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1 Introduction

In today’s digital age, the amount of data generated is growing at an unprecedented rate. From

social media interactions to online transactions and sensor readings, data is being produced

in vast quantities every second. Clustering and dimensionality reduction together provide a

powerful technique that is useful for handling Big Data because it allows us to deal with a rising

challenge: the curse of dimensionality.

The curse of dimensionality (Bellman, 1961) refers to the problem of having high dimension-

ality in the data, which can lead to sparsity and computational inefficiency. In other words, as

the number of features increases, the amount of data needed to accurately represent the data

grows exponentially, which makes it difficult to analyse and cluster.

Dimensionality reduction techniques, such as investigated in this study, can be used to

address this problem by reducing the number of features while preserving the most relevant

information. By reducing the dimensionality of the data, we can make it easier to analyze and

visualize, while also reducing the computational complexity of clustering algorithms.

Furthermore, using dimensionality reduction can help to improve the accuracy and inter-

pretability of clustering results. By reducing the dimensionality of the data and clustering in

the reduced feature space, we can identify clusters that are more compact and separable, which

can lead to better clustering results. Additionally, the reduced feature space can be easier to

interpret, making it easier to identify the underlying patterns and relationships in the data. In

summary, we can achieve faster, more efficient, and more accurate clustering results.

This study builds upon a research by Renjith et al. (2021) which provides a framework for

dimensionality reduction and clustering for handling high-dimensionality data. Renjith et al.

(2021) find that for the data set under consideration, t-SNE outperforms the other investigated

methods on both k-means and agglomerative hierarchical clustering (AGNES).

To further complement this framework, this study investigates adaptive dimension reduction

using linear discriminant analysis and k-means clustering (LDA-Km) (Ding & Li, 2007) and the

clustering and dimensionality method (CDR) with both Reduced k-means (RKM) and Factorial

k-means (FKM) (van de Velden et al., 2019). The methods proposed in the framework by

Renjith et al. (2021) rely on separately applying dimensionality reduction before clustering.

These sequential methods can improve the computational efficiency, but the results deducted

from the dimension reduction process may not be optimal for the clustering process, so that

some researchers believe that the separation of dimension reduction and clustering may result in

worse clustering performance. Intuitively, if clustering is embedded into the process of dimension

reduction, the performance of clustering may be improved. Methods like these try to find the

optimal structure of data in the low-dimensional feature space for clustering. (Long et al., 2021).

Therefore, this study investigates whether LDA-Km and/or CDR would be a good addition

to the framework by Renjith et al. (2021) by comparing them not only to PCA + k-means,

but also to the other methods considered in this framework as t-SNE was found to be the

best-performing method of the current framework under the experimental circumstances. The

research question for this study is: ”How well do joint dimensionality reduction and clustering

methods LDA-Km and CDR perform in dimensionality reduction and clustering compared to
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the methods considered in the framework by Renjith et al. (2021) using the same data set?”

and consequently ”Would LDA-Km and/or CDR be a valuable addition to the framework by

Renjith et al. (2021)?” which is evaluated by also considering data of a different nature.

2 Literature

As mentioned before, this study builds upon a research by Renjith et al. (2021) which provides

a framework for dimensionality reduction and clustering for handling high-dimensionality data.

K-means clustering and AGNES are used as candidate clustering methods and the dimension-

ality reduction techniques evaluated include principal component analysis (PCA), independent

component analysis (ICA), t-distributed stochastic neighbor embedding (t-SNE) and locally lin-

ear embedding (LLE). Renjith et al. (2021) find that for the data set under consideration, t-SNE

outperforms the other investigated methods with both k-means and AGNES.

There are several methods that perform joint clustering and dimensionality reduction, two

of the more-frequently used methods are LDA-Km (Ding & Li, 2007) and CDR (van de Velden

et al., 2019; Vichi et al., 2019) . CDR is based on a model which uses factorial k-means and

reduced k-means and simultaneously uses PCA as dimensionality reduction technique (Vichi et

al., 2019; van de Velden et al., 2019). Both models use k-means as clustering algorithm, yet

they differ in dimensionality reduction technique. Between PCA and linear discriminant analysis

(LDA), it is generally believed that algorithms based on LDA are superior to those based on

PCA (Borade & Adgaonkar, 2011). PCA and LDA are both essentially linear techniques where

objectives can be solved by solving an eigenvalue problem with the corresponding eigenvector

defining the hyperplane of interest (Xanthopoulos et al., 2013). However, PCA can be used to

find a subspace whose basis vectors best represent the original data, while LDA searches for

vectors that best discriminate among classes (rather than those that best describe the data).

Even though regular LDA is used for classification problems and uses target labels, LDA-Km

does not require labels, just as PCA, yet has the same objective. Intuitively, the objective of

LDA seamlessly fits with clustering, together with the belief that LDA algorithms are superior

to PCA (Martinez & Kak, 2001), LDA-Km could possibly provide new insights to the framework

by Renjith et al. (2021). Both LDA-Km and CDR are investigated and compared in this study

to measure both their possible contribution to the framework by Renjith et al. (2021).

Ding & Li (2007) combines LDA and k-means clustering into a framework to ultimately

select the most discriminative subspace. The research uses k-means clustering to generate class

labels and uses LDA to select a subspace. The clustering process is thus integrated with the

subspace selection process and the data are simultaneously clustered and the subspaces selected.

