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Abstract

This study examines the use of covariates in synthetic control methods (SCMs) and their

impact on specification-searching opportunities. By incorporating elements from prior re-

search, the paper analyzes the inclusion and exclusion of covariates in SCMs, considering

their advantages and drawbacks. Based on Monte Carlo simulations, the study recommends

a case-by-case approach for including covariates, particularly in situations with limited pre-

treatment periods or when covariates exhibit multicollinearity or nonlinear effects. The

findings of this paper suggest that when including covariates, carefully selecting a small set

of pretreatment outcome lags, distributed across the pretreatment period, is an advisable

strategy to improve SCM accuracy. The study provides insights into the implications of cov-

ariate inclusion and offers guidance for researchers seeking to address specification-searching

challenges in SCMs, but also for researchers aiming to efficiently use covariates in their

analysis.

1 Introduction

Comparative case studies are a cornerstone for empirical research in order to discover the effect of

a certain treatment or shock. They may be useful in a variety of fields and applications, such as

in public policy to measure the effects of a newly enacted tax law; or in environmental economics

to measure the effects of climate change on economies. In comparative case studies this is done

by estimating the supposed path taken by the aggregate outcome of a unit had the treatment not

taken place at all, and comparing it with the realized path of the aggregate outcome. In the past,

favoured methods to estimate the treatment effects were difference-in-difference, propensity score

matching, or regular regression based methods. A more recent technique, however, suggested

in Abadie and Gardeazabal (2003) and developed in Abadie, Diamond and Hainmueller (2010),

is the synthetic control method (SCM). This method constructs a comparison unit, called a

synthetic control unit (SCU), through a data-driven procedure in which a set of similar units

that were unaffected by the treatment are combined in order to create a synthetic comparison

unit. For example, in their study of the effect of newly instigated tobacco legislation in California,

Abadie et al. (2010) use a combination of 5 states unaffected by the legislation to construct a

SCU.

SCM boasts three important advantages. First, it allows for a high degree of transparency, as

the constructed counterfactual of interest is a combination of weighted control units. This allows

an understanding of which control units contributed to the SCU and hence the similarities and

differences between the synthetic counterfactual and the unit subject to intervention. Secondly,

as the SCM also uses real, observed data of the control units to estimate treatment effects,

there is almost no possibility for extrapolation. This also reduces the abilities for manipulation.

Finally, postintervention outcomes are not required to construct the SC weights, this means that

researchers are able to construct study designs prior to the intervention and will therefore not

be subject to potential biases induced by better findings.

Despite these advantages, Ferman, Pinto and Possebom (2020) highlight a major caveat of

the SCM, namely, the lack of consensus on the choice of predictor variables and covariates used

to establish the synthetic control weights. Without clear standard guidelines on which sets of

predictor variables and covariates to use, a researcher can choose specifications that construct
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SCUs in such a way that their results become “statistically significant” despite there being

no real effect. Specifications can include both pre-treatment outcomes, linear combinations of

pre-treatment outcomes, and covariates. In their paper, Ferman et al. (2020) focus especially

on the variations in specifications in terms of their pre-treatment outcomes and pay relatively

little attention to the role of covariates. Ultimately, Ferman et al. (2020) recommend using a

specification in which all pre-treatment outcome values are used to assign weights, and only

using covariates when there is ‘a strong prior belief that it is crucial to balance on a specific set

of covariates’. Botosaru and Ferman (2019) affirm that an approximate balance on covariates

is not always necessary if there is a perfect balance on pre-treatment outcomes, and that in

certain cases it may be advantageous not to include them. However, they do emphasize the

importance of covariates in being able to reduce biases and the amount of assumptions needed.

Additionally, the work of Kaul, Klößner, Pfeifer and Schieler (2022) strongly suggests covariates

with predictive power should be matched too and they find that the exclusion of covariates can

dramatically influence results in certain cases.

This paper therefore initially replicates the results of Ferman et al. (2020) and their discussion

on the opportunities for specification-searching within SCMs. Afterwards, at the hand of the

papers of Kaul et al. (2022) and Botosaru and Ferman (2019), as well as the Monte Carlo

simulations of Ferman et al. (2020), an investigation is made into the degree to which including

covariates in specifications affect the weights assigned in SCMs, the relative performance of

SCUs that use covariates, and conclusively, the role covariates have in specification-searching

for SCMs. By examining several Monte Carlo simulations for cases where two different DGPs

are used in combination with covariate and standard specifications, this paper is able to identify

that more opportunities for specification-searching arise when including or excluding covariates

in the wrong cases. Additionally, the role of covariates is compared for different pre-treatment

periods T0, also for exceptionally large and small cases. These variations help to define cases

where covariates are useful, and cases when they are irrelevant or even obstructive. This paper

recommends that the decision to include covariates in an SCM should be handled on a case-

by-case basis, depending on the properties of the potential covariates. Additionally, it finds

that including covariates is more relevant when T0 is smaller, and that certain specifications

are able to make predictions more effectively when covariates are included. At the same time,

it is also found that in some cases covariates can cause more bias or complications. These

findings reinforce the contribution made by Ferman et al. (2020) on minimizing the room for the

manipulation of results when using SCMs. From a grander perspective, this will help researchers

and policymakers make more accurate predictions about the effects of shocks, treatments or

policies and thus allow for more effective and reliable decision-making.

The research questions are posed as follows. The main research question will be: To what

extent are there specification-searching opportunities when using synthetic control methods and

what role do covariates have in this? The following subquestions are also constituted in order

to complement the main research question above:

1. According to economic and econometric theory, when should covariates be included in syn-

thetic control methods?

2. When including covariates, how does this affect the weights assigned in the SCMs?
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3. Does omitting or including covariates allow for specification-searching opportunities? And

what guidelines should be followed to minimize this possibility?

The rest of the paper is structured as follows: in Section 2, a comprehensive literature review

will cover the economic and econometric developments in SCMs and the role of covariates within

it; in Section 3, the relevant theory of papers Ferman et al. (2020), Botosaru and Ferman (2019)

and Kaul et al. (2022) will be conjoined to provide a theoretical background of covariates within

SCMs; in Section 4 the methods used in the analysis within this paper will be explained; in

Section 5, the findings of this paper will be presented and discussed; an empirical case-study

will be considered in Section 6; and finally, in Section 7, a conclusion is given.

2 Literature Review (Extension)

The conception of SCMs occurred in the paper by Abadie and Gardeazabal (2003), in which

a data-driven procedure is used to construct a SCU. They apply this technique by estimating

the effects of terrorism in the Basque region in Spain by constructing a SCU consisting of two

unaffected Spanish regions. In their follow up paper, Abadie et al. (2010) build an explicit frame-

work and methodology on SCM and apply it to the effects of tobacco legislation in California.

Their research revealed the potential of SCMs by discovering that the anti-tobacco legislation

had in fact reduced smoking far more dramatically than concluded in previous studies. This

paper revealed the potential of SCMs and motivated further research, also on why the SCMs

were more beneficial than existing methods. Abadie, Diamond and Hainmueller (2015) propose

that because of the method’s ability to explicitly describe the contribution of each of the control

units to the SCU, SCMs allow for both qualitative and quantitative analysis when comparing

the synthetic unit with the treated unit. Building on this, Abadie (2021) mentions advantages

of the SCM over conventional regression methods: it is safeguarded against extrapolation; the

discrepancy between the treated unit and the SCU can be transparently assessed; it is relat-

ively more safe against specification-searching; there is transparency on the construction of the

counterfactual; and it has sparse properties.

Throughout this period, research was carried out on how weights were assigned to individual

control units and what effect this had on the SCU. In the paper of Doudchenko and Imbens

(2016), assumptions on the weights were relaxed. While this may allow for more flexibility in

carrying out comparative case studies, this also creates more room for discrepancy and incon-

sistent findings. In fact, even with the assumptions of regular SCMs, the lack of guidance on

which predictors to choose results in ambiguity, and does not provide conclusive evidence in

individual cases (Dube & Zipperer, 2015). This grey area in SCMs is addressed especially in the

paper of Ferman et al. (2020).

In their paper, Ferman et al. (2020) state that manipulation of the results due to the wide

choice of predictors that can be used to assign weights is an important issue for research using

SCMs. They conclude that because of this the SCM does not retain the property of being

solely a data-driven process and gives the researcher some degree of discretionary power. To

address this issue, Ferman et al. (2020) theoretically derive conditions under which a subset of

common specifications should lead to asymptotically equivalent estimators. Additionally, they
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provide insight into when specification-searching opportunities arise, namely when there are

limited pre-treatment periods. The authors conclude that to relieve the specification-searching

problem they advise a restriction for only a subset of specifications, and to always include the

specification in which all pre-treatment outcomes are included as benchmarks. Their research

particularly focuses on the role of pre-treatment outcome lags as matching variables, and examine

specification-searching opportunities for seven specifications that vary in terms of their pre-

treatment outcome values used. The discussion on how covariates may or may not allow for

specification-searching opportunities, however, is quite limited.

2.1 Covariates

In the work of Abadie et al. (2010), which developed the SCM, the authors assumed a high degree

of balance for both the pre-treatment outcomes as well as the covariates. This allowed them

to construct outcomes with a smaller bias. While Ferman et al. (2020) provides substantial

insight into the role of pre-treatment outcomes, it is limited in its discussion on covariates.

Other literature on the role of covariates in synthetic methods is limited as well, or do not fully

appreciate their contribution. For example, Doudchenko and Imbens (2016) merely suggests

that covariates play a relatively minor role and that they can be overlooked to a large extent.

In contrast, Gilchrist, Emery, Garoupa and Spruk (2023) state that the effects of a policy can

only be accurately measured if the SCU also minimizes the imbalance of covariates. Botosaru and

Ferman (2019) provide an extensive theoretical background into the importance of balancing the

covariates in the SCU and the real treatment unit. Their paper provides two main contributions:

firstly, they suggest that covariates do not always have to be included and should be considered

on a case-by-case basis. However, if they are not included then a higher number of pre-treatment

periods are required to derive similar bounds. Yet, even then, these bounds are more loose than

when a perfect balance on covariates is also imposed. Their second contribution concerns the

insufficiency of a perfect balance on pre-treatment outcomes. This is because a perfect balance on

lagged outcomes does not ensure an approximate balance for covariates when those covariates

have multicollinear effect on potential outcomes, or if their effect on potential outcomes are

nonlinear. At the same time, Botosaru and Ferman (2019) warns not to include all pre-treatment

outcome lags with relevant covariates due to the findings of Kaul et al. (2022).

Kaul et al. (2022) find that including all pre-treatment outcome values together with cov-

ariates renders the covariates irrelevant in the SCM. This occurs because in this case only the

pre-treatment fit with respect to the variable of interest is optimized, even when covariates are

in fact important in reducing the bias of estimates. In a lot of cases, covariates can be highly

influential in reducing the bias in SCMs. This is shown in the Monte Carlo simulations of Kaul et

al. (2022), where specifications with a single pre-treatment outcome lag and covariates provided

more informative and less biased results than the specification with all pre-treatment outcome

lags. The findings of Botosaru and Ferman (2019) and Kaul et al. (2022) indicate that the in-

clusion or exclusion of covariates can provide differing results. Additionally, recent papers have

implemented these new findings when constructing their SCUs. In their paper, Ben-Michael,

Feller and Rothstein (2021) suggest a new augmented SCM, for which it is found that including

covariates improves the pre-treatment fit. Gilchrist et al. (2023) also includes a reduced set of
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pre-treatment outcomes so as to ensure that the outcome variable ‘does not swallow the im-

portance of ... covariates’. In summary, these papers therefore suggest that covariates have an

important role to play in specification-searching opportunities for SCMs.

While Ferman et al. (2020) do address the role of covariates in their paper, they do not discuss

exactly in which cases or why the exclusion or inclusion of covariates allows for specification-

searching opportunities. Additionally, in the case where covariates are included, they contradict

the findings of Kaul et al. (2022) by stating that ‘only specifications that satisfy the asymptotic

equivalence assumptions’ should be compared, whereas Kaul et al. (2022) and Botosaru and

Ferman (2019) state explicitly that specifications with less pre-treatment outcome lags allow

the covariates to be more influential in reducing bias. It is also these cases that Ferman et al.

(2020) largely overlook. This research paper aims to contribute to the existing econometrics

literature by providing a discussion on covariates within the specification-searching framework

of Ferman et al. (2020), as well as providing more clarity on when covariates should and should

not be included in SCMs.

2.2 Economics Literature on the role of Covariates

When using SCMs, it is fundamental to discern if covariates should be included or not. While

this is also influenced by certain econometric factors that will be investigated later in this paper,

it ultimately depends on the question: ‘Are covariates relevant in determining the outcomes of

the dependent variable?’ If covariates are deemed to be relevant, the researcher should include

them in the specification and attempt to balance them. However, within economics, there

are certain cases where covariates are relevant in determining potential outcomes, and other

cases where they are less relevant. This is largely influenced by the outcome variable itself,

as some outcome variables may be heavily determined by covariates whereas other may not.

SCMs are especially relevant in the fields of policy and macroeconomics: “The synthetic control

approach... is arguably the most important innovation in the policy evaluation in the last 15

years” (Athey & Imbens, 2017). The economy as a whole is influenced and described by a

multitude of factors and indicators; some common examples are gross domestic product (GDP),

inflation rates, unemployment figures and investment figures. These indicators tend to have large

predictive power in macroeconomic forecasting because they are so intertwined. On the other

hand, there are also other macroeconomic indicators that are less relevant depending on the

policy evaluation application at hand. For example, consider indicators such as unemployment

rates or expenditure on education and their relation to stock prices, though there may be some

predictive power, it is likely to be less pronounced. Elliott and Timmermann (2016) argue that

predictors should only be included in forecasting applications when ‘new predictors have genuine

predictive power over the outcome’, as due to sparseness only a small subset of covariates will

truly have influence within the model. Carriero, Galvão and Kapetanios (2019) also suggest

this, indicating that models, albeit not SCMs, including a smaller set of hand-picked predictors

perform just as well as models with a large number of predictors.

For previous applications using the SCM (see Table 1), the number of covariates varies.

Given that researchers decide to use covariates in their synthetic control approach, it depends

on the economic context which covariates should be included and how many. For the published
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articles in Table 1, most researchers use less than 15 predictors, as is supported by other papers

(Elliott & Timmermann, 2016; Carriero et al., 2019). For example, in the paper by Billmeier and

Nannicini (2013), the authors opt for six covariates to determine GDP per capita: investment

as a share of GDP, population growth, secondary school enrollment, average inflation rate, and

a democracy dummy. Additionally, in macroeconomics, the state of the economy is in constant

flux, meaning that all leading indicators are constantly changing values. Though there are many

combined indexes (Stock & Watson, 1989), covariates are usually included individually because

the variations over time are not always proportional. Additionally, Botosaru and Ferman (2019)

advise omitting irrelevant covariates as their inclusion enables multicollinearity to be present

and therefore requires the SCM to adopt stronger assumptions. As a result, within the SCM

framework, researchers should carefully select relevant covariates based on the economic context

of the research question at hand and omit those covariates which are less relevant. One example

of a selection process is by consulting economic theory on the specified topic. For example,

when forecasting inflation one may consult literature on the Phillips curve (Phillips, 1958).

