between OLS and the more robust

median quantile regression method.

Suppose we have a dependent variable yt and a set of predictors Xt for t = 1, ..., T , where Xt

represents a vector of k predictors. Unlike OLS, which minimizes the sum of squared residuals, the

quantile regression estimator minimizes the sum of absolute residuals. The regression model is specified

as the equation yt = Xtβ + ϵt, where β represents the vector of regression coefficients and ϵt represents

the error term or residual for observation t. The τ -th sample quantile, 0 < τ < 1, is defined as any

solution to the minimization problem described by (Koenker and Bassett Jr, 1978):

β̂ = min
β∈Rk

[
∑

t∈t:yt≥Xtβ

τ |yt −Xtβ|+
∑

t∈t:yt<Xtβ̂

|(1− τ)yt −Xtβ|].
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The regression quantile minimization problem is equivalent to the linear program (P):

β̂ = min
β∈Rk

[τι′k+ + (1− τ)ι′k−],

where k+ and k− equals |yt −Xtβ| when respectively yt ≥ Xtβ and yt < Xtβ, subject to

y = Xβ + k+ − k−,

(β, k+, k−) ∈ Rk x R2T
+ ,

where ι = (1, 1, ..., 1), a T vector of ones. The dual linear program (D) is defined as:

δ̂ = max
δ

[y′δ]

subject to

X ′δ = 0

δ ∈ [τ − 1, τ ]T ,

where [τ − 1, τ ]T denotes the T -fold Cartesian product of the closed interval [τ − 1, τ ]. In other words,

it denotes the set of T -tuples, where each element of the tuple comes from the interval [τ − 1, τ ]. The

superscript T indicates the number of times the interval is repeated in the Cartesian product. For

example, consider τ = 0.5 and T = 3. The expression [τ − 1, τ ]T would be: [0.5− 1, 0.5]3 = [−0.5, 0.5]×
[−0.5, 0.5]× [−0.5, 0.5] Expanding this Cartesian product, we obtain:

[−0.5, 0.5]3 = {(−0.5,−0.5,−0.5), (−0.5,−0.5, 0.5),

(−0.5, 0.5,−0.5), (−0.5, 0.5, 0.5),

(0.5,−0.5,−0.5), (0.5,−0.5, 0.5),

(0.5, 0.5,−0.5), (0.5, 0.5, 0.5)}. (1)

(Koenker and Bassett Jr, 1978) demonstrate that it is convenient to make a small adjustment to the dual

linear program. Therefore, we modify the dual variables to ∆ = δ + 1− τ . This gives the adjusted dual

linear program (D’):

∆̂ = max
∆

[y′∆]

subject to

X ′∆ = (1− τ)X ′ι

∆ ∈ [0, 1]T .

The modified dual formulation proves to be convenient for computational purposes. This paper uses

standard linear programming algorithms to solve the adjusted dual linear program (D’) and obtain the

quantile regression estimators 2. This paper focuses solely on employing the median quantile regression

model, τ = 0.5. Note that by adopting the median, the minimization model becomes more concise, as

2The MATLAB code for quantile regression referenced is developed by Roger Koenker and sourced from the website
http://www.econ.uiuc.edu/roger/research/rq/rq.html,
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indicated by min
β∈Rk

[
∑

t τ |yt −Xtβ|].

3 Simulation Study

In this section, we perform Monte Carlo experiments to assess and compare the forecasting accuracies of

the four distinct PCA techniques. Specifically, we consider the following approaches: traditional principal

component analysis (PCA), scaled PCA with the slope as a scalar (sPCA-slope), scaled PCA with the

t-statistic as a scalar (sPCA-tstat), and scaled PCA with the median quantile regression coefficient as

a scalar (sPCA-quantile). In this study, the forecast accuracies of one-step-ahead (h = 1) forecasts are

compared.

The simulation is conducted based on a two-latent-factor model design where one factor is specifically

relevant to the target variable. See Section 2 for a description of the latent-factor model structure. The

predictors are denoted by Xi,t = λ′ift + ei,t = ϕ′igt + ψ′
iht + ei,t, for i = 1, ..., N and t = 1, ..., T , where

gt and ht indicate the relevant and irrelevant factor, respectively. The two factors are independently

normally distributed with zero mean and unit variance, that is gt ∼ N (0, 1) and ht ∼ N (0, 1). The

idiosyncratic noises ei,t are generated from a distribution with zero mean and standard deviation σi and

are independent across predictors and over time. In this study, we vary the distribution of the idiosyncratic

noises to explore the effects on forecast accuracy and check for robustness. The exact distributions are

given and explained in the following sections. σi for i = 1, ..., N are drawn independently from a uniform

distribution with support [0,1], that is σi ∼ U [0, 1].
In this paper, we simulate scenarios with strong and weak factors. We perform this by assigning

different values to parameters ϕi and ψi. The strength of factors is indicative of their predictive power,

with stronger factors demonstrating higher predictive capability compared to weaker factors. To simulate

the strong factors, we randomly sample ϕi and ψi from an independent uniform distribution with support

[0, 1], that is ϕi ∼ U [0, 1] and ψi ∼ U [0, 1]. To simulate the weak factors, we set ϕi and ψi to be zero. In

this simulation study, we explore various scenarios by varying the number of strong factors, represented

by the parameter n, along with the weak factors.

The target variable is expressed as the sum of the relevant factor and the disturbances, that is

yt+1 = gt + ϵt+1. The factor gt is incorporated into the model to capture its impact on the target

variable. The disturbances ϵt+1 are assumed to be independently and normally distributed, following a

standard normal distribution with a mean of zero and a variance of one, that is ϵt+1 ∼ N (0, 1).

In this study, we compare the accuracies of one-step-ahead forecasts. We focus on an out-of-sample

environment and consider forecasts with the estimated PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile

principal components. We create forecasts using one, two, and three principal components:

ỹt+1 = γ̂ + π̂1z1,t,

ỹt+1 = γ̂ + π̂1z1,t + π̂2z2,t,

ỹt+1 = γ̂ + π̂1z1,t + π̂2z2,t + π̂3z3,t,

where γ̂ indicates a constant, zi,t the i-th principal component and π̂i its parameter. To compare the fore-

casts we use the mean squared forecast error (MSFE). The MSFE is a metric used to evaluate the accuracy

of a forecasting model. It measures the average squared difference between the forecasted values and the

actual observed values. The MSFE provides an overall evaluation of the model’s predictive performance,

with lower values indicating better accuracy. The MSFE is given by MSFE = 1
T

∑T
t=1(ŷt,forecast− yt)2,

where T is the number of forecasts, ŷt,forecast is the forecast and yt the actual observed value on t.
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This research investigates the results of three distinct scenarios to examine the impact of different

error simulations and check for robustness. This results in this paper are structured as follows: Section

3.1 explores the scenario where standard errors are simulated, Section 3.2 presents the results of a scenario

with increased error generation, and Section 3.3 focuses on a special scenario where standard errors are

generated and a number of extreme outliers are added to the data.

