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Abstract

This thesis examines the robustness of the exchangeable estimator in predicting

trade flows during periods of economic instability. The research investigates how

the exchangeable estimator performs compared to a non-linear model when faced

with economically disruptive events, focusing on the aftermath of the fall of the

Berlin Wall in 1989. Simulation comparisons reveal the superiority of the exchange-

able estimator over the dyadic clustering estimator, especially when combined with

the exchangeable error model. Trade flow predictions using a linear model demon-

strate better performance with the exchangeable estimator compared to ordinary

least squares estimation, as supported by prior research. The study evaluates the

robustness of the exchangeable estimator by analyzing a structural break for the

year 1989, corresponding to the fall of the Berlin Wall. Results confirm a significant

impact on trade flows, supporting the hypothesis. Additionally, the exchangeable

estimator’s performance during economic instability is compared to the non-linear

Random Forest model. Both, the Random Forest model and the linear model using

the exchangeable estimator experience a slight drop in accuracy during the after-

math of the Berlin Wall, but quickly return to their previous level. In conclusion,

this research provides insights into the exchangeable estimator’s performance. It

demonstrates the estimator’s resilience in adapting to sudden changes in relational

data. Overall, the exchangeable estimator remains a robust choice for predicting

trade flows.
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1 Introduction

The forecasting of international trade flow holds a crucial task for governmental entit-

ies, businesses, and international organizations, as it lays the foundation for informed

decision-making regarding trade policies, investment strategies, and economic develop-

ment initiatives. Nevertheless, the accurate prediction of trade flow can be arduous,

particularly during periods of economic instability, such as recessions or financial crises.

The exchangeable estimator, introduced as a statistical model by Marrs, Fosdick and Mc-

cormick (2023), has exhibited promising performance in achieving highly accurate trade

flow predictions. However, the robustness of the exchangeable estimator in forecasting

trade flow during times of economic instability remains uncertain. An exemplary eco-

nomic event with significant international impact is the fall of the Berlin Wall, which

took place in 1989, profoundly impacting the global economy and international trade.

This event signified the conclusion of the Cold War and the emergence of new trade mar-

kets. Hence, the main research question for this thesis is: ”Is the exchangeable estimator

robust in predicting trade flow during periods of economic instability, such as the aftermath

of the fall of the Berlin Wall in 1989, and how does the linear predictive model using the

exchangeable estimator perform compared to the non-linear Random Forest model when

economically disturbing events occur?”

To address this question comprehensively, several sub-questions necessitate examina-

tion. These inquiries include addressing the distinctions between the exchangeable estim-

ator and the conventional ordinary least squares estimator. Furthermore, a comparative

analysis between the exchangeable estimator and the recognized dyadic clustering estim-

ator, another estimator for relational arrays, should be conducted. Lastly, the data should

be tested on a structural break and the non-linear Random Forest (RF) model should be

evaluated. Consequently, the ensuing sub-questions arise:

• What is the exchangeable estimator and how does it differ from the ordinary least

squares estimator?

• How does exchangeable estimator performs against the dyadic clustering estimator?

• How does the performance of the exchangeable estimator compare to the regular

ordinary least squares estimator in terms of model fit?

• Did the fall of the Berlin Wall significantly change the trade flow?

• How does the exchangeable estimator perform in predicting trade flow during periods

of economic instability, such as the fall of the Berlin Wall?

• What approach should be considered to capture the effect of economic events, and

does it improve the model?

The examination of the robustness of the exchangeable estimator in forecasting trade

flow amidst economic instability holds significance both academically and practically.

From an academic standpoint, this research augments the existing literature pertaining
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to the efficacy of statistical models in forecasting economic outcomes within periods of

instability. By shedding light on the performance of the exchangeable estimator, it con-

tributes to the understanding of predictive modeling under such conditions. In practical

terms, this research bears relevance for trade policies and strategies, with the potential

to provide valuable insights for mitigating the negative effects of economic instability

on trade flow. Governments, businesses, and international organizations, reliant upon

accurate trade flow prognostications to facilitate informed decision-making, stand to be-

nefit from the findings of this study. Predicting international trade helps governments and

policymakers in formulating effective economic policies, trade agreements, and investment

strategies. Moreover, it allows them to assess the potential impacts of trade on their do-

mestic industries, employment levels, and overall economic growth. Businesses, especially

those engaged in international trade, rely on trade predictions to make informed decisions

about market expansion, product development, and supply chain management. Predict-

ing trade patterns and trends helps businesses identify new market opportunities, assess

competition, and optimize their operations accordingly. Furthermore, understanding and

predicting international trade patterns assist governments and businesses in efficiently

allocating resources, such as capital, labor, and infrastructure. It enables them to align

their resources with the expected demand for goods and services, optimize production

capabilities, and enhance overall competitiveness. Predicting international trade allows

governments to develop and modify trade policies, tariffs, and regulations that are aligned

with market trends and dynamics. By having accurate predictions, policymakers can cre-

ate an environment that fosters trade, attracts investments, and strengthens international

partnerships. Lastly, international organizations, such as the World Trade Organization

(WTO), use trade predictions to facilitate dialogue, negotiations, and cooperation among

member countries. Predicting trade helps identify areas of potential conflict, explore op-

portunities for trade liberalization, and foster international economic integration. Thus,

the research holds practical implications for stakeholders engaged in the formulation and

implementation of trade-related measures.

The theoretical framework underpinning this research encompasses the utilization of

mixed effects models for analyzing relational data. This analytical approach accommod-

ates the consideration of both actor-specific and relation-specific effects, while also incor-

porating random effects to address unobservable heterogeneity. Of particular relevance

is the exchangeable estimator, positing equal covariance across relations for all actors.

By assuming exchangeability, this estimator assumes that the underlying structure of

covariance is uniform across actors.

The exchangeable estimator, while recognized as a potent statistical tool in trade flow

prediction, lacks understanding regarding its performance amidst economic instability.

The occurrence of global economic instability, encompassing recessions or financial crises,

exerts a substantial influence on trade flow. However, the precise capacity of the exchange-
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able estimator to accurately capture this influence remains uncertain. Consequently, this

research is imperative for bridging this knowledge gap and acquiring a more nuanced

understanding of the exchangeable estimator’s limitations and potential in the realm of

trade flow prediction during periods of economic instability.

By addressing this research gap, the study not only contributes to knowledge but also

facilitates the development of more precise and robust statistical models for trade flow

prediction. The implications of such findings are of practical importance, as they can

enable the formulation of more effective trade policies and strategies. Ultimately, this

research strives to enhance the accuracy and reliability of trade flow predictions, thereby

fostering informed decision-making processes within the field of international trade.

In Section 2, the existing literature is discussed and hypotheses are defined. Next,

Section 3 describes the dataset of the trade flows and covariates. Then, Section 4 explains

the methodology by first going over the different estimators, then explaining the method

applied to perform a simulation, followed by the linear forecasting model for the trade

flows. Afterwards, the RF algorithm is introduced, and comparisons measures are defined

to evaluate the robustness of the estimator. Subsequently, in Section 5 the results are

presented. Finally, the limitations and further research ideas are discussed, after which

the conclusion is drawn.