Another example of an effective selection process is given by Gilchrist et al. (2023), wherein

the researchers analyze the predictive power of covariates by analyzing their contribution to the

SCU after initial simulations. Those covariates with low contributions are then discarded from

the model.

Table 1: Specification Summary on Published Articles using SCM

Published Article T0 r Lags J

Abadie and Gardeazabal (2003) 10 11 Mean 16
Kleven et al. (2013) 11 3 Mean 14
DeAngelo and Hansen (2014) 37 14 Mean 46
Lindo and Packham (2017) 6 0 -1, -3, -5 38
Dustmann et al. (2017) 6 5 All 85
Cunningham and Shah (2018) 18 5 10a 50
Montalvo (2011) 4 2 0, -1 32
Hinrichs (2012) 9 0 All 3-7
Billmeier and Nannicini (2013) 2-32 5 All 4-62
Cavallo et al. (2013) 11 7 First Half 53
Bohn et al. (2014) 9 42 All 45
Gobillon and Magnac (2016) 8 0 All 135
Smith (2015) 10-43 2 0, -2, -4, -6 7-32
Zou (2018) 2 6 All 2429
Walker et al. (2014) 7 0 Mean 36
Eren and Ozbeklik (2016) 19 7 Even Lags 28
Bartel et al. (2018) 5 11 All, Mean 49

Notes: T0 is the number of pre-treatment outcomes available in the dataset, r is the number of covariates
included in the SCM, Lags are the set of pre-treatment outcomes included in the SCM and J is the number of
control units in the donor pool. The articles named above have been retrieved from various journals: American
Economic Review, American Economic Journal-Economic Policy, American Economic Journal-Applied
Economics, Quarterly Journal of Economics, Review of Economic Studies, Review of Economics and Statistics,
Journal of Development Economics, Journal of Labor Economics, and Journal of Policy Analysis and
Management. a: The specific outcome lags used in this specification are 0, -1, -2, -7, -8, -9, -11, -14, -15, -16

2.3 Economic Relevance of the SCM

The economic relevance of the SCM is undisputed. It provides numerous advantages over ex-

isting methods such as difference-in-difference or propensity score matching. These advantages
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stimulate the application of this method to problems in various economic contexts. The su-

periority of the SCM is most evident in contexts where a comparable counterfactual or control

group is not immediately available, such as in policy evaluation (Athey & Imbens, 2017). By

constructing a comparison unit with closely correlated characteristics, the control group in the

SCM is more reliable than it would be for other methods. In the field of policy, this is extremely

useful, because matching is often not possible; it is often not possible to find a control unit when

using matching which has identical characteristics. For the difference-in-differences method the

same issue holds: it is difficult to know if the counterfactual has the same functional form as the

control group and therefore this method relies heavily on assumptions (Athey & Imbens, 2017)

and extrapolation.

While the SCM still makes some assumptions and is certainly exposed to potential biases, it

is an effective method to largely avoid this. This allows it to construct reliable and data-driven

counterfactuals and therefore does not rely as much on assumptions. At the same time, it also

does not require identical control units, which are often hard to find, but uses a combination of

similar control units. From an economic perspective, the benefits of the SCM can be understood

within the framework of the potential outcomes framework (Imbens & Rubin, 2010).

The first advantage of a well-constructed SCU is that causal effects can be defined before

specifying the assignment mechanism, and without making functional form or distributional

assumptions (Imbens & Wooldridge, 2009). Secondly, SCM provides more clarity on causal

inference when using an effective SCU; the construction of an accurate counterfactual means

that the research is able to effectively decipher the causality inferred by explicit treatments

by analyzing the alternate potential outcome using the control unit. A final advantage from

an economic perspective is that there is limited room for manipulation as it is a data-driven

method. This allows for economic inferences to be made transparently (Abadie et al., 2010).

These advantages make the SCM useful for applications in many different economic contexts.

A short description of the economic application of some of the papers in Table 1 is given below.

It is a recurrent theme that SCMs are applied to contentious topics. While these topics were

formerly subject to interpretation, the accuracy and transparency of SCMs allow for more con-

clusive research. Dustmann, Fasani, Frattini, Minale and Schönberg (2017) measure the effect

that refugee crises and economic migration have on the labour market. They do this using the

SCM in which they estimate gaps in employment probabilities. The paper emphasizes the risk

that immigration has on economic stability and therefore calls for different policy measures,

such as increased coordination at a multilateral level.

Cunningham and Shah (2018) uses the SCMs to evaluate health policy, they measure the

impact of decriminalizing indoor prostition on the number of contractions of sexually transmitted

diseases. They find that rape offences as well as incidences of female gonorrhoea fell. Cavallo,

Galiani, Noy and Pantano (2013) use SCMs to estimate the effect of natural disasters on GDP.

Additionally, they are able to include covariates to control for certain factors such as political

changes proceeding the shocks.

Finally, SCMs have also been applied to educational contexts. Hinrichs (2012) finds that

affirmative action bans reduce minority enrollment at selective US colleges. The SCM is used

here to construct counterfactual for particular selective US colleges. This is an example of how
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SCMs can be applied at local levels as well. There is therefore ample ground to support the use

of SCMs in economic research.

3 Theoretical Background

The framework of the theoretical component of this paper is established in the following section,

this theory will be used as a basis for evaluating the results in Section 5.

3.1 Synthetic Controls and Specification Searching (Replication)

The SCM of Abadie et al. (2010) constructs a counterfactual in the case where there is only one

unit that is treated. It does this using data from a donor pool of untreated control units. The

method then uses a weighted average of these selected units to estimate treatment effects for

every post-treatment period.

Let us suppose that the duration of interest spans T ∈ N, and that there is available data

for (J + 1) ∈ N units. For j ∈ 1, ..., J + 1, only j = 1 is treated in some time period T0. We

denote Y 0
j,t as the potential outcome that would be observed for unit j in period t ∈ 1, ..., T

had no treatment taken place. We denote Y 1
j,t as the potential outcome under treatment. This

results in the following model: {
Y 0
j,t = δt + θtZj + λtµj + εj,t

Y 1
j,t = αj,t + Y 0

j,t

(1)

Here, δt is an unknown common factor with constant factor loadings across units: (θt) is a

(1 × r) vector of unknown parameters; Zj is a (1 × r) vector of observed covariates which are

not affected by the treatment; λt has dimensions (1× (F − r)) vector of common factors; µj is a

(1× (F −r)) vector of unknown factor loadings; and εj,t are unobserved transitory shocks. From

(1), it can be derived that the treatment effect is αj,t := Y 1
j,t−Y 0

j,t. Yj,t is the observed outcome.

As we are interested in the treatment effect after T0, we aim to identify α1,T0+1, ..., α1,T . To do

this, we require the potential outcome Y 1
1,t, which is observed for periods t > T0, as well as the

potential outcome Y 0
1,t, which acts as the counterfactual and needs to be estimated.

Yj := [Yj,1...Yj,T0 ]
′ is the vector containing pretreatment observed outcomes for each j ∈

(1, ..., J +1). To predict outcomes Y 0
j,t for t > T0, we use F predictor variables, which are either

covariates or linear combinations of observed pretreatment outcomes in Yj. These predictors

are included in the (F × 1)-vector Xj. We let Y0 = [Y2| · · · |YJ+1] be a (T0 × J)-matrix

containing all the pretreatment observed outcomes for each unit int he donor pool. Also, we let

X0 = [X2| · · · |XJ+1] be a (F × J)-matrix containing values of all the predictors for each unit in

the donor pool.

Initially for the sake of simplicity, we assume that the predictors in Xj are balanced already.

Then, the aim of the SCM is to construct a counterfactual using a weighted average of the

control units, Ŷ 0
1,t :=

∑J+1
j=2 ŵjYj,t.

The weights Ŵ = [ŵ2, ..., ŵj+1]
′ := Ŵ(V̂) ∈ RJ are assigned through a nested minimization
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problem, also called the inner-optimization:

Ŵ(V) := arg min
W∈W

(X1 −X0W)′V(X1 −X0W) (2)

where the sum of weights must be equal to one, and all weights must be non-negative, as stated

in the following assumption.

W ∈ {w2, ..., wJ+1|
J+1∑
j=2

wj = 1| and wj ≥ 0} (3)

Solving Equation (2) yields Ŵ, where the individual weights ŵ2, ..., ˆwj+1 indicate the re-

spective composition of each control unit in the synthetic control unit. Here, V is a diagonal

positive semi-definite matrix of dimension (F × F ), and is defined by the outer-optimization:

V̂ := argmin
V

(Y1 −Y0Ŵ(V))′(Y1 −Y0Ŵ(V)). (4)

In (4), V̂ is a matrix containing weights indicating the relative importance of each covariate and

pre-treatment outcomes included in X0. A data-driven optimization procedure which solves

(4) is used to determine V̂. Equation (4) essentially determines the value of V for which the

mean squared prediction error (MSPE) is minimized for Y (where Y is a matrix containing

both Y1 and Y0). Thereafter, V̂ is used to construct Ŵ(V̂). The resulting weight matrix is

used to construct the synthetic counterfactual Ŷ 0
1,t. For each period t ∈ 1, ..., T , we can use the

observed outcomes of unit 1 (Y1,t) to construct the synthetic control estimator (SCE) of α1,t.

The estimator, also called the estimated gap, is estimated as α̂1,t := Y1,t − Ŷ 0
1,t. This is an

estimation of the treatment effect in period t. This is the general framework of the SCM.

A significant issue highlighted in the paper of Ferman et al. (2020) is the lack of consensus on

the predictors chosen for Xj. Since the conception of the SCM, a wide spectrum of specifications

has been used in Xj in papers using SCMs. These specifications vary widely in terms of the se-

lection and number of covariates and pretreatment outcome lags used. As a result, the outcomes

of the optimization procedure (4) and the nested minimization problem (2) are determined, at

least partially, by the choice of predictors in X0. By being able to influence the weight matrix

Ŵ(V̂), it is possible to influence the resulting outcomes of the synthetic counterfactual Ŷ 0
1,t such

that the SCE α̂1,t becomes significant for the test at hand. This allows room for manipulation

of the results and undermines the ‘transparency’ advantage of SCMs.

To illustrate the prevalence of this issue, Ferman et al. (2020) assemble a wide variety of

papers using SCMs and highlight the variety of specifications used. This table (Table 1) was

shown in the previous section. Table 1 indicates the sheer amount of variation in terms of

specifications. This begs the question: how influential is the choice of specifications and do

they allow for ‘significant’ treatment results despite their being no actual significant treatment

effect? To answer this, Ferman et al. (2020) investigate under which conditions specification are

asymptotically equivalent, albeit with a focus on the role of outcome lags. Their findings will be

covered in Subsection 3.2. To help answer this question comprehensively, the theory of Botosaru

and Ferman (2019) and Kaul et al. (2022) will be used to provide insight into how the choice of
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covariates may contribute to the issue of specification-searching. This is covered in Subsection

3.3.

3.2 Equivalence of Specifications (Replication)

Ferman et al. (2020) examine the effect of T0 → ∞ on different specifications. A specification

s is defined by the set of predictors included in Xj(s, T0), this set of predictors can consist of

covariates, pre-treatment outcome lags, and/or functions of pre-treatment outcome lags. The

number of pretreatment periods is labeled as L(s, T0) such that Yj,t is included as a predictor

when there are T0 pretreatment periods. Thus, L(s, T0) indicates the number of pretreatment

outcome lags included.

Ŵ(s, T0) is denoted as the weight matrix used when we apply specification s in combination

with T0 pre-intervention periods. We compare the asymptotic behaviour when T0 → ∞ for

two different specifications s and s′. Ferman et al. (2020) investigate under which conditions

Ŵ(s, T0) and Ŵ(s′, T0) converges to the same W̄ when T0 → ∞. The sole condition required for

this convergence to hold is that the dispersion of different subsequences are stable, so that the

second moments converge to the same value. Furthermore, if L(s, T0) → ∞ when T0 → ∞, then

Ŵ(s, T0) →p W̄ = arg min
W∈W

Q1(W), where Q1(W ) is a continuous and strictly convex function.

This results in the two SCEs, α̂s,t and α̂s′,t, converging in probability to zero (|α̂1t(s, T0) −
α̂1t(s

′, T0)| = op(1)), given that both L(s, T0) → ∞ and L(s′, T0) → ∞ when T0 → ∞. This is

because the inner optimization (2) assigns positive weights to the pre-treatment outcome lags in

this case. Thus, asymptotically, synthetic control weights for all specifications will be assigned

by minimizing an average of a function of the pre-treatment outcomes that are included as

predictors.

This theoretical result only holds when L(s, T0) → ∞ and T → ∞. When T0 is finite, this

result does not hold. In most practical applications, there is a limit to the number of pre-

treatment observations. Additionally, it is not always given that L(s, t) → ∞ when T0 → ∞, as

some specifications used in papers only include a specific amount of predictors or only use the

mean. Thus, in most practical applications, synthetic control weights will not converge to W̄.

3.3 Covariates (Extension)

This subsection details the role of covariates within the SCM framework, as well as special cases

that are relevant for the discussion in Section 5. As stated earlier, the aim of the SCM is to

construct a counterfactual :

Ŷ 0
1,t :=

J+1∑
j=2

ŵjYj,t (5)

where Ŵ is the optimal weight matrix. However, Ferman et al. (2020) require only Assumption

(5), whereas the original paper on SCM by Abadie et al. (2010) assume a Ŵ which satisfies the

assumption of a perfect balance on the vector of observed covariates Zj for unit j as well:

Z1 =

J+1∑
j=2

ŵjZj (6)
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where Z1 is the (1× r) vector containing the covariates of the treated unit. Additionally, let Z0

be the (J × r) matrix of observed covariates for the J control units.

3.3.1 Omitting the balance on covariates

Botosaru and Ferman (2019) describe the effect which omitting Assumption (6), a perfect bal-

ance on covariates, has on the bounds. Omitting Assumption (6) requires us to introduce an

assumption of linear independence for the (1 × F ) row vector of effects of the observed and

unobserved covariates (γt ≡ (θt, λt)), where ξ(T0) is the smallest eigenvalue of 1
T0

∑0
t=−T0+1 γ

′
tγt:

ξ(T0) > 0 (7)

Here, ξ(T0) measures the degree of linear independence in the pre-treatment period of the effects

of the observed and unobserved covariates. It is therefore also a required condition that T0 ≥ F .