3.1 Scenario I: Standard Errors

In scenario I, we simulate the data where errors are generated from a normal distribution with zero mean

and standard deviation σi, that is ei,t ∼ N (0, σi). The dataset consists of N = 200 predictors observed

over a period of T = 250 time points. To evaluate the model’s performance, we split the data into two

parts: the first 200 observations are used for sample training, and the remaining 50 observations are

reserved for out-of-sample evaluation. Forecasts are created using one, two, or three factors. n represents

the number of strong factors, where n
N represents the strong factor ratio of a case. Note that n = 10

represents the weakest case, while n = 200, where all factors have higher predictive capability, represents

the strongest case. Table 1 displays the median MSFEs obtained from 100 repetitions for the PCA,

sPCA-slope, sPCA-tstat, and sPCA-quantile forecasts. The lowest median MSFE values are highlighted

in bold.

Table 1: The MSFEs of the PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile forecasts in scenario I,
where errors are generated from a normal distribution

PCA sPCA - slope

One factor Two factors Three factors One factor Two factors Three factors

n = 200 1.489 1.012 1.030 1.248 0.994 1.008

n = 150 1.554 0.996 1.009 1.284 1.004 1.011

n = 100 1.458 1.014 1.015 1.230 1.027 1.043

n = 50 1.509 1.077 1.086 1.250 1.026 1.045

n = 25 1.554 1.664 1.648 1.246 1.107 1.115

n = 10 1.741 1.603 1.748 1.317 1.280 1.280

sPCA - tstat sPCA - quantile

One factor Two factors Three factors One factor Two factors Three factors

n = 200 1.212 1.032 1.037 1.247 1.024 1.014

n = 150 1.249 1.004 1.003 1.277 1.011 1.026

n = 100 1.175 0.993 0.994 1.254 1.025 1.040

n = 50 1.217 1.009 1.029 1.255 1.037 1.039

n = 25 1.202 1.115 1.114 1.250 1.088 1.097

n = 10 1.296 1.289 1.310 1.313 1.287 1.310

A first observation is that the accuracy of the four models improves as the number of strong factors

increases. This implies that all (s)PCA methods make more accurate predictions when there is a greater

number of factors with higher predictive power. This can be explained due to the inherent nature of

PCA, which seeks to identify underlying patterns in the data. The strong factor case provides more

structure which makes it easier to find such patterns, improving the forecast accuracies of the models.

Secondly, the forecast accuracy of the four models improves using two factors and/or three factors. This
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can be explained by the fact that the model can capture more variability in the data when including

more principal components.

The MSFE values of the PCA method for one factor range from 1.46 to 1.74, while the MSFE values

of the sPCA methods range from 1.21 to 1.32. When considering two factors, the PCA method yields

MSFE values ranging from 1.00 to 1.66, while the sPCA methods yield values ranging from 0.99 to 1.29.

For three factors, the MSFE values of the PCA method range from 1.03 to 1.75, while the sPCA methods

range from 0.99 to 1.31. It is observed that, in general, the sPCA methods exhibit lower MSFE values

compared to the PCA method, indicating more accurate forecasting performance.

The comparison of sPCA methods reveals that the sPCA-stat approach outperforms both the sPCA-

slope and the sPCA-quantile method. The MSFE values obtained by using sPCA-stat are consistently

the lowest using one, two or three factors across various strong/weak cases. When using one factor, the

MSFE values for sPCA-tstat are the lowest in all cases. These results indicate that the use of sPCA-tstat

leads to the most accurate forecasts in the scenario where standard errors are generated. It demonstrates

that using the t-statistic as a scalar gives the most predictive power in a normal situation. This can be

attributed to the characteristics of the t-statistic, that not only captures the relationship between the

predictor and the target variable but also its statistical significance.

3.2 Scenario II: Larger Errors

In scenario II, we simulate the data by introducing errors generated from a t-distribution with standard

deviation σi. Compared to a normal distribution, a t-distribution exhibits heavier tails (Appendix Figure

4), allowing for the occurrence of much larger values. We introduce larger errors to examine how different

the (s)PCA forecast techniques handle these and to asses the robustness of these approaches. The errors

are generated from t-distributions with varying degrees of freedom: v = 3 and v = 1, where a lower degree

of freedom signifies heavier tails. That is ei,t ∼ t(0, v, σi). To evaluate the model’s performance, we again

use the first 200 observations for sample training and the remaining 50 observations for out-of-sample

evaluation. Table 2 and Table 3 displays the median MSFEs obtained from 100 repetitions for the PCA,

sPCA-slope, sPCA-stat and sPCA-quantile forecasts. The lowest median MSFE values are highlighted

in bold.

Firstly, we obtain interesting results about the sPCA-tstat approach. When generating errors from

the heavier tailed t-distribution with v = 3, we observe a decrease in forecast accuracy compared to the

standard error scenario. This is indicated by the decreasing number of cases where sPCA-stat outperforms

the other techniques. When generating larger errors (t-distribution with degrees of freedom v = 1) we

observe an even poorer forecast performance of the sPCA-stat, indicated by the highest MSFEs in almost

all cases, ranging from 1.52 to 2.01. These results indicate the non-robustness of the sPCA-tstat technique

in terms of forecast performance. It suggests that the sPCA-tstat approach demonstrates reduced forecast

accuracy when more larger errors are generated and lacks robustness in comparison to PCA, sPCA-slope

and sPCA-quantile. This can be explained due to the fact that the t-statistic becomes less reliable in

the scenario with larger errors. The t-statistic is calculated by the estimated parameter divided by its

standard deviation. Very large errors can increase the variability of the parameters, which results in

larger standard deviations. As a result, the t-statistic may become smaller which makes it more difficult

to detect statistically significant relationships.
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Table 2: The MSFEs of the PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile forecasts in scenario II,
where errors are generated from a t-distribution with df = 3