2 Literature Review

2.1 Economic Instability and International Trade

International trade has increased steeply since the establishment of the WTO in 1995 ,

as shown in Appendix A (World Trade Organization, 2022). Trade plays a crucial role

in maintaining a competitive global economy by fostering innovation, promoting market

specialization, and facilitating lower prices for goods on an international scale (Qurban,

2021). The dynamics of international trade is highly reliant on the economic status of the

countries involved in the commerce. Political stability, trade agreements, and tariffs and

trade barriers play crucial roles in facilitating international trade (Acemoglu, Johnson &

Robinson, 2001; Freund & Ornelas, 2010; Anderson & van Wincoop, 2004), as well as

market size and demand, comparative and technological advantages, and infrastructure

and logistics (Helpman, Melitz & Rubinstein, 2008a; Ricardo, 1817; Feenstra & Kee, 2008;

Djankov, Freund & Pham, 2010). However, international trade is prone to exogenous

factors, due to the numerous influential elements. While regional external events could

impact the trade, such as natural disasters, global external events yield more profound

repercussions. Considering some recent occurrences, the international trade has suffered

noticeably.

For example, the global financial crisis of 2008 had a profound impact on interna-
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tional trade, leading to a significant decline in trade volumes and altering trade patterns

(Baldwin, 2011). Weakened global demand and financial market turmoil resulted in a

contraction of international trade, as shown in Appendix A, particularly in durable goods

and capital-intensive industries. Banks’ reluctance to lend and increased borrowing costs

reduced access to trade finance, affecting trade transactions, particularly for small and

medium-sized enterprises (Chor & Manova, 2012).

Another notable example is the COVID-19 pandemic. The pandemic had significant

effect on international trade due to widespread disruptions and containment measures

(International Monetary Fund, 2021; World Trade Organization, 2020). The global sup-

ply chain was disrupted due to the lockdowns, travel restriction, and factory closures

(Baldwin & Tomiura, 2020). This led to reduced production and trade volumes, again

demonstrated in Appendix A. Furthermore, decreased consumer spending and reduced

business investments resulted in decreased demand for goods and services (McKinsey &

Company, 2021). Lastly, countries implemented trade restrictions, export bans, and pro-

tective measures to ensure domestic supplies of essential goods (Federation of German

Industries (BDI), 2021). All these factors contributed to a strong decline in international

trade, and partially led to strong economic decline (World Trade Organization, 2021).

At last, the war in Ukraine exemplifies the effect of economic instability on interna-

tional trade and led to socioeconomic consequences, both domestically and in exporting

countries. The war led to conflicts involving gas and oil supplies, which especially affected

the energy sector (Di Bella et al., 2022; International Energy Agency, 2022). The disrup-

tion in gas and oil supplies and geopolitical tensions in Ukraine led to gas and oil price

spikes, affecting energy-dependent industries and trade costs for countries reliant on gas

and oil imports. Uncertainty and instability in gas supplies raised concerns about energy

security, prompting countries to diversify energy sources, and trade routes. Furthermore,

the Russian-Ukrainian conflict poses significant risks to many African communities that

rely heavily on agricultural imports. As globally recognized exporters of crucial food-

stuffs and grains, Agence Française de Développement (2023) state that both Ukraine

and Russia play a vital role in the food supply chain across Africa.

These events underscore the significant impact of economic instability on international

trade, and evidently shape the livelihoods of individuals both within domestic econom-

ies and across exporting nations. Often unpredictable or unforeseen, such events lead to

abrupt changes in the exchange of goods and services between countries. The examples

mentioned evince how economic shocks propagate across borders partially through trade.

This phenomenon is closely tied to the concepts and principles underlying the interna-

tional business cycle theory. International business cycle theory examines the synchroniz-

ation and transmission of economic fluctuations across countries. It explores how shocks,

such as financial crises or changes in global demand, can propagate through international

trade channels and affect economic stability in different countries (D. K. Backus, Kehoe
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& Kydland, 1992; D. Backus, Kehoe & Kydland, 1993; Ravn, 1997). The theory has

been developed and expanded upon by various economists over time through empirical

research and theoretical contributions. While some have focused on the financial inter-

connections between countries, others have conducted research on the role international

trade plays within this theory. Obstfeld and Rogoff (1996) thoroughly analyze the mech-

anisms through which shocks are transmitted between countries and highlight the crucial

role played by international financial linkages in shaping global business cycles. Building

upon these insights, Gourinchas and Obstfeld (2012) dive into the complexity of global

business cycles. They place particular emphasis on financial factors such as capital flows

and exchange rates, providing an in-depth analysis of how these elements can transmit

economic shocks across borders. Adding to the discourse, Waugh (2014) conducted ex-

tensive empirical research on the synchronization of business cycles across countries. His

work highlights the role of trade linkages in the transmission of shocks, advancing our

comprehension of the substantial impact that trade can have on global business cycles.

The influence of monetary policy is another crucial aspect of this theory. Corsetti and

Pesenti (2001) explored how monetary policy decisions in one nation can echo through

international channels and affect economies globally. These contributions show the affect

that domestic economic shocks can have cross boarders, which results in a more complex

framework to forecast trade flows.

The international business cycle theory suggests that shocks, such as financial crises or

changes in global demand, can significantly impact economic stability in different coun-

tries. These shocks can disrupt trade patterns, affect market conditions, and influence

the behavior of economic agents involved in international trade. As a result, accurate

forecasting of trade flows requires econometric models that are capable of capturing and

adapting to sudden exogenous changes, which is where robust estimators and structural

break analysis come into play. Structural break analysis helps identifying whether certain

events indeed impact the trade flow.

2.2 Forecasting Models Trade Flow

Existing research has extensively investigated the utilization of various statistical models

to forecast trade flow, primarily emphasizing accuracy and predictive efficacy. Prominent

models employed in prior studies include the gravity model, which considers the distance

between trading partners, and the dyadic panel data model, incorporating time-varying

variables (Anderson, 2011; Tinbergen, 1962). Additionally, nonlinear least squares, semi-

parametric, and nonparametric models have been applied to analyze trade flows (Helpman,

Melitz & Rubinstein, 2008b). More recently, mixed effects models have garnered attention

in the literature, enabling the analysis of relational data by accounting for actor-specific

and relation-specific effects (Ghisletta, 2015; Brauer & Curtin, 2017; Simpson, Bahrami
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& Laurienti, 2019). Relational data represent measures of association between pairs of

actors. Since trade flows inherently involve two parties, it is considered relational data.

The study by Marrs et al. (2023) has introduced a new approach to estimate the

regression with relational arrays, namely the exchangeable estimator. In their paper,

they provided an in-depth analysis that shows superiority in accuracy of the exchangeable

estimator compared to both ordinary least squares and dyadic clustering estimator. This

research builds upon their findings. While previous research has explored the application

of mixed effects models in analyzing relational data, limited studies have specifically

examined the exchangeable estimator and its performance in the context of economic

instability. The study by Marrs et al. (2023) investigated the use of the exchangeable

estimator for trade flow prediction but did not explicitly evaluate its robustness during

periods of economic instability.

