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Abstract

In this paper, we investigate the impact of four distinct dimensionality reduction meth-

ods on the cluster quality for two clustering algorithms. To accomplish this, we employ

internal clustering validation indices as a means of evaluation. The study explores both

linear techniques, such as Principal Component Analysis (PCA) and Independent Compon-

ent Analysis (ICA), and non-linear methods, including t-Distributed Stochastic Neighbor

Embedding (t-SNE) and Locally Linear Embedding (LLE). Evaluation of partitioning and

hierarchical clustering is conducted using k-means and agglomerative hierarchical clustering

(AGNES) algorithms. Previous research by Renjith, Sreekumar and Jathavedan (2021) in-

vestigated this topic using the Jester 1 dataset, which consisted of 100 joke ratings. Their

findings suggested that t-SNE outperformed other methods when combined with k-means

and AGNES. However, Renjith et al. (2021) emphasized the significant impact of the nature

of the dataset on method performance. In this paper, we extend the investigation of Renjith

et al. (2021) by using two additional datasets: a financial dataset comprising financial firm

ratios and a biology dataset containing codon frequencies. These datasets differ notably in

nature, particularly regarding variable dependencies. Our findings reveal that the results re-

ported by Renjith et al. (2021) are altered when using these alternative datasets, with t-SNE

no longer demonstrating superior performance. Significantly, we observe that when there

are more variables with stronger dependencies, the preservation or appropriate handling of

these relationships becomes increasingly critical for dimensionality reduction techniques.



1 Introduction

In this paper, we investigate the impact of four distinct dimensionality reduction methods on the

cluster quality for two clustering algorithms. To accomplish this, we employ internal clustering

validation indices as a means of evaluation.

Dimensionality reduction is a technique that reduces the number of features in a dataset

while retaining important information (Assent, 2012). It simplifies high-dimensional data by

mapping it to a lower-dimensional space (Van Der Maaten, Postma, Van den Herik et al., 2009),

resulting in noise reduction, identification of relevant features, and computational efficiency

improvement (Ding, He, Zha & Simon, 2002).

Clustering, on the other hand, groups similar data points together without prior knowledge

of their labels or target variable, aiming to discover patterns and natural groupings within the

dataset (Madhulatha, 2012).

Performing dimensionality reduction before clustering is advantageous as it leads to improved

cluster quality (Huang, Wu & Ye, 2019) and enhances data interpretability and visualization

(J. Tang, Liu, Zhang and Mei (2016)).

The study conducted by Renjith et al. (2021) examine the impact of four distinct dimension-

ality reduction methods on cluster quality, utilizing internal clustering validation indices. Their

selection of dimensionality reduction techniques include both linear methods such as Principal

Component Analysis (PCA) and Independent Component Analysis (ICA), as well as non-linear

methods like t-Distributed Stochastic Neighbor Embedding (t-SNE) and Locally Linear Embed-

ding (LLE). Linear dimensionality reduction techniques preserve linear relationships between the

variables and employ linear transformations to reduce the dimensionality of the data, while non-

linear dimensionality reduction techniques employ non-linear transformations to map the data

from a high-dimensional space to a lower-dimensional space and capture non-linear relationships

and complex patterns, allowing for a more flexible representation of the data.

To evaluate the performance of these dimensionality reduction techniques, Renjith et al.

(2021) employ k-means clustering and agglomerative hierarchical clustering (AGNES). Their

findings demonstrate that t-SNE performs best when combined with k-means and AGNES.

However, the researchers emphasize that the nature of the dataset strongly influenced the per-

formance of the methods.

The Jester dataset analyzed in the study of Renjith et al. (2021) comprised subjective ratings

for 100 jokes. This dataset falls under the category of social datasets and is characterized by

self-reported data, a specific number of observations, and dimensionality. Notably, the variables

in this dataset do not exhibit significant dependencies. One possible explanation for this phe-

nomenon is the subjective nature of humor. What may be amusing to one person may not elicit

the same response from another, leading to an absence of consistent patterns or dependencies

in how jokes are evaluated by different individuals. Consequently, it becomes crucial to invest-

igate the impact of utilizing datasets with diverse characteristics on the obtained results. As

highlighted by Kwon and Sim (2013), dataset properties such as domain area, dimensionality,

ratio of missing values, class dimensionality, and functional dependency of features influence the

performance of clustering methods. This leads us to the research question: How do the results

of cluster quality vary across the four distinct dimensionality reduction techniques when datasets
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with different characteristics are employed?

To address this research question, we extend the investigation to two additional datasets:

a financial dataset comprising financial ratios of firms and a biology dataset containing codon

frequencies. These datasets differ significantly in nature, particularly in terms of variable de-

pendencies. Unlike the Jester dataset, the financial dataset reveals specific variables with notable

positive or negative dependencies on other variables. Similarly, the biology dataset exhibits a

high level of dependency among nearly all variables.

Our analysis reveals that t-SNE no longer demonstrates superior performance for the financial

and biology datasets. Instead, LLE emerges as a strong contender for the financial dataset,

while ICA performs well for the biology dataset. The different result between these two datasets

could be due to the fact that the relationship between the variables in the financial dataset are

more non-linear and that of the biology dataset is linear, resulting in a non-linear and linear

dimensionality reduction technique respectively. Furthermore, as the biology dataset contains

more highly dependent variables, this might make it more important that the resulting dataset

is independent, whereas for the financial dataset it is enough that the dependencies are retained.

Nonetheless, these results emphasize the importance of preserving and appropriately handling

dependencies when variables exhibit substantial relationships.

To the best of our knowledge, the research conducted by Renjith et al. (2021) has not been

applied to real datasets with different characteristics. There has however been previous research

on the combined effect of dimensionality reduction techniques and clustering accuracy on a single

real dataset or datasets with the same characteristics. Song, Yang, Siadat and Pechenizkiy (2013)

performed a comparative study of dimensionality reduction techniques, including PCA, on the

performance of clustering on a dataset with real event log recorded from patient treatment that

indicated that PCA with k-means was most suitable for the complex dataset. Additionally,

B. Tang, Shepherd, Milios and Heywood (2005) conducted a comparison of six dimensionality

reduction methods, including PCA and ICA among others, in the context of text clustering. In

this study, it became clear that ICA ranked the highest for classification accuracy and stability.

According to these studies, ICA and PCA seem to perform very well for clustering. However,

the studies conducted by B. Tang et al. (2005) and Song et al. (2013) did not incorporate the

dimensionality reduction methods, LLE and t-SNE, that we specifically utilize in this paper.

This paper could have a significant impact as it highlights which methods work better with

specific types of data. This information can be valuable for researchers and companies who can

then choose the appropriate methods to interpret their data accurately. Ultimately, this can

lead to better insights and decision-making based on the data analysis.