PCA sPCA - slope

One factor Two factors Three factors One factor Two factors Three factors

n = 200 1.540 1.090 1.093 1.243 1.052 1.057

n = 150 1.494 1.086 1.095 1.248 1.080 1.094

n = 100 1.437 1.135 1.145 1.226 1.105 1.112

n = 50 1.497 1.486 1.503 1.274 1.146 1.139

n = 25 1.555 1.567 1.580 1.303 1.273 1.269

n = 10 1.917 1.946 1.938 1.418 1.393 1.399

sPCA - tstat sPCA - quantile

One factor Two factors Three factors One factor Two factors Three factors

n = 200 1.236 1.054 1.068 1.237 1.057 1.062

n = 150 1.230 1.097 1.105 1.250 1.135 1.135

n = 100 1.218 1.115 1.125 1.228 1.113 1.113

n = 50 1.252 1.121 1.144 1.273 1.161 1.155

n = 25 1.328 1.290 1.282 1.314 1.261 1.254

n = 10 1.422 1.397 1.413 1.421 1.409 1.424

Secondly, there are significant findings regarding the sPCA-slope and sPCA-quantile approaches. In

both cases of generating errors (t-distribution with degrees of freedom v = 1 and v = 3) these two methods

outperform PCA. Comparing sPCA-slope and sPCA-quantile, we observe that sPCA-slope outperforms

sPCA-quantile, particularly for v = 1, demonstrating the lowest MSFEs in sixteen out of eighteen cases.

These results suggest that while the sPCA-quantile offers a robust alternative for forecasting, it falls

short to the robustness exhibited by the sPCA-slope approach. To conclude, the sPCA-slope technique

consistently achieves superior forecast accuracy when generating larger errors. This means that in this

scenario, the use of sPCA-slope, which incorporates the mean relationship of the target variable and the

predictors, is more robust than the than use of sPCA-quantile, which incorporates the median relationship.
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Table 3: The MSFEs of the PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile forecasts in scenario II,
where errors are generated from a t-distribution with df = 1

PCA sPCA - slope

One factor Two factors Three factors One factor Two factors Three factors

n = 200 1.549 1.552 1.581 1.294 1.194 1.213

n = 150 1.530 1.597 1.660 1.243 1.168 1.172

n = 100 1.586 1.617 1.629 1.252 1.236 1.225

n = 50 1.950 1.950 1.967 1.361 1.396 1.459

n = 25 1.974 1.978 2.080 1.470 1.465 1.496

n = 10 1.897 1.920 1.956 1.679 1.711 1.735

sPCA - tstat sPCA - quantile

One factor Two factors Three factors One factor Two factors Three factors

n = 200 1.802 1.529 1.520 1.285 1.264 1.273

n = 150 1.769 1.773 1.748 1.304 1.302 1.300

n = 100 1.910 1.886 1.833 1.333 1.324 1.352

n = 50 1.953 2.013 2.090 1.428 1.435 1.434

n = 25 1.968 1.999 2.009 1.661 1.603 1.581

n = 10 1.942 1.988 2.009 1.793 1.758 1.802

3.3 Scenario III: Extreme Outliers

In Scenario III, we investigate the case where standard errors are generated and a set of extreme outliers

are added to the dataset. By adopting this approach, we can explore the impact of extreme outliers on the

sPCA techniques. It allows us to gain insights into the performance and robustness of these techniques

in scenarios where the data exhibits unusual observations.

To simulate this scenario, errors are generated from a standard normal distribution with a mean of

zero and a standard deviation of σi, denoted as ei,t ∼ N (0, σi). Subsequently, a set of extreme outliers

is introduced for each predictor i, specifically with the value of 104 × σi. These outliers are randomly

assigned to each predictor across the time period T = 1, ..., 250 and can be either positive or negative. In

this analysis, we examine the effects of incorporating 1 to 5 extreme outliers per predictor throughout the

time period T . The number of outliers added to the data is denoted by Q. In contrast with scenario I,

all factors are set to be strong factors (n = 200). This gives the best insights of the impact of the outliers

as it assumes no noise of the weak factors in this case. To evaluate the model’s performance, we again

use the first 200 observations for sample training and the remaining 50 observations for out-of-sample

evaluation. Table 4 displays the median MSFEs obtained from 100 repetitions for the PCA, sPCA-slope,

sPCA-stat and sPCA-quantile forecasts.
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Table 4: The MSFEs of the PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile forecasts in scenario III,
where errors are generated from a normal distribution with the addition of extreme outliers

PCA sPCA - slope

One factor Two factors Three factors One factor Two factors Three factors

Q = 1 1.798 1.634 1.756 1.464 1.568 1.426

Q = 2 2.046 2.249 2.123 1.761 1.773 1.730

Q = 3 1.946 2.051 2.131 1.987 2.075 2.044

Q = 4 1.935 1.999 2.183 2.036 2.080 2.215

Q = 5 2.056 2.002 2.001 1.982 2.089 2.120

sPCA - tstat sPCA - quantile

One factor Two factors Three factors One factor Two factors Three factors

Q = 1 1.611 1.706 1.865 1.259 1.298 1.285

Q = 2 1.956 2.012 2.067 1.631 1.571 1.806

Q = 3 2.040 2.029 2.043 1.951 2.089 2.083

Q = 4 1.931 2.041 2.216 1.957 2.006 2.175

Q = 5 2.007 2.084 1.987 2.069 2.079 2.071

The results show interesting outcomes for the sPCA-quantile for Q = 1 and Q = 2, which are italicized

in Table 4. For Q = 1, we obtain significantly lower MSFEs utilizing the sPCA-quantile approach in

comparison with the other approaches. The sPCA-quantile MSFEs of the predictions using one, two,

or three factors range between 1.26 and 1.30. In comparison, the MSFEs of PCA, sPCA-slope, and

sPCA-stat range from 1.63 to 1.80, 1.43 to 1.57, and 1.61 to 1.89, respectively. This suggest that the

sPCA-quantile technique has the most predictive power when one extreme outlier is added to the data.

For Q = 2, the sPCA-quantile approach also yields significantly lower MSFEs in the cases where one or

two factors are used for forecasting. However, these outcomes are comparatively less significant than in

the case of a single extreme outlier (Q = 1). The presence of more than two extreme outliers (Q = 3,

Q = 4 and Q = 5) leads to similar MSFEs along the four different techniques and there is no advantage

of the sPCA-quantile technique obtained in these cases.