2.3 Robustness Testing

Robustness testing is crucial for assessing the performance of an estimator or statistical

method under different scenarios or assumptions. Conducting robustness tests enhances

the validity and generalizability of research findings, ensuring that conclusions are not

driven by unrealistic assumptions. Popular methods for robustness testing include eval-

uating the estimator under different conditions and benchmarking against alternative

models. Changes in the data structure require careful examination of the performance of

the estimator. Conducting structural break analysis in time series allows to identify these

abrupt changes. While not a direct test of robustness, structural breaks analysis allows

for assessing the sensitivity of a statistical model to changes in the underlying data gen-

erating process (Page, 1955). By examining structural breaks, researchers can determine

whether estimates from a statistical model remain stable across different time periods or

exhibit sensitivity to changes in the data. If estimates are found to be unstable or sensitive

to structural breaks, it may suggest that the model is not robust to changes in the data

generating process, necessitating additional tests or modifications. Therefore, the first

crucial step to measure the robustness of the estimates includes testing for possible struc-

tural breaks using domain knowledge, as for this research the year 1989. Structural break

analysis has been successfully applied in various fields (Casini & Perron, 2018; Andreou

& Ghysels, 2009; Reeves, Chen, Wang, Lund & Lu, 2007). The Chow test, introduced

by Chow (1960), has emerged as a prominent method for investigating structural breaks

and remains extensively employed in various disciplines. This test is particularly effective

in detecting singular structural breaks within time series data. Despite the widespread

utilization of the Chow test in diverse domains, no academic research to date has spe-

cifically examined the testing of economically disturbing events as a structural break in

the context of international trade forecasting.
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2.4 The Fall of the Berlin Wall

The year 1989 is considered as structural break point in the trade flow data, due to the

occurrence of a pivotal event in world history which marked the destruction of the Berlin

Wall. Similar to the financial crisis in 2008, the COVID-19 pandemic, and the Russia-

Ukraine conflict, the fall of the Berlin Wall was an exogenous event that had a significant

impact on international trade. The Berlin Wall, which divided East and West Berlin, was

a symbol of the Cold War and the division between the capitalist West and the communist

East. Its fall on November 9, 1989, marked a turning point in history and had far-reaching

effects on various aspects, including international trade (Djankov & Nikolova, 2016).

The international trade flows were impacted through various ways. Firstly, it led to

market integration. Due to the fall, East and West Germany was reunified and created a

single market (Wacziarg, Spolaore & Alesina, 2003). The integration created new oppor-

tunities for trade and investments in Germany, which led to an acceleration of economic

activity and cross-border commerce (Redding & Sturm, 2008). Furthermore, this historic

event contributed to the broader process of European integration, as it ultimately led to

the expansion of the European Union to include former Eastern Bloc countries (Becker,

Egger & von Ehrlich, 2010; Kaminski, 2001). The enlargement of the European Union

facilitated trade liberalization. Besides, the Eastern Bloc countries underwent political

transitions and changed from centrally planned economies to market-oriented econom-

ies (Wolf et al., 1999; Blanchard, Froot & Sachs, 1994). The countries dismantled their

trade barriers and opened up their markets. As a result, international trade with these

countries increased significantly as they became attractive destinations for foreign invest-

ment and trade partnerships. In addition, the subsequent collapse of the Soviet Union

led to expansion of global supply chain (Djankov & Freund, 2002). The integration of

Eastern European economies into the global market opened up new sourcing and produc-

tion opportunities for businesses. Lastly, the change in trade relations with the former

Soviet Union resulted in economic reforms (Djankov & Freund, 2002). Trade barriers

were reduced and new opportunities for trade emerged. Subsequently, Western countries

had increased access to vast markets of the former Soviet Union and trade relations were

established or expanded.

Overall, the fall of the Berlin Wall played a pivotal role in reshaping the geopolitical

landscape and had a profound impact on international trade. Consequently, the sum of

the import and export as percentage of the gross domestic product increased significantly

globally after the fall due to liberalization and globalization (Aiyar et al., 2023). This

supports the following hypothesis.

Hypothesis 1: The year 1989 marks a structural break in the trade flow.
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2.5 Non-linear Prediction Models

In addition, testing for robustness includes comparing different model specifications using

the same data. Initially, the trade flows are predicted using a linear model. The robustness

is examined by comparing the linear predicting model to a non-linear model. For this

research, a machine-learning method is employed to capture the non-linear effect in the

model.

Machine learning methods has gained their popularity to model nonlinear dynamics

in data (Pathak, Hunt, Girvan, Lu & Ott, 2017; Lusch, Nair, Gao, Bettencourt & Buell,

2018; Sapsis, 2018; Takeishi, Fujii & Iwata, 2017; Pathak, Lu, Hunt, Girvan & Ott,

2018; Zlotnik & Khasanova, 2019; Zhou & Wu, 2020; Pathak, Wikner, Fussell, Chandra

& Girvan, 2018). However, machine-learning algorithms have little applications with

relational arrays. Schlichtkrull et al. (2018) showed significant improvement in modelling

relational data using the convolutional networks as classifier.

RF has gained significant popularity as a widely utilized machine learning algorithm

due to its effectiveness in addressing high-dimensional data (Guo, Hastie & Tibshirani,

2007), non-linear relationships, and noisy or missing values. It is known for its robustness,

interpretability, and ability to handle a wide range of problem types, including classifica-

tion and regression. RF predominantly serves as a classifier (D. Cutler et al., 2007), and

outperforms other machine-learning methods (Prasad, Iverson & Liaw, 2006a).

Initially, RF is not applied to the field of forecasting. However, Ciner (2019) finds

that RF is an efficient method to produce accurate forecasts, as it can model nonlinear

dynamics in data. RF, with its ensemble of decision trees and inherent randomness, can

capture and learn from non-linear and complex relationships between covariates. This

flexibility allows RF to adapt to unexpected events and capture patterns that may not

be evident in a linear model. Several research has proven the superior accuracy of RF

over linear model (D. R. Cutler et al., 2007; Prasad, Iverson & Liaw, 2006b; Biau & Scor-

net, 2016). Therefore, the RF could outperform the linear model in times of economic

instability. Nonetheless, no prior research has been conducted to apply RF to relational

arrays. Therefore, the following hypothesis is formulated.

Hypothesis 2: Random Forest outperforms the linear model due to its flexibility to

adapt to unexpected events.

To summarize, previous research has investigated statistical models for trade flow

prediction, but limited attention has been devoted to the exchangeable estimator and its

performance during times of economic instability. Furthermore, no specific investigations

have been conducted to test for structural breaks associated with the fall of the Berlin

Wall in the context of predicting international trade. While, multiple studies have proven
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the effectiveness of RF compared to linear model, the machine-learning model has not

been applied to relation arrays. This research aims to address this gap in knowledge

and contribute to the existing literature on the usage of statistical models in predicting

economic outcomes.

3 Data

The data used for trade predictions in this paper is like Marrs et al. (2023) extracted from

the dataset provided by Westveld and Hoff (2011), due to its completeness and availability.