The effectiveness of this method is proven by looking at variants of the method and their

correspondence with earlier approaches and is found to be effective.

Vichi et al. (2019) use a combination of PCA and one of various forms of k-means clustering

simultaneously in order to determine the best possible clustering. The study distinguishes

between k-means, Reduced k-means and Factorial k-means as possible clustering methods, which

might prove useful in finding the highest possible clustering quality. The advantages of the

method is shown by applying it in a simulation study and two empirical example analyses.

However LDA-Km and CDR seem promising in outperforming both k-means and PCA+k-
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means (Ding & Li, 2007) , they are not yet compared to t-SNE. In Renjith et al. (2021),

PCA is found to be outperformed by t-SNE for both k-means clustering and AGNES, therefore

comparing these methods to t-SNE would provide a better insight in the performance power of

LDA-Km and CDR as it provides a higher benchmark for these specific data sets.

3 Data

Initially, as part of the aim of this study is to replicate the study by Renjith et al. (2021), the

same data set is used. This data set is also used for the application of LDA-Km as this provides

possibilities to compare LDA-Km to the methods used in the known framework.

The data set used is an open-source set called the ”Jester data set”. This set contains of 4.1

million observations where each of the observations is an anonymous rating of a joke on a scale

from -10 to 10 which are gathered from April 1999 to May 2003. In total there are 100 jokes

which are rated by 73,421 readers.

The data pre-processing and in particular the missing data handling is not mentioned in the

paper. What is mentioned, is that a sample of 5000 is used for computing the clusters, but

the selection process of this sample is not stated. Chances are that the 5000 points selected do

not contain missing values and do not need further processing, however this is not certain. For

this study, the data containing missing values is removed and out of the remaining observations,

5000 points are selected at random, using a set seed.

Furthermore, next to the ratings to the 100 jokes, the data set contains an additional column

which states the amount of jokes that that specific user has rated. Following the procedure

executed by Renjith et al. (2021), this column is removed.

Renjith et al. (2021) state in their conclusion that the nature of the data set has a strong

influence on the performance of the clustering and dimensionality reduction algorithms. There-

fore after completing the replication and evaluation of the performance of LDA-Km and CDR

on this data, the same process is be repeated on a data set with a different nature, to further

elaborate on the strength of the framework.

The data set chosen to further show the strength of the framework, is a data set concerning

air line customer satisfaction. This data set consists of a mix of categorical and continuous

data, rather than only continuous data. This dataset is a collection of 103904 responses to a

survey regarding the satisfaction of that specific customer. The customer is asked to provide

some personal information, for example their gender and their flying class, and is asked to rate

a selection of aspects regarding their experience with the airline. The ratings range from 0 to

5 where 1 indicates the worst rating, 5 the highest and 0 is filled in whenever the service is not

applicable to said interviewee. Alongside these observations, several flight-related information

is granted. Specifics on the data set can be found in Appendix A.

The data preprocessing has been conducted in the same manner as used for the Jester data

set. First, the observations containing missing values are removed, after which 5000 random data
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points are selected. As not all dimensionality reduction methods support non-numerical data,

the categorical attributes are mapped into numbers and as t-SNE requires distinct data points,

non-distinct observations are removed. More thorough elaboration on the data preprocessing is

provided in Appendix B.

In order to provide a more complete insight into the effectiveness of the used models, two

data sets having a different nature are used. The Jester data set used in Renjith et al. (2021)

contains solely continuous data, whereas the Airline Customer Satisfaction data set also includes

categorical data. The Clustrd package differentiates between categorical data and continuous

data and is therefore able to handle non-numeric data. Furthermore, LLE, t-SNE and CDR can

deal with non-numeric data, yet do not have a specified method for categorical data. However,

both PCA and ICA are unable to handle non-numeric data, therefore the categorical data is

mapped into numbers. A full insight into the chosen mapping can be found in Appendix B.

4 Methodology

In this section, all methods that are used in conducting this study are discussed. Starting off

with four methods that are solely used for dimensionality reduction in Section 4.1, followed by

k-means clustering and agglomerative hierarchical clustering (AGNES) in Section 4.2 (Renjith et

al., 2021). Furthermore the methods for performing joint dimensionality reduction and clustering

are mentioned in Section 4.3. In order to measure the performance of all methods stated, internal

cluster validation criteria are selected which are illustrated in Section 4.4.

4.1 Dimensionality Reduction

In order to handle increasing quantity of data and to improve clustering results, several dimen-

sionality reduction techniques are used as a data processing stage before clustering the data. This

study compares PCA, ICA, LLE and t-SNE with two joint dimensionality reduction techniques

(CDR and LDA-Km).

4.1.1 Principal Component Analysis

PCA is a feature projection approach for dimensionality reduction, and it extracts a new set

of attributes called principal components as linear combination of original attributes. In PCA,

the principal components are populated with the first new attribute explains the maximum

variation. The second new attribute attempts to explain the remaining variation and so on.