The paper is organized as follows: Section 2 provides an overview of relevant literature

related to our study. In Section 3, we describe the data used and outline the data cleaning

process. Section 4 discusses the methods employed in our analysis. The results of our study are

presented in Section 5. Finally, in Section 6, we summarize and discuss our main findings.

2 Theoretical Framework

Renjith et al. (2021) concluded that the performance of the dimensionality reduction technique

and the clustering algorithms are significantly influenced by the nature or characteristics of the
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dataset. The paper by Kwon and Sim (2013) identified these influential characteristics of the

dataset which are presented in Table 1.

Table 1: Data characteristics

Characteristics elements Description

Sample size Sample size for learning and testing number of in-

stances (Smaller or larger)

Class type Binary or multiple classes

Missing values (sparse data) Ratio of instance which has missing values

Functional dependency of features Total degree of functional dependency between fea-

tures whether there is degree of dependency or not

Dimensionality (number of features) The number of features low dimensional or high di-

mensional

Domain area Social (noisy), natural science (straightforward)

Continuous feature Ratio of continuous features per nominal feature

Class dimensionality The number of features consisting class single class or

multi class
Notes: Reprinted from Kwon and Sim (2013)

Previous research has investigated the impact of certain characteristics of datasets on the

performance of clustering algorithms and dimensionality reduction techniques. For instance,

Renjith, Sreekumar and Jathavedan (2020) conducted a study where they varied the cardinal-

ity and dimensionality parameters of the dataset to assess their influence on the performance

of various clustering algorithms. Their findings indicated that k-means produced the best res-

ults when the cardinality was varied, while changes in dimensionality did not significantly affect

hierarchical clustering. Additionally, Mohamad and Usman (2013) highlighted that the presence

of features with substantial size or variability in a dataset can significantly impact clustering

outcomes. These studies are particularly relevant to our research as we will be working with

different datasets that vary in dimensionality and may contain features with significant size or

variability. Therefore, it is plausible that these differences in characteristics may influence the

overall clustering results obtained in the study conducted by Renjith et al. (2021).

The evaluation conducted by Fernández, Javier, Verleysen, Lee and Ignacio (2013) focused on

assessing the stability, robustness, and performance of different dimensionality reduction tech-

niques. The comparison included methods such as LLE, t-SNE, and PCA. The study revealed

that LLE is more sensitive to small changes in data and parameter variations. However, as the

dataset size increases, the influence of these parameters diminishes. Additionally, LLE tended

to produce non-fully connected graphs, leading to improper embedding of some data points,

whereas PCA and t-SNE were preferred for data visualization. Based on these findings, it is

plausible to anticipate that LLE may yield less satisfactory cluster representations, especially

when applied to datasets with a lower number of variables. This expectation is particularly

relevant to our two additional datasets, as they possess a smaller number of variables compared

to the original Jester dataset.

In a related study, Zubova, Kurasova and Liutvinavičius (2018) investigated the accuracy of
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dimensionality reduction techniques such as PCA, ICA, and LLE using non-clustered randomly

generated data, clustered randomly generated data, and real data. The study revealed that the

accuracy of these techniques remained unchanged with an increase in the number of observations.

However, it was observed that higher dimensionality resulted in lower accuracy. Considering that

our additional datasets will have lower dimensionality compared to the original Jester dataset,

we can expect, based on these findings, that the overall accuracy for the additional datasets will

be higher.

These variations in accuracy observed across different dimensionality reduction techniques

have significant implications for clustering accuracy. Dimensionality reduction techniques play

a vital role in reducing noise, eliminating irrelevant or redundant features, and uncovering un-

derlying patterns within the data (Huang et al., 2019). As a result, the choice of dimensionality

reduction method can greatly influence the overall quality and reliability of clustering results.

Moreover, datasets from different domains can exhibit varying degrees of variable depend-

ency and patterns. The dimensionality reduction techniques discussed in the study conducted by

Renjith et al. (2021) address dataset dependency in distinct ways. PCA produces uncorrelated

components, while ICA ensures independent components as output. LLE and t-SNE, although

not explicitly addressing variable dependency, preserve the global structure of the data, which

can capture dependencies among variables. In the original Jester dataset used by Renjith et

al. (2021), the dependency among variables was not particularly strong, so the importance of

addressing this dependency may have been less significant, and the preservation of the global

structure achieved by t-SNE was deemed sufficient. However, in our additional datasets, where

stronger dependencies among variables are evident, it becomes more crucial to address these

dependencies appropriately. Anowar, Sadaoui and Selim (2021) compared dimensionality reduc-

tion techniques using various measures, including correlation, and found that non-linear tech-

niques outperformed linear techniques in capturing correlation and other factors. The presence

of variable dependency within the resulting dataset can subsequently influence the outcomes of

clustering (Sambandam, 2003). In cases where dependent variables are used, certain variables

may carry more weight than others, potentially leading to biased interpretations (Sambandam,

2003). Therefore, for our additional datasets exhibiting stronger dependencies between variables,

LLE and t-SNE may yield better cluster quality results based on these studies.

Considering these studies collectively, it becomes apparent that modifying multiple char-

acteristics of the data, including dimensionality and variable dependencies, will significantly

impact the overall outcomes of the study conducted by Renjith et al. (2021).

3 Data

3.1 Data exploration

In this study we continue to employ the Jester 1 dataset (Goldberg, Roeder, Gupta & Perkins,

2001), which comprises ratings ranging from -10 to +10 associated with 100 jokes. This dataset,

sourced from social media, includes a total of 73,421 observations and contains a substantial

amount of missing data. As mentioned earlier, it was originally used in the comparative study

conducted by Renjith et al. (2021).
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In order to evaluate the impact of different dataset characteristics on the findings of Renjith et

al. (2021), we will investigate two additional datasets. The first dataset used in our analysis is the

Financial Ratios Firm Level dataset from Wharton Research Data Services (2023). This dataset

consists of 572,941 U.S. companies, including instances with missing values, and encompasses

63 variables related to various financial aspects such as financial soundness, liquidity ratios,

valuation ratios, profitability ratios, capitalization ratios, solvency ratios, and efficiency ratios.

It is worth noting that these ratios can vary depending on the size of the firms. Larger firms

may exhibit different ratios compared to smaller ones due to factors such as economies of scale,

resource access, and market power. Furthermore, the financial ratios can also differ based on the

industry characteristics of the firms. For instance, capital-intensive industries like manufacturing

or utilities may display different leverage ratios compared to service-based industries. Similarly,

sectors with high research and development expenditures, such as technology or pharmaceuticals,

may exhibit distinct profitability ratios. Moreover, competitive dynamics and market conditions

play a role in shaping financial ratios across sectors. Some sectors may experience intense

competition and lower profit margins, while others may have concentrated markets and greater

pricing power. These factors impact financial ratios like gross margin and market valuation

ratios. Considering these various factors, it is expected that the dataset will reveal clusters of

firms with similar ratios based on their specific characteristics as outlined above.