This dataset contains international trade flows between 58 countries in the period 1981-

2000. The countries included in the dataset are listed in Appendix B. The dataset consists

of 66,120 data points. Each data point includes information about the countries involved

in the trade that is of relevance for the predictions. This information consists of the

gross domestic product of each country and the distance between the countries. Also,

the polity is giving which measures the nation’s level of democracy. The level ranged on

a scale of 0 to 20 from highly authoritarian regimes to highly democratic. Furthermore,

the cooperation in conflict of each country is presented which measures active military

cooperation. The value is a positive one if the two countries cooperated on a particular

dispute, and a negative one if they were on opposite sides. In Table 1, the descriptive

statistics are given. The descriptive statistics provide an overview of the central tendency,

variability, and range of values for each variable. Obviously, the descriptive statistics of

log GDP of the export countries is equivalent to the log GDP of the import countries.

Similarly, the descriptive statistics of polity is equal.

Table 1: Descriptive statistics of international trade flows dataset

Mean St. Dev Min. Max.

Log trade 15.72 5.73 0.00 26.17

Log GDP export/import country 25.02 1.89 21.21 29.91

Polity export/import country 16.08 5.92 0.00 20.00

Cooperation in conflict 0.04 0.26 -3.00 4.00

Previous research only included the GDP of the corresponding countries and the dis-

tance (Westveld, 2007). However, including both the polity and the cooperation in conflict

provides crucial information on the relation between the export and import country. As

Westveld and Hoff (2011) have proven, including these variables results in a more accurate

prediction of the trade flows.
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4 Methodology

This section provides an explanation of the methodologies employed in this study. First,

the most competent estimators for regressions with relational arrays are compared. The

comparison of estimator performance begins by outlining the specifications of the estim-

ators used. Subsequently, the simulation methodology is described, which is applied to

generate synthetic data for the comparison. Following this, the application of linear re-

gression for trade flow prediction is defined, including the relevant variables. Lastly, the

specification of the RF algorithm for trade flow forecasting is presented, elucidating the

specific parameters, and considerations utilized in the analysis.

4.1 Estimators for Linear Regression

To begin, the estimates for the coefficients, in case of a relational array as dependent

variable, are calculated following two approaches. These approaches entail the dyadic

clustering estimator and the exchangeable estimator as formulated by Marrs et al. (2023).

Initially, the ordinary least squares estimator is presented as it serves as the fundamental

basis for the subsequent estimators. The estimates obtained through the exchangeable

estimator are compared to those derived from the dyadic clustering estimator. Likewise

to the exchangeable estimator, the dyadic clustering enables the analysis of relation data.

The difference lays in the allowance of overlapping pairs for the exchangeable estimator.

4.1.1 Ordinary Least Squares

The primary goal of the estimators is to capture the effects of the exogenous covariates

on the values of the relation array, the dependent variable, in a linear regression,

yijr = β⊤xijr + ξijr, (i, j = 1, ...,m; i ̸= j; r = 1, ..., R), (1)

where yijr is the measure of the rth relation between actor i to actor j, xijr is a vector

of covariates, and ξijr is the unobserved random error. The β should be estimated for

which multiple functions are formulated. An unbiased estimator for β is the ordinary

least squares estimator,

β̂ = (X⊤X)−1X⊤y, (2)

where the variables have the same specification as in (1). The least squares estimator is

the best linear unbiased estimator for β when the covariance matrix Ω = var(y | X) is

proportional to the identity matrix. If Ω is known, the best unbiased estimator is the

generalized least squares estimator,
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β̂GLS = (X⊤Ω−1X)−1X⊤Ω−1y. (3)

Usually, Ω is unknown and should be estimated. The distribution of the estimator β

is approximated as the multivariate normal random variable and the confidence intervals

is determined by estimating the variance. For the ordinary least squares, the estimator

for the variance is

var(β̃ | X) = (X⊤X)−1X⊤ΩX(X⊤X)−1, (4)

in which β̃ is a vector of regression coefficients, X is a design matrix, Ω is a covariance

matrix, and var(β̃ | X) is the variance of the coefficients conditional on the design matrix.

Furthermore, the variance of the generalized least squares is formulated as

var(β̃GLS | X) = (X⊤Ω̃−1X)−1X⊤Ω̃−1ΩΩ̃−1X(X⊤Ω̃−1X)−1, (5)

where Ω̃ is the final estimate of Ω from the procedure of generalized least squares.

4.1.2 Dyadic Clustering Estimator

Moving on with the dyadic clustering estimator, the method described by Marrs et al.

(2023) is applied. As mentioned earlier, the exchangeable estimator is closely related

to the dyadic clustering estimator, as this estimator is also applied to relational arrays.

Therefore, the performance of the exchangeable estimator will be compared to this estim-

ator. The estimate for the variance of the dyadic clustering estimator is

V̂DC = (X⊤X)−1X⊤Ω̂DCX(X⊤X)−1, (6)

in which Ω̂DC denote the covariance matrix of ξ, subject to non-overlapping pair inde-

pendence assumption. Their methodology proposed a flexible standard error estimator for

relational regression. The method makes the assumption that two relations (i, j, r) and

(k, l, s) are independent if (i, j) and (k, l) do not share an actor. This assumption implies

that the covariance between the outcome variables for non-overlapping relation pairs is

zero, but places no restrictions on the covariance elements for pairs of relations that share

an actor. Fafchamps and Gubert (2007) propose estimating each non-zero entry of ΩDC

with a product of residuals. Specifically, they use eijreiks to estimate cov(ξijr, ξiks), where

eijr = yijr − βTxijr is the residual associated with the outcome variable yijr and xijr is

the corresponding row of the design matrix. The estimator Ω̂DC can be seen as taking

the empirical covariance of the residuals defined by eeT , where e is a vector of the set

of residuals eijr, and introducing zeros to enforce the non-overlapping pair independence

assumption. This yields a covariance matrix estimator that is flexible and can be used

for various types of relational data.
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4.1.3 Exchangeable Estimator

Lastly, the prime estimator of this research is defined. The paper of Marrs et al. (2023)

proposes an exchangeable estimator of the variance-covariance matrix of the regression

coefficients in relational regression models with ΩE of the exchangeable form. The estim-

ator is denoted as V̂E, and can be expressed as

V̂E = (XTX)−1XT Ω̂EX(XTX)−1, (7)

where Ω̂E is the estimate of the exchangeable covariance matrix, defined as the sum of

ϕ(η) times a binary matrix Sη, where η = 1, 2 and Sη
u denotes the Rn(n1)×Rn(n1) binary

matrix with 1’s in the entries corresponding to relation pairs of type (u = 0, a, b, c, d; η

= 1, 2) as defined by Marrs et al. (2023).

The proposed method estimates the ten parameters in ΩE by averaging the resid-

ual products that share the same index configurations. Specifically, the estimate of

cov(ξkls, ξijr), corresponding to u = b and η = 2, is given by

ϕ̂
(2)
b =

(
R

2

)−1
1

n(n− 1)(n− 2)

∑
r ̸=s

n∑
i=1

∑
j ̸=i

eijr

(∑
k ̸=j

eiks − eijs

)
, (8)

where eijr = yijr − βTxijr is the residual for the rth relation between actors i and j.

The remaining nine estimators for (s = 0, a, ..., e; η = 1, 2) are defined analogously. The

remaining covariance estimates are given in Appendix C. Finally, Ω̂E can be interpreted

as the projection of Ω̂DC into the vector space over symmetric matrices of the form of ΩE.