If the effects of the observed and unobserved covariates are linearly independent as in As-

sumption (7), and a few minor assumptions described in Appendix A hold, it is possible to

bound the degree of imbalance for the covariates given a perfect balance on pre-treatment out-

come lags, thus allowing bounds to be derived for the SCE. An incomplete but sufficient version

of this outcome is seen below, as outlined in Botosaru and Ferman (2019) Proposition 3.1:

|E[α̂∗
1,t]− α1,t| ≤

Cαγ̄(T0)
2

ξ(T0)
max

{
m̄p(T0)

1/p

T
1−1/p
0

,
m̄2(T0)

1/2

T
1/2
0

}
(8)

where m̄p(T0) can be interpreted as a measure for the scale of the transitory shocks, and γ̄(T0)

can be interpreted as the effect of the (un)observed covariate with the largest absolute shock

(Appendix A). The main takeaways of (8) is that these bounds are increasing with a higher

scale of transitory shocks εj,t (through m̄p(T0)), decreasing with the number of pre-treatment

outcomes T0 and decreasing with the degree of linear independence ξ(T0). This indicates that

when covariates are linearly independent, they can be beneficial in improving the accuracy of

forecasts in SCMs.

In the case that Assumption (7) does not fully hold, the following relaxed assumption is

required to construct bounds. m̄p(T0) and γ̄(T0) are required to be bounded, and there are

positive constants ξ̃ and T̄ for which ξ(T0) ≥ ξ̃ for all T0 > T̄ , as a result the bounds asymptote

to zero as T0 increases. This indicates that when there is linear independence for the effects of

observed and unobserved on potential outcomes, observed and unobserved covariates must be

balanced in order to provide a good balance for pre-treatment outcomes when T0 is larger.

However, when both Assumptions (5) and (6) are satisfied, then Assumption (7) can be

replaced by ξ̇(T0) > 0. Here ξ̇(T0) is the smallest eigenvalue of 1
T0

∑0
t=−T0+1 λ

′
tλt, and thus only

requires the unobserved covariates to be linearly independent. Therefore, it may sometimes

only be possible to construct bounds given both Assumptions (5) and (6), and not when only

Assumption (5) holds. Otherwise, linear independence of the effects of both unobserved and

observed covariates on potential outcomes is required, which in turn requires at least T0 ≥ F .

If both assumptions hold, meaning covariates are also balanced, only the linear independence of

the unobserved common factors is required, which requires minimally T0 ≥ (F − r). As a result,
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when covariates are not balanced, a higher amount of pretreatment periods T0 is required to

ensure bounds can be constructed.

3.3.2 Reducing bias

When both Assumptions (5) and (6) hold, the bounds will be tighter than when only Assumption

(5) is valid. This is because Assumption (6) eliminates any potential bias arising from unbal-

anced observed covariates. As a result, researchers should aim to find weights that satisfy both

of these assumptions, as otherwise, stronger assumptions are required to guarantee the existence

of bounds on the bias of the SCE as described earlier. Often however, due to empirical limita-

tions, relevant covariates may not all be observed and additionally, weights that balance both

the pretreatment outcome lags as well as the covariates may not exist. Nevertheless, a perfect

balance in pretreatment outcome lags can often imply an approximate balance for covariates.

This is a result established in the paper by Botosaru and Ferman (2019) in their Proposition 3.1.

The exceptions to this rule are when there exists significant multicollinearity such that Assump-

tion (7) does not hold, when included covariates are irrelevant, leading to multicollinearity, and

when covariates Zj have a nonlinear effect on outcomes Yj,t. In these cases, while bounds can

still be constructed, biases are reduced substantially when there is also a balance on covariates.

Using derivations of Kaul et al. (2022), we assess the importance of covariates in reducing

bias. Let Ỹj,t be the hypothetical value of Yj,t if it was not influenced by covariates. Therefore,

usually it is the case that Yj,t = Ỹj,t + θtZj for some θt ∈ R1×r, and Zj are the covariate values

of unit j. The difference between the treated unit and its synthetic counterpart in terms of the

dependent variable is then

Y1,t −
J+1∑
j=2

wjYj,t = Ỹ1,t −
J+1∑
j=2

wj Ỹj,t + θt

Z1 −
J+1∑
j=2

wjZj

 (9)

Covariates eliminate a bias with a magnitude of θt

(
Z1 −

∑J+1
j=2 wjZj

)
, and thus play an im-

portant role in accurate forecasting. In extension, it is therefore possible to select a specification

without covariates, which allows for a significant bias in the SCE.

The inclusion of covariates is not always beneficial however. For predictor weights to be

correctly assigned to covariates, not all pretreatment outcome lags should be included (Kaul

et al., 2022). By not including all pretreatment outcome lags, one prevents the asymptotic

equivalence result in Section 3.2 from holding. Additionally, including all pretreatment outcomes

in the specification may also construct an SCE that is better at capturing unobserved components

effects than a specification with covariates but a lower number of pretreatment outcome variables

(Botosaru & Ferman, 2019). It should be considered however, that this is only relevant for

relatively large T0 and many empirical datasets are often constrained in terms of length.

Depending on the case therefore, biases can arise due to the choice of including covariates or

including all pretreatment outcome lags. To add onto this statement, there exist specification-

searching opportunities in the choice to include covariates or including all pretreatment lags.

The reason why this trade-off exists revolves around how weights are assigned in the SCM.
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3.3.3 The influence of covariates on weights

It is often impossible for the weights to be non-negative and to sum to one (Assumption (3))

and also for a perfect balance to hold for both pretreatment outcome lags (Assumption (5)) as

well as covariates (Assumption (6)). As a result, an optimization procedure is used using a data-

driven method to satisfy these conditions as closely as possible. In Section 3.1, it is explained

that this optimization procedure consists of two steps: one is the inner optimization (2) and the

other is the outer optimization (4). The outer-optimization determines V̂, this predictor weight

matrix considers individual predictors’ predictive power for the outcome variable Y. This is

because some predictors might be more informative for predicting outcomes, such as the first

pretreatment lag.

A crucial point to understand about how V̂ is determined comes from the paper of Kaul et al.

(2022). Following the original methodology of Abadie et al. (2010) for the outer optimization (4),

V̂ is determined by minimizing the MSPE of the outcome variable Y over the pre-intervention

periods. We can partition the predictor weight matrix V as follows:

V =

(
VZ 0

0 VY

)

where VZ contains the weights for the covariates and VY contains the weights for the pretreat-

ment outcomes. In the outer optimization (4), VY is often more relevant as only the optimal

pretreatment fit of the outcome variable is considered, not of the covariates. The degree of

relevance depends on how well the included pretreatment outcome lags are able to provide a

balance as in (5). Naturally, the more pretreatment outcome lags, the more likely that a perfect

balance can be found. Using an optimal V̂ derived from (4), it is possible to calculate Ŵ(V̂)

using the inner optimization (2). By partitioning the data matrix X into X1 =

(
Z1

Y1

)
and

X0 =

(
Z0

Y0

)
, respectively, we can reconstruct inner optimization (2) as outlined by Kaul et

al. (2022), in which a weight matrix Ŵ is found so that the predictors of the SCU and unit of

interest are most closely aligned:√
(Z1 − Z0W)′VZ(Z1 − Z0W) + (Y1 −Y0W)′VY(Y1 −Y0W)

W→ min (10)

As can be seen by the first component in optimization (10), the inner optimization does take

the covariates into account. However, it is the outer optimization (4) that determines V̂.

We now examine two cases which are of interest to us. In the case that we determine V̂ by

using all pretreatment outcome lags, a near perfect balance for the pretreatment outcome values

in outer optimization (4) is usually attained. This results in a weight matrix Ŵ that is optimal

in the sense that it produces the best fit for the outcome variable Y:

Ŵ := argminW(Y1 −Y0W)′(Y1 −Y0W)

The implication of this optimal weight matrix is that a balance in covariates is no longer needed
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to optimize the inner optimization (2), and it is therefore optimal to set V̂Z equal to zero so that

optimization (10) is minimized. Therefore, (10) yields, in its limit, a solution which effectively

assigns only weights to the other predictors, and not to the covariates, as the first component

in (10) is effectively ignored. Given that there are multiple solutions for predictor weights V

which yield the same optimal weight matrix Ŵ, researchers could be prone to selecting a V with

positive weights for the covariates, while these still correspond to the same weight matrix Ŵ.

This could lead to the incorrect conclusion that covariates are considered in the optimization

procedure, while they are in fact ignored.

In the other case, where not all pretreatment outcomes are used, there may not be an optimal

pretreatment fit in the outer optimization (4). This allows for positive covariate weights in V

and therefore also requires the inner optimization (2) to effectively take into account the role of

covariates when solving for Ŵ. For this Ŵ, the covariates will have predictive power. It should

also be noted that the matrix V should not be chosen in an ad hoc fashion. This would assign

weights to covariates which are not necessarily required to be balanced.

3.4 Summary

A summary of the main theoretical points discussed in this section is given below. Initially, the

framework of the SCM of Abadie et al. (2010) was described in detail. Using this framework,

the equivalence of specifications theorem found in Ferman et al. (2020) was described. Next, we

discussed the consequences of omitting the assumption of a perfect balance on covariates. This

requires stronger assumptions about linear independence of the effect of observed and unobserved

covariates on potential outcomes, and therefore also a requirement of a longer pretreatment span

T0. Thereafter, an analysis on the covariates’ ability to reduce biases was made. Covariates can

reduce bias in predictions, especially when multicollinearity or nonlinearity exists. However,

to reap these benefits the number of pretreatment lags included in the specification has to be

reduced, which can lead to biases as well. The reason for this trade-off lies in how the assignation

of weights for matrices W and V in the data-driven optimization process takes place. It is found

that it is often difficult to balance both covariates and pretreatment outcomes because using

specifications that include large sets of pretreatment outcomes could lead to covariates being

ignored in the optimization process, causing biases.

Therefore, a researcher has to determine case-by-case what the costs and benefits are in the

trade-off between balancing covariates and including all pretreatment outcomes. On one hand,

the exclusion of large numbers of pretreatment outcome lags can cause biases if they are able

to capture the effects of unobserved components, especially if these unobserved components are

important in explaining the outcome variable. On the other, covariates may be able to reduce

biases, reduce the required assumptions and are simply required in the cases of multicollinear

and nonlinear effects on the outcome variable. We evaluate the influence of these theoretical

findings in the Monte Carlo simulations and empirical application.
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4 Data and Methodology

4.1 Test-Statistics (Replication)

To be able to quantify the prevalence of specification-searching opportunities, test statistics

that describe the opportunity for specification-searching of different SCUs are required. In their

paper, Abadie et al. (2015) use the root mean squared prediction error (root-MSPE) between

the observed outcome of a unit and the outcome of the synthetic counterfactual. For the pre-

intervention period, it is labeled the root mean squared error (root-MSE), where they generalize

the unit being treated instead of assuming unit j = 1 is being treated:

root−MSEi =

 1

T0

T0∑
t=1

Yi,t −
J+1∑

j=1,j ̸=i

ŵjYj,t

21/2

(11)

where i is the unit of interest. In the case where they would want to measure the post-intervention

period root-MSPE, they would take the average for the period T0+1, ..., T instead. When inter-

preting the post-intervention period root-MSPE, it is important to consider the pre-treatment fit

of the synthetic counterfactual. If the pre-treatment fit is poor, equivalently seen in a higher root-

MSE for the pre-treatment period, then a higher post-treatment root-MSPE is not indicative of

a strong treatment effect. This is because the counterfactual is not representative, as stipulated

by the high pre-intervention root-MSE. Ideally, a SCM case-study for a unit observing a strong

treatment effect should have a small pre-intervention root-MSE and a high post-intervention

root-MSPE. To combine these two statistics into one, Abadie et al. (2015) computes the ratio

of the mean squared prediction errors (ratio-MSPE) as a test statistic. This statistic increases

with a higher post-intervention MSPE and decreases with a higher pre-intervention MSE and

thus favours a SCU with a good pre-intervention fit.

ratio−MSPEi :=

∑T
t=T0+1(Yi,t−

∑J+1
j=1,j ̸=i ŵjYj,t)

2

(T−T0)∑T0
t=1(Yi,t−

∑J+1
j=1,j ̸=i ŵjYj,t)

2

T0

(12)

To evaluate the probabilities of obtaining a certain treatment effect α̂j,t, Ferman et al. (2020)

make use of placebo studies, which are widely used when applying SCMs. More specifically, they

use “in-space placebos” in which they measure the SCE for each j ∈ {1, ..., J + 1} at time t.

By calculating the SCE for every potential control a distribution of placebo effects can be

constructed. They then test the confidence of the SCE using a p-value computation taken from

Abadie et al. (2015):

p :=

∑J+1
j=1 I[ratio−MSPEj ≥ ratio−MSPE1]

J + 1
(13)

where unit 1 is the treated unit. This p-value measure does not have a clear statistic inter-

pretation, but is a good indicator of how ‘unique’ the treatment effect is of the treated unit. It

does this by calculating the fraction of placebo effects that have a greater than or equal effect

compared to the treated unit. The null hypothesis of no treatment effect is therefore rejected if
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the p-value is less than a significance level which is chosen beforehand, and is often influenced by

the amount of control units J . Here, the p-value is described as the probability of obtaining an

estimated treatment effect as least as large as that of the unit of interest when the intervention

is randomly assigned. Thus, when there is a low p-value, it is highly unlikely that the effect is

not caused by the treatment and thus a significant effect can be concluded.

We know that ratio −MSPEj will remain asymptotically invariant to changes in the syn-

thetic control specification when T0 → ∞, given that L(s, T0) → ∞ for these specifications.

Thus, as long as only synthetic control specifications that satisfy these properties are used, the

test decision in the placebo test is asymptotically irrelevant. This implies that in this case,

the possibilities for specification searching are asymptotically irrelevant.This also holds when

covariates are included and makes the SCM unique.

4.2 Monte Carlo Simulations (Replication)

In this paper, a part of the Monte Carlo simulations run in Ferman et al. (2020) are replicated.

This is done to grasp the importance of the theoretical results in the previous section. The

simulations should inform us whether values of T0 used in common practical applications are

large enough for the asymptotic equivalence results to hold. Additionally, insight is given into

specification searching opportunities in the scenario where the condition of L(s, T0) → ∞ when

T0 → ∞ does not hold.

Specifically, we test the null hypothesis of no effect, as described in the previous section,

given a set of specifications, which will be explained in Section 4.2.2. This placebo test should

by construction provide a rejection rate of α percent when examining one specification. This

is because the null tests for an α rejection rate. In this paper we examine the probability that

at least one of the specifications rejects the null hypothesis at the α-percent-significance level.

This occurs when the different specifications construct inconsistent SCEs. This would result in

an incorrect placebo distribution for the control units and thus a higher p-value for the placebo

test, such that the null hypothesis for that specification is rejected. If all specifications lead to

the same SCE, then the probability to find a specification which rejects the null hypothesis of

no effect will be close to α. Alternatively, if S specifications lead to S widely varying estimators,

the probability of rejecting the null hypothesis for at least one specification will be large.