Although this particular dataset has not been previously employed in research, the study

conducted by Zubova et al. (2018) offers insights into the dimensionality reduction methods

applied to financial ratios. Their research compared PCA, ICA, and LLE, indicating that

LLE yielded the least favorable outcomes while PCA and ICA performed better. However, the

rationale behind these results was not explicitly provided.

The second dataset analyzed in this study originates from the publicly available Codon Usage

Tabulated from Genbank (CUTG), accessible through the UCI Machine Learning Repository

(Dua & Graff, 2017). This dataset focuses on the coding DNA and encompasses a diverse array

of organisms from various categories. In the realm of genetics, a codon represents a sequence

of three nucleotides that carries genetic information, encoding amino acids or signaling the ter-

mination of protein synthesis. Comprising 13,028 observations, with some instances containing

missing values, the dataset comprises 64 variables (National Human Genome Research Institute,

2023). Due to the distinct codon frequencies found in different organisms (Athey et al., 2017),

it is anticipated that this dataset will exhibit clusters, wherein organisms with similar codon

frequencies are grouped together. Given the potential variability in the importance of different

codons, performing dimensionality reduction on this dataset proves beneficial. For instance,

certain codons may be rare and occur exclusively in specific organisms, while others occur fre-

quently and are present in all organisms, such as stop and start codons that indicate protein

synthesis termination or initiation. Previous studies, such as that conducted by Khomtchouk

(2020), have utilized this dataset to investigate the grouping of specific combinations of codons,

known as genetic code units. Their research demonstrated that analyzing the frequencies of

codon usage offers a valuable approach for classifying DNA and predicting the taxonomic iden-

tity of organisms.

In addition to variations in sample size, dimensionality, and domain area among the three
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analyzed datasets, there are also differences in the dependency among their variables. The

correlation plots can be found in Figure 1.

(a) Biology correlation plot (b) Financial correlation plot

(c) Jester correlation plot

Figure 1: Correlation plots (a) biology dataset (b) financial dataset (c) Jester 1 dataset.

In relation to the Jester dataset, it is worth noting that most variables exhibit a certain level of

dependence on other variables, although this dependency is not particularly strong. In contrast,

the financial dataset unveils specific variables that showcase a notable positive or negative de-

pendency on other variables. The degree of dependency tends to be more evident among variables

that are closely located within the columns of the dataset, which could be attributed to these

variables belonging to the same category or exhibiting similar characteristics. For instance, we

observe a high positive correlation between the variables ”cash ratio” and ”quick ratio” both

of which fall under the category of liquidity ratios. Similarly, the variables ”equity invcap,”

”debt invcap,” and ”totdebt” exhibit a strong negative correlation, all belonging to the category

of capitalization ratios. On the other hand, the biology dataset demonstrates a substantial level
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of dependency among nearly all variables, regardless of whether the dependency is positive or

negative. This significant dependency can be attributed to codon usage bias, which involves

the preferential or non-random utilization of synonymous codons (Parvathy, Udayasuriyan &

Bhadana, 2022). As discussed in the Section 2, the dimensionality reduction techniques em-

ployed in this study address dependencies in distinct ways. Therefore, the divergent patterns of

dependency observed in the datasets have the potential to impact the findings of Renjith et al.

(2021).

3.2 Data cleaning

In our study, each of the three datasets analyzed contains missing values, although the extent of

missingness varies among them. To handle this issue, we have decided to remove all observations

with missing values from the datasets. Specifically, the financial dataset initially consists of

572,941 observations, out of which 525,017 observations contain missing values. After removing

the missing values, the dataset is reduced to 47,924 observations. Similarly, the biology dataset

has a total of 13,028 observations, with only 2 observations containing missing values. Therefore,

after removing the missing values, the dataset is left with 13,026 observations. Lastly, the Jester

dataset contains 73,421 observations, with 59,305 observations containing missing values. After

removing the missing values, the dataset is reduced to its remaining 14,116 observations.

Furthermore, in addition to addressing missing values, we also eliminate duplicate observa-

tions from the datasets to enhance data consistency. Initially, the financial dataset contained

41 duplicate entries, resulting in 47,924 unique observations. Similarly, the biology dataset had

42 duplicates, leaving 13,026 unique observations. On the other hand, the Jester dataset did

not contain any duplicate entries, resulting in 14,116 unique observations. By removing both

missing values and duplicates from the datasets, we guarantee that the data used in our study

is clean and devoid of such discrepancies. This process ensures the reliability and accuracy of

our analyses.

To align with the methodology employed by Renjith et al. (2021) and minimize potential

influences stemming from dataset size variations, we opt to randomly sample 5,000 observations

from each dataset for further analysis. This sample size choice mirrors the approach taken by

Renjith et al. (2021) in their visualization and likely in their analysis. Although Renjith et al.

(2021) did not explicitly mention setting a seed value, we take the precautionary measure of

establishing a seed value to ensure the reproducibility of the random sampling process throughout

our analysis.

4 Methodology

This paper will follow the methodology presented by Renjith et al. (2021), which involves us-

ing either a linear or non-linear dimensionality reduction technique on the data (Section 4.1),

followed by two clustering algorithms (Section 4.2). The quality of the clusters will then be eval-

uated using four different internal validation indices (Section 4.3). To carry out these methods,

multiple R packages are utilized which are listed in Appendix C.
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4.1 Dimensionality reduction techniques

We will use four techniques for reducing the dimensionality of the datasets, including two linear

dimensionality reduction methods: principle component analysis (Section 4.1.1) and independ-

ent component analysis (Section 4.1.2) and two non-linear dimensionality reduction methods:

t-Distributed Stochastic Neighbor Embedding (Section 4.1.3) and Locally Linear Embedding

(Section 4.1.4).

4.1.1 Principal component analysis (PCA)

Principal component analysis (PCA) is a linear technique that reduces the dimensionality of a

dataset, capturing as much variation as possible (Groth, Hartmann, Klie & Selbig, 2013). By

retaining the essential information of the data while reducing its size, the dataset is simplified

making it easier to interpret and analyze (Abdi & Williams, 2010).

The first step in computing the principal components (PC’s) involves calculating the sym-

metric covariance matrix, denoted as S, for the data matrix X (refer to Equation 1 as presented

by Johnson and Wichern (2014)).

S =
1

p
× (X − µ)(X − µ)T (1)

Here, p is the amount of variables, X represents the matrix containing the data, µ denotes the

mean vector of the variables, and the superscript T signifies the transpose operation.