Typically, it is observed that more than 60% of the variation in a data set is explained by initial

four principal components in PCA. The algorithm for determining the principal components is

stated below.
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Algorithm: Principal Component Analysis (Levada, 2021)

Step 1: Compute the sample mean and the sample covariance matrix by µx = 1
n

∑n
i=1 xi

Σx = 1
n−1

∑n
i=1(xi − µx)(xi − µx)

T

Step 2: Compute the eigenvalues and eigenvectors of Σx

Step 3: Define the transformation matrix T = [w1, w2, ..., wd with
the d eigenvectors associated to the d largest eigenvalues.

Step 4: Project the data X into the PCA subspace:
yi = Txi for i = 1, 2, ...n

Step 5: Return Y

In order to determine the optimal amount of components to include in the dimensionality

reduction, the explained variance is used. Once the PCA is conducted, the variance per principal

component is known and the percentage of total variance of each component can be computed

as follows:

EVi =
var(PCi)∑
i(var(PCi))

× 100 (1)

where var(PCi) denotes the variance of principal component i.

4.1.2 Independent Component Analysis

ICA provides a way to find a linear coordinate system such that the resulting signals are as

statistically independent from each other as possible. In contrast to correlation-based trans-

formations such as PCA, ICA not only decorrelates the signals (2nd-order statistics) but also

reduces higher-order statistical dependencies. The full algorithm on the computation of the used

ICA method is stated below.

Algorithm: Independent Component Analysis (fastICA) (Shlens, 2014)

Step 1: Subtract off the mean of the data in each dimension.
Step 2: Whiten the data by decorrelating using the eigenvectors of the covariance of

the data (E) and normalize the data using the eigenvalues (D).

xw = (D− 1
2ET )x

where xw is the whitened version of observed data x.
Step 3: Identify final rotation matrix that optimizes statistical independence by solving

V = argminV
∑

iH[(V xw)i]
where V is a rotation matrix and H[(V xw)i] is the entropy of (V xw)i.

As the ICA Algorithm includes the PCA steps, the optimal amount of components of ICA is

the same as determined for PCA. Therefore for the determination of the number of components

for ICA, Equation 1 is used.

4.1.3 Locally Linear Embedding

Locally Linear Embedding (LLE) is a nonlinear dimensionality reduction technique that aims to

find a lower-dimensional representation of the data while maintaining the local pairwise relation-

ships between neighboring data points. If we denote the original dataset as X = [x1, x2, ..., xN ] ∈
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RD×N with xi ∈ RD the i’th sample for i = 1, 2, ..., N where N is the size of the sample. LLE

maps X into Y = [y1, y2, ..., yN ] ∈ Rd×N , where d is far smaller than D. Mathematically, LLE

involves the following steps:

Algorithm: Locally Linear Embedding (Roweis & Saul, 2000)

Step 1 Find the neighbors for each point. For a point xi, X
i = [x1i , x

2
i , ..., x

k
i ] ∈ RD×k

are the neighbors of xi where k is the number of neighbors.
Pairwise similarity in the data is calculated via Euclidean distance and
the k most similar points to xi are chosen as neighbors.
d(xi, µj) = ∥xi − µj∥2.

Step 2: Reconstruct with linear weights. The weights Wi = [wi1, wi2, ..., wik]
′ ∈ Rk×1

are calculated using the following least squares problem.

min ϵ(W ) =
∑

i|X⃗i −
∑

j WijX⃗j |2

Step 3: Map each observation X⃗i into lower-dimensional vector Y⃗i by choosing coor-

dinates Y⃗i to minimize the cost function Φ(Y ) =
∑

i|Y⃗i −
∑

j Wij Y⃗j |2.

The value of k in k-nearest-neighbors is determined according to the method proposed by

Kayo (2006), where the error term ϵ(W ) is computed for multiple values of k. The value of k

which minimizes the error term, is chosen as optimal value of k.

4.1.4 t-Distributed Stochastic Neighbor Embedding

t-SNE is a non-linear dimensionality reduction technique which uses neighbors to find similarity

among the observations. Data points are considered neighbors if their distance is less than a

certain threshold value. It is a stochastic method which uses the t-distribution as probability

distribution function, which tends to a normal distribution when using a large sample size. The

conditional probability is given by:

pj|i =
exp(−∥xi − xj∥2/2σ2

i∑
k ̸=i exp(−∥xi − xk∥2/2σ2

i

(2)

where σ2
i denotes the squared standard deviation, which is also known as the variance. Math-

ematically, t-SNE involves the following steps:

where the joint probabilities used in the algorithm are computed as follows:

qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yi − yl∥2)−1

(3)

and the formula for determining the gradient is:

δC

δyi
= 4

∑
j

(pij − qij(yi − yj)(1 + ∥yi − yj∥2)−1 (4)

6



Algorithm: t-Distributed Stochastic Neighbor Embedding
(van der Maaten & Hinton, 2008)

Data: data set X = x1, x2, ..., xn
cost function parameter perplexity, Perp
optimization parameters: number of iterations T, learning rate η
, momentum α(t)

Result low-dimensional data representation Y (0) = y1, y2, ..., yn.
Step 1: compute pairwise affinities pj|i with perplexity Perp (using Equation 2)

Step 2: set pij =
pj|i+pi|j

2n

Step 3: sample initial solution Y (0) = y1, y2, ..., yn from N(0, 10−4I)
for t=1 to T do

Step 4: compute low-dimensional affinities qij (using Equation 3)

Step 5: compute gradient δC
δY (using Equation 4)

Step 6: set Y (t) = Y (t−1) + η δC
δY + α(t)(Y (t−1) − Y (t−2))

In the framework by Renjith et al. (2021), t-SNE is chosen as a dimensionality reduction

technique before clustering, therefore it is repeated in this study. Originally, t-SNE is a visualiz-

ation tool that forms a low-dimensional space to show a 2D representation. The t-SNE method

is not designed to make an embedding based on the clusters in the real data. Therefore, one may

find t-SNE to produce high-quality clusters by chance, but might also encounter that existing

clusters in the data are disregarded. In this study, the perplexity parameter is tuned such that

the values of the internal cluster validation indices were indicating good results, yet this method

does require iterative tuning and is therefore not easily applicable to other cases.