4.2.1 Data Generating Processes

In the Monte Carlo simulation, we generate 200 data sets using a linear factor model data gen-

erating process (DGP) where units are divided into groups that each follow different stationary

time trends.

Y 0
j,t = δt + λk

t + ϵj,t (14)

For this simulation we use J + 1 = 20 units and k = 1, ...,K trends indicating which trend

λk
t is being followed, where λk

t is normally distributed following an AR(1) process with a 0.5

autocorrelation parameter. For j = 1, 2, k = 1, such that j = 1, 2 follow trend λ1
t , for j = 3, 4,

k = 2 and so on. Additionally, δt ∼ N(0, 1) and ϵj,t ∼ N(0, 0.1).

For each simulation, there are 10 post-treatment periods so that T −T0 = 10. To understand
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the degree for specification searching opportunities in published papers mentioned in Table 1,

we test with pre-intervention periods T0 ∈ {12, 32}. To test for the presence of the asymptotic

equivalence result in Section 3.2, we use larger pre-intervention periods, T0 ∈ {100, 400}. In the

simulation, there is no treatment effect so that Yj,t = Y 0
j,t = Y 1

j,t for all t. This is done because

we wish to measure the probability of rejecting the null hypothesis of no effect when there is in

fact no treatment taking place. Thus, when the term pre-intervention is used, it is referring to a

hypothetical intervention period t = 0 where no intervention actually takes place. To repeat the

Monte Carlo Simulation for the case where time-invariant covariates are included and influence

the outcome variable, we use a slightly altered DGP:

Y 0
j,t = δt + λk

t + θtZi + ϵj,t (15)

where Zi for i=1,...,10 and Zi = 0 for i = 11, ..., 20. As with the standard DGP, K = 10 and

λk
t is an AR(1) process with 0.5 autocorrelation. Additionally, δt ∼ N(0, 1), ϵj,t ∼ N(0, 0.1)

and θt ∼ N(0, 1). Here, the first 10 control units are affected by the covariates by a normally

distributed random process.

4.2.2 Specifications

The original seven specifications used in the placebo tests used in Ferman et al. (2020) differ in

terms of the number of pre-treatment outcome values used, but also the choice of pre-treatment

outcome values. The first 5 specifications satisfy the condition that L(s, T0) → ∞ when T0 → ∞,

specifications 6 and 7 do not. This means that only the first 5 specifications will be eligible to

achieve the asymptotic equivalence result. Therefore, the accumulated results for both sets of

specifications S = 1, .., 7 and S′ = 1, ..., 5 will be presented. Initially, no covariates are included

in the tests. The elements of each specification are described below:

1. All pre-intervention outcome values: Xj = [Yj,1, ..., Yj,T0 ]
′

2. The most recent three-fourths pre-intervention outcome values: Xj =
[
Yj,1, ..., Yj, 3T0

4

]′
3. The most recent half of pre-intervention outcome values: Xj =

[
Yj,1, ..., Yj,T0

2

]′
4. All odd pre-treatment outcome values: Xj =

[
Yj,1, Yj,3, ..., Yj,(T0−3), Yj,(T0−1)

]′
5. All even pre-treatment outcome values: Xj =

[
Yj,2, Yj,4, ..., Yj,(T0−2), Yj,T0

]′
6. The mean of all pre-intervention outcomes: Xj =

[∑T0
t=1 Yj,t

T0

]
7. The first, middle and last pre-intervention outcome values Xj = Xj =

[
Yj,1, Yj,T0

2

, Yj,T0

]′
4.2.3 Testing procedure (Also extension)

Ferman et al. (2020) use this set of specifications to measure the possibility for specification

searching. These specifications will henceforth be referred to as the ‘standard’ specifications. A
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placebo test is carried out for each specification at the 5 percent significance level; if the ratio-

MSPE of the treated unit is found to be the largest among the 20 units, the null hypothesis of

no treatment effect is rejected. When this is the case, the specification of interest indicates the

presence of a treatment effect despite no treatment effect actually existing. We are interested in

the cumulative case; thus where at least one specification in the set above indicates a treatment

effect for the placebo unit, where there is in fact no treatment effect. We repeat this process for

each of the 20 treated units, and repeat this simulation 50 times for each T0 = {12, 32, 100, 400}.
As a result, we are able to find the empirical probability of rejecting the null of no treatment

effect in at least one specification, as in Equation (13). In other words, the values shown in

Table 2 in the results section represent the probability of finding a treatment effect even when

this is not the case, and thus the possibility for specification searching. In the case that all

specifications consistently construct identical SCUs, the probability that the ‘treated’ unit will

have the largest ratio-MSPE for one of the specifications is very small, namely 5 percent. In the

case that all specification construct a different SCE each, it is more likely that the ratio-MSPE

of the ‘treated’ unit will be the largest of all units in at least one of the 7 specifications. The

specific testing procedure above refers to the ‘standard DGP ; standard specification’ case.

The difference in specifications for the time invariant case is minimal but important. In the

time-invariant case we use each of the seven specifications mentioned above but we also include

variable Zi as an economic predictor. This is influential when the DGP including covariates

is used in the Monte Carlo simulation. This is because the 7 specifications listed above are

able to use the information given by the predictor Zi. The availability of predictor Zi in the

specification helps identify whether the unit of interest is likely to be affected by covariates or

not. When the treatment ‘occurs’, this information will determine if the SCU will experience an

additional effect of degree θt or not. Henceforth, these specifications will be referred to as the

‘covariate specifications’. The same testing procedure is used as for the ‘standard DGP ; standard

specifications’ case, only now with the covariate specifications on a DGP incl. covariates. This

testing procedure is labeled the ‘DGP incl. covariates ; covariate specifications’ case.

The comparison of these two cases allows for insights concerning the difference in specification

searching opportunities when the ‘correct’ set of specifications is applied to to its corresponding

DGP. Such insights could be that one case has reduced specification-searching opportunities for

shorter pretreatment periods T0. Nevertheless, it is also important to compare the cases where

these two sets of specifications are compared for the same DGP. In effect, this will allow us

to see the consequences concerning specification-searching opportunities of including covariates

in a given specification. This brings us to a third testing procedure: the ‘DGP incl. covari-

ates ; standard specifications’ case. In this case, the set of covariate specifications have more

information to identify the effects of covariates, and are thus able to detect the effect θt after

the treatment period. On the other hand, the set of standard specifications do not have this

information. Finally, a fourth testing procedure is the ‘standard DGP; convariate specifications’

case. This case is used to determine if irrelevant covariates cause additional bias, as they do not

carry any information.

In addition to the comparison of specification-searching opportunities for these three different

cases, the root-MSPE (Equation (11)) is also calculated for each individual specification. This
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will show which specifications produce the most accurate SCEs. We evaluate the differences for

root-MSPEs instead of ratio-MSPEs because comparing ratio-MSPEs would only allow us to

measure the differences in pretreatment to post-treatment accuracy ratios, whereas root-MSPEs

allow us to identify the best-performing specifications. Essentially, this will allow us to further

dissect why specification-searching opportunities are more or less present in certain cases, but

they will also allow us to see which specific specifications perform best in different cases.

To complement the information provided by the root-MSPEs in different cases, the predictor

weight matrix V̂ will be used to identify the average fraction of weights that is assigned to the

covariates for each experiment. This is done by first calculating the fraction of weights in matrix

V̂ assigned to covariates, repeated for the time periods T0 = {12, 32} and for the seven covariate

specifications. The average of all these fractions in the Monte Carlo simulation is taken to give

an indication of how much importance is given to covariates in each of the experiments.

Finally, the above tests for specification-searching opportunities and root-MSPEs will be

repeated for the case of T0 = 4. This is done because the results of Kaul et al. (2022) and

Botosaru and Ferman (2019) both imply that covariates have a more important part to play

when the pretreatment periods T0 are shorter. T0 = 4 is chosen as any shorter pretreatment

period would result in specifications 1-7 overlapping. These results as a whole will complement

the literature review and theoretical background in allowing for a more in-depth examination of

the role of covariates in the simulations of Ferman et al. (2020).

5 Results and Discussion

5.1 Monte Carlo Simulation

5.1.1 Specification-searching opportunities (Replication and Extension)

We first investigate the existence of the asymptotic equivalence theorem for specification-searching

opportunities, both for the standard and time-invariant case. The probabilities of rejecting the

null hypothesis of no treatment effect for the standard case, at the 5% and 10% significance

levels, are given in Table 2 for different numbers of pre-treatment outcome lags. This is done

using the DGP in Equation (14).

Following the asymptotic equivalence theorem presented in section 3.2, the possibilities for

specification searching should diminish as the length of the pre-treatment period T0 increases.

This result is somewhat evident based on the results in Table 2, Panel A; for T0 = 12, the prob-

abilities at the 5% and 10% level are 15.3% and 26.0% respectively; for T0 = 32, the probabilities

are 14.5% and 25.0%; for T0 = 100, the probabilities are 14.0% and 25.1%; and for T0 = 400, the

probabilities are 13.7% and 25.3%. The results are all above the 5% level that would be expec-

ted for the theoretical case where there are no specification searching opportunities. Therefore,

we find that specification searching opportunities are significant when T0 = 12, which is an

empirically common number of pre-treatment outcome lags. Even for empirically uncommon

levels such as T0 = 400, the results indicate that specification-searching opportunities are still

prevalent.

From the asymptotic equivalence theorem in Section 3.2 it can be derived that those spe-

cifications that do not meet the conditions for this equivalence result are most likely responsible
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Table 2: Specification searching opportunities for the ‘standard DGP; standard specifications’
case

5% test 10% test

Panel A: Specifications 1 to 7

T0 = 12 0.153 0.260
(0.012) (0.015)

T0 = 32 0.145 0.250
(0.011) (0.014)

T0 = 100 0.140 0.251
(0.011) (0.014)

T0 = 400 0.137 0.253
(0.011) (0.014)

Panel B: Specifications 1 to 5

T0 = 12 0.108 0.194
(0.009) (0.012)

T0 = 32 0.099 0.179
(0.009) (0.012)

T0 = 100 0.084 0.150
(0.009) (0.012)

T0 = 400 0.079 0.140
(0.009) (0.012)

Notes: This table presents the probabilities of rejecting the null hypothesis of no treatment effect in at least one
specification for the given set of specifications at the 5 and 10 percent significance levels. The results are based
on 3,900 observations.

for the most disparate SCEs. Table 2 Panel B shows specification-searching opportunities when

specifications 6 and 7 are not included in the set of specifications. Instead, all specifications in

this set follow L(s, T0) → ∞ when T0 → ∞. Excluding specifications 6 and 7, the results are as

follows: for T0 = 12, the probability at the 5% and 10% level are 10.8% and 19.4% respectively;

for T0 = 32, the probabilities are 9.9% and 17.9%; for T0 = 100, the probabilities are 8.4% and

15.0%; and for T0 = 400, the probabilities are 7.9% and 14.0%. These results provide evidence

that when a specification is used which tends towards L(s, T0) → ∞ for which the asymptotic

equivalence theorem holds, large values of T0 do indeed attenuate the specification-searching

problem in SCMs. Nevertheless, specification searching opportunities are not completely erad-

icated, especially as even for cases where T0 is extremely large, as with T0 = 400, there is still

some room for specification-searching. The disparity between the results in Panel A and Panel B

is because as L(s, T0) → ∞ for specifications 1 to 5, the weights assigned to each SCE are more

correctly allocated. For specifications 6 and 7, this is not the case, and as a result, specifications

6 and 7 allow for divergent SCEs, causing higher p-values.

Table 3 shows the opportunities for specification-searching opportunities for the ‘DGP incl.

covariates; covariate specifications’ case. It can be seen that the p-value also reduces as T → ∞.

The p-values also decrease more substantially when specifications 6 and 7 are excluded. This

difference between the p-values for T0 = 12 and T0 = 400 for Panel A is 0.023 whereas for Panel

B it is 0.041. The reduction in p-values as T0 increases is twice as large, whereas the difference

in the number of specifications in each panel is only approximately 30%. This indicates that,

as theoretically founded in Section 3.2, the asymptotic equivalence theorem is evident from the

results as specifications 6 and 7 do not follow the asymptotic equivalence theorem.
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Table 3: Specification searching opportunities for the ‘DGP incl. covariates; covariate
specifications’ case

5% test 10% test

Panel A: Specifications 1 to 7

T0 = 12 0.153 0.243
(0.011) (0.013)

T0 = 32 0.129 0.231
(0.011) (0.013)

T0 = 100 0.140 0.245
(0.011) (0.013)

T0 = 400 0.130 0.229
(0.011) (0.013)

Panel B: Specifications 1 to 5

T0 = 12 0.119 0.202
(0.009) (0.012)

T0 = 32 0.088 0.170
(0.009) (0.012)

T0 = 100 0.089 0.166
(0.009) (0.012)

T0 = 400 0.078 0.135
(0.009) (0.012)

Notes: This table presents the probabilities of rejecting the null hypothesis of no treatment effect in at least one
specification for the given set of specifications at the 5 and 10 percent significance levels. The results are based
on 3,900 observations.

These results for the ‘standard DGP; standard specifications’ and ‘DGP incl. covariates;

covariate specifications’ cases align closely with the original results found in the paper by Ferman

et al. (2020). While some results deviate, they are always within one standard deviation of the

value found in the paper of Ferman et al. (2020). It is notable that in the reproduced findings

in Tables 2 and 3, the standard deviations are larger than in the original paper, often around

three to four times as large. This is due to the reduced number of observations used in the

reproduced findings, 3,900 to be exact, while in the original paper there are 10,000. These result

in a higher and lower standard deviation, respectively. In the reproduced results of Table 3,

there are some simulations which yield a p-value that is only just within, or just outside, one

standard deviation of the original p-values found in Ferman et al. (2020). This is the case for

both panels and significance levels, but only for the pretreatment periods T0 = {12, 32}. This

bias is likely the result of a reduced number of observations used. As T0 increases to 100 and

400, there is less bias in the construction of SCUs, due to a better balance being made possible,

and thus less room for deviation. This explains why the p-values for higher T0 deviate less from

that of Ferman et al. (2020).

The results above allow for a main conclusion to be drawn from this Monte Carlo simula-

tion: when T0 is large enough and the asymptotic equivalence conditions (L(s, T0) → ∞ when

T0 → ∞) hold for the set of specifications, the opportunities for specification-searching de-

crease substantially. However, in empirical settings these conditions often do not hold and thus

specification-searching remains a relevant problem.