Using S, we can proceed to compute the eigenvalues and eigenvectors utilizing the approach

outlined by Poole (2015). The process begins by applying Equation 2a, which can be alternat-

ively expressed as Equation 2b. In this equation, I represents the identity matrix. To obtain

a non-trivial solution v ̸= 0 and satisfy the condition that the determinant of the matrix (A -

λ × I) equals zero, we formulate Equation 2c. By solving Equation 2c, we can determine the

eigenvalues, λ, and subsequently obtain the eigenvectors, v.

a : S × v = λ× v

b : (S − λ× I)× v = 0

c : det(S − λ× I) = 0

(2)

Based on the eigenvectors, we can calculate the principal components, denoted as Zm. Each

principal component is a linear combination of the original variables xi, where the weights are

given by the corresponding entries in the eigenvectors (see Equation 3 by James, Witten, Hastie

and Tibshirani (2013)).

Zm =

p∑
i=1

vimxi (3)

In Equation 3, vim represents the ith element of the eigenvector m. The number of principal

components, m, is less than the number of variables, p.

Important characteristic of the PC’s is that they are orthogonal to each other (uncorrelated)

and that they maximize the variability of the linear combinations. However, the appropriate

number of principal components, m, to retain is often a non-trivial matter that requires the use
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of methods such as cross-validation or scree plots (Johnson & Wichern, 2014). In this paper we

use the scree plot and elbow method to determine the optimal number of principal components

to retain. The scree plot presents the eigenvalues of the principal components and helps identify

the point at which the eigenvalues exhibit a significant drop (the elbow point), indicating the

number of components to be retained. This plot serves as an indicator of the ideal number of

components to retain by visually identifying the point where the eigenvalues decrease rapidly.

4.1.2 Independent component analysis (ICA)

Independent component analysis (ICA) is another linear dimensionality reduction method and is

considered an extension of PCA. While PCA aims to find uncorrelated components, referred to as

principal components, ICA seeks to identify independent and non-Gaussian components, known

as independent components (Ge & Song, 2007). Unlike PCA, which requires components to be

orthogonal and linear combinations of the original variables, ICA is less restrictive. Additionally,

ICA does not impose any specific ordering or arrangement on the resulting components (Renjith

et al., 2021).

The underlying assumption of ICA is that the observed multivariate data, denoted as X, is

a mixture of unknown latent variables. This assumption can be represented by Equation 4.

X(n×m) = A(n×n)s(n×m) (4)

Here, we have a matrix A with unknown coefficients, of which the inverse of this matrix holds

significance in our context. Additionally, we have a vector s that consists of latent variables,

known as independent components. These independent components are assumed to follow a

non-Gaussian distribution and are statistically independent (Oja & Hyvarinen, 2000).

To verify the assumption of non-Gaussianity and independence, we use the Shapiro-Wilk

test. The Shapiro-Wilk test examines whether the data conforms to a Gaussian distribution

based on both it’s skewness and kurtosis (Razali, Wah et al., 2011). The test statistic for the

Shapiro-Wilk test, as presented in Equation 5 (Shapiro & Wilk, 1965), is defined as follows:

W =
(
∑n

i=1 giyi)
2∑n

i=1(yi − ȳ)2
(5)

In this equation, yi represents the ith order statistic, y denotes the sample mean, and gi is com-

puted as hTV −1

(hTV −1T−1h)
1
2
, with h a vector of expected values of the order statistics of independent

and identically distributed random variables sampled from the standard normal distribution and

V is the covariance matrix of those order statistics (Razali et al., 2011). The null hypothesis of

the Shapiro-Wilk test is that the data, yi,...,yn is Gaussian distributed.

The correlation between variables can be evaluated using the cor() function, which quantifies

the magnitude and direction of the linear association among the variables. When correlation

values are low, whether positive or negative, it indicates a greater level of independence.

The initial step in ICA involves preprocessing the data matrix X. This entails centering the

observations by subtracting the mean and whitening the data to ensure uncorrelated components

with unit variance, as outlined by Naik and Kumar (2011).

Following the preprocessing step, the objective is to estimate the independent components
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which are contained in vector, s. This is accomplished by obtaining the unmixing matrix W,

which is the inverse of A in Equation 4 (refer to Equation 6).

s(n×m) = W(n×n)X(n×m) (6)

However, since the matrix A is unknown, various approaches can be employed to recover W.

The commonly used approach is to maximize non-Gaussianity. This involves iteratively optim-

izing W to maximize either the kurtosis or the negative entropy of the estimated independent

components.

The kurtosis measure aims to identify the optimal W that maximizes the kurtosis of the

estimated independent components, while the negative entropy measure seeks to find theW that

maximizes the negative entropy, as described by Tharwat (2021). In our study, we utilize the

preProcess() function, which internally employs the fastICA package that utilizes the kurtosis

measure.

ICA offers advantages such as its flexibility compared to PCA and the interpretability of

the independent components, which correspond to meaningful features and patterns in the data

(Oja & Hyvarinen, 2000). However, a limitation of ICA is the ambiguity in the scaling and

order of the independent components, as they are not uniquely defined (Naik & Kumar, 2011).

Additionally, ICA assumes the statistical independence of the sources, which may not always

hold in real-world scenarios, potentially resulting in inaccurate separation outcomes

Similar to PCA, the scree plot and elbow method are commonly employed to determine the

number of independent components (for further details on this topic, please refer to Section

4.1.1)

4.1.3 t-Distributed Stochastic Neighbor Embedding (t-SNE)

T-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear technique used for dimen-

sionality reduction. It possesses the ability to capture both the local and global structures of

high-dimensional data, as highlighted by Van der Maaten and Hinton (2008).

The t-SNE algorithm begins by calculating the similarity or affinity between pairs of high-

dimensional data points, denoted as xi and xj , as shown in Equation 7 by Van der Maaten and

Hinton (2008).

pij =
exp(−∥xi − xj∥2/2σ2)∑
k ̸=i exp(−∥xi − xk∥2/2σ2)

(7)

In the equation, pij represents the conditional probability that xi would select xj as its neighbor.

The term σ refers to the variance of the Gaussian in the high dimensional space, and ∥∥ denotes

the Euclidean distance.

Next, a similar process is repeated for the low-dimensional counterparts of the data points,

denoted as yi and yj , as expressed in Equation 8 by Van der Maaten and Hinton (2008).

qij =
exp(−∥yi − yj∥2)∑
k ̸=i exp(−∥yi − yl∥2)

(8)

Lastly, the algorithm minimizes a cost function known as the Kullback-Leibler divergence, which

10



quantifies the discrepancy between the joint probability distribution, P, in the high-dimensional

space and the joint probability distribution, Q, in the low-dimensional space, as represented by

Equation 9 (Van der Maaten & Hinton, 2008).