4.2 Clustering

In this research, popular clustering techniques k-means and Agglomerative Nesting (AGNES)

are used to form clusters based on the original data and the transformed data produced by the

dimensionality reduction techniques. Having determined the clusters for both the original data

and the transformed data, enables to verify the effectiveness of data dimensionality. This is

verified using multiple criteria, which are further enlightened in Section 4.4.

In order to obtain the optimal amount of clusters to use in this research, the R package

NbClust was consulted (Charrad et al., 2014). This package uses 26 different indices which all

determine the optimal amount of clusters given the data set, based on their individual conditions.

After this, the number of clusters which is returned by most of the indices is chosen to further

use in this study.

4.2.1 k-means Clustering

k-means is an unsupervised clustering method that aims to partition data into k clusters such

data points in the same cluster are close and data points in the different clusters are as far

away as possible. Formally, the k-means algorithm aims to minimize the within-cluster sum of

squares (WCSS), which is defined as the sum of squared distance between each data point and
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is denoted as

argmin
S

k∑
i=1

∑
x∈Si

∥x− µi∥
2 = argmin

S

k∑
i=1

|Si|VarSi (5)

where S denotes the set of points in cluster i and µ denotes the centroid of the corresponding

cluster.

Algorithm: k-means Clustering (Hartigan & Wong, 1979)

Step 1: Randomly initialize K centroids, denoted as µ1, µ2, ..., µk.
Step 2: For each data point xi, calculate the Euclidean distance to each centroid:

d(xi, µj) = ∥xi − µj∥2.
Step 3: Assign each data point to the nearest centroid, minimizing the distance:

ci = argminj(d(xi, µj)).
Step 4: Recalculate the centroids as the mean of the data points assigned to each cluster:

µj = (1/|Cj |)
∑T

i=1(xi) if i ∈ Cj , where |Cj | represents the number of data points
assigned to cluster j.

Step 5: Repeat Steps 2,3 and 4 until convergence, when the centroids do not change
significantly .

Given the nature of the algorithm, k-means clustering can converge to local optima, so

running the algorithm multiple times with different initializations is often recommended to

improve the results.

4.2.2 Agglomerative Hierarchical Clustering

Agglomerative nesting (AGNES) is a hierarchical clustering algorithm that aims to group similar

objects or data points together based on their pairwise similarity or dissimilarity. The algorithm

uses a bottom up approach, which means that it starts with each data point as an individual

cluster and iteratively merges clusters until a desired stopping condition is met. This results in

a nested hierarchy of clusters that can be represented as a dendrogram. This full dendogram

is later cut such that it encapsulates the determined optimal amount of clusters. A pseudo

algorithm for AGNES is provided below.

Algorithm: Agglomerative Nesting (Ramos Emmendorfer & de Paula Canuto, 2021)

Step 1: for a set X = [x1, x2, ..., xn with n objects. Create set of partitions
Π = [π0, π1, ..., πn−1 where each observation has its own cluster.

Step 2: Merge 2 clusters P and Q for which the linkage L(P, Q) is lowest among all
pairs in πk−1.

Step 3: Replace P,Q with R, leaving πk−1 ← πk.
Step 4: Repeat until the number of clusters in πk is 1.

4.3 Joint Dimensionality Reduction and Clustering

In this subsection, the dimensionality reduction and clustering methods that are tested to extend

the framework by Renjith et al. (2021) are introduced. Starting with the CDR method in Section

4.3.1, which is split into Reduced k-means and Factorial k-means, followed by LDA-Km in Section

4.3.2.
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4.3.1 Clustering and Dimensionality Reduction

CDR is a method that proposes to combine the PCA loss function and the FKM loss function.

In this combination, one can tweak the value of α to determine the importance of each of the

two loss functions. The proposed loss function by Vichi et al. (2019) is as follows:

f(F,A,U, Y ) = α∥X − FA′∥2 + (1− α)∥XAA′ − UY A′∥2 (6)

where X is the data matrix, F denotes an I ×Q matrix of component scores, and it is used that

∥XAAT − UY AT ∥2 = ∥XA − UY ∥2. A is a J × Q loading matrix for Q dimensions with the

property that ATA = I. U indicates an I ×K binary matrix indicating the memberships of the

objects to K clusters and Y is the K ×Q cluster centroids matrix.

Altering the value of α provides different loss functions, which has the specific characteristics:

• Setting α = 0 gives the FKM loss function.

• Setting α = 0.5 gives the RKM loss function.

• Setting α = 1 gives the regular PCA loss function.

In this study, both FKM and RKM are investigated and compared.