Additional deductions on specification-searching opportunities using the results are described

below. In Appendix B, it can be seen that when specification searching opportunities are in-
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vestigated for the ‘DGP incl. covariates: standard specification’ and ‘standard DGP; covariate

specification’ case, the p-values do not differ much from the results in Tables 2 and 3. There are

two useful results to note which are beneficial for later investigations. One is that when using

a standard DGP, specification searching opportunities slightly decrease when covariate specific-

ations are used. Second, when using a DGP including covariates, there are less specification

searching opportunities when using standard specifications 1 to 5 for T0 = 12.

In Appendix C, Table 11 shows that specifications 6 and 7 most frequently construct SCUs

that produce different SCEs to specification 1 for the covariate case. It also shows that spe-

cification 6 tends to deviate from specification 1 more frequently than specification 7, and thus

provides significant results most often. This suggests that, in our experiments, using the mean

of pretreatment outcome lags as a specification along with covariates, provides opportunities for

specification searching. Therefore, caution should be taken when choosing to use specification

6.

5.1.2 Average Root-MSPEs (Extension)

Table 4: Average Root-MSPE for different specifications and DGPs

Specifications
1 2 3 4 5 6 7

Panel A: Standard DGP; standard specifications
T0 = 12 0.156 0.172 0.185 0.167 0.167 0.314 0.224
T0 = 32 0.142 0.147 0.155 0.144 0.144 0.314 0.222
T0 = 100 0.137 0.139 0.141 0.138 0.138 0.315 0.220
T0 = 400 0.136 0.136 0.137 0.136 0.136 0.314 0.219

Panel B: DGP incl. covariates; covariate specifications
T0 = 12 0.155 0.171 0.178 0.158 0.158 0.272 0.182
T0 = 32 0.142 0.147 0.155 0.145 1.145 0.275 0.178
T0 = 100 0.138 0.139 0.141 0.139 0.138 0.269 0.175
T0 = 400 0.137 0.137 0.138 0.137 0.137 0.270 0.175

Panel C: DGP incl. covariates; standard specifications
T0 = 12 0.155 0.173 0.186 0.166 0.166 0.340 0.234
T0 = 32 0.141 0.145 0.152 0.144 0.143 0.346 0.237

Panel D: Standard DGP; covariate specifications
T0 = 12 0.157 0.174 0.176 0.159 0.158 0.271 0.180
T0 = 32 0.141 0.145 0.152 0.144 0.143 0.270 0.176

Notes: This table presents the average root-MSPEs for different combinations of specifications, DGPs and T0.
The results are based on 12,000 observations.

The influence of the asymptotic equivalence theorem is evident from the root-MSPE values as

well. Using Table 4, it can be seen that the trend is that as T0 increases, the SCUs become more

accurate and as a result the root-MSPEs reduce, this is evident from all four panels. However,

this is not the case for specifications 6 and 7, which retain the same values as T0 increases. For

specifications 6 and 7, L(s, T0) → ∞ does not hold as T0 → ∞, and therefore specifications

6 and 7 do not become more accurate. Less disparate SCUs are often implied when root-

MSPEs decrease, and as a result, opportunities for specification-searching can be attributed

to specifications 6 and 7. This is supported by the findings of Appendix C as well. These

findings therefore support the asymptotic equivalence theorem of Ferman et al. (2020), as larger
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root-MSPEs indirectly imply more disparate SCEs, and more opportunities for specification-

searching.

This table also identifies many of the theoretical findings of Section 3. Firstly, it is evident

that covariates can be more relevant for certain specifications. In Panel A, there is a large

difference between the root-MSPEs of specifications 1 to 5 (≈ 0.170 for T0 = 12), and 7 (≥ 0.220)

for all periods T0. In Panel B however, especially for smaller values of T0, the difference between

root-MSPEs of 1 to 5 (≈ 0.170 for T0 = 12) and 7 (≥ 0.175) is much smaller. Thus, when

covariates are included in a model with low T0, given that they are relevant, the performance of

specification 7 improves relatively more than specifications 1 to 5.

In Section 3, it was established that in cases where there are less pretreatment periods, the

inclusion of covariates can either cause or eliminate biases. Covariates do eliminate some bias

for the case when T0 = 12 when comparing Panel B to Panel C. For T0 = 12, specification 1 of

Panel C performs identically to its counterpart in Panel B (0.155), specifications 2 to 5 obtain

slightly higher root-MSPEs, and specifications 6 and 7 obtain dramatically higher root-MSPEs.

This result highlights that covariates can reduce biases when they are relevant. Furthermore,

it emphasizes the importance that covariates have when L(s, T0) is low. With low L(s, T0), the

weights are likely to be more equally divided between the covariates and pretreatment outcome

lags. The inclusion of covariates therefore helps to eliminate bias, as found by Botosaru and

Ferman (2019). At the same time, irrelevant covariates may invite multicollinearity among the

predictors, causing extra biases. However, the results in Panel D show that including irrelevant

covariates in the specifications actually improve the forecasts and reduce average root-MSPEs.

This is a surprising result as it contradicts Botosaru and Ferman (2019), but could potentially be

attributed to the fact that the covariates in the specification may still provide some information

in the SCM. Possibly, the covariates may act as indicators for which unit j is being addressed,

as the covariate vector Zj takes value 1 for j = 1, ..., 10 and 0 for j = 11, ..., 20.

Section 3 also discussed the increasing irrelevance of covariates as T0 increases. One of

the reasons is because a balance on a large number of pretreatment outcome lags implies an

approximate balance on covariates: for T0 = 400 , approximately the same root-MSPEs are

found for specifications 1 to 5 in Panel A and Panel B. This suggests that the distortionary

effect of the covariates in the DGP are overcome even for specifications that barely assign

weights to the covariates such as specification 1. Another reason is the different assignation of

weights when all covariates are included, the indifference of the results for T0 = 32 in Panel

C and Panel B also suggests that as L(s, T0) increases, covariates become redundant. In fact,

the inclusion of covariates at large T0 may potentially even assign unnecessary weights to the

covariate component in the inner optimization (10), causing a bias due to irrelevant covariates as

stated in Botosaru and Ferman (2019). The slightly better root-MSPEs of Panel C for T0 = 32

compared to Panel B underscore the dangers of including covariates for large T0. Thus, the use of

more pretreatment outcomes diminishes the relevance and explanatory power of the covariates.

It can also be identified that some specifications have a better forecasting accuracy, and that

this is not attributable to differences in T0 or covariates. A common trend is that specifications

with the same number of L(s, T0), specifications 3, 4 and 5, differ in predictive performance

depending on the specific pretreatment outcome lags included. From Table 4 it can be seen that
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specifications with lags spread over T0 (i.e. 4, 5) perform better than those only including the

first half (i.e. 3). This suggests specifications with more spread capture more information and

have better forecasting accuracy.

The results in Table 4 do at first sight provide some inconsistencies with the results for

specification-searching opportunities. As stated before, when using a DGP including covariates,

standard specifications 1 to 5 (Panel C) for T0 = 12 provide less specification searching op-

portunities (Table 9) than covariate specifications (Table 3). This occurs despite the average

root-MSPE being higher for the standard specification case, which would lead one to expect more

disparate SCUs and thus more specification searching opportunities. However, this could be ex-

plained by standard specifications producing more similar SCUs. It was previously mentioned

that, for the standard DGP cases, specification-searching opportunities are lower at T0 = 32

when using covariate specifications (Table 10) than when using standard specifications (Table

2). By looking at the average root-MSPEs in Table 4, it can be seen that this occurs despite

the average root-MSPEs for specifications 1 to 5 being the same for both types of specifications.

The disparity is likely then caused by specifications 6 and 7 which construct more disparate

SCUs when the standard specifications are used.

Table 5: Fraction of weights in V-matrix assigned to covariates

Specifications
1 2 3 4 5 6 7

Panel A: DGP incl. covariates; covariate specifications
T0 = 12 0.022 0.124 0.210 0.224 0.233 0.487 0.298
T0 = 32 0.029 0.036 0.106 0.117 0.111 0.411 0.325

Panel B: Standard DGP; covariate specifications
T0 = 12 0.020 0.088 0.177 0.183 0.182 0.547 0.247
T0 = 32 0.028 0.040 0.085 0.082 0.086 0.483 0.290

Notes: This table presents the average fraction of weights assigned to covariates per specification, and T0. The
results are based on 400 iterations of the Monte Carlo simulation.

Table 5 indicates the fraction of weights in the V-matrix assigned to covariates. This is only

done for the cases where covariate specifications are used. Panel A indicates that specification 1

barely assigns weights to covariates, supporting the findings of Kaul et al. (2022) that covariates

are rendered irrelevant when all pretreatment outcomes are balanced. On the other hand, for

specifications 6 and 7, the covariates are much more important indicating that for low L(s, T0)

covariates have relatively more explanatory power. This is also in line with the previous findings

of this paper. Finally, as T0 increases from 12 to 32, covariates are assigned less weights in the

V matrix. This is in line with the theory of Kaul et al. (2022) that the pretreatment outcome

balance is prioritized in the outer optimization. As a result, covariates attain less weights.

The results in this table eliminate the possibility of overlooking covariates, and allow for the

differences in root-MSPEs found in Table 4 to be attributed to the covariates.

Panel B confirms that covariates are still influential in determining outcomes even when

they are supposedly uninformative. This is once again indicative of the covariates maintaining

explanatory power despite the DGP not including covariate effects.
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5.1.3 The case for 4 pretreatment periods (Extension)

Table 6: Specification searching using a stationary model with time-invariant covariates for
T0 = 4

5% test 10% test

Specifications 1 to 7

Stand. DGP; Stand. spec. 0.178 0.288
(0.011) (0.014)

DGP incl. cov.; Cov. spec. 0.171 0.274
(0.011) (0.014)

DGP incl. cov; Stand. spec. 0.176 0.298
(0.011) (0.014)

Notes: This table presents the probabilities of rejecting the null hypothesis of no treatment effect in at least one
specification for the given set of specifications at the 5 and 10 percent significance levels. The results are based
on 3,000 observations.

Table 7: Average Root-MSPE for standard specifications and standard DGP, for T0 = 4

Specifications
1 2 3 4 5 6 7

Standard DGP; Standard specifications 0.229 0.264 0.288 0.286 0.275 0.316 0.241
DGP incl. covariates; Covariate specification 0.236 0.238 0.251 0.252 0.246 0.282 0.226
DGP incl. covariates ; Standard specification 0.236 0.267 0.308 0.304 0.294 0.343 0.253

Notes: This table presents the average root-MSPEs for different combinations of specifications and DGPs for
T0 = 4. The results are based on 3,000 observations.

The results in Tables 6 and 7 help explain the case for covariates when T0 and therefore

also L(s, T0) is small. Table 6 confirms that specification-searching opportunities are higher for

larger T0 as is suggested by Ferman et al. (2020). It can be seen however, that the ‘DGP incl.

covariates; covariate specification’ case has slightly reduced specification searching opportunities

when T0 = 4. This suggests covariates are more important in the construction of similar SCUs,

likely because they hold more explanatory power. This suggests covariates should be included

to prevent specification searching when T0 is small. Additionally, looking at Table 7 it can

be seen that in the cases where DGP incl. covariates, covariate specifications reduce average

root-MSPEs for all specifications compared to the standard specifications. Moreover, there

is evidence that it is preferable to not include all pretreatment outcomes in the specification

alongside covariates as these render covariates irrelevant as found by Kaul et al. (2022). As

seen by the result for specification 7 in the ‘DGP incl. covariates; covariate case’, including

covariates with a specification that does not use all pretreatment outcomes may provide better

results (0.226) than when using covariates alongside all pretreatment outcomes (0.236). As T0

is small, a balance on the pretreatment outcomes does not infer an approximate balance on

the covariates as is the case for large T0. These results highlight how covariates play a more

important role when T0 is small, as is often the case in empirical research.

25



5.1.4 Discussion (Extension)

Some limitations are discussed here. It is important to address that the covariates in the Monte

Carlo simulation have effects of a certain magnitude θt. Notably, in the simulation carried out

by Ferman et al. (2020), E(θt) = 0 and V ar(θt) = 1. In reality, covariates may have a stronger

or weaker expected effect, or be more or less volatile, causing covariates to become more or

less important in the construction of SCUs. At the same time, it is usually not the case that

when covariates are applied, that just one covariate is present. When multiple covariates are

used, there is also more room for potential multicollinearity that needs to be taken account of.

Additionally, according to Botosaru and Ferman (2019), when covariates are in fact irrelevant for

the DGP at hand, we would expect biases to increase and specification-searching opportunities

to increase, unlike the results of this paper.

It should also be pointed out that due to time constraints some results were not able to

be fully completed. The fact that individual simulations were run a total of 100 times means

that there exists some uncertainty in the results. Therefore, further research should attempt

to replicate these results for a higher number of simulations. Time constraints also prevented

certain further investigations. The results above point to some interesting areas for further

research. One such area is the predictor weight matrix V, by manually altering the composition

of this matrix a more comprehensive picture of the importance of covariates could be achieved.

Additionally, an investigation into different DGPs and the existence of specification-searching

opportunities subject to these differences could provide more accurate recommendations of which

specification-searching opportunities are prevalent in which research applications.

Another limitation is that we have only investigated time-invariant covariates. In cases where

covariates have nonlinear effects on the outcome, which can often be the case in economics, a

balance on covariates over time might be required as well. This is an interesting topic for future

research.

5.1.5 Recommendation (Replication)

To minimize the opportunities for specification-searching, Ferman et al. (2020) provide one main

recommendation. They suggest that the specification in which all pre-treatment outcome values

are included should be the main specification used in SCMs. This is because this specification

is able to minimize the pre-treatment root-MSE and therefore is best suited to provide the most

reliable SCE. By reaching a consensus on which specification should be used as a standard, this

removes the possibility for arbitrary decisions on the choice of pre-treatment outcome lags that

allow for specification-searching.

Additionally, researchers should only deviate from this specification when the researcher be-

lieves that a balanced set of covariates is also required. Ferman et al. (2020) recommend that in

this case not all pre-treatment outcome lags should be included due to the findings of Kaul et

al. (2022). Instead, only specifications that meet the conditions outlined in section 3.2 should

be used in this case. They also suggest presenting several different specifications in this case

to provide a reliable result, and that specification 1 in section 4.2.2 is always included as a

benchmark. However, when including multiple specifications, it is difficult to construct a valid

hypothesis test. This is because including a test for which all specifications reject the null would
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be overly conservative, and a test rejecting for at least one would lead to over-rejecting the null.

Combining all the individual test-statistics also does not come with an obvious point-estimator

(Imbens & Rubin, 2015). To solve this issue, two solutions are provided. First, an inference

procedure using new test statistics can be used. To do this, we can use a weighted average of

the point-estimator which corresponds to the weighted average of the test-statistics used as a

test function. Another method to do this is to invert a combination of test-statistics to compute

a confidence set containing all treatment-effect functions within a pre-specified class. A second

solution is to consider a criterion for choosing a specification. If this criterion is followed, there is

no room for subjective choice of specifications by the researcher. This would limit the room for

specification searching. Limiting the freedom of researchers in terms of choice of pretreatment

outcome values and covariates consequently limits specification-searching opportunities. How-

ever, it should be noted that researchers could still find specification-searching opportunities in

other dimensions, such as deciding when the treatment takes place.