C = KL(P∥Q) =
∑
i

∑
j

pij log
pij
qij

(9)

In the equation, pii = qii = 0, pij = pji, and qij = qji for all values of i and j.

4.1.4 Locally Linear Embedding (LLE)

Locally Linear Embedding (LLE) is a technique for reducing the dimensionality of high-dimensional

data while preserving its local structure in the embedded space. It assumes that the data exhib-

its smooth and non-linear characteristics. However, verifying this assumption is difficult due to

the high dimensionality of the data, making it challenging to evaluate without fitting a specific

model.

The main objective of the LLE algorithm is to find a low-dimensional representation of the

data, denoted as Yi. The algorithm starts by constructing a weight matrix, Rij , which represents

the linear reconstruction of a data point xi based on its neighboring data points.

To determine the optimal number of neighbors used to construct each data point xi, we

utilize the calc k() function provided by the ”lle” package in R, which implements the algorithm

proposed by Kayo (2006). Appendix A provides further details about this algorithm.

To obtain the weight matrix Rij , we solve a constrained least-squares problem that minimizes

the reconstruction error, ε(R) (see Equation 10 introduced by Roweis and Saul (2000). This

error measures the discrepancy between each data point xi and its reconstructed representation

using the weight matrix.

ε(R) =
∑
i

∥xi −
∑
j

Rijxj∥2 (10)

After obtaining the weight matrix Rij , the low-dimensional representation Yi is computed by

minimizing the cost function Θ(Y ) (see Equation 11) proposed by Roweis and Saul (2000).

This optimization is performed while utilizing the fixed weight matrix Rij obtained from the

reconstruction error minimization step.

Θ(Y ) =
∑
i

∥Yi −
∑
j

RijYj∥2 (11)

LLE offers the advantage of preserving the local relationships between data points (de Ridder,

Kouropteva, Okun, Pietikäinen & Duin, 2003). However, it may be sensitive to noise and outliers

(Renjith et al., 2021), and its performance can be heavily influenced by the parameters that need

to be set, potentially impacting the obtained results (De Ridder & Duin, 2002).
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4.2 Clustering

4.2.1 K-means

K-means is an algorithm used for clustering data into k clusters. Its objective is to minimize the

within-cluster sum of squares (WCSS) by iteratively reallocating data points between clusters,

as defined in Equation 12 (Hartigan & Wong, 1979). For a detailed explanation of the k-means

clustering algorithm, refer to Appendix A.

WCSS =

K∑
k=1

∑
xi∈Ck

∥xi − bCk
∥2 (12)

In the given equation, each data point is represented as xi, cluster k is denoted as Ck, while

bCk
represents the centroid of cluster Ck, which acts as a representative point that effectively

summarizes the characteristics of the data points within that particular cluster. The Euclidean

distance, denoted as ∥∥, is used to measure the dissimilarity between a data point xi and the

centroid ck. The algorithm aims to minimize the WCSS by optimizing the assignment of data

points to clusters

4.2.2 Agglomerative Hierarchical Clustering (AGNES)

Agglomerative Hierarchical Clustering (AGNES) is an unsupervised clustering algorithm that

can be characterized as ”greedy” due to its irreversible steps, as mentioned by Murtagh and

Contreras (2012). The algorithm begins by treating each data point as a separate cluster and

iteratively merges the two clusters with the smallest distance until a single cluster remains,

containing all the data points (Müllner, 2011). For a detailed description of the algorithm, refer

to Appendix H.

In R, the default linkage method used in AGNES is average linkage. However, extensive

literature has shown that Ward’s method performs better than the default method and other

alternative methods (Mojena, 1977; Kuiper & Fisher, 1975; Blashfield, 1976). Therefore in our

study, we employ Ward’s method instead. Ward’s method selects the two clusters to merge in

each iteration based on minimizing the information loss, which is quantified using the within-

cluster sum of squares, as described in Equation 12. This selection process ensures that the

clustering results in minimal information loss and maximizes the quality of the clusters (Sharma,

Batra et al., 2019).

4.3 Internal Validation of Clustering Quality

We will use four different internal validation indices to evaluate the quality of the clusters.

These include the Silhouette Index, Dunn Index, Calinski-Harabasz Index, and Davies-Bouldin

Index. The Silhoutte measures the closeness of points in one cluster to the neighbouring clusters

(Gupta & Panda, 2019). The Dunn Index quantifies the degree of compactness of clusters and

the degree of separation between clusters (Ben Ncir, Hamza & Bouaguel, 2021). The Davies-

Bouldin Index looks at the inter- and intra-cluster distance to determine cluster quality. A

lower intra-cluster distance is better, as is a higher inter-cluster distance (Mughnyanti, Efendi &

Zarlis, 2020). Finally, the Calinski-Harabasz uses a so called variance ratio criterion which is the
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ratio between the between-cluster sum of squares and the within-cluster sum of squares. The

higher the magnitude of this ratio the better the cluster quality (Caliński & Harabasz, 1974).

5 Results

5.1 Replication

5.1.1 Optimal amount of clusters

In the research conducted by Renjith et al. (2021), the initial step involved determining the

optimal number of clusters using the NbClust function. This function provides 26 indices that

assess the clustering solutions for different numbers of clusters based on the specified index.

However, the paper by Renjith et al. (2021) did not provide specific details about the input

parameters, particularly the distance and method used in the NbClust function. Given that the

default method is k-means, which is widely utilized in clustering analysis (Charrad, Ghazzali,

Boiteau & Niknafs, 2014), and considering that Renjith et al. (2021) employed k-means in their

research, it is reasonable to assume that they used k-means as the clustering method. Moreover,

the authors did not specify the distance parameter for the NbClust function. Several existing

studies (Madhulatha, 2012; Omran, Engelbrecht & Salman, 2007; Kumar, Chhabra & Kumar,

2014; Sinwar & Kaushik, 2014) highlight that the Euclidean distance measure is commonly

employed in clustering analysis. Therefore, we can infer that Renjith et al. (2021) may have also

utilized the Euclidean distance measure in their study.

In Figure 2, we display the distribution of cluster counts across all indices obtained from the

NbClust function. For specific information regarding the preferred number of clusters for each

index, please refer to Appendix D, which contains detailed figures.

Figure 2: Optimal amount of clusters Jester dataset

The optimal amount of cluster for the Jester dataset as observed from Figure 2 is two which

differs from the findings of Renjith et al. (2021), who reported three clusters. To maintain

consistency with Renjith et al. (2021), we will conduct the analysis for all datasets using three

clusters. However, in Appendix H, we will also perform the analysis using two clusters to explore

potential variations in the results.
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5.1.2 Dimensionality reduction and clustering

For the PCA and ICA function we need to specify the amount of components to retain. We

do this based on scree plots which can be found in Appendix E Figure 13 (see Section 4.1.1

for more details scree plots). Based on this analysis, we conclude that retaining 1 component

for PCA and 2 components for ICA is appropriate. The decision is based on the observation

of a significant decrease in eigenvalue, which indicates the retention of meaningful information.