4.2 Simulation

The performance of the exchangeable estimator will be compared to the dyadic clustering

estimator. In order to generate data, a simulation will be executed. For the purpose of

conducting the simulation, the methodology outlined in the specification of Marrs et al.

(2023) is adopted. Their code serves as a primary reference and is meticulously adhered

to, forming the fundamental framework for this research. The data used for the simulation

are based on the formula

yij = β1 + β21(x2i∈C)1(x2j∈C) + β3|x3i − x3j|+ β4x4ij + ξij, (9)

where the covariate matrix is generated using the total number of members in the sim-

ulation. The covariate matrix consists of x1ij, which is set to 1, x2ij, that follows

Bernoulli(1/2) independently, and x3ij and x4ij, that are drawn from standard normal

distribution. Note that the matrix is created using x3ij which equal |x3i − x3j|. All betas
are fixed to 1 in the simulation. The error term is calculated with an independent and

identically distributed errors, a non-exchangeable error model, and an exchangeable error
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model. For every error model, the random noise follows a normal distribution and is used

to calculate the total error term, which differs per model. The variance of the error terms

are set equal to

∑
ij

var(ξij) = 3n(n− 1). (10)

For the independent and identically distributed errors setting, it follows ξij ∼iid N (0, 3)

for all (i, j). The errors for the non-exchangeable error setting may be written as

ξij = τ1(i≤⌊n/2⌋)1(j≤⌊n/2⌋) + ϵij, τ ∼ N (0,
9n

4⌊n/2⌋
), ϵij ∼iid N (0, 3/4), (11)

where 1(j≤⌊n/2⌋) is an indicator of index i less than or equal to the floor of n/2.

Lastly, the specification for exchangeable error setting is described in Marrs et al.

(2023) and follows

ξij = ai + bj + zTi zj + γij + ϵij, (ai, bi) ∼ N (02,Σab),

Σab =

[
σ2
a ρabσaσb

ρabσaσb σ2
b

]
,

zi, zj ∼ Nd(0, σ
2
zId), γij = γji ∼ N (0, σ2

γ), ϵij ∼ N (0, σ2
ϵ ).

(12)

The dimension of the latent space, d, is set to 2, the correlation between sender and

receiver effects set to ρab = 1/2, and the sender variance set to be twice that of receiver

variance, i.e. σ2
a = 2σ2

b . Furthermore, σz = σγ = σb and σ2
ϵ = 3/4.

In total, 500 sets of random covariates are generated for relational data, with varying

numbers of actors (n = 10, 20, 30, 40). For each set of covariates, we generated 1,000

random realizations of errors under three different data generators: independent and

identically distributed, exchangeable, and non-exchangeable. For each combination of

covariates and error realizations, a new dataset is simulated using model (9).

Next, a regression model is fitted using the list of nodes to each simulated dataset

using ordinary least squares. The list of nodes consists of dyad indices for shared mem-

bership without overlaps. The standard errors are measures using both exchangeable and

dyadic clustering sandwich variance estimators, explained in 4.1.2 and 4.1.3. To assess

the performance of the estimators, the coverage of confidence intervals for each covariate

realization is estimated by calculating the fraction of confidence intervals that contained

the true coefficient.

Additionally, the bias and variance is estimated of the standard error estimators for

each covariate realization relative to the known true standard errors of the ordinary least

squares estimator, given the specific covariate realization.
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4.3 Forecasting Trade Flow

Subsequently, the performance of the exchangeable estimator is measured by comparing

the coefficient of determination, resulting from one-step ahead forecasting of trade flows,

to ordinary least squares. To execute this comparison, the data from Westveld and Hoff

(2011) is used. To forecast the trade flow, the logarithm of yearly international trade flow

data are used in a modified gravity mean model as linear function of seven covariates,

defined in a linear regression proposed by Westveld and Hoff (2011). The linear regression

follows

ln(Tradei,j,t) =β0,t + β1,t ln(GDPi,t) + β2,t ln(GDPj,t) + β3,t ln(Di,j,t) + β4,tPolii,t

+ β5,tPolij,t + β6,tCCi,j,t + β7,tPolii,t × Polij,t + Ξt,
(13)

where GDPi,t denotes the gross domestic product, Poli,t denotes the polity, CCi,t the

cooperation of conflict, and Di,t the distance between the two countries all of country i

at time t. The error term Ξt is a vector of errors for year t, which specification varies

for using ordinary least squares estimates and exchangeable estimates. Ξt and Ξt+h are

assumed to be independent.

First, the model is estimated using the feasible generalized least squares procedure.

The β is initialized using ordinary least squares and the Ω is estimated using the residuals

under the assumption of joint exchangeability. Dissimilar to the simulation, where the

data was fitted using ordinary least squares and the variance was estimated afterwards

using the sandwich method with the exchangeable estimator specification. Now, the

exchangeable estimator for the error model is applied in combination with generalized

least squared procedure, for which the formula in (7) is used. Then, iteratively βGLS in

(3) is re-estimated by setting Ω equal to Ω̂ until convergence. Specifically, convergence is

under the condition that

|Qγ −Qγ−1| < ϵ,

Qγ = (y −Xβ̂)T (Ω̂γ)−1(y −Xβ̂), (γ = 1, 2, ...),
(14)

where β̂γ and Ω̂γ are estimators of the regression coefficient and error matrix at the γth

iteration. Furthermore, ϵ = 10−6. The final Ω is set to Ω̃ in (5) to obtain the standard

errors.

The one-step ahead trade is predicted using the first 4 through 11 years of data,

with a rolling window approach. The conditional expectation E(yT |{yt}T−1
t=1 ) is calculated

to generate predictions from the model, based on the assumption that yT and (yr), for

r = 1, ..., T − 1, are jointly normal.

Using the ordinary least squares estimator this results in
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E(yT |{yt}T−1
t=1 )OLS = XT β̃T−1. (15)

For the exchangeable procedure, we likewise set βT = βT−1. The prediction for the

exchangeable procedure is defined as

E(yT |{yt}T−1
t=1 )E = XT β̃T−1 + Ω2{Ψ1 + (T − 2)Ψ2}

T−1∑
t=1

(yt −Xtβ̃T ), (16)

where Ω1 = var(yt) and Ω2 = cov(yt, yt+h) for all h. Taking zTT−1 = (yT1 , y
T
2 , ..., y

T
T1) as the

concatenated vector, it is of the same patterns as the variance var(zT−1)
−1. The variance

of z has Ω1 along the diagonal blocks and Ω2 on the off-diagonal blocks. In the equation

Ψ1 defines the diagonal blocks and Ψ2 the off-diagonal blocks.

The R-squared, also known as the coefficient of determination, is used to compare the

performance of the estimators. It is a statistical measure used to assess the goodness-of-fit

of a regression model. It provides an indication of how well the model’s predictions fit

the observed data points. The R-squared value ranges from 0 to 1, where 0 indicates that

the model explains none of the variability in the data, and 1 indicates that the model

perfectly predicts the observed outcomes. However, a R-squared of 1 is not desired as it

could signal overfitting. A higher R-squared value suggests a better fit of the model to

the data. The formula for R-squared is given by

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
, (17)

where n represents the number of data points, yi represents the observed values of the

dependent variable, ŷi represents the predicted values of the dependent variable from the

regression model, and ȳ represents the mean of the observed values of the dependent

variable.