The analysis of the results reveals an interesting insight. When introducing a small number of extreme

outliers, the sPCA-quantile technique demonstrates the best forecast accuracy, especially in the case

of single extreme outlier. This suggests that sPCA-quantile, which incorporates the median quantile

regression coefficient as a scalar, provides a robust approach when encountering an extreme outlier. The

effectiveness of this technique can be attributed to the nature of median quantile regression, which focuses

on estimating the conditional median of the target variable instead of the conditional mean as in OLS.

As a result, median quantile regression is less sensitive to extreme outliers because these values have

less impact on median estimation compared to mean estimation. By incorporating the median quantile

regression coefficients as scalars, the sPCA-quantile technique enhances robustness and produces a set

of scaled predictors that is less influenced by extreme outliers. As a result, the sPCA-quantile model

exhibits optimal performance in this scenario. However, when confronted with an increased number of

extreme outliers, the model’s stability diminishes, leading to lower out-of-sample performance

Overall, this scenario highlights the importance of considering the sPCA-quantile method as the most

accurate technique for forecasting in datasets with individual extreme outliers.
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4 Empirical Study

In this section, we apply the (s)PCA techniques for macroeconomic forecasting with real data. We

compare the forecast accuracies of the PCA, sPCA-slope, sPCA-tstat and the sPCA-quantile method.

We evaluate these methods through in-sample and out-of-sample forecasting. The section is structured

as follows: we begin by introducing the dataset, followed by presenting the in-sample results, and ending

with the out-of-sample results.

4.1 Data

In this paper, we consider 123 U.S. macroeconomic variables introduced by (McCracken and Ng, 2016)

which we use as predictors. The variables are from the FRED-MD database, covering monthly data from

January 1960 to December 2019. The FRED-MD database, also known as the Federal Reserve Economic

Data-Macroeconomic Data, is a comprehensive collection of macroeconomic and financial time series data

maintained by the Federal Reserve Bank of St. Louis. It consists of a wide range of economic indicators

which includes variables related to GDP, inflation, employment, interest rates, and financial markets.

The FRED-MD database is widely used by economists, researchers, and policymakers to analyze and

study macroeconomic trends and dynamics. The 123 predictors cover the following economic categories:

output (No. 1-16), labor (No. 17-47), housing (No. 48-64), money (No. 65-78), interest and exchange

rates (No. 79-99) and prices (No. 100-123). Table 6 in the Appendix shows a detailed description of the

predictor set (and their transformations).

This research uses the following monthly data as target variables: inflation, industrial production (IP),

unemployment rate, and stock market returns from the U.S. spanning from January 1960 to December

2019. We specify inflation as the ’Consumer Price Index for All Urban Consumers: All Items in U.S.

City Average’ and stock market returns as the monthly returns of the ’S&P 500’. For yt ∈ {CPI, IP,
stock market prices}, we use the transformation ẏt = ln(yt) − ln(yt−1) and ẏt = yt − yt−1 for when yt

equals the unemployment rate.

4.2 In-Sample Results

This section examines the in-sample performance of the four methods: PCA, sPCA-slope, sPCA-tstat,

and sPCA-quantile. The evaluation consists of two main parts. Firstly, a comparison is made between

PCA and the sPCA techniques. Secondly, the in-sample forecasting results are presented.

4.2.1 Comparison PCA and sPCA’s

To evaluate the performance of PCA and the three distinct sPCA techniques, we compare the variance

explained of each method. The variance explained for principal component j denotes the proportion

of the total variation of the predictors explained by the j-th principal component. Table 5 reports, in

descending order, the variance explained for the first 10 principal components of each (s)PCA technique.

It shows the results for the PCA and sPCA techniques for each target variable: inflation, industrial

production (IP), unemployment rate and stock market returns.
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Table 5: Variance explained by the principal components of PCA, sPCA-slope, sPCA-tstat, and sPCA-
quantile

Inflation IP

PCA sPCA-s sPCA-t sPCA-q PCA sPCA-s sPCA-t sPCA-q

1st 0.15 0.38 0.45 0.46 0.15 0.36 0.33 0.40

2nd 0.07 0.11 0.10 0.09 0.07 0.10 0.10 0.10

3rd 0.07 0.09 0.06 0.08 0.07 0.06 0.07 0.08

4th 0.05 0.06 0.06 0.04 0.05 0.06 0.07 0.06

5th 0.04 0.05 0.05 0.05 0.04 0.06 0.06 0.05

6th 0.03 0.05 0.04 0.04 0.03 0.03 0.03 0.03

7th 0.03 0.04 0.03 0.03 0.03 0.03 0.03 0.03

8th 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02

9th 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

10th 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02

Unemployment Stock Market

PCA sPCA-s sPCA-t sPCA-q PCA sPCA-s sPCA-t sPCA-q

1st 0.15 0.41 0.40 0.69 0.15 0.31 0.32 0.27

2nd 0.07 0.10 0.10 0.13 0.07 0.21 0.21 0.19

3rd 0.07 0.06 0.07 0.07 0.07 0.08 0.08 0.09

4th 0.05 0.05 0.05 0.03 0.05 0.07 0.06 0.05

5th 0.04 0.04 0.04 0.02 0.04 0.05 0.05 0.05

6th 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.04

7th 0.03 0.02 0.02 0.01 0.03 0.02 0.02 0.03

8th 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02

9th 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.02

10th 0.02 0.02 0.02 0.00 0.02 0.01 0.01 0.02

The comparison between PCA and the three sPCA methods reveals a remarkable difference in the

variance explained. We observe that the variance explained is much higher around the first principal

components of the sPCA methods compared to PCA. This difference can be attributed to the specific

characteristics and objectives of the sPCA techniques. Unlike PCA, the sPCA methods are designed to

capture the variation of the predictor set, which is modified to increase predictive power. By incorporating

the information from the target variable into the dimensionality reduction process, the sPCA methods

can extract the principal components that are most relevant for explaining the patterns and structure of

the data specific to the target variable.