However, since visualizations with only 1 component are not practical, we choose to retain 2

components for PCA as well.

To assess the assumption of independent and non-Gaussian components in ICA, we examine

the correlation between the two components. In this case, the correlation is so negligible that

the components can be deemed as uncorrelated. Additionally, we conduct the Shapiro-Wilk test

for both independent components and find that the null hypothesis of Gaussianity is rejected

at a 5% significance level (refer to Appendix F Table 4 for the detailed results). These results

support the assumption of independent and non-Gaussian components for the Jester dataset.

When using the LLE function, it is necessary to specify the number of neighbors. We employ

the calc k() function from the ”lle” package to determine the optimal number of neighbors which

uses the algorithm by Kayo (see Section Appendix G). Based on the result, we use 51 neighbors

when applying the LLE dimensionality reduction method.

After applying the dimensionality reduction techniques, we proceed with conducting k-means

clustering and AGNES. In our analysis, we set the number of centers and clusters to three for

both methods, following the results obtained from NbClust.

The resulting clusters, along with the clusters obtained without applying any dimensionality

reduction, are presented in Figure 3.

Figure 3: Two-dimensional view of clusters formed with dimensionality reduction techniques
when cardinality of the Jester sample is 5000
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Based on the observations derived from Figure 3, it is evident that the k-means algorithm

generally yields more distinct and separated clusters compared to AGNES, where some clusters

show overlap. Additionally, it appears that t-SNE, when combined with both k-means and

AGNES, produces the most tightly packed clusters. This suggests that the data points within

each cluster are closely situated, indicating a higher quality of clustering.

The characteristics of the clusters obtained in our study exhibit similarities to those reported

by Renjith et al. (2021) in terms of separation and compactness. However, we did notice that

our obtained clusters display slightly greater overall compactness than those of Renjith et al.

(2021), implying that our clusters may possess slightly higher quality.

5.1.3 Cluster quality

Lastly, we measure the quality of the clusters using the four indices: Silhouette Index, Dunn

Index, Calinski–Harabasz Index and Davies–Bouldin Index. The results of these indices is shown

in Figure 4, 8 and Figure 9.

Figure 4: Internal evaluation indices for different dimensionality reduction techniques for the
Jester dataset

In Figure 4 we observe the index values for the Jester dataset. The Silhouette Index is a measure

used to evaluate the quality of clustering, where higher values indicate better clustering. By

analyzing Figure 4, we can see that both k-means and AGNES algorithms have the highest

Silhouette Index when used with t-SNE. Moreover, the Dunn Index, which benefits from higher

values, identifies t-SNE with AGNES and LLE with k-means as the top-performing methods.

Additionally, the Calinski-Harabasz Index also favors t-SNE, indicating that it produces superior

clusters for both k-means and AGNES. Lastly, according to the Davies-Bouldin Index, combining

t-SNE with both AGNES and k-means results in the lowest value, implying that t-SNE yields

better cluster quality.

Considering the consistent out-performance of t-SNE over other dimensionality reduction
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techniques across the majority of indices, it is reasonable to conclude that t-SNE demonstrates

superiority, which is consistent with the findings of Renjith et al. (2021). This conclusion remains

consistent when utilizing two clusters as well. However, there are slight variations in the results

when working with two clusters. In this scenario, t-SNE surpasses the other methods across all

four indices. Notably, in terms of the Dunn Index, t-SNE now outperforms LLE with k-means.

Another disparity between our findings and those of Renjith et al. (2021) is that we observe

notably different values for certain dimensionality reduction techniques with respect to some

indices. In Renjith et al. (2021), the Dunn Index value was similar for t-SNE with k-means

and AGNES, but in our results, t-SNE with k-means performed significantly worse than k-

means. Conversely, concerning the Calinski-Harabasz Index, we find that t-SNE with k-means

and AGNES exhibit similar performance, whereas Renjith et al. (2021) reported that the value

for k-means with t-SNE was nearly three times higher than that of AGNES with t-SNE.

These differences in results observed between our study and the study conducted by Renjith

et al. (2021) could be attributed to various factors, such as the use of different sub-samples and

potential variations in data cleaning approaches resulting in different clusters. Since the specific

data cleaning methods employed by Renjith et al. (2021) were not explicitly stated, it is not

possible for us to replicate their exact procedures.

5.2 Extension

5.2.1 Optimal amount of clusters

As explained in detail in Section 5.1.1, we utilize the NbClust function to determine the optimal

number of clusters. We employ the Euclidean distance and k-means method as parameter inputs

for this analysis.

In Figure 5, we display the distribution of cluster counts across all indices obtained from the

NbClust function. For specific information regarding the preferred number of clusters for each

index, please refer to Appendix D, which contains detailed figures.

Figure 5: Optimal amount of clusters for the financial dataset (left) and biology dataset
(right)

The majority of indices suggest that the optimal number of clusters for both the biology and

financial datasets is three. Hence, we will utilize three clusters when applying k-means and

AGNES to these datasets.
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5.2.2 Dimensionality reduction and clustering

For PCA and ICA function we need to specify the amount of components to retain. We do this

based on scree plots which can be seen in Appendix E Figure 14 and 15 (see Section 4.1.1 for more

details about scree plots). Based on this analysis, it is suggested to retain 3 components for both

PCA and ICA in the financial dataset. For the biology dataset, we choose to retain 2 components

for both PCA and ICA based on the scree plot. Evaluating the assumption of independent and

non-Gaussian components in ICA, the correlation between the two components for both dataset

is so negligible that the components can be deemed as uncorrelated. Additionally, the Shapiro-

Wilk test rejects the null hypothesis of Gaussianity for both datasets at a 5% significance level,

affirming the validity of the ICA assumption (refer to Appendix F Figure 5 and 6 for the detailed

results).

To apply the LLE function, it is necessary to specify the number of neighbors. By employing

the calc k() function from the ”lle” package which implements the algorithm by Kayo (see

Appendix G), we determine that 20 neighbors are appropriate for both the financial and biology

datasets.

After applying the dimensionality reduction techniques, we proceed with conducting k-means

clustering and AGNES. In our analysis, we set the number of centers and clusters to three for

both methods, following the results obtained from NbClust.

The resulting clusters, along with the clusters obtained without applying any dimensionality

reduction, are presented in Figure 6 and 7.