Based on the type of data used in the experiment, CDR offers differentiated methods for

categorical data and continuous data. Out of all investigated methods, CDR is the only method

that differentiates between different natures of data (adhering to the framework by Renjith et

al. (2021)). To provide a more complete research on the effectiveness of the investigated models,

in this study an additional data set is considered containing categorical data. As a result, both

CDR methods (”Cluspca” and ”Clusmca”) (van de Velden et al., 2019) are incorporated in this

study.

4.3.2 Linear Discriminant Analysis and k-means Clustering

Regular LDA is a method used for conducting supervised classification, meaning that each obser-

vation requires a label. This label serves as a value for a specific target and is used as additional

information for the dimensionality reduction next to the other features. The combination of

LDA and k-means is an unsupervised method and therefore labels are no requirement and are

not used in the dimensionality reduction and clustering.

LDA and k-means both optimize the same objective function. They both minimize the

within-class scatter matrix and maximize the between-class scatter matrix. In LDA, we use the

total scatter, between-class scatter and within-class scatter matrices, respectively St, Sb and Sw:

St =
n∑

i=1

xix
T
i (7)

Sb =
∑
k

nkmkm
T
k (8)
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Sw =
∑
k

∑
i∈Ck

(xi −mk)(xi −mk)
T (9)

where St = Sw + Sb. The objective function of k-means clustering is

JK = trSw = tr(St − Sb) (10)

and trSw is used to indicate the trace of Sw.

The main goal of this framework is to optimize the LDA objective function, which has the

same aim as the k-means objective function. The LDA objective function is

max
U,H

tr
UTSbU

UTSwU
(11)

where U denotes the projectional matrix, also named the LDA directions. The matrix H =

{0, 1}n×K is the cluster indicator: Hik = 1 if xi belongs to the k-th cluster, and Hik = 0 other-

wise. The U matrix consist of the LDA directions.

Algorithm: Adaptive LDA-guided k-means Clustering (Ding & Li, 2007)

Step 1: Set K = number of clusters, Set d = K − 1 the dimension of the subspace.
Step 2: Compute PCA on X to obtain initial U.
Step 3: Do step LDA-Km(1) to obtain H, see Equation 12.
Step 4: Do step LDA-Km(2) to obtain U.
Step 5: Go to step 3 until convergence.

where LDA-Km(1) involves solving for H while fixing U in:

max
h

trUTSbU

trUTSwU
(12)

which is exact same as the LDA objective function stated in Equation 11.

LDA-Km(2) refers to solving for U while fixing H. U is given by the standard LDA procedure.

What the algorithms essentially does, is initialize U and then alternately perform k-means

and LDA in the subspace until convergence has been reached.

4.4 Internal Cluster Validation

In order to evaluate the performance of the dimensionality reduction and clustering, several

indices are selected. Each of the indices has their own criteria and therefore the four indices

together provide a representative overview of the performance. The aim and the formula for

each of the indices are stated below.

4.4.1 Silhouette Index

The silhouette value is a measure of how similar an object is to its own cluster compared to

other clusters. The calculation of the index is stated in Equations 13, 14 and 15. The silhouette

ranges from − 1 to + 1, where a high value indicates that the object is well matched to its own
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cluster and poorly matched to neighboring clusters. If most objects have a high value, then the

clustering configuration is appropriate. If many points have a low or negative value, then the

clustering configuration may have too many or too few clusters.

a(i) =
1

|CI | − 1

∑
j∈CI ,i ̸=j

d(i, j) (13)

b(i) = min
J ̸=I

1

|CJ |
∑
j∈CJ

d(i, j) (14)

I =
b(i)− a(i)

max{a(i), b(i)}
(15)

4.4.2 Dunn Index

The Dunn index is another measure of clustering quality. For this index, higher values indicate

that the within-cluster variance is low and the between-cluster variance is high. Therefore higher

values mean better clustering. The formula in stated below in Equation 16

I = min
1≤i≤c

{ min
1≤j≤c,j ̸=i

{ δ(Ci, Cj)

max1≤k≤c{∆(Ck)}
}} (16)

where c is the number of defined clusters and δ(Ci, Cj) denotes the intercluster distance between

cluster i and j.

4.4.3 Calinski–Harabasz Index

Same as the other indices, the Calinski-Harabasz measure of clustering validation. Here the inter-

cluster quality is estimated based on the distances from the data points in a cluster to its cluster

centroid and between-cluster quality is determined by the distance of the cluster centroids from

the global centroid. Higher values of this index stand for higher clustering quality. To calculate

the value, Equation 17 is used

I =

[∑K
k=1 nk ∥ck − c∥2

K − 1

]
/

[∑K
k=1

∑nk
i=1 ∥xi − ck∥2

N −K

]
(17)

for which nk and ck respectively indicate the number of data points and the centroid of the k’th

cluster. In the formula, c is the notation used for indicating the global centroid. K denotes the

number of clusters on dataset X = [x1, x2, ..., xN , given this formulation N denotes the number

of data points.

4.4.4 Davies–Bouldin Index

As all indices, the Davies-Bouldin index is a metric for evaluating the formed clusters. Opposed

to the three other indices, lower Davies-Bouldin values indicate more appropriate clustering.