4.4 Structural Break Analysis

The robustness of the exchangeable estimator is tested based on evaluating the estimates

during instability in the data. Accordingly, structural break analysis is used to identify

abrupt change in the data in 1989, after the fall of the Berlin Wall.

To detect structural breaks in the relationship between time and international trade

flows, the Chow test is used. The Chow test is a widely-used test for detecting structural

breaks in time series data (Chow, 1960). The Chow test begins with the formulation of

null and alternative hypotheses. The null hypothesis posits that there is no structural

break or difference in the relationship between the variables of interest across sub-samples

or time periods. The alternative hypothesis suggests the presence of a structural break.

The dataset is divided into distinct sub-samples based on year before or after the fall
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of the Berlin Wall. Separate regression models are estimated for each sub-sample, cap-

turing the relationship between the variables within each segment. This division enables

the examination of potential structural breaks in the relationship across different sub-

samples. The sum of squared residuals is calculated for each sub-sample, representing

the discrepancies between the observed values and the predicted values obtained from

the respective regression models. This step quantifies the overall fit of the models within

each sub-sample. A combined regression model is constructed by pooling together all the

observations from the sub-samples. The sum of squared residuals is computed for this

combined model, which provides an overall measure of the model’s fit when considering

the entire dataset. The Chow test statistic is calculated by comparing the sum of squared

residuals from the separate sub-sample models to the sum of squared residuals from the

combined model. The test statistic follows an F-distribution under the assumption of no

structural break. The calculated Chow test statistic is compared to the critical value from

the F-distribution at a chosen significance level. If the test statistic exceeds the critical

value, the null hypothesis of no structural break is rejected in favor of the alternative

hypothesis, indicating evidence of a significant difference in the relationship between the

variables across sub-samples or time periods. The strucchange library in R is used to

perform the test.

4.5 Random Forest

Next, the RF machine-learning algorithm introduced by Breiman (2001) is incorporated

to predict the trade flows using a non-linear model. The model fit is compared to the

estimates resulting from the linear model described in (13), to measure the robustness.

RF model is an ensemble learning algorithm that combines multiple decision trees to make

predictions. Each decision tree in the RF is constructed independently by using a subset

of the training data and a random subset of the input features. The predictions from

individual trees are then combined to reach the final result.

The RF model follows the following steps. First, at each node m of a decision tree,

a random subset of features is selected from the available input features. This helps in

reducing the correlation between trees and introduces randomness in the model. Next, the

RF model uses a technique called bootstrapping, where a random subset of the training

data is selected with replacement. This means that some samples may be repeated in

the subset, while others may be left out. This technique helps create diverse subsets

of the training data for each decision tree. Then, using the selected subset of features

and the bootstrapped subset of training data, a decision tree Tm is built by recursively

splitting the data based on the selected features. The splitting criterion used mostly in

each decision tree is based on minimizing the mean squared error (MSE) at each node.

The MSE is calculated as the following
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MSERF =
1

nm

∑
i∈Dm

(yi − ȳm)
2, (18)

where nm is the number of samples in node m, Dm is the set of samples in node m, yi

is the target value of the ith sample, and ȳm is the mean target value of the samples in

node m.

Once all the decision trees are constructed, predictions from each tree are combined

to obtain the final prediction. For regression tasks, the final prediction ŷ is calculated as

the average of the predictions from all the trees by

ŷ =
1

T

T∑
i=1

ŷi, (19)

where ŷi represents the prediction from the ith tree, and T is the total number of trees.

For the implementation, the randomForest package in R is used. Furthermore, several

model parameters are decided on before fitting the model. Most importantly, number of

trees and the splitting criterion. For this problem, the number of trees is 250. The model

is tested on 500 trees as well which did not significantly improved the results, but it

did increase the run time. For that reason, 250 trees is chosen. Regarding the splitting

creation in the randomForest package, the algorithm minimizes the MSE as introduced

earlier. One-step ahead predictions for trade are forecasted in a rolling window for each

combination of countries, in which the previous years are used to train the model.

Equal dataset as employed for the linear model (13) is used. RF cannot handle cat-

egorical predictors with more than 53 categories. Therefore, one-hot encoding is used

to control for the 58 export/import countries. One-hot encoding is a technique used to

convert categorical variables into a numeric representation that can be used by machine

learning algorithms (Dinesh, 2019). It creates binary variables to represent each category

of the original variable. Furthermore, it is important to note that the algorithm has to

make the predictions for the all the combinations of actor i and j with i ̸= j, referring to

the countries. Therefore, the combinations are prespecified and used to prepare the test

data.

The results from the RF are compared on predictive power to the regular linear model

in (13), based on the R-squared (17) and the mean squared error,

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (20)

where n is the total number of predictions, yi is the real value, and ŷi is the predicted

value.
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5 Results

5.1 Simulation

In this section, the results are presented of the simulation formulated in 4.2. Figure 1

presents the estimated probability that true coefficient is in 95% confidence interval for

each of three covariates.

Figure 1: Estimated probability that true coefficient is in 95% confidence interval for each of
three covariates (binary, positive, and real-valued). The circles represent the errors that are
generated from exchangeable and the triangles represent the non-exchangeable error models.
Points denote mean estimated coverage and lines represent the middle 95% of coverages for
exchangeable and dyadic clustering estimators, in red and blue subsequently.

As shown in Figure 1, it is observed that the estimated probability of the true coef-

ficient falling within the 95% confidence interval is examined for each of the three cov-

ariates, namely binary, positive, and real-valued, under two different error models, the

exchangeable model and the non-exchangeable model. The mean estimated coverage is

indicated by the points, while the lines illustrate the middle 95% of coverages for both

the exchangeable and dyadic clustering estimators.

The findings reveal that the exchangeable estimator exhibits superior performance

compared to the dyadic clustering estimator. The estimated probabilities of the true coef-

ficients lying within the 95% confidence interval are consistently higher for the exchange-

able model, as indicated by the points denoting the mean estimated coverage. Moreover,

the middle 95% range of coverages, represented by the lines, consistently demonstrates

better performance for the exchangeable estimator in contrast to the dyadic clustering

estimator. Furthermore, for both models the middle 95% of coverages are smaller when

using the exchangeable error model compared to the non-exchangeable error model. This

shows the effectiveness of incorporating exchangeability in the error term if the dependent

variable is a relational array.

These results collectively suggest that the exchangeable estimator outperforms the dy-

adic clustering estimator in accurately capturing the true coefficients’ probabilities within

the confidence interval for both the binary, positive, and real-valued covariates.
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These results are in line with those from Marrs et al. (2023). They ran the simulation

for n = 20, 40, 80, 160, 320. However, due to time limitation the node sizes were reduced.

As expected, the results from n = 10, 30 are in line with the outcomes presented in

Marrs et al. (2023). In contrary to their results, the middle 95% of coverages for the

binary covariate in this simulation is noticeable smaller when error are generated using

exchangeable model in combination with the exchangeable estimator. This could be due

to a difference in seed specification.