Figure 6: Two-dimensional view of clusters formed with dimensionality reduction techniques
when cardinality of the financial sample is 5000

Figure 6 reveals an intriguing observation regarding the clusters obtained without employing

dimensionality reduction. Notably, these clusters consist of a large cluster encompassing the

majority of observations, alongside two smaller clusters. Conversely, when utilizing LLE, the
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resulting clusters appear relatively smaller and more scattered in comparison to clusters obtained

using other dimensionality reduction techniques. While the well-separated characteristic of the

LLE clusters suggests a favorable quality, the significant difference in density between these

clusters raises concerns. This observation is in line with the conclusions drawn by Fernández

et al. (2013) in their study, where they anticipated such limitations when using LLE for cluster

visualization.

Upon comparing the visual representations of the financial dataset with the Jester dataset,

a clear distinction arises in terms of cluster density. Several clusters in the current dataset

exhibit a lower density of data points relative to other clusters, indicating a sparser distribution.

Specifically, when LLE is applied, the resulting clusters in the current dataset demonstrate

noticeable dissimilarities compared to those observed in the Jester dataset. These dissimilarities

manifest as smaller, disconnected clusters in the current dataset. Furthermore, it is worth

mentioning that the clusters formed without dimensionality reduction appear to be more evenly

distributed in the Jester dataset compared to the financial dataset. Lastly, a consistent pattern

emerges regarding cluster separation: k-means yields better-separated clusters than AGNES.

Figure 7: Two-dimensional view of clusters formed with dimensionality reduction techniques
when cardinality of the biology sample is 5000

As can be observed from Figure 7 the clusters without any dimensionality reduction exhibit sig-

nificant overlap, one cluster is even swallowed by the other two, indicating poor cluster quality

if no dimensionality reduction is applied. This is a contrast to the Jester and financial data-

set. However, when dimensionality reduction techniques are applied, the clusters show reduced

overlap. Furthermore, when conducting LLE, it is noticeable that the data points within the

clusters exhibit a higher concentration around a central point and are less connected compared

to the clusters of the other techniques of dimensionality reduction. In addition, the clusters in

the biology dataset exhibit a varying within cluster density of data points than in the Jester

dataset and the financial dataset, indicating a sparser distribution for this dataset.
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5.2.3 Cluster quality

Lastly, we measure the quality of the clusters using the four indices: Silhouette Index, Dunn

Index, Calinski–Harabasz Index and Davies–Bouldin Index. The results of these indices are

shown in Figure 8 and Figure 9.

Figure 8: Internal evaluation indices for different dimensionality reduction techniques for the
financial dataset

The index results for the financial dataset are presented above. From Figure 8, it is evident that

LLE demonstrates the highest values for the Silhouette Index with both AGNES and k-means,

indicating its superiority over the other methods. This is also the case for LLE with AGNES

concerning the Dunn Index, although PCA outperforms the other methods when paired with

k-means. When considering the Calinski-Harabasz Index, t-SNE with k-means and LLE with

AGNES yield the best results. The Davies-Bouldin Index shows that the lowest values are

achieved by both AGNES and k-means when paired with t-SNE, indicating the superiority of

t-SNE in this regard.

Contrary to the Jester dataset, where t-SNE consistently outperforms other methods, the

financial dataset reveals LLE as a formidable competitor. In certain scenarios, when paired with

specific clustering algorithms and indices, LLE surpasses t-SNE in terms of performance. LLE

demonstrates superior preservation of the global structure of the data compared to t-SNE. This

can be attributed to the presence of significant dependencies within the financial dataset, which

greatly contribute to its overall structure and relationships. LLE’s emphasis on preserving the

global structure enables it to effectively capture and represent these dependencies in the reduced-

dimensional space, surpassing the performance of t-SNE. On the other hand, the Jester dataset

consists of lightly dependent variables, explaining why t-SNE performs better for that dataset.

Examining the overall accuracy of all clusters for both the Jester and financial dataset, most

indices indicate higher accuracy for the Jester dataset, which is unexpected considering previous

findings by Zubova et al. (2018) suggesting that higher dimensionality leads to lower accuracy.
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Figure 9: Internal evaluation indices for different dimensionality reduction techniques for the
biology dataset

The index results for the biology dataset are presented in Figure 9 above. The Silhouette Index

indicates that ICA, PCA, and LLE perform similarly, while t-SNE performs significantly worse

than them. On the other hand, the Dunn Index demonstrates the superiority of t-SNE with both

AGNES and k-means. In terms of the Calinski-Harabasz Index, ICA outperforms all methods

with both AGNES and k-means. Finally, the Davies-Bouldin Index reveals that both PCA and

ICA outperform LLE and t-SNE.

In the biology dataset, ICA outperforms t-SNE across various indices, demonstrating its

superior performance. This improved performance of ICA can be attributed to its capability to

generate independent components that effectively handle the high dependency among variables

in this dataset. In contrast, the Jester dataset has less variable dependency, making the pro-

duction of independent components less crucial in that case. Additionally, when evaluating the

overall accuracy of the clusters, the biology dataset, which has fewer variables compared to the

Jester dataset, demonstrates better cluster quality, aligning with the findings of Zubova et al.

(2018) as expected.

6 Conclusion

The study conducted by Renjith et al. (2021) aimed to examine the performance of differ-

ent dimensionality reduction methods in clustering analysis using internal clustering validation

indices. They evaluated both linear techniques, such as Principal Component Analysis (PCA)

and Independent Component Analysis (ICA), and non-linear techniques, including t-Distributed

Stochastic Neighbor Embedding (t-SNE) and Locally Linear Embedding (LLE). Their analysis

employed k-means clustering and agglomerative hierarchical clustering (AGNES) to assess par-

titioning and hierarchical clustering.

The findings of Renjith et al. (2021) demonstrated the superior performance of t-SNE when
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combined with both k-means and AGNES. In our replication study, we arrived at the same

conclusion as Renjith et al. (2021), with the exception that t-SNE combined with AGNES

outperformed ICA and LLE in terms of the Davies-Bouldin index, but did not outperform k-

means according to the Dunn Index. However, it is important to note that these results may

vary when working with datasets of a different nature, as highlighted by Renjith et al. (2021).

To investigate this further, we utilized a biology dataset comprising codon frequencies and

a financial dataset consisting of financial ratios of firms. These datasets exhibited distinct de-

pendency patterns among variables, with the financial dataset showing high dependency across

certain variables and the biology dataset demonstrating high dependency across nearly all vari-

ables. In contrast, the Jester dataset displayed relatively low dependency among variables.

Given the different approaches employed by the dimensionality reduction techniques in hand-

ling variable dependencies, we hypothesized that these dissimilarities could impact the results.

Indeed, our findings revealed that t-SNE did not exhibit superiority in the financial and biology

datasets. Instead, ICA performed better overall for the biology dataset, owing to its ability

to generate independent components that effectively address high variable dependency. In the

case of the financial dataset, LLE emerged as a strong contender. These findings suggest that

when variables exhibit significant inter-dependencies, it becomes crucial for the dimensionality

reduction technique to accurately retain or appropriately address these relationships.