5.1.6 Revised Recommendations using Covariate Analysis (Extension)

While Ferman et al. (2020) address that extra steps should be taken when including covariates,

their explanation is somewhat reductive and does not appreciate the full importance of covari-

ates. In their table of published articles using SCM (Table 1), over three quarters of the papers

used covariates. Moreover, those papers using covariates in their specifications differ drastically

in the pretreatment outcome lags or linear combinations thereof used. Several use the mean,

several use a short set of pretreatment outcome lags and some use all lags. To further explain the

consequences of these differences in specifications and reduce the possibilities for specification-

searching, some supplementary recommendations concerning covariates are included here.

When researchers design their SCM, they must first decide on whether to include covariates.

This should be done based on several conditions. Firstly, how many pretreatment periods

T0 are available to the researcher and how explanatory are pretreatment outcomes relative to

covariates? If T0 is extensive and the application of the research concerns outcome variables

that are most accurately predicted by its lags, such as stock prices or inflation, one should

opt for the specification including all pretreatment outcome lags. In this case, as we have

seen from the results and theory of Botosaru and Ferman (2019), an approximate balance on

the covariates is implied, and balancing for covariates may impose unnecessary constraints in

the SCM. Additionally, balancing on all pretreatment outcomes may actually allow the effects

of unobserved covariates and components to be better incorporated in the SCM. This could

be useful in applications where observed covariates are limited in their explanatory power or

when unobserved components are deemed influential. It is not always beneficial to include all

pretreatment outcomes in the specification, even when T0 is large. In the case where covariates

are multicollinear or when covariates have a nonlinear effect on the outcome, the approximate

balance of covariates is not implied by a perfect balance in pretreatment outcomes. In this

case, it is essential that a reduced number of pretreatment outcome lags are included in the

specification alongside covariates. This ensures that covariates are balanced as well and thus

enables us to derive bounds on the bias of the estimator. When T0 is small however, as is the

case for many empirical applications, it is often beneficial to include covariates. Additionally,
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the results on the predictor weight V matrix, and the results of Kaul et al. (2022) indicate that

also with low values of T0, not all pretreatment outcome values should be used if covariates

hold substantial explanatory power. This is because covariates have relatively more explanatory

power at low T0, and there are not enough pretreatment outcome lags in the specification

to assure an approximate balance on covariates, thus allowing for more bias as indicated by

Botosaru and Ferman (2019).

If the decision is made to include covariates, the next consideration is which covariates to

include and which other predictors should be included alongside. Covariates that should be

included are those with significant explanatory power in that application according to theory or

practical experiments as in Gilchrist et al. (2023). Care should be taken to exclude irrelevant

covariates as this would cause extra biases as stipulated by Botosaru and Ferman (2019). Using

the results of this paper, it is possible to narrow-down the choice for predictors alongside cov-

ariates. This should be a small sample spread out over the range of T0. This small sample is

found to be more informative than simply using the mean as a predictor (Table 4), while still

assigning a high proportion of weights to the covariates, as seen by the results in Table 5. As

T0 decreases, the role of covariates increases.

Ultimately however, it is the decision to include or exclude covariates that allow for the

most specification-searching opportunities, especially when T0 is small. This is evident from the

results of this paper, but also from the paper of Kaul et al. (2022), who reassess the findings of

Billmeier and Nannicini (2013), uncovering substantial differences in predictions when correctly

incorporating covariates in the SCM. Therefore, if uncertain, placebo tests should be carried out

for different validation periods using both specifications without covariates and specifications

correctly incorporating covariates. Thus, to eliminate the possibilities for specification-searching

within a covariate context, researchers should explain why they opted for including or excluding

covariates and additionally, if covariates are included, how they ensured covariates were included

in the SCM in the correct fashion. This should be done using insights from this paper as well

as that of Botosaru and Ferman (2019) and Kaul et al. (2022).

6 Empirical Application (Replication and Extension)

The empirical application for which we measure the possibilities for specification searching re-

volves around the German Reunification of 1991 and its effect on average GDP per capita. This

case is taken as it is a common application used in research concerning SCMs and is extensively

discussed in the paper by Abadie et al. (2015) as well as Ferman et al. (2020). The data set runs

from 1960-2003. As the Reunification (the treatment) took place in 1991, the pre-treatment

period spans from 1960-1990 and the post-treatment period spans from 1991-2003. The pre-

treatment period is also split up into a training period of 1971-1980 and a validating period of

1981-1990. The donor pool of control units include 16 Organisation for Economic Co-operation

and Development (OECD) countries.

As in Section 4.2, different specifications are used to measure the effect of a treatment at

the 10% level on average GDP per capita. Here, 14 specifications are used, the same seven as

in Section 4.2.2, with an additional set of these seven specifications that also include a set of

5 covariates. These covariates are trade openness, inflation rate, industry share, schooling, and
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investment rate. We present the p-value results in Table 8 below.

Table 8: Specification searching using a stationary model

Standard Covariates

Specifications 1 to 7

1: All values 0.059 0.059
2: 3

4
of all values 0.059 0.118

3: 1
2
of all values 0.118 0.059

4: Odd values 0.059 0.059
5: Even values 0.118 0.059
6: Mean 0.588 0.059
7: Three values 0.353 0.059

Notes: P-values of rejecting the null hypothesis of no treatment effect, for each type of specification, both for
those without covariates and those with.

First and foremost, it is evident from the table above that the researcher would be able

to pick a specification for which there is a significant result. Nine specifications are equal to

0.059 ≈ 1
17 , meaning there is a significant treatment effect, while four specifications are larger,

which would result in a rejection of the null hypothesis of a significant treatment effect. These

contradictory conclusions are due to the specification-searching issue.

Following the recommendations of Ferman et al. (2020) would lead us to two different

strategies for choosing specifications. One strategy, if we believe covariates to be uninformative,

is to choose standard specification 1 containing all pre-treatment outcome lags. On the other

hand, if we believe that covariates are informative, we look at specifications 1 to 5 containing

covariates according to Ferman et al. (2020). There is not a strong consensus due to specification

2, and thus Ferman et al. (2020) suggest using a test statistic which combines the test statistics

of specifications 1 to 5. This can be done using a mean of the root-MSPE test statistic which is

equal to 0.059, indicating a statistically significant impact on West-Germany’s per-capita GDP.

Alternatively, a confidence set can be computed, which provides a similar conclusion. These

findings therefore strongly suggest that there is a significant and negative treatment effect in

the long run.

Following the revised recommendations of this paper however, would suggest that covariates

are highly explanatory in this application. This is likely due to the nonlinear relationships

existing between covariates and outcomes. As can be seen from Table 8, covariates specifications

are more conclusive and coherent than standard specifications. The only anomaly is specification

2. Using the information of this paper, this can potentially be attributed to not assigning enough

weights to the covariates due to the inclusion of too many pretreatment outcomes, but at the

same time not including enough pretreatment outcomes to imply an approximate balance on

covariates. This is not an issue for the standard case as the covariate component of weight

matrix W is likely still given some weight and therefore the inclusion of covariates confounds

the SCM. Instead, using standard specification 1 and covariate specifications 7, as well as 4 or 5,

could help gain a more complete picture. By then analyzing root-MSPEs for placebo tests, an

optimal specification can be chosen. An average of these values indicates an identical conclusion

as when using the recommendations of Ferman et al. (2020).
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7 Conclusion

This paper has explored the potential of covariates to allow for specification-searching opportun-

ities. It has done this by incorporating elements and theoretical as well as empirical findings from

Botosaru and Ferman (2019) and Kaul et al. (2022) into the framework Ferman et al. (2020).

This paper finds that the decision to include covariates and in which manner they should be

included should be handled on a case-by-case basis. This is because there are benefits and draw-

backs both when including covariates and when excluding covariates. To maximise the accuracy

of SCMs and remove specification-searching opportunities, this paper advocates the use of co-

variates in contexts where they have important explanatory power. This is done using results

from Monte Carlo simulations based on the work by Ferman et al. (2020). They should especially

be considered when the number of pretreatment periods is small, and/or when covariates have

multicollinear or nonlinear effects on the outcome variable. These recommendations are made

after analysing experiments wherein specification searching opportunity p-values, average root-

MSPEs and V matrices are calculated and compared for different types of specifications, DGPS

and pretreatment time periods T0. If the decision is made to include covariates in the SCM, it is

essential that not all pretreatment outcome lags are included alongside them. Instead, a small

set of pretreatment outcome lags, spread over the span T0, performs best. Finally, the empir-

ical application on German reunification is used to illustrate how a researcher should approach

the choice of including covariates and how to include them. This paper therefore provides an

extensive insight into how the choice of including covariates allows for specification-searching

opportunities and which procedures should be taken to best avoid this.
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A Additional assumptions and definitions required 3.3

We also require the Assumptions relating to the unobserved transitory shocks εj,t by Abadie et

al. (2010):

(a)εj,t i.n.i.d.;

(b)E[εj,t|Zj , µj ] = 0;

(c)E[|εj , t|p] < ∞,

(16)

For some even integer p ≥ 2, for all t = −T0+1, ..., 0 and i = 2, ..., J+1. Additionally, we define

m̄p(T0) ≡ max
i=2,...,J+1

 0∑
s=−T0+1

E[|εj,s|p]

 ,

where m̄p(T0) can be interpreted as a measure for the scale of the transitory shock. Also let

γ̄(T0) ≡ max
t=−T0+1,...,0,1,...,T ;s=1,...,F

γ

where γ̄(T0) can be interpreted as the effect of the (un)observed covariate with the largest

absolute shock.

B Specification searching opportunities

Table 9: Specification searching opportunities for the ‘covariate DGP; standard specifications’
case

5% test 10% test

Panel A: Specifications 1 to 7

T0 = 12 0.143 0.254
(0.011) (0.013)

T0 = 32 0.132 0.235
(0.011) (0.013)

Panel B: Specifications 1 to 5

T0 = 12 0.105 0.188
(0.009) (0.012)

T0 = 32 0.086 0.169
(0.009) (0.012)

Notes: This table presents the probabilities of rejecting the null hypothesis of no treatment effect in at least one
specification for the given set of specifications at the 5 and 10 percent significance levels. The results are based
on 3,900 observations.
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Table 10: Specification searching opportunities for the ‘standard DGP; covariate specifications’
case

5% test 10% test

Panel A: Specifications 1 to 7

T0 = 12 0.152 0.240
(0.010) (0.013)

T0 = 32 0.138 0.238
(0.011) (0.013)

Notes: This table presents the probabilities of rejecting the null hypothesis of no treatment effect in at least one
specification for the given set of specifications at the 5 and 10 percent significance levels. The results are based
on 3,900 observations.

C Sets of two

It is possible to gain an indication which specification is responsible for the most disparate SCEs.

This can be done by comparing the p-values of sets of two specifications with each other. In this

setting, the sets compared all contain specification 1, the supposedly ‘optimal’ specification, as

well as one of the other 6 specifications. This allows these 6 specifications to be compared so

as to determine which one of these specifications is most often responsible for an SCE which is

significantly different from that of specification 1. The results are shown in Table 11. Please

note that the validity of this investigation assumes that specification 1 is ‘optimal’. In order to

improve the interpretability of these results, only the results at the 5% significance levels have

been included.

Table 11: Specification searching using a stationary model with time-invariant covariates - Sets
of two Specifications

Specifications
2 3 4 5 6 7

T0 = 12 0.070 0.073 0.073 0.070 0.087 0.080
(0.008) (0.008) (0.008) (0.008) (0.009) (0.009)

T0 = 32 0.064 0.067 0.061 0.060 0.081 0.076
(0.008) (0.008) (0.008) (0.008) (0.009) (0.009)

T0 = 100 0.062 0.067 0.059 0.067 0.089 0.081
(0.008) (0.008) (0.008) (0.008) (0.009) (0.009)

T0 = 400 0.064 0.065 0.062 0.058 0.092 0.078
(0.008) (0.008) (0.008) (0.008) (0.009) (0.009)

Notes: This table presents the probabilities of rejecting the null hypothesis of no treatment effect in at least one
specification, for each set of two specifications, where each set includes specification 1, results are only shown at
the 5 percent significance level. The results are based on 3,900 observations.

D Programming code

Obtaining root-MSPE values in Stata

forval i = 1/7 {

local varname = "rmspe_32_‘i’"

gen temp_‘i’ = sqrt(post_‘i’ * 10) / 10 if t0 == 32

summarize temp_‘i’
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rename temp_‘i’ ‘varname’

}

###############################################################################

# Article: Specification Search with the Synthetic Control Method: DGP incl. covariates; Standard DGP

# Authors: Bruno Ferman, Cristine Pinto and Vı́tor Possebom

# Function: Data Generating Process.

###############################################################################

dgp <- function(J, T0, Tf, g) {

# Parameter to generate our AR processes

rho <- 0.5

sd.rho <- sqrt(1-rho^2)

# Create an empty dataframe.

data <- as.data.frame(matrix(NA, J*Tf, 4))

# Create the unit identifiers.

for (j in 1:J) {

data[(1 + (j-1)*Tf):(Tf + (j-1)*Tf), 1] <- rep(j, Tf)

}

# Create the time identifiers.

data[, 2] <- rep(seq(from = 1, to = Tf, by = 1), J)

# Create the common time trend

delta <- matrix(rnorm(Tf, mean = 0, sd = 1), Tf, 1)

# Create the stationary components

lambda <- matrix(NA, Tf, 10)

for (k in 1:10) {

lambda[, k] <- matrix(arima.sim(list(ar = rho), n =Tf, sd=sd.rho))

}

# Create the covariates

Z <- as.numeric(data[, 1] <= 10)

data[, 4] <- Z

psi <- matrix(rnorm(Tf, mean = 0, sd = 1), Tf, 1)

# Create the observed outcome

for (j in 1:J) {

# Group indicator

mu1 <- matrix(c(as.numeric(j <= 2), as.numeric((j > 2) & (j <= 4)),

as.numeric((j > 4) & (j <= 6)),

as.numeric((j > 6) & (j <= 8)),

as.numeric((j > 8) & (j <= 10)),

as.numeric((j > 10) & (j <= 12)),

as.numeric((j > 12) & (j <= 14)),

as.numeric((j > 14) & (j <= 16)),
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as.numeric((j > 16) & (j <= 18)),

as.numeric(j > 18)), 10, 1)

# Error term

epsilon <- matrix(rnorm(Tf, mean = 0, sd = sqrt(0.1)), Tf, 1)

# Observed outcome

data[(1 + (j-1)*Tf):(Tf + (j-1)*Tf), 3] <-

delta + lambda %*% mu1 + psi * as.numeric(j <= 10) + epsilon

}

data <- data[, -4]

return(data)