The formula is as follows:

I =
1

k

∑
i = 1k max

i ̸=j
{∆(Xi) + ∆(Xj)

δ(Xi, Xj)
} (18)
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here, ∆(Xi) denotes the within cluster scatter of cluster i. δ(Xi, Xj) accounts for the separation

between the i’th and the j’th cluster.

5 Results

This Section provides an overview of all findings in this research. Starting off with the determin-

ation of the optimal amount of clusters in Section 5.1, followed by insights regarding the formed

clusters with and without dimensionality reduction in Section 5.2. Concluded by an evaluation

of the clusters in Section 5.3. In Section 5.4, the same process is repeated yet includes categorical

data.

5.1 Optimal amount of clusters

In order to abide by the experimental analysis of Renjith et al. (2021) as much as possible,

a specific linkage method (Ward squared) was selected to ensure that the optimal amount of

clusters would be determined as being three. The results of each of the evaluated indices is

indicated in Table 1 along with further detailed results shown in Figure 1.

Table 1: Determination of optimal count of clusters
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(a) (b) (c)

Figure 1: Detailed insights into the optimal amount of cluster determination

5.2 Formed clusters

Having determined the optimal amount of clusters being three, the clustering is first executed on

both the data that is not reduced in dimensionality. The two dimensional view of this clustering

is shown on the left in both Figure 2 and Figure 3 in order to make a clear comparison to

the dimensionality reduction with both linear and non-linear methods. Figure 2 depicts the

clustering results of both k-means and AGNES using linear methods PCA and ICA. Figure 3

provides an overview of the clusters formed using non-linear methods LLE and t-SNE.
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Figure 2: Two-dimensional view of clusters formed with linear dimensionality reduction tech-
niques alongside those formed without dimensionality reduction

Figure 3: Two-dimensional view of clusters formed with non-linear dimensionality reduction
techniques alongside those formed without dimensionality reduction

To gain insight into the quality of the clusters shown above, the clusters are evaluated using

four internal evaluation criteria. These are elaborated on in Section 5.3.

5.3 Cluster Evaluation

The performance of the formed clusters after dimensionality reduction is measured by means of

four internal evaluation criteria. The indices used are the Silhouette index (Section 4.4.1), Dunn

index (Section 4.4.2), Calinski-Harabasz index (Section 4.4.3) and the Davies-Bouldin index

(Section 4.4.4. Figure 4 shows the impact of the different dimensionality reduction techniques

for both k-means and AGNES clustering.
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Figure 4: Comparison of PCA, ICA, LLE and t-SNE by means of internal evaluation criteria

For the Silhouette index, a higher value indicates a higher quality of clustering. In this

study, as depicted in Figure 4, t-SNE has the best value for k-means and is therefore the best

performing technique in this case, followed by LLE. As for AGNES, LLE outperforms all other

methods.

Higher values of the Dunn index indicate better clustering. Therefore, PCA and ICA score sig-

nificantly high for agnes, which substantially deviates from the findings by k-means, where PCA

and ICA score relatively low and LLE scores highest. For the Calinski-Harabasz index, higher

values stand for better clustering quality. For both k-means and AGNES, t-SNE outperforms

the other methods. The same counts for Davies-Bouldin, where lower numbers indicate better

clustering, t-SNE outperforms all three other methods for both k-means and AGNES.

When investigating the findings above, it is found that t-SNE is superior to the other models

in most of the cases for this study. To further investigate the contribution of joint dimensionality

reduction and clustering methods (Section 4.3), t-SNE is compared to LDA-Km, CDR-RKM

and CDR-FKM.

Below in Figure 5, the four plots show a two-dimensional overview of the formed clusters.

First plot, Figure 5a, shows dimensionality reduction with t-SNE, the method that is found to be

best performing in this experiment, having investigated the models used in (Renjith et al., 2021).

To possibly further extend and enhance this framework, several joint dimensionality reduction

and clustering methods are considered. In the second plot 5b, one can see the clustering results

formed by the LDA-Km method. Plot three 5c gives a two-dimensional view of clustering with

CDR-RKM. Lastly, Figure 5d shows the clustering formed by the CDR-FKM method.
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(a) (b)

(c) (d)

Figure 5: Two-dimensional view of clusters formed with t-SNE, LDA-Km, CDR-RKM and
CDR-FKM

Having computed the dimensionality reduction and clustering, the different methods are

evaluated using internal cluster validation indices, as explained in Section 4.4. The values of

these indices are summarized in the bar plots below in Figure 6.

Figure 6: Comparison of t-SNE to LDA-Km and CDR by means of internal evaluation criteria

The Silhouette index is highest for the best clustering quality. Both CDR-RKM and t-SNE
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score higher than the other two methods, yet do not differ much. For the Dunn index, higher

values mean better formed clusters and it is visible in Figure 6 that LDA-Km outperforms all

other methods. The Calinski-Harabasz index has a higher score whenever the performance of

the clustering is better. One can see that t-SNE scores best for this index, followed by CDR-

RKM. For Davies-Bouldin index, lower values indicate better clustering. Here LDA-Km is

the best performing dimensionality reduction and clustering method, closely followed by CDR-

FKM. One can conclude from explanation above and as depicted in Figure 6, best performing

dimensionality reduction methods vary for the different indices and there is not one uniform

best method given the results of the indices.