The implications of this research are significant, as it underscores the importance of selecting

suitable dimensionality reduction methods based on the characteristics of the data. Researchers

and organizations can benefit from this knowledge by employing the most appropriate methods

for their data analysis, leading to more accurate interpretations and informed decision-making.

Further research can explore alternative dimensionality reduction methods that better ac-

count for variable dependencies. One potential approach would be to improve upon the di-

mensionality reduction techniques used in this study. For instance, incorporating correlation

coefficients as a distance metric in LLE, as demonstrated in the paper by Chen and Cao (2012),

enhances its performance by explicitly addressing dependencies. This modified version of LLE

could be more effective for datasets with strong and numerous variable dependencies. Another

potential candidate is partial least squares (PLS), which aims to identify latent variables that

explain maximum covariance between the original variables, providing a low-dimensional rep-

resentation that captures underlying relationships (Rosipal and Krämer, 2005). PLS has the

potential to preserve the most important dependencies among variables, making it a promising

option for datasets with high dependencies.
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A K-means algorithm

Table 2: K-means algorithm pseudo code (Na et al., 2010)

1. Initialize the number of clusters k.

2. Randomly select k data points from the dataset as the initial cluster centroids.

3. Repeat until there is no change in the centroids of the clusters:

4. Calculate the Euclidean distance between each data point and all cluster centers

and assign the data point to the cluster for which this distance is minimized.

5. Calculate the new centroids of the clusters

B Agglomerative Hierarchical Clustering (AGNES) algorithm

Table 3: AGNES algorithm pseudo code (Murtagh & Contreras, 2012)

1. Assign each data point to it’s own cluster. The amount of clusters is now equal to the

amount of data points

2. Calculate the distance between each pair of clusters using the Euclidean distance.

3. Repeat until the desired amount of clusters is reached:

4. Merge the closest clusters based on Ward’s criterion: find the pair of clusters

with the smallest increase in the within-cluster sum of squares (WCSS) when

merged. The increase in WCSS is calculated based on the distance between the

merged cluster and the original clusters, as well as the sizes of the clusters involved.

5. Update the distance matrix: recompute the distances between the merged cluster

and all the remaining clusters. Use Ward’s criterion to determine the proximity

between the merged cluster and other clusters.
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C R packages

Application Fuctions R package

Principal component analysis (PCA)

K-means clustering

prcomp()

kmeans()
stats

Independent component analysis (ICA)
preProcess()

predict()
caret

t-distributed stochastic neighbour embedding (t-SNE) Rtsne() Rtsne

Locally linear embedding (LLE)

Optimal number of neighbours to construct datapoint

lle()

cal k()
lle

AGNES clustering

Silhouette Index

Calinski-Harabasz Index

agnes()

silhouette()

calinhara()

cluster

Davies-Bouldin Index index.DB() clusterSim

Dunn Index dunn() clValid

Optimal amount of clusters NbClust() clusterCrit

Cluster visualization fviz cluster() factoextra

D Optimal number of clusters for specific indices

Figure 10: Optimal amount of clusters per index for Jester dataset

Figure 11: Optimal amount of clusters per index for financial dataset

Figure 12: Optimal amount of clusters per index for biology dataset
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E Scree plots

Figure 13: Scree plots for Jester dataset

Figure 14: Scree plots for the financial dataset

Figure 15: Scree plots for the biology dataset

F Shapiro-Wilk test results

W p-value

Independent component 1 0.99803 5.623e-6

Independent component 2 0.99217 6.461e-16

Table 4: Jester dataset Shapiro-Wilk test results

W p-value

Independent component 1 0.98393 2.2e-16

Independent component 2 0.96917 2.2e-16

Table 5: Financial dataset Shapiro-Wilk test results
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W p-value

Independent component 1 0.98346 2.2e-16

Independent component 2 0.96373 2.2e-16

Table 6: Biology dataset Shapiro-Wilk test results

G Optimal number of neighbours algorithm by Kayo

The function calc k() implements the algorithm proposed by Kayo (2006). This algorithm

initially chooses a set of potential candidates for optimal the amount of neighbours, K and an

optimality measure is calculated for each candidate. To select the candidates for the optimal

number K, the reconstruction error resulting from approximating parts of the nonlinear manifold

by linear hyperplanes is considered. This error depends on the weights assigned to data points

and the number of nearest neighbors. The function representing the reconstruction error is used

as a criterion for identifying potential candidates for the optimal K, which correspond to local

and global minima of the function.

After selecting the candidates, the residual variance is computed for each candidate to assess

the preservation of distance information. The residual variance measures how well the high-

dimensional data is represented in the low-dimensional embedded space. The optimal value of

K is determined by selecting the candidate that minimizes the residual variance.

H Replication with two clusters

In order to replicate the analysis with two clusters, we utilize the identical data output for

all dimensionality reduction techniques. However, when employing k-means and AGNES, we

specifically select two clusters. The resulting clusters can be observed in the accompanying

Figure.16.
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Figure 16: Two-dimensional view of clusters formed with dimensionality reduction techniques
when cardinality of the Jester sample is 5000

From Figure 16, it is evident that when using two clusters instead of three, the clusters are

evenly distributed in terms of size. However, the level of overlap between the clusters remains

consistent across all methods.

Furthermore, we conducted a comprehensive evaluation of cluster quality using four indices:

the Silhouette Index, Dunn Index, Calinski-Harabasz Index, and Davies-Bouldin Index. The

results of these indices are presented in Figure 17.

29



Figure 17: Internal evaluation indices for different dimensionality reduction techniques with
the usage of two clusters

Upon examining Figure 17, we can assess the clustering quality using the Silhouette Index, which

measures the effectiveness of clustering algorithms. Higher Silhouette Index values indicate

better clustering performance. It is evident that both the k-means and AGNES algorithms

achieve the highest Silhouette Index when paired with t-SNE. Furthermore, the Dunn Index,

which benefits from higher values, identifies t-SNE as the top-performing method. Notably, LLE

combined with k-means closely rivals the performance of t-SNE with k-means. The Calinski-

Harabasz Index also favors t-SNE, suggesting that it generates superior clusters for both k-

means and AGNES. Similarly, the Davies-Bouldin Index indicates that combining t-SNE with

both AGNES and k-means yields the lowest value, signifying better cluster quality.

Consistently, when using two clusters, t-SNE maintains its superiority, aligning with the

findings of Renjith et al. (2021) in their comparative study. However, there are slight variations in

the findings when working with two clusters instead of three. In this scenario, t-SNE outperforms

the other methods across all four indices. Notably, in terms of the Dunn Index, t-SNE now

surpasses LLE with k-means.

30