###############################################################################

# Article: Specification Search with the Synthetic Control Method: Standard DGP: covariate specifications

# Authors: Bruno Ferman, Cristine Pinto and Vı́tor Possebom (adjusted by Hendrik J. de Boer)

# Function: Data Generating Process.

###############################################################################

dgp <- function(J, T0, Tf, g) {

# Parameter to generate our AR processes

rho <- 0.5

sd.rho <- sqrt(1-rho^2)

# Create an empty dataframe.

data <- as.data.frame(matrix(NA, J*Tf, 4))

# Create the unit identifiers.

for (j in 1:J) {

data[(1 + (j-1)*Tf):(Tf + (j-1)*Tf), 1] <- rep(j, Tf)

}

# Create the time identifiers.

data[, 2] <- rep(seq(from = 1, to = Tf, by = 1), J)

# Create the common time trend

delta <- matrix(rnorm(Tf, mean = 0, sd = 1), Tf, 1)

# Create the stationary components

lambda <- matrix(NA, Tf, 10)

for (k in 1:10) {

lambda[, k] <- matrix(arima.sim(list(ar = rho), n =Tf, sd=sd.rho))

}

# Create the 2 stationary components when g == 2

phi <- matrix(NA, Tf, 2)

for (r in 1:2) {

phi[, r] <- matrix(arima.sim(list(ar = rho), n =Tf, sd=sd.rho))

}

# Create the covariates
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Z <- as.numeric(data[, 1] <= 10)

data[, 4] <- Z

# psi <- matrix(rnorm(Tf, mean = 0, sd = 1), Tf, 1)

# Create the observed outcome

for (j in 1:J) {

# Group indicator

mu1 <- matrix(c(as.numeric(j <= 2), as.numeric((j > 2) & (j <= 4)),

as.numeric((j > 4) & (j <= 6)),

as.numeric((j > 6) & (j <= 8)),

as.numeric((j > 8) & (j <= 10)),

as.numeric((j > 10) & (j <= 12)),

as.numeric((j > 12) & (j <= 14)),

as.numeric((j > 14) & (j <= 16)),

as.numeric((j > 16) & (j <= 18)),

as.numeric(j > 18)), 10, 1)

# Group indicator when g == 2

mu2 <- matrix(c(as.numeric(j <= 10), as.numeric(j > 10)), 2, 1)

# Error term

epsilon <- matrix(rnorm(Tf, mean = 0, sd = sqrt(0.1)), Tf, 1)

# Observed outcome

data[(1 + (j-1)*Tf):(Tf + (j-1)*Tf), 3] <-

delta + as.numeric(g == 10) * lambda %*% mu1 +

as.numeric(g == 2) * phi %*% mu2 + epsilon

}

return(data)

}

###############################################################################

# Article: Cherry Picking with the Synthetic Controls

# Authors: Bruno Ferman, Cristine Pinto and Vı́tor Possebom (adjusted by Hendrik J. de Boer)

# Code objective: This code runs a piece our Monte Carlo Experiment. vexperiment covariates runt012

###############################################################################

# Import libraries and functions

library("methods")

library("Synth")

library("doParallel")

source(’function_dgp.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_RMSPE_12preperiods.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_RMSPE_32preperiods.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_RMSPE_100preperiods.R’, encoding=’UTF-8’, echo=TRUE)
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source(’function_RMSPE_400preperiods.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_RMSPE.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_SWWU.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_VoW.R’, encoding=’UTF-8’, echo=TRUE)

source(’function_WA1.R’, encoding = ’UTF-8’)

source(’function_VoGM1.R’, encoding = ’UTF-8’)

source(’function_GA1.R’, encoding = ’UTF-8’)

source(’function_VoGM2.R’, encoding = ’UTF-8’)

source(’function_VoGM3.R’, encoding = ’UTF-8’)

# Setup parallel backend to use all but one of the cores.

n.cores <- detectCores() - 1

cl <- makeCluster(n.cores)

registerDoParallel(cl)

# Define the parameters.

lround <- 11

uround <- 20

T0 <- 12

g <- 10 # How many groups do we have?

MC <- 5 # How many Monte Carlo repetitions does each round have?

J <- 20 # How many units do we observe?

row_fraction_1_total <- rep(0, 13)

row_fraction_2_total <- rep(0, 10)

row_fraction_3_total <- rep(0, 7)

row_fraction_4_total <- rep(0, 7)

row_fraction_5_total <- rep(0, 7)

row_fraction_6_total <- rep(0, 2)

row_fraction_7_total <- rep(0, 4)

for (r in lround:uround) {

# Define parameters that change inside the loop.

t <- ifelse(T0 == 12, 1, ifelse(T0 == 32, 2, ifelse(T0 == 100, 3, 4)))

seed <- as.numeric(

paste(r, which(c(2, 10) == g), t, sep = ""))

Tf <- T0 + 10

# Run the Monte Carlo function.

###########################################################################

# Set the seed for the random number generator.

set.seed(seed)

# Define the null hypothesis of no effect whatsoever.

nullhypothesis <- matrix(rep(0, Tf), Tf, 1)

#####################################

# Create a matrix that will save all my results
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MCresults <- matrix(NA, 20*MC, 160)

# Run MC Monte Carlo repetitions.

counter <- 0

attempt <- 0

while (counter < MC) {

attempt <- attempt + 1

# Print the seed number and the number of simulations associated to it that

# have been already succesfully performerd.

print("Seed Number:")

print(seed)

print("Monte Carlo repetition number: ")

print(counter)

print("Number of attempts: ")

print(attempt)

# Create a matrix that will temporarily save my results

MCmatrix <- matrix(NA, 20, 159)

# Generate the data for each Monte Carlo repetition using a factor model.

data <- dgp(J, T0, Tf, g)

# Conduct permutation tests with different specifications.

synth_results <- foreach(

j = 1:J, .combine = rbind, .inorder = FALSE, .errorhandling = "remove",

.packages = "Synth", .verbose = FALSE) %dopar% {

# Define the control units

controlunits <- setdiff(1:J, j)

###########

# Specification #1: All the Pre-Treatment Outcome Values.

specification <- 1

dataprep.out.spec1 <- dataprep(

foo = data,

predictors = c("V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),

special.predictors = list(

list("V3", seq(from = 1, to = 1, by = 1), "mean"),

list("V3", seq(from = 2, to = 2, by = 1), "mean"),

list("V3", seq(from = 3, to = 3, by = 1), "mean"),

list("V3", seq(from = 4, to = 4, by = 1), "mean"),

list("V3", seq(from = 5, to = 5, by = 1), "mean"),

list("V3", seq(from = 6, to = 6, by = 1), "mean"),

list("V3", seq(from = 7, to = 7, by = 1), "mean"),

list("V3", seq(from = 8, to = 8, by = 1), "mean"),

list("V3", seq(from = 9, to = 9, by = 1), "mean"),
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list("V3", seq(from = 10, to = 10, by = 1), "mean"),

list("V3", seq(from = 11, to = 11, by = 1), "mean"),

list("V3", seq(from = T0, to = T0, by = 1), "mean")),

dependent = "V3",

unit.variable = "V1",

time.variable = "V2",

treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = 1, to = T0, by = 1),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec1 <- synth(data.prep.obj = dataprep.out.spec1,

method = "BFGS")

point.estimates.spec1 <-

dataprep.out.spec1$Y0plot %*% synth.out.spec1$solution.w

gaps.spec1 <- dataprep.out.spec1$Y1plot - point.estimates.spec1

# Compute the RSMPE test statistic.

RMSPE.spec1 <- RMSPE(gaps.spec1, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe1 <- as.data.frame(

cbind(dataprep.out.spec1$Y1plot[1:T0], point.estimates.spec1[1:T0]))

lm1 <- lm(V1 ~ V2, dataframe1)

a1 <- lm1$coefficients[1]

b1 <- lm1$coefficients[2]

rsq1 <- summary(lm1)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe1$V1 - dataframe1$V2)

tempD <- as.matrix(dataframe1$V1 - mean(dataframe1$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR1 <- 1 - tempN/tempD

###########

# Specification #2: The First Three Fourths the Pre-Treatment

specification <- 2

dataprep.out.spec2 <- dataprep(

foo = data,

predictors = c("V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),

special.predictors = list(

list("V3", seq(from = 1, to = 1, by = 1), "mean"),

list("V3", seq(from = 2, to = 2, by = 1), "mean"),

list("V3", seq(from = 3, to = 3, by = 1), "mean"),
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list("V3", seq(from = 4, to = 4, by = 1), "mean"),

list("V3", seq(from = 5, to = 5, by = 1), "mean"),

list("V3", seq(from = 6, to = 6, by = 1), "mean"),

list("V3", seq(from = 7, to = 7, by = 1), "mean"),

list("V3", seq(from = 8, to = 8, by = 1), "mean"),

list("V3", seq(from = 9, to = 9, by = 1), "mean")),

dependent = "V3",

unit.variable = "V1",

time.variable = "V2",

treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = (T0/2 + 1), to = T0, by = 1),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec2 <- synth(data.prep.obj = dataprep.out.spec2,

method = "BFGS")

point.estimates.spec2 <-

dataprep.out.spec2$Y0plot %*% synth.out.spec2$solution.w

gaps.spec2 <- dataprep.out.spec2$Y1plot - point.estimates.spec2

# Compute the RSMPE test statistic.

RMSPE.spec2 <- RMSPE(gaps.spec2, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe2 <- as.data.frame(

cbind(dataprep.out.spec2$Y1plot[1:T0], point.estimates.spec2[1:T0]))

lm2 <- lm(V1 ~ V2, dataframe2)

a2 <- lm2$coefficients[1]

b2 <- lm2$coefficients[2]

rsq2 <- summary(lm2)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe2$V1 - dataframe2$V2)

tempD <- as.matrix(dataframe2$V1 - mean(dataframe2$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR2 <- 1 - tempN/tempD

###########

# Specification #3: The First Half of the Pre-Treatment Periods

# Outcome Values.

specification <- 3

dataprep.out.spec3 <- dataprep(

foo = data,

predictors = c("V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),
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special.predictors = list(

list("V3", seq(from = 1, to = 1, by = 1), "mean"),

list("V3", seq(from = 2, to = 2, by = 1), "mean"),

list("V3", seq(from = 3, to = 3, by = 1), "mean"),

list("V3", seq(from = 4, to = 4, by = 1), "mean"),

list("V3", seq(from = 5, to = 5, by = 1), "mean"),

list("V3", seq(from = 6, to = 6, by = 1), "mean")),

dependent = "V3",

unit.variable = "V1",

time.variable = "V2",

treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = (3*T0/4 + 1), to = T0, by = 1),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec3 <- synth(data.prep.obj = dataprep.out.spec3,

method = "BFGS")

point.estimates.spec3 <-

dataprep.out.spec3$Y0plot %*% synth.out.spec3$solution.w

gaps.spec3 <- dataprep.out.spec3$Y1plot - point.estimates.spec3

# Compute the RSMPE test statistic.

RMSPE.spec3 <- RMSPE(gaps.spec3, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe3 <- as.data.frame(

cbind(dataprep.out.spec3$Y1plot[1:T0], point.estimates.spec3[1:T0]))

lm3 <- lm(V1 ~ V2, dataframe3)

a3 <- lm3$coefficients[1]

b3 <- lm3$coefficients[2]

rsq3 <- summary(lm3)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe3$V1 - dataframe3$V2)

tempD <- as.matrix(dataframe3$V1 - mean(dataframe3$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR3 <- 1 - tempN/tempD

###########

# Specification #4: Odd Pre-Treatment Outcome Values.

specification <- 4

dataprep.out.spec4 <- dataprep(

foo = data,

predictors = c("V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),
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special.predictors = list(

list("V3", seq(from = 1, to = 1, by = 1), "mean"),

list("V3", seq(from = 3, to = 3, by = 1), "mean"),

list("V3", seq(from = 5, to = 5, by = 1), "mean"),

list("V3", seq(from = 7, to = 7, by = 1), "mean"),

list("V3", seq(from = 9, to = 9, by = 1), "mean"),

list("V3", seq(from = 11, to = 11, by = 1), "mean")),

dependent = "V3",

unit.variable = "V1",

time.variable = "V2",

treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = 2, to = T0, by = 2),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec4 <- synth(data.prep.obj = dataprep.out.spec4,

method = "BFGS")

point.estimates.spec4 <-

dataprep.out.spec4$Y0plot %*% synth.out.spec4$solution.w

gaps.spec4 <- dataprep.out.spec4$Y1plot - point.estimates.spec4

# Compute the RSMPE test statistic.

RMSPE.spec4 <- RMSPE(gaps.spec4, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe4 <- as.data.frame(

cbind(dataprep.out.spec4$Y1plot[1:T0], point.estimates.spec4[1:T0]))

lm4 <- lm(V1 ~ V2, dataframe4)

a4 <- lm4$coefficients[1]

b4 <- lm4$coefficients[2]

rsq4 <- summary(lm4)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe4$V1 - dataframe4$V2)

tempD <- as.matrix(dataframe4$V1 - mean(dataframe4$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR4 <- 1 - tempN/tempD

###########

# Specification #5: Even Pre-Treatment Outcome Values.

specification <- 5

dataprep.out.spec5 <- dataprep(

foo = data,

predictors = c("V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),
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special.predictors = list(

list("V3", seq(from = 2, to = 2, by = 1), "mean"),

list("V3", seq(from = 4, to = 4, by = 1), "mean"),

list("V3", seq(from = 6, to = 6, by = 1), "mean"),

list("V3", seq(from = 8, to = 8, by = 1), "mean"),

list("V3", seq(from = 10, to = 10, by = 1), "mean"),

list("V3", seq(from = T0, to = T0, by = 1), "mean")),

dependent = "V3",

unit.variable = "V1",

time.variable = "V2",

treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = 1, to = (T0 - 1), by = 2),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec5 <- synth(data.prep.obj = dataprep.out.spec5,

method = "BFGS")

point.estimates.spec5 <-

dataprep.out.spec5$Y0plot %*% synth.out.spec5$solution.w

gaps.spec5 <- dataprep.out.spec5$Y1plot - point.estimates.spec5

# Compute the RSMPE test statistic.

RMSPE.spec5 <- RMSPE(gaps.spec5, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe5 <- as.data.frame(

cbind(dataprep.out.spec5$Y1plot[1:T0], point.estimates.spec5[1:T0]))

lm5 <- lm(V1 ~ V2, dataframe5)

a5 <- lm5$coefficients[1]

b5 <- lm5$coefficients[2]

rsq5 <- summary(lm5)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe5$V1 - dataframe5$V2)

tempD <- as.matrix(dataframe5$V1 - mean(dataframe5$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR5 <- 1 - tempN/tempD