5.4 Considering categorical and continuous data

Since Renjith et al. (2021) conclude that the nature of the data highly impacts the effectiveness

of the methods, the process performed on the Jester data set is repeated using a data set which

has a different nature, namely the Airline Customer Satisfaction data which contains categorical

data.

Figure 7 provides a two-dimensional overview of the clusters formed by both k-means and

AGNES without dimensionality reduction and with applying the methods PCA and ICA before

clustering. The same is done for LLE and t-SNE, which is shown in Figure 8. As can be seen

in this Figure, the optimal amount of clusters determined is 5. This is computed by NbClust

which uses the Ward Squared method to calculate 26 different indices, of which 5 determined 5

to be the optimal amount of clusters. The Ward Squared method is chosen following the study

by Renjith et al. (2021) as explained in Section 5.1.

Figure 7: Two-dimensional view of clusters formed with linear dimensionality reduction tech-
niques alongside those formed without dimensionality reduction
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Figure 8: Two-dimensional view of clusters formed with non-linear dimensionality reduction
techniques alongside those formed without dimensionality reduction

As can be seen in Figures 7 and 8, PCA is not designed to handle categorical data, this

method does not perform optimally. There are alternatives for performing PCA on categorical

data, one of which is CATPCA by Linting & van der Kooij (2012), which is specifically designed

for dealing with non-numeric data. As the framework by Renjith et al. (2021) is considered

as reference throughout this paper, the choice is made to compare the models included in this

framework, and to therefore use regular PCA instead of any possibly better alternative.

Having performed the dimensionality reduction and clustering, the formed clusters are evalu-

ated using internal cluster validation indices, as explained in Section 4.4. The values for all

dimensionality reduction methods for both k-means and AGNES are shown in the plots below.

Figure 9: Comparison of PCA, ICA, LLE and t-SNE by means of internal evaluation criteria
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As fully elaborated on in Section 4.4, for the Silhouette index, Dunn index and Calinski-

Harabasz index, higher values indicate better quality of clustering. The Davies-Bouldin index

value is lower whenever the clusters are better formed. As can be deducted from Figure 9, for

the Silhouette index, t-SNE outperformes the other methods when considering k-means. For

AGNES, LLE outperforms PCA, ICA and t-SNE. The values of the Dunn index show that both

PCA and ICA are the best performing methods. The Calinski-Harabasz index values indicate

that t-SNE is the method that appears to have the best clustering quality. For both k-means and

AGNES, t-SNE has the lowest Davies-Bouldin index value and is therefore the best performing

model according to this index.

Although not completely convincing, t-SNE is indicated as being the best dimensionality

reduction method by most of the criteria compared to the other methods. Therefore t-SNE will

be the method that is compared to the joint dimensionality reduction and clustering methods

investigated to possibly enhance the framework by Renjith et al. (2021).

The comparison between t-SNE and joint dimensionality reduction and clustering methods

LDA-Km, CDR-RKM and CDR-FKM are showcased in Figure 10. In this Figure, the two-

dimensional view of the formed clusters is shown for all four of the models.

(a) (b)

(c) (d)

Figure 10: Two-dimensional view of clusters formed with t-SNE, LDA-Km, CDR-RKM and
CDR-FKM

What stands out in 8, is that the two-dimensional plots of the CDR-RKM and the CDR-

FKM are almost identical, except flipped. This indicates that the PCA part of Equation 6 is not

much represented and the k-means part is of most importance. As a result, the data is robust

to most variations in the value of α. After having computed the dimensionality reduction and
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clustering, the results are evaluated using the internal validation indices discussed in Section

4.4.

Figure 11: Comparison of t-SNE, LDA-Km, CDR-RKM and CDR-FKM by means of internal
evaluation criteria

As can be seen in Figure 11, the values for all indices seem to be relatively close. Yet for

the Silhouette index, LDA-Km performs best as this method produces the highest value. Both

CDR-RKM and CDR-FKM outperform t-SNE. Looking at the Dunn index, LDA-Km outper-

forms the other methods, having the highest value. For the Calinksi-Harabasz index, higher

values indicate higher clustering quality, therefore LDA is best performing according to this

index. Clustering methods with lower Davies-Bouldin values, have higher quality. Values for

CDR-FKM, CDR-RKM and LDA-Km do not significantly differ, however appear to be better

than the clustering formed using t-SNE.

One can argue that LDA-Km seems to be the best fit for this specific experiment, with CDR-

FKM and CDR-RKM being good alternatives according to most indices. What stands out is

that t-SNE is outperformed according to all the methods, showing that joint dimensionality

reduction and clustering is a valuable addition to this experiment.

6 Conclusion and Discussion

The primary goal of this study was to investigate the framework proposed by Renjith et al.

(2021) and research whether joint dimensionality reduction and clustering methods LDA-Km

and CDR would be a valuable addition to this framework.

The study uses the Jester data set as well as the Airline Customer Satisfaction data set to

firstly measure the clustering quality of the methods proposed in the framework by Renjith et
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al. (2021). The resulting clusters are evaluated using four internal cluster validation indices,

showing that t-SNE outperforms the other methods in both of the data sets, even though this is

highly dependent on the value of the perplexity parameter. Afterwards, the process is repeated

now comparing t-SNE to the joint dimensionality reduction and clustering methods LDA-Km,

CDR-RKM and CDR-FKM.