5.2 Trade

Next, the trade is predicted as explained in 4.3. This section presents the findings re-

garding the prediction of trade using the exchangeable estimator and the ordinary least

squares (OLS) estimator. The performance of these two models is evaluated based on

the R-squared statistic, which provides an indication of the proportion of variance in the

dependent variable explained by the independent variables.

The analysis reveals that the exchangeable estimator demonstrates superior predictive

performance compared to the OLS estimator, as shown in Graph 2. The R-squared values

obtained from the exchangeable estimator consistently outperform those obtained from the

OLS estimator across different trade scenarios. Specifically, the exchangeable estimator

exhibits higher R-squared values, indicating a better fit of the model to the observed trade

data.

Figure 2: R-squared using exchangeable and ordinary least squares approaches when predicting
one-year-ahead trade flows.

For instance, when predicting year 6 the exchangeable estimator yields an R-squared

over .84, while the OLS estimator achieves an R-squared of .56. Similarly, as more years

are included in predicting, i.e. year 12, the exchangeable estimator obtains an R-squared

of .83, surpassing the OLS estimator’s R-squared of .61. The R-squared values obtained
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from the exchangeable estimator remain stable and relatively high across various time

periods. These results consistently demonstrate that the exchangeable estimator captures

a larger proportion of the variation in trade compared to the OLS estimator. It is worth

noting that the disparity of the estimators in performance diminishes with increasing the

number of time periods observed.

Noticeable, is the drop in both R-squares in year 11. The R-squared of the OLS

estimator dropped from .57 to .51, and increased to .61 again. Similarly, the R-squared

of the exchangeable estimator dropped from .82 to .73, and increased to .83 again. The

percentage change of the R-squared of the exchangeable estimator is larger than of the

OLS, namely -11.17% and -10.78% subsequently. Also, the rise afterwards was stronger

for the OLS estimator, namely 20.59% versus 12.84%.

Although, the true reasoning behind the drop in model fit is unknown, sudden changes

in the data could be a cause. Since the fall of the Berlin Wall happened in year 9, the

impact on international trade will most likely be evident later and could very well be the

cause for the drop in model fit accuracy in year 11.

These findings emphasize the superiority of the exchangeable estimator in predicting

trade compared to the OLS estimator. The results are completely in line with the results

from Marrs et al. (2023). It clearly shows the better fit of the model observed when using

the exchangeable estimation. The higher R-squared values obtained from the exchange-

able estimator indicate a better fit of the model to the observed trade data, suggesting

that it captures a larger proportion of the underlying trade dynamics. This highlights

the importance of considering the relational structure and actor-specific effects, which the

exchangeable estimator incorporates, in accurately predicting trade.

5.3 Structural Break

The Chow test was conducted to examine the presence of a structural break in the data

at the time of the fall of the Berlin. The test aimed to determine if there was a significant

change in the relationship between the trade, and the independent variables specified in

section 4.3, at a specific point in time. The Chow test statistic was calculated to be

34.38 with associated p-value < 2.2e-16. This p-value indicates extremely strong evidence

against the null hypothesis, suggesting that a structural break exists in the data.

The significant result suggests a substantial change in the relationship between the

variables after 1989. This finding implies that there are different relationships and dy-

namics influencing the dependent variable before and after the break point, indicating a

structural change in the underlying factors driving the observed patterns. The underlying

factor for this change could be the fall of the Berlin Wall as has been argued in Section

(2).
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5.4 Random Forest

As explained earlier, RF is implemented to compare the linear model with a non-linear

model. As the fall of the Berlin Wall marks a significant change in the dataset, only

predictions afterwards are compared. However, first the overall performance of the model

is evaluated for t = 4, ..., 11, to predict t+ 1.

In Graph 2, the resulting R-squared of the one-year ahead forecasting are presented.

The R-squared results are measures of the goodness of fit for the one-year ahead forecasts.

These values suggest that the RF model used for the forecasts generally explain a sub-

stantial portion of the variance in the dependent variable. The R-squared values range

from .79 to .86, indicating a good fit overall. In addition, the model better compared to

OLS estimator and mostly equal to the exchangeable estimator. As for the drop in the

11th prediction estimator, a more in-depth analysis is given in section (5.5).

5.5 Comparison

Moving on, the results from the exchangeable estimator approach are compared to RF

algorithm. To begin, the R-squared are analyzed focusing on the years around the fall of

the Berlin Wall. The chosen timeframe extends up to five years after the fall, specifically

spanning from t = 8 to t = 14.

Figure 3: R-squared using exchangeable estimator and Random Forest approaches when pre-
dicting one-year-ahead trade flows.

In Graph 3, the results are presented of the model fit using the exchangeable estimator

and RF approaches. Overall, the fit is similar in year 10 and 12. However, the R-squared

remains stable for the RF approach while there is a slight drop in prediction year 11 using

the exchangeable estimator, as was evaluated in 5.2. In addition, the model fit of the RF

regression exhibits a modest decline in year 13, whereas the exchangeable estimator is

unaffected.
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Due to the fact that the fall of the Berlin Wall is a structural break in the time series

data, instead of a transient shock, it takes more time for the RF model to adjust. Linear

models might be quicker to adapt to a structural break. While tree-based models like RF

might take more time to adjust to the new data structure. Furthermore, RF models are

prone to overfitting especially when there are high dimensional inputs or noise. The effect

of the fall of the Berlin Wall introduced significant noise and complexity into the data, the

RF model might have initially overfit to this, maintaining its performance. Nonetheless, as

more data came in, it might have struggled to generalize, causing the drop in R-squared.

Noticeable, the drop in R-squared is smaller for the RF model compared to the linear

model, namely .75 versus .73.

Figure 4: MSE using exchangeable estimator and Random Forest approaches when predicting
one-year-ahead trade flows.

Furthermore, the MSE is compared for t = 8, ..., 14 to clearly analyze the difference

between before and after the fall of the Berlin Wall. Based on these observations, it

seems that the model’s performance, much like the R-squared performance, varies across

different time points. The exchangeable estimator performs poorly in year 10 while the RF

model performs poorly in year 12. This suggests that the model’s accuracy is influenced

by specific factors that affect the trade flows, like the fall of the Berlin Wall. Similar

analysis as employed for the R-squared results can be applied to interpret these findings.

6 Discussion

The trade prediction outcomes showed the superior results for the exchangeable estimator

compared to the ordinary least squares, as was reveal earlier by Marrs et al. (2023). How-

ever, this raises the discussion in what way the exchangeable estimator is generalizable for

alternative use cases. The estimator relies strongly on the assumption of exchangeability,
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which assumes that the observations are identically distributed. However, this assump-

tion may not hold true in all real-life scenarios. Potential violating of this assumption

may affect the accuracy and especially the reliability of the estimator.

The data used for this research was extensive and of high quality. It is questionable

if this is reasonable for further application of the model. The model relies heavily on the

quality of the data and completeness. It is of importance that the data include trade flows

from both ways of the exchange. This relates back to the assumption of exchangeability.

However, this might be challenging to gather and keep up to date to measure accurate

prediction. This calls for further research to apply the method to more recent data.