When comparing the three distinct sPCA methods, we denote a notable difference between the sPCA-

quantile approach and the sPCA-tstat and sPCA-slope approaches. We obtain that the variances ex-

plained by the first principal component is higher for sPCA-quantile than sPCA-slope and sPCA-tstat,

especially when forecasting unemployment rate (69%). In the case of sPCA-quantile, it specifically fo-

cuses on capturing the relationship at the median of the target variable’s conditional distribution. This

approach allows sPCA-quantile to potentially capture more information about the central tendency of the

target variable, resulting in a higher variance explained by the first principal component. On the other

hand, sPCA-slope and sPCA-tstat consider the slope coefficients and t-statistics, respectively, in their

approaches. These methods emphasize the relationship between the predictors and the mean of the target
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variable. They may not fully capture the details of the conditional distribution of the target variable,

resulting in a lower variance explained by the first principal component compared to sPCA-quantile.

4.2.2 In-Sample Forecasting

In this section, we assess the in-sample forecasting performance of the PCA, sPCA-slope, sPCA-tstat,

and sPCA-quantile methods. We evaluate this performance by comparing the adjusted-R2 of the one-

month-ahead forecasts of inflation (Figure 1a), IP (Figure 1b), unemployment (Figure 1c) and stock

market returns (Figure 1d), using the PCA and sPCA techniques. To create the forecasts, we consider a

forecasting model with a number of factors ranging from 1 to 15.

(a) Inflation (b) Industrial Production

(c) Unemployment Rate (d) Stock Market Returns

Figure 1: In-sample forecasting performance of PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile

To evaluate the forecasting performance, we include previous observations of the target variable as

lagged values in our analysis. The selection of the lag structure is based on the Bayesian Information

Criterion (BIC). The BIC is a common statistical criterion for model selection. We limit the inclusion of

lagged values to a maximum of three. The model for one-month-ahead forecasts is given by

ỹt+1 = γ̂ + π̂1z1,t + ...+ π̂kzk,t + ϕ̂1yt + ...+ ϕ̂pyt+1−p,

where k denotes the number of principal components, p the number of lagged values (pmax = 3), γ̂ the
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constant, zi,t the i-th principal component and π̂i its parameter, and ϕ̂j the parameter of the j-th lagged

variable. We use OLS to derive the parameters for this model.

Figure 1a demonstrates the performance of the methods for predicting inflation. It is observed that the

sPCA methods consistently outperform the PCA method, as indicated by the lower R2 values obtained for

(almost) all factors. This suggest that the sPCA techniques exhibits greater in-sample predictive power

for inflation compared to other methods. Increasing the number of factors leads to improved forecast

accuracy for the sPCA-tstat approach. This means this approach has the most in-sample predictive

power for forecasting inflation. The sPCA-slope and sPCA-quantile techniques display similar values of

R2. The performance of the methods for predicting industrial production (IP) is shown in Figure 1b. It

is observed that all three sPCA techniques outperform PCA in terms of R2 values when considering the

first 9 principal components. This indicates that the sPCA techniques demonstrate a better in-sample

predictive capability for IP. Figure 1c shows the in sample R2 for the unemployment rate. The sPCA-

slope and sPCA-tstat methods exhibit higher values compared to the sPCA-quantile and PCA methods.

Among these, the sPCA-stat method exhibits the highest values for R2. The sPCA-quantile method shows

substantially lower performance, indicating its limited suitability for forecasting the unemployment rate.

This observation suggests that using the median regression relationship of the unemployment rate and

the predictors leads to a reduced effectiveness of the sPCA-quantile method. Figure 1d illustrates the R2

values for the stock market return. The results in this figure indicate that the three sPCA techniques

consistently outperform PCA, with sPCA-tstat and sPCA-slope demonstrating the highest values for all

principal components.

Overall, the findings suggest that using the sPCA techniques, particularly sPCA-tstat and sPCA-

slope, can enhance the in-sample predictive capability. The sPCA-tstat method demonstrates the highest

performance among the sPCA techniques. This can be attributed to the fact that this method considers

the statistical significance of the predictors by using t-statistic as a scalar. This means that it not

only captures the relationships between variables but also assesses the significance and reliability of

these relationships. By giving more weight to statistically significant predictors, the sPCA-tstat method

can effectively focus on the most informative variables, which leads to improved in-sample predictive

performance.

4.3 Out-Of-Sample Results

This section assesses the out-of-sample forecasting performance of the PCA, sPCA-slope, sPCA-tstat, and

sPCA-quantile methods. We compare the techniques by evaluating the out-of-sample R2, a measurement

of how well a model predicts new data. It indicates the proportion of variation in the target variable that

the model can explain for this new data. A high out-of-sample R2 means good predictive performance,

while a low value suggests poor prediction ability. The the out-of-sample R2 is calculated as follows:

R2
OS = 1−

∑T
t=1(yt−ỹt)

2∑T
t=1(yt−ȳ)2

, where ȳ indicates the mean of the target variable, ỹt the forecasts, yt the actual

values at t.
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(a) Inflation (b) Industrial Production

(c) Unemployment Rate (d) Stock Market Returns

Figure 2: Out-of-sample forecasting performance of PCA, sPCA-slope, sPCA-tstat, and sPCA-quantile

The factors and predictive regressions are recursively estimated with an expanding window scheme.

The estimation window ranges from January 1960 to December 1994 (420 observations). The out-of-

sample evaluation period is from January 1995 to December 2019 (300 observations).

To create the forecasts, we consider a forecasting model with a number of factors ranging from 1 to 6.

In the model, we incorporate lagged values of the target variable by selecting the number of lags based

on the Bayesian information criterion (BIC). Therefore, we use the same prediction model as described

in Section 4.2.2 for in-sample forecasting. This approach ensures the consistency of our prediction model

for out-of-sample forecasting.

Figure 2a demonstrates that the three sPCA techniques generate higher R2
OS values for forecasting

inflation, with the exception of using 2 principal components, where PCA outperforms the three sPCA

techniques. On average, the sPCA-tstat approach exhibits a better performance compared to both the

sPCA-slope and sPCA-quantile approaches. Figure 2b illustrates the R2
OS for predicting IP. Once again,

the sPCA techniques exhibit higher values compared to PCA. Notably, the sPCA-tstat approach has the

highest out-of-sample prediction performance, when forecasting with multiple principal compontents. The

out-of-sample forecast performance for unemployment rate is shown in Figure 1c. We obtain the highest

performance of the sPCA-tstat and sPCA-slope techniques. The sPCA-quantile approach displays the

lowest forecast accuracy for all principal components. A similar result is shown in 1c, where this techniques

also exhibits the lowest R2.
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Figure 1d displays the R2
OS for stock market returns. The findings in this figure suggest that, for the

initial three principal components, sPCA-slope and sPCA-tstat exhibit greater out-of-sample forecasting

performance compared to PCA and sPCA-quantile. However, when using more than three principal

components, the sPCA-quantile and PCA demonstrate higher out-of-sample performance.