What is found in this study, is that there is no uniform best method among these four,

however it can be concluded that t-SNE found to be outperformed by the three joint dimension-

ality reduction and clustering methods for both of the data sets by most of the computed indices.

Renjith et al. (2021) stated in their conclusion that the nature of the data has an impact on

the quality of the different investigated methods, which this research is completely in line with.

However, from the finding above, one can conclude that the joint dimensionality reduction and

clustering methods are proven be a valuable addition to the framework by Renjith et al. (2021),

as for the experiments conducted in this study, the investigated extension methods are proven

to outperform the proposed methods.

For further research, it would be valuable to research the performance of joint dimensional-

ity reduction and clustering methods which incorporate a non-linear dimensionality reduction

method. Since t-SNE is a non-linear method which outperformed all sequential methods and

linear methods PCA and LDA are used in LDA-Km and CDR, a combination of joint dimen-

sionality reduction and clustering with a non-linear method could be performing even better. A

possible method that can be considered is an extension of LDA-Km to a Nonlinear Case, which

is proposed by Ding & Li (2007). This proposition uses kernels to implement the non-linear

transformation as a linear one by mapping to a higher dimensional space.

7 Appendix
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A Characteristics of the Airline Customer Satisfaction data set

The Airline Customer Satisfaction data set consists of several types of input, being:

• Personal questions, such as Age and Gender.
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• Travel-specific questions, such as Type of Travel and Flight Distance (known before the

flight).

• Service-related questions, such as Cleanliness and Ease of Online Booking (evaluated after

the flight).

The data set contains several attributes which are known before flight. These are, ’Age’,

’Gender’, ’Customer Type’ (Loyal / Non-loyal), ’Flight Distance’, ’Type of Travel’ (for personal

or business reasons) and ’Class’ (Eco, Eco Plus or Business). The sample characteristics are

represented in Table 2.

Table 2: Sample Characteristics

Characteristics Statistics

Age Mean (39.38)
Gender Male (49%), Female (51%)
Customer Type Loyal (82%), Disloyal (18%)
Flight Distance Mean (1189.45 miles)
Type of Travel Personal (31%), Business (69%)
Class Eco (45%), Eco Plus (7%), Business (48%)

Above the known pre-flight variables, the data set contains attributes regarding service qual-

ity extracted from a conducted survey. For each of the service related questions, the interviewed

customers are asked to rate a specific service on a scale from one to five, one being the lowest

score and five the highest. If a specific service was not applicable for the customer, a zero was

filled in. The percentages per score and mean of the answers on each topic are provided in Table

3 below.

Table 3: Distribution of Service Attributes (in %) and its Mean

Rating 0 1 2 3 4 5 Mean

Inflight wifi service 2.99 17.17 24.86 24.90 19.05 11.04 2.73
Departure/Arrival time 5.10 14.92 16.55 17.29 24.59 21.56 3.06
convenient
Ease of Online booking 4.32 16.87 23.12 23.53 18.84 13.33 2.76
Gate location 0.00 16.90 18.73 27.50 23.51 13.36 2.98
Food and drink 0.10 12.35 21.16 21.46 23.44 21.47 3.20
Online boarding 2.34 10.29 16.85 20.98 29.61 19.93 3.25
Seat comfort 0.00 11.62 14.34 17.99 30.57 25.48 3.44
Inflight entertainment 0.01 12.01 16.97 18.42 28.32 24.27 3.36
On-board service 0.00 11.43 14.13 21.98 29.71 22.76 3.38
Leg room service 0.45 9.96 18.79 19.34 27.71 23.74 3.35
Baggage handling 0.00 6.97 11.09 19.86 35.98 26.11 3.63
Checkin service 0.00 12.41 12.41 27.38 27.96 19.84 3.30
Inflight service 2.99 17.17 24.86 24.90 19.05 11.04 3.64
Cleanliness 0.01 12.82 15.53 23.65 26.16 21.84 3.29
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B Preprocessing of the Airline Customer Satisfaction data set

• The target label ”Satisfaction Level” is removed from the data.

• The variables ID and number of interviewee are deleted from the data.

• observations including missing values are removed.

• identical observations are removed such that all preserved observations are different.

• Gender: Male = 1 and Female = 2

• Customer Type: Disloyal = 1 and Loyal = 2

• Age: Age≤18 = 1, 18<Age≤24 = 2, 24<Age≤35 = 3, 35<Age≤65 = 4, Age > 65 = 5

• Type of Travel: personal = 1, business = 2

• Class: Eco = 1, Eco Plus = 2, Business = 3

• Flight Distance (miles): Distance≤900 = 1, 900<Distance≤1500 = 2, Distance > 1500 =

3. This categorization is based on the classification from the United Airlines MileagePlus

Program.

• For all categorical variables regarding service, up the value with one to change the range

from 0-5 to 1-6.

• Departure Delay (in min): delay≤15 = 1, 15<delay≤180 = 2, 180<delay≤240 = 3,

delay>240 = 4. This categorization corresponds with EU regulations on compensation

for delayed flights. EU regulation was chosen as there is no US standard for these com-

pensations.

• Arrival Delay (in min): delay≤15 = 1, 15<delay≤180 = 2, 180<delay≤240 = 3, delay>240

= 4. Similar categorization to the departure delay.
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