###########

# Specification #6: Mean of the Pre-Treatment Outcome Values.

specification <- 6

dataprep.out.spec6 <- dataprep(

foo = data,

predictors = c("V3", "V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),
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dependent = "V3",

unit.variable = "V1",

time.variable = "V2",

treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = 1, to = T0, by = 1),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec6 <- synth(data.prep.obj = dataprep.out.spec6,

method = "BFGS")

point.estimates.spec6 <-

dataprep.out.spec6$Y0plot %*% synth.out.spec6$solution.w

gaps.spec6 <- dataprep.out.spec6$Y1plot - point.estimates.spec6

# Compute the RSMPE test statistic.

RMSPE.spec6 <- RMSPE(gaps.spec6, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe6 <- as.data.frame(

cbind(dataprep.out.spec6$Y1plot[1:T0], point.estimates.spec6[1:T0]))

lm6 <- lm(V1 ~ V2, dataframe6)

a6 <- lm6$coefficients[1]

b6 <- lm6$coefficients[2]

rsq6 <- summary(lm6)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe6$V1 - dataframe6$V2)

tempD <- as.matrix(dataframe6$V1 - mean(dataframe6$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR6 <- 1 - tempN/tempD

###########

# Specification #7: First, Median and Last Pre-intervention period

specification <- 7

dataprep.out.spec7 <- dataprep(

foo = data,

predictors = c("V4"),

predictors.op = "mean",

time.predictors.prior = seq(from = 1, to = T0, by = 1),

special.predictors = list(

list("V3", seq(from = 1, to = 1, by = 1), "mean"),

list("V3", seq(from = T0/2, to = T0/2, by = 1), "mean"),

list("V3", seq(from = T0, to = T0, by = 1), "mean")),

dependent = "V3",

unit.variable = "V1",

time.variable = "V2",
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treatment.identifier = j,

controls.identifier = controlunits,

time.optimize.ssr = seq(from = 1, to = T0, by = 1),

time.plot = seq(from = 1, to = Tf, by = 1))

synth.out.spec7 <- synth(data.prep.obj = dataprep.out.spec7,

method = "BFGS")

point.estimates.spec7 <-

dataprep.out.spec7$Y0plot %*% synth.out.spec7$solution.w

gaps.spec7 <- dataprep.out.spec7$Y1plot - point.estimates.spec7

# Compute the RSMPE test statistic.

RMSPE.spec7 <- RMSPE(gaps.spec7, nullhypothesis, Tf, T0, specification)

# Compute a, b and Rsq

dataframe7 <- as.data.frame(

cbind(dataprep.out.spec7$Y1plot[1:T0], point.estimates.spec7[1:T0]))

lm7 <- lm(V1 ~ V2, dataframe7)

a7 <- lm7$coefficients[1]

b7 <- lm7$coefficients[2]

rsq7 <- summary(lm7)$r.squared

# Compute RSSR

tempN <- as.matrix(dataframe7$V1 - dataframe7$V2)

tempD <- as.matrix(dataframe7$V1 - mean(dataframe7$V1))

tempN <- t(tempN) %*% tempN

tempD <- t(tempD) %*% tempD

RSSR7 <- 1 - tempN/tempD

###########

# Save the useful information in a matrix

cluster <- as.numeric(paste(seed, counter, sep = ""))

return(c(synth.out.spec1$solution.v, synth.out.spec2$solution.v, synth.out.spec3$solution.v, synth.out.spec4$solution.v, synth.out.spec5$solution.v, synth.out.spec6$solution.v, synth.out.spec7$solution.v

)) }

# Test whether we estimated a synthetic control unit for each placebo unit.

if (dim(synth_results)[1] == J) {

# Update the counter

counter <- counter + 1

# Save the weights for each synthetic control unit associated with each

# placebo unit and each specification

weights1 <- as.matrix(as.vector(t(synth_results[, 1:13])), J*(J-1), 1)

weights2 <- as.matrix(as.vector(t(synth_results[, 14:23])), J*(J-1), 1)

weights3 <- as.matrix(as.vector(t(synth_results[, 24:30])), J*(J-1), 1)

weights4 <- as.matrix(as.vector(t(synth_results[, 31:37])), J*(J-1), 1)

weights5 <- as.matrix(as.vector(t(synth_results[, 38:44])), J*(J-1), 1)

weights6 <- as.matrix(as.vector(t(synth_results[, 45:46])), J*(J-1), 1)
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weights7 <- as.matrix(as.vector(t(synth_results[, 47:50])), J*(J-1), 1)

# Row fractions for weights1

weights1 <- as.data.frame(weights1)

weights1 <- sapply(weights1, as.numeric)

row_sums_1 <- rowSums(weights1)

row_fraction_1 <- row_sums_1 / sum(row_sums_1)

print(row_fraction_1)

row_fraction_1_total = row_fraction_1_total + row_fraction_1

# Row fractions for weights2

weights2 <- as.data.frame(weights2)

weights2 <- sapply(weights2, as.numeric)

row_sums_2 <- rowSums(weights2)

row_fraction_2 <- row_sums_2 / sum(row_sums_2)

print(row_fraction_2)

row_fraction_2_total = row_fraction_2_total + row_fraction_2

# Row fractions for weights3

weights3 <- as.data.frame(weights3)

weights3 <- sapply(weights3, as.numeric)

row_sums_3 <- rowSums(weights3)

row_fraction_3 <- row_sums_3 / sum(row_sums_3)

print(row_fraction_3)

row_fraction_3_total = row_fraction_3_total + row_fraction_3

# Row fractions for weights4

weights4 <- as.data.frame(weights4)

weights4 <- sapply(weights4, as.numeric)

row_sums_4 <- rowSums(weights4)

row_fraction_4 <- row_sums_4 / sum(row_sums_4)

print(row_fraction_4)

row_fraction_4_total = row_fraction_4_total + row_fraction_4

# Row fractions for weights5

weights5 <- as.data.frame(weights5)

weights5 <- sapply(weights5, as.numeric)

row_sums_5 <- rowSums(weights5)

row_fraction_5 <- row_sums_5 / sum(row_sums_5)

print(row_fraction_5)

row_fraction_5_total = row_fraction_5_total + row_fraction_5
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# Row fractions for weights6

weights6 <- as.data.frame(weights6)

weights6 <- sapply(weights6, as.numeric)

row_sums_6 <- rowSums(weights6)

row_fraction_6 <- row_sums_6 / sum(row_sums_6)

print(row_fraction_6)

row_fraction_6_total = row_fraction_6_total + row_fraction_6

#Row fractions for weights6

weights7 <- as.data.frame(weights7)

weights7 <- sapply(weights7, as.numeric)

row_sums_7 <- rowSums(weights7)

row_fraction_7 <- row_sums_7 / (sum(row_sums_7))

print(row_fraction_7)

row_fraction_7_total = row_fraction_7_total + row_fraction_7

# Compute the Sum of Weights given to the wrong comparison units for each

# specification.

# weights1.sum <- SWWU(weights1, g)

# MCmatrix[, 27:33] <- weights.sum

# Compute our measure of variability of weights

#vow <- VoW(weights)

#MCmatrix[, 34:37] <- vow

# Compare weights of each specification against specification 1

#wa1 <- WA1(weights)

#MCmatrix[, 38:43] <- wa1

# Save the gaps of each synthetic control unit associated with each

# placebo unit and each specification

#gaps <- matrix(NA, J*10, 7)

#gaps[, 1] <- as.matrix(as.vector(t(synth_results[, 6:15])), J*10, 1)

#gaps[, 2] <- as.matrix(as.vector(t(synth_results[, 42:51])), J*10, 1)

#gaps[, 3] <- as.matrix(as.vector(t(synth_results[, 78:87])), J*10, 1)

#gaps[, 4] <- as.matrix(as.vector(t(synth_results[, 114:123])), J*10, 1)

#gaps[, 5] <- as.matrix(as.vector(t(synth_results[, 150:159])), J*10, 1)

#gaps[, 6] <- as.matrix(as.vector(t(synth_results[, 186:195])), J*10, 1)

#gaps[, 7] <- as.matrix(as.vector(t(synth_results[, 222:231])), J*10, 1)

# Compute Measure 1 of variability of estimated gaps. This measure is

# similar in spirit to VoW.

#vogm1 <- VoGM1(gaps)
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#MCmatrix[, 44:47] <- vogm1

# Compare the estimated gaps of each specification against specification

# 1. This measure is similar in spirit to WA1.

#ga1 <- GA1(gaps)

#MCmatrix[, 48:53] <- ga1

# Compute Measure 2 of variability of estimated gaps. This measure

# computes the mean gap across time for each specification and, then,

# takes the difference between the largest and the smallest mean.

#vogm2 <- VoGM2(gaps)

#MCmatrix[, 54:57] <- vogm2

# Compute Measure 3 of variability of estimated gaps. This measures

# computes the mean gap across time for each specification and, then,

# computes the standard deviation across means.

#vogm3 <- VoGM3(gaps)

#MCmatrix[, 58:61] <- vogm3

# Save the estimated gaps.

#MCmatrix[, 62:71] <- synth_results[, 6:15] # Specification 1

#MCmatrix[, 72:81] <- synth_results[, 42:51] # Specification 2

#MCmatrix[, 82:91] <- synth_results[, 78:87] # Specification 3

#MCmatrix[, 92:101] <- synth_results[, 114:123] # Specification 4

#MCmatrix[, 102:111] <- synth_results[, 150:159] # Specification 5

#MCmatrix[, 112:121] <- synth_results[, 186:195] # Specification 6

#MCmatrix[, 122:131] <- synth_results[, 222:231] # Specification 7

# Store the R^2

#MCmatrix[, 132:138] <- synth_results[, c(38, 74, 110, 146, 182, 218, 254)]

# Store the a coefficients

#MCmatrix[, 139:145] <- synth_results[, c(39, 75, 111, 147, 183, 219, 255)]

# Store the b coefficients

#MCmatrix[, 146:152] <- synth_results[, c(40, 76, 112, 148, 184, 220, 256)]

# Store the RSSR

#MCmatrix[, 153:159] <- synth_results[, c(41, 77, 113, 149, 185, 221, 257)]

# Combine all the Monte Carlo repetition results in one matrix.

#MCresults[(1 + (counter-1)*J):(20 + (counter-1)*J), 1:159] <- MCmatrix

}

}

V_1_proportion <- row_fraction_1_total[1] / sum(row_fraction_1_total)

V_2_proportion <- row_fraction_2_total[1] / sum(row_fraction_2_total)

V_3_proportion <- row_fraction_3_total[1] / sum(row_fraction_3_total)

V_4_proportion <- row_fraction_4_total[1] / sum(row_fraction_4_total)

V_5_proportion <- row_fraction_5_total[1] / sum(row_fraction_5_total)

V_6_proportion <- row_fraction_6_total[1] / sum(row_fraction_6_total)
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V_7_proportion <- row_fraction_7_total[1] / sum(row_fraction_7_total)

# MCresults[1, 160] <- attempt

###########################################################################

# Rename the columns of MCresults.

# colnames(MCresults) <- c(

# "cluster", "r", "T0", "Tf", "j",

# "RMSPE_v_1", "RMSPE_v_2", "RMSPE_v_3", "RMSPE_v_4", "RMSPE_v_5", "RMSPE_v_6", "RMSPE_v_7",

# "RMSPE_a_1", "RMSPE_a_2", "RMSPE_a_3", "RMSPE_a_4", "RMSPE_a_5", "RMSPE_a_6", "RMSPE_a_7",

# "post_1", "post_2", "post_3", "post_4", "post_5", "post_6", "post_7",

# "MW_1", "MW_2", "MW_3", "MW_4", "MW_5", "MW_6", "MW_7",

# "VoW_all", "VoW_exc7", "VoW_ex6", "VoW_ex6_7",

# "WA1_2", "WA1_3", "WA1_4", "WA1_5", "WA1_6", "WA1_7",

# "VoGM1_all", "VoGM1_exc7", "VoGM1_ex6", "VoGM1_ex6_7",

# "GA1_2", "GA1_3", "GA1_4", "GA1_5", "GA1_6", "GA1_7",

# "VoGM2_all", "VoGM2_exc7", "VoGM2_ex6", "VoGM2_ex6_7",

# "VoGM3_all", "VoGM3_exc7", "VoGM3_ex6", "VoGM3_ex6_7",

# "gap_t1_s1", "gap_t2_s1", "gap_t3_s1", "gap_t4_s1", "gap_t5_s1", "gap_t6_s1", "gap_t7_s1", "gap_t8_s1", "gap_t9_s1", "gap_t10_s1",

# "gap_t1_s2", "gap_t2_s2", "gap_t3_s2", "gap_t4_s2", "gap_t5_s2", "gap_t6_s2", "gap_t7_s2", "gap_t8_s2", "gap_t9_s2", "gap_t10_s2",

# "gap_t1_s3", "gap_t2_s3", "gap_t3_s3", "gap_t4_s3", "gap_t5_s3", "gap_t6_s3", "gap_t7_s3", "gap_t8_s3", "gap_t9_s3", "gap_t10_s3",

# "gap_t1_s4", "gap_t2_s4", "gap_t3_s4", "gap_t4_s4", "gap_t5_s4", "gap_t6_s4", "gap_t7_s4", "gap_t8_s4", "gap_t9_s4", "gap_t10_s4",

# "gap_t1_s5", "gap_t2_s5", "gap_t3_s5", "gap_t4_s5", "gap_t5_s5", "gap_t6_s5", "gap_t7_s5", "gap_t8_s5", "gap_t9_s5", "gap_t10_s5",

# "gap_t1_s6", "gap_t2_s6", "gap_t3_s6", "gap_t4_s6", "gap_t5_s6", "gap_t6_s6", "gap_t7_s6", "gap_t8_s6", "gap_t9_s6", "gap_t10_s6",

# "gap_t1_s7", "gap_t2_s7", "gap_t3_s7", "gap_t4_s7", "gap_t5_s7", "gap_t6_s7", "gap_t7_s7", "gap_t8_s7", "gap_t9_s7", "gap_t10_s7",

# "Rsq_1", "Rsq_2", "Rsq_3", "Rsq_4", "Rsq_5", "Rsq_6", "Rsq_7",

# "a_1", "a_2", "a_3", "a_4", "a_5", "a_6", "a_7",

# "b_1", "b_2", "b_3", "b_4", "b_5", "b_6", "b_7",

# "Rtilde_1", "Rtilde_2", "Rtilde_3", "Rtilde_4", "Rtilde_5", "Rtilde_6", "Rtilde_7",

# "attempts")

# Export the results for a .csv file.

# file.partial <- paste(

# "partial_results/MCresults_T0-", T0, "_g-", g, "_r-", r, ".csv", sep = "")

# write.csv(MCresults, file.partial)

}

# Stop parallel backend

stopCluster(cl)

# Clear the memory.

rm(list=ls(all = TRUE))

gc(verbose = TRUE)
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