Overall, the results obtained from the analysis using PCA, sPCA-slope, sPCA-tstat, and sPCA-

quantile techniques reveal interesting findings regarding their out-of-sample forecasting performance. We

can conclude that the three sPCA techniques provide a better out-of-sample forecasting accuracy than

PCA. This highlights the effectiveness of the sPCA methods in generating more accurate and reliable

forecasts. In general, the sPCA-tstat method generally demonstrates superior out-of-sample performance

compared to other sPCA techniques, which is similar in the in-sample forecasting case in Section 4.2.2.

This can be attributed to its consideration of statistical significance, using the t-statistic as a scalar,

which leads to improved out-of-sample forecasting. The superior out-of-sample forecasting performance

of the sPCA-stat technique is further substantiated in our simulation study conducted in Section 3.1.

These findings demonstrate that, in a standard scenario, the sPCA-technique exhibits the highest level

of forecast accuracy.

5 Conclusion

The objective of this research is to investigate the accuracy of three different scaled PCA techniques:

sPCA-slope, sPCA-tstat, and sPCA-quantile. In a simulation and an empirical study, we evaluate and

compare the forecasts of the distinct techniques in various circumstances. The simulation study sim-

ulates three different scenarios. A first scenario where standard errors are generated, a second which

incorporates larger errors and a third, where extreme outliers are added to the dataset. The results of

this study give insights in the behaviour and robustness of the distinct techniques in different scenarios.

In the empirical study, we perform the sPCA techniques on 123 macroeconomic variables to forecast U.S.

inflation, industrial production, unemployment rate and stock market returns. We examine the in-sample

and the out-of-sample performance of the methods.

The findings of these studies indicate that the sPCA-tstat technique proves to have the most predictive

power in a normal situation. This is demonstrated by its superior forecast accuracy in scenario I of the

simulation study, where standard errors are generated. Furthermore, the in-sample and out-of-sample

results of the empirical study substantiate these findings. The results in this study reveal the highest

forecast accuracy of the sPCA-tstat technique.

In contrast, scenario II and III of the simulation study reveal different outcomes of the sPCA-tstat

technique. When larger outliers and/or extreme outliers are introduced, the method becomes significantly

less accurate and exhibits the lowest forecast performance in comparison with the other techniques. This

highlights the non-robustness of the sPCA-tstat technique and the limitations of using the t-statistic as

a scalar. This behavior can be attributed to the characteristics of the t-statistic, which is calculated

by dividing the parameter estimate by its standard deviation. With the introduction of larger errors or

extreme outliers, the variability of the parameter estimates increases, leading to less accurate t-statistic

scalars.

The results from Scenario III of the simulation study reveal interesting findings of the sPCA-quantile

approach. It demonstrates that with the addition of some extreme outliers to the data, the sPCA-quantile

technique exhibits superior forecast accuracy. Specifically, in the case of one extreme outlier, the sPCA-

quantile technique proves to be more robust and outperforms other methods. This can be attributed to

the robust nature of median quantile regression, which is better equipped to handle outliers compared

20



to OLS regression. The use of this method leads to less sensitive scalars which results in an optimal

performance of the sPCA-quantile technique in this scenario.

Among the three techniques, sPCA-slope consistently performs well in the simulation and empirical

study. It has constant results in scenario I of the simulation study and it also shows in scenario II

its robustness to larger errors. Empirically, sPCA-slope demonstrates consistent forecast accuracy in

both in-sample and out-of-sample analyses. This makes the sPCA-slope technique a reliable choice for

forecasting purposes, as it maintains its performance across different circumstances.

Overall, this research highlights the characteristics of three different sPCA techniques: sPCA-slope,

sPCA-stat, and sPCA-quantile. The findings provide valuable insights for practitioners in selecting the

most appropriate method for specific circumstances.

References

D. W. Andrews. Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econo-

metrica: Journal of the Econometric Society, pages 817–858, 1991.

J. B. Bremnes. Probabilistic wind power forecasts using local quantile regression. Wind Energy: An

International Journal for Progress and Applications in Wind Power Conversion Technology, 7(1):47–

54, 2004.

T. E. Clark and M. W. McCracken. Forecasting with small macroeconomic vars in the presence of

instabilities. 2007.

W. P. Gaglianone and L. R. Lima. Constructing density forecasts from quantile regressions. Journal of

Money, Credit and Banking, 44(8):1589–1607, 2012.

M. He, Y. Zhang, D. Wen, and Y. Wang. Forecasting crude oil prices: A scaled pca approach. Energy

Economics, 97:105189, 2021.

D. Huang, F. Jiang, K. Li, G. Tong, and G. Zhou. Scaled pca: A new approach to dimension reduction.

Management Science, 68(3):1678–1695, 2022.

Y. Huang, L. Shen, and H. Liu. Grey relational analysis, principal component analysis and forecasting

of carbon emissions based on long short-term memory in china. Journal of Cleaner Production, 209:

415–423, 2019.

R. Koenker and G. Bassett Jr. Regression quantiles. Econometrica: journal of the Econometric Society,

pages 33–50, 1978.

R. Koenker and K. F. Hallock. Quantile regression. Journal of economic perspectives, 15(4):143–156,

2001.

B. Liu, J. Nowotarski, T. Hong, and R. Weron. Probabilistic load forecasting via quantile regression

averaging on sister forecasts. IEEE Transactions on Smart Grid, 8(2):730–737, 2015.

F. Ma, Y. Guo, J. Chevallier, and D. Huang. Macroeconomic attention, economic policy uncertainty, and

stock volatility predictability. International Review of Financial Analysis, 84:102339, 2022.

L. Ma and L. Pohlman. Return forecasts and optimal portfolio construction: a quantile regression

approach. The European Journal of Finance, 14(5):409–425, 2008.

21



L. Magee and M. R. Veall. Selecting regressors for prediction using press and white t statistics. Journal

of Business & Economic Statistics, 9(1):91–96, 1991.

M. W. McCracken and S. Ng. Fred-md: A monthly database for macroeconomic research. Journal of

Business & Economic Statistics, 34(4):574–589, 2016.

W. K. Newey and K. D. West. A simple, positive semi-definite, heteroskedasticity and autocorrelation-

consistent covariance matrix. 1986.