For this research, the Chow test was conducted to detect a structural break. Limitation

of this method include the requirement for domain knowledge to decide on the point to

test for in the dataset. The Chow test is sensitive to the assumed break location. If

the break is misidentified or the timing is imprecise, the test may fail to detect the true

structural change. Conducting sensitivity analyses by testing different break locations can

help mitigate this limitation. Also, the Chow test relies on certain assumptions, including

independence and identically distributed residuals. Violations of these assumptions, such

as autocorrelation or non-normality in the residuals, can affect the test’s validity and lead

to inaccurate results. Furthermore, the Chow test is designed to detect a single structural

break, assuming that the data exhibit a stable relationship before and after the break.

However, in some cases, multiple structural breaks may occur. The Chow test may not

be suitable for identifying and analyzing multiple breaks, requiring the use of alternative

techniques such as the Bai-Perron test or the Quandt-Andrews test. Nonetheless, the

Chow test has proven its success in various conditions (Casini & Perron, 2018; Andreou

& Ghysels, 2009; Reeves et al., 2007).

Considering the evaluation of robustness, this has to be measured more extensively to

draw a valid conclusion. Firstly, various non-linear models exist, especially considering

machine-learning algorithms. More algorithms could be evaluated and implemented to

obtain the best solution for predicting trade flows, limiting the scope of this comparison.

The subjectivity in model selection introduces a degree of uncertainty and may lead to

different conclusions depending on the chosen criteria or tests. Also, model comparis-

ons assume that the models are correctly specified and capture the true data-generating

process. However, in practice, it is challenging to know the true underlying model. If a

model is misspecified or omit important variables or relationships, the comparisons may

favor the wrong model. Researchers should carefully consider the model specifications

and ensure that they adequately capture the relevant factors and dynamics. Neverthe-

less, the linear model to predict trade flows has been researched extensively and proven its

performance (Westveld & Hoff, 2011). Furthermore, the exchangeable estimator is solely

compared to the RF in case of predicting trade flows, which could lead to data-specific

results. Therefore, caution should be exercised when extrapolating the results to different
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contexts. New scenarios involving relational arrays should be considered to have a better

understanding which model has superior performance.

While RF provides accurate predictions, the interpretability of the model can be chal-

lenging due to the ensemble nature and multiple trees involved. Understanding the exact

decision-making process of a RF model can be complex, especially when the number

of trees is large. Furthermore, the tuning of the hyperparameter are crucial to achieve

optimal performance and avoid overfitting. The hyperparameters that need to be set in-

clude the number of trees, maximum depth of trees, and the number of features considered

at each split, and should be considered carefully. Future research could explore tuning

the hyperparameters differently or consider using alternative packages of programming

languages.

Lastly, the MSE is used to compare the predictive power of the linear and non-linear

power. However, this holds some limitation. Firstly, the MSE is sensitive towards outliers

as it squares the error term, potentially leading to biased comparisons. Alternatively,

the median absolute error (MAE) could be considered. By using the median instead

of the mean, the MAE is less affected by outliers. However, the dataset used in this

research does not contain extreme outliers which mitigates the limitation. For future

research in the field of model performance evaluation, robust cross-validation techniques

can be employed. Techniques like k-fold cross-validation can be adapted to use robust

estimation methods within each fold, helping to mitigate the influence of outliers. This

approach provides a more robust estimate of a model’s predictive power by considering

multiple subsets of the data and reducing the impact of outliers on the overall evaluation.

7 Conclusion

This paper has investigated the robustness of the exchangeable estimator applied to trade

flows during time of economic instability. Accordingly, the research question for this

paper was: ”Is the exchangeable estimator robust in predicting trade flow during periods

of economic instability, such as the aftermath of the fall of the Berlin Wall in 1989, and

how does the linear predictive model using the exchangeable estimator perform compared

to a non-linear model when economically disturbing events occur?”

To answer this research question, the exchangeable estimator was first compared to

the dyadic clustering estimator by means of a simulation, for which the method of Marrs

et al. (2023) was followed. Likewise, the results showed superior performance for the

exchangeable estimator, especially in combination with the exchangeable error model

versus the non-exchangeable error model. Afterwards, the trade flows were predicted

using a linear model formulated as stated in Westveld and Hoff (2011). The generalized

least squares method with exchangeable error model was used to estimate the linear model,

and was compared to ordinary least squares estimator. By means of the R-squared, the

26



model fit was better for one-year ahead prediction when using the exchangeable estimator,

which was also demonstrated in Marrs et al. (2023).

Afterwards, the robustness of the exchangeable estimator was evaluated. First of all,

the dataset was tested on a structural break in year 1989, corresponding to the year of

the fall of the Berlin Wall. Earlier, literature already stated the significant impact of

the fall of the Berlin Wall on international trade flows (Djankov & Nikolova, 2016). The

fall impacted the trade in various ways. It led to market integration and contributed to

the broader process of European integration, as it ultimately led to the expansion of the

European Union to include former Eastern Bloc countries. Additionally, the subsequent

collapse of the Soviet Union led to expansion of global supply chain and the changed in

trade relations with the former Soviet Union resulted in economic reforms. Consequently,

the sum of the import and export as percentage of the gross domestic product increased

significantly globally after the fall due to liberalization and globalization (Aiyar et al.,

2023). This led to the following hypothesis:

Hypothesis 1: The year 1989 marks a structural break in the trade flow.

Structural break analysis was performed to explore this hypothesis. The Chow test,

where year 1989 was considered as break point, resulted in a significant p-value. Implic-

ating that their was a structural break in the trade flow data in the corresponding year.

Therefore, the first hypothesis is not rejected.

Moving on, the robustness of the exchangeable estimator was evaluated. As of now,

the results showed that the exchangeable estimator outperforms alternative estimators

for fitting a linear model. Therefore, the performance of the linear model using the ex-

changeable estimator was compared to a non-linear model, to evaluate the robustness

during times of economic instability. As non-linear model, the RF algorithm was intro-

duced. RF has gained popularity as a widely used machine learning algorithm due to

its effectiveness in addressing high-dimensional data, non-linear relationships, and noisy

or missing values. This flexibility allows RF to adapt to unexpected events and capture

patterns that may not be evident in a linear model. Therefore, the following hypothesis

was formulated:

Hypothesis 2: Random Forest outperforms the linear model due to its flexibility to

adapt to unexpected events.

Overall, the RF model performed well when applied to relational arrays, with the

R-squared values range from .75 to .84. Furthermore, the linear model using the ex-

changeable estimator performs equally to the RF algorithm, based on model fit using

the coefficient of determination. However, focusing on the aftermath of the fall of the
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Berlin Wall, the model fit accuracy dropped slightly for both models, but with a delay

for the RF model. Possible explanations for this delayed response could encompass an

initial overfitting scenario in the RF model and a potentially longer adjustment period

required by the RF to accommodate the altered data structure. Consequently, the second

hypothesis is rejected.

To conclude, this research presents a deeper understanding of the performance of ex-

changeable estimator. The performance of the exchangeable estimator was not drastically

impacted by sudden change in the relational data. The model fit dropped slightly, but it

quickly recovered. Furthermore, the RF model demonstrates a lag in its response, with a

small drop in model fit occurring at a later stage, and therefore does not outperform the

linear model.
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A Growth trade volume

Figure 5: Growth of trade volume from 1950-2022.

Adapted source: World Trade Organisation (2022)
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