W. K. Newey and K. D. West. Automatic lag selection in covariance matrix estimation. The Review of

Economic Studies, 61(4):631–653, 1994.

H. A. Nielsen, H. Madsen, and T. S. Nielsen. Using quantile regression to extend an existing wind power

forecasting system with probabilistic forecasts. Wind Energy: An International Journal for Progress

and Applications in Wind Power Conversion Technology, 9(1-2):95–108, 2006.

K. Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh,

and Dublin philosophical magazine and journal of science, 2(11):559–572, 1901.

C. Skittides and W.-G. Früh. Wind forecasting using principal component analysis. Renewable Energy,

69:365–374, 2014.

R. J. Smith. Automatic positive semidefinite hac covariance matrix and gmm estimation. Econometric

Theory, 21(1):158–170, 2005.

J. H. Stock and M. W. Watson. Forecasting using principal components from a large number of predictors.

Journal of the American statistical association, 97(460):1167–1179, 2002.

J. H. Stock and M. W. Watson. Forecasting with many predictors. Handbook of economic forecasting, 1:

515–554, 2006.

M. Taillardat, O. Mestre, M. Zamo, and P. Naveau. Calibrated ensemble forecasts using quantile re-

gression forests and ensemble model output statistics. Monthly Weather Review, 144(6):2375–2393,

2016.

J. Wang, F. Ma, E. Bouri, and J. Zhong. Volatility of clean energy and natural gas, uncertainty indices,

and global economic conditions. Energy Economics, 108:105904, 2022.

22



6 Appendix

6.1 A

Figure 3: Median quantile regression and OLS
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6.2 B

Figure 4: Normal and t-distribution for df=1 and df=3

6.3 C

Table 6.3 provides a list of 123 macroeconomic variables that we obtained from the Federal Reserve

for Economic Research (FRED-MD). For each variable, we include its code (Mnemoic), a description

(Variable Description), and the method used to transform the data to ensure it is stationary (trcode).

This list of variables and their corresponding transformations aligns with the variables used in the study

conducted by (Huang et al., 2022). Let Xi,t and Ẋi,t denote the untransformed and the transformed

predictors, respectively, for predictor i at time t. We apply the following transformations:

1. Ẋi,t = Xi,t

2. Ẋi,t = Xi,t −Xi,t−1

3. Ẋi,t = ∆2Xi,t

4. Ẋi,t = ln(Xi,t)

5. Ẋi,t = ln(Xi,t)− ln(Xi,t−1)

6. Ẋi,t = ∆2ln(Xi,t)

7. Ẋi,t = ∆(
Xi,t

Xi,t−1
)
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Table 6: FRED-MD Macroeconomic Variables List

No Mnemoic Variable Description trcode

1 RPI Real Personal Income 5

2 W875RX1 Real personal income ex transfer receipts 5

3 INDPRO IP Index 5

4 IPFPNSS IP: Final Products and Nonindustrial Supplies 5

5 IPFINAL IP: Final Products (Market Group) 5

6 IPCONGD IP: Consumer Goods 5

7 IPDCONGD IP: Durable Consumer Goods 5

8 IPNCONGD IP: Nondurable Consumer Goods 5

9 IPBUSEQ IP: Business Equipment 5

10 IPMAT IP: Materials 5

11 IPDMAT IP: Durable Materials 5

12 IPNMAT IP: Nondurable Materials 5

13 IPMANSICS IP: Manufacturing (SIC) 5

14 IPB51222S IP: Residential Utilities 5

15 IPFUELS IP: Fuels 5

16 CUMFNS Capacity Utilization: Manufacturing 2

17 HWI Help-Wanted Index for United States 2

18 HWIURATIO Ratio of Help Wanted/No. Unemployed 2

19 CLF16OV Civilian Labor Force 5

20 CE16OV Civilian Employment 5

21 UNRATE Civilian Unemployment Rate 2

22 UEMPMEAN Average Duration of Unemployment (Weeks) 2

23 UEMPLT5 Civilians Unemployed - Less Than 5 Weeks 5

24 UEMP5TO14 Civilians Unemployed for 5-14 Weeks 5

25 UEMP15OV Civilians Unemployed - 15 Weeks & Over 5

26 UEMP15T26 Civilians Unemployed for 15-26 Week 5

27 UEMP27OV Civilians Unemployed for 27 Weeks and Over 5

28 CLAIMSx Initial Claims 5

29 PAYEMS All Employees: Total nonfarm 5

30 USGOOD All Employees: Goods-Producing Industries 5

31 CES1021000001 All Employees: Mining and Logging: Mining 5

32 USCONS All Employees: Construction 5

33 MANEMP All Employees: Manufacturing 5

34 DMANEMP All Employees: Durable goods 5

35 NDMANEMP All Employees: Nondurable goods 5

36 SRVPRD All Employees: Service-Providing Industries 5

37 USTPU All Employees: Trade, Transportation & Utilities 5

38 USWTRADE All Employees: Wholesale Trade 5

39 USTRADE All Employees: Retail Trade 5

40 USFIRE All Employees: Financial Activities 5

41 USGOVT All Employees: Government 5

Continued on next page
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Table 6 – continued from previous page

No Mnemoic Variable Description trcode

42 CES0600000007 Avg Weekly Hours: Goods-Producing 1

43 AWOTMAN Avg Weekly Overtime Hours: Manufacturing 2

44 AWHMAN Avg Weekly Hours: Manufacturing 1

45 CES0600000008 Avg Hourly Earnings: Goods-Producing 6

46 CES2000000008 Avg Hourly Earnings: Construction 6

47 CES3000000008 Avg Hourly Earnings: Manufacturing 6

48 HOUST Housing Starts: Total New Privately Owned 4

49 HOUSTNE Housing Starts, Northeast 4

50 HOUSTMW Housing Starts, Midwest 4

51 HOUSTS Housing Starts, South 4

52 HOUSTW Housing Starts, West 4

53 PERMIT New Private Housing Permits (SAAR) 4

54 PERMITNE New Private Housing Permits, Northeast (SAAR) 4

55 PERMITMW New Private Housing Permits, Midwest (SAAR) 4

56 PERMITS New Private Housing Permits, South (SAAR) 4

57 PERMITW New Private Housing Permits, West (SAAR) 4

58 DPCERA3M086SBEA Real personal consumption expenditures 5

59 CMRMTSPLx Real Manu. and Trade Industries Sales 5

60 RETAILx Retail and Food Services Sales 5

61 AMDMNOx New Orders for Durable Goods 5

62 AMDMUOx Unfilled Orders for Durable Goods 5

63 BUSINVx Total Business Inventories 5

64 ISRATIOx Total Business: Inventories to Sales Ratio 2

65 M1SL M1 Money Stock 6

66 M2SL M2 Money Stock 6

67 M2REAL Real M2 Money Stock 5

68 AMBSL St. Louis Adjusted Monetary Base 6

69 TOTRESNS Total Reserves of Depository Institutions 6

70 NONBORRES Reserves Of Depository Institutions 7

71 BUSLOANS Commercial and Industrial Loans 6

72 REALLN Real Estate Loans at All Commercial Banks 6

73 NONREVSL Total Nonrevolving Credit 6

74 CONSPI Nonrevolving consumer credit to Personal Income 2

75 MZMSL MZM Money Stock 6

76 DTCOLNVHFNM Consumer Motor Vehicle Loans Outstanding 6

77 DTCTHFNM Total Consumer Loans and Leases Outstanding 6

78 INVEST Securities in Bank Credit at All Commercial Banks 6

79 FEDFUNDS Effective Federal Funds Rate 2

80 CP3Mx 3-Month AA Financial Commercial Paper Rate 2

81 TB3MS 3-Month Treasury Bill 2

82 TB6MS 6-Month Treasury Bill 2

83 GS1 1-Year Treasury Rate 2

Continued on next page
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Table 6 – continued from previous page

No Mnemoic Variable Description trcode

84 GS5 5-Year Treasury Rate 2

85 GS10 10-Year Treasury Rate 2

86 AAA Moody’s Seasoned Aaa Corporate Bond Yield 2

87 BAA Moody’s Seasoned Baa Corporate Bond Yield 2

88 COMPAPFFx 3-Month Commercial Paper Minus FEDFUNDS 1

89 TB3SMFFM 3-Month Treasury C Minus FEDFUNDS 1

90 TB6SMFFM 6-Month Treasury C Minus FEDFUNDS 1

91 T1YFFM 1-Year Treasury C Minus FEDFUNDS 1

92 T5YFFM 5-Year Treasury C Minus FEDFUNDS 1

93 T10YFFM 10-Year Treasury C Minus FEDFUNDS 1

94 AAAFFM Moody’s Aaa Corporate Bond Minus FEDFUNDS 1

95 BAAFFM Moody’s Baa Corporate Bond Minus FEDFUNDS 1

96 EXSZUSx Switzerland/U.S. Foreign Exchange Rate 5

97 EXJPUSx Japan/U.S. Foreign Exchange Rate 5

98 EXUSUKx U.S./U.K. Foreign Exchange Rate 5

99 EXCAUSx Canada/U.S. Foreign Exchange Rate 5

100 PPIFGS PPI: Finished Goods 6

101 PPIFCG PPIFCG 6

102 PPIITM PPIITM 6

103 PPICRM PPI: Crude Materials 6

104 OILPRICEx Crude Oil, spliced WTI and Cushing 6

105 PPICMM PPI: Metals and metal products: 6

106 CPIAUCSL CPI: All Items 6

107 CPIAPPSL CPI: Apparel 6

108 CPITRNSL CPI: Transportation 6

109 CPIMEDSL CPI: Medical Care 6

110 CUSR0000SAC CPI: Commodities 6

111 CUUR0000SAD CPI: Durables 6

112 CUSR0000SAS CPI: Services 6

113 CPIULFSL CPI: All Items Less Food 6

114 CUUR0000SA0L2 CPI: All items less shelter 6

115 CUSR0000SA0L5 CPI: All items less medical care 6

116 PCEPI Personal Cons. Expend.: Chain Index 6

117 DDURRG3M086SBEA Personal Cons. Exp: Durable goods 6

118 DNDGRG3M086SBEA Personal Cons. Exp: Nondurable goods 6

119 DSERRG3M086SBEA Personal Cons. Exp: Services 6

120 S&P 500 S&P’s Common Stock Price Index: Composite 5

121 S&P: indust S&P’s Common Stock Price Index: Industrials 5

122 S&P div yield S&P’s Composite Common Stock: Dividend Yield 2

123 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 2
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6.4 Programming Code

This section explains the programming code and the data conducted in this research. The MATLAB code

for simulation study in Section 3 is named SimulationWeak, the code for the in-sample empirical results

in Section 4.2 is named sPCA InSample, and the code for the out-of-sample empirical results in Section

4.3 sPCA OutSample. These codes use a number of functions which are added in the zip-files. The

most important functions are: linear reg and QuantileRegression which compute the slope, t-statistic,

and quantile regression scalars. The files TestRsquared1 and macro nm2 contain the data of the target

variables and the predictors, respectively. Descriptions of the MATLAB codes and the data are as follows:

• SimulationWeak : This code calculates the MSFEs of the PCA, sPCA-slope, sPCA-tstat, and sPCA-

quantile technique for 100 repitions. The first part of the code contains the data generating process

which can be adjusted for scenario I, II, and III. The second and third part of the code contain the

parameter estimation and the creation of forecasts. The last part of the code provides a calculation

of the MSFEs for each technique.

• sPCA InSample: This code calculates the variance explained and the in-sample R2 of the PCA,

sPCA-slope, sPCA-tstat, and sPCA-quantile technique. The number of lags selected for the pre-

diction model is computed by the Select AR lag SIC function. The estimation of the parameters of

the lagged variables is calculated by Estimate AR res. The first part of the code is the derivation

and use of the scalars and the second part of the code calculates the variance explained and the R2

for each principal component, denoted by the arrays out Rsquared and out VarianceExplained.

• sPCA OutSample: This code provides the out-of-sample R2 of the PCA, sPCA-slope, sPCA-tstat,

and sPCA-quantile. This code has the same structure for the calculation of the lagged variables

and scalars as sPCA InSample. The parameters of the forecast model are calculated by the func-

tion Estimate ARDL multi, when nummer of selected lagged variables is greater than zero. The

linear reg function is used when the number of selected lags equals zero. The out-of-sample R2 is

caculated by the function R2oostest.

• TestRsquared1 : This file contains the data of the target variables. The first, second, third, and

fourth column contain the data of inflation, industrial production, unemployment rate, and stock

market returns, respectively.

• macro nm2 : This file contains the data of the 123 macroeconomic variables (predictors). Each

column represents the data of the corresponding variable.
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