
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Business Analytics & Quantitive Marketing

Maintenance optimization for a single wind turbine

component considering actual wind variability

Joep Verdegaal (545906)

Supervisor: Rommert Dekker

Second assessor: Name of your second assessor

Date final version: 2nd July 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



Abstract

In this paper, a model for optimizing age replacement policy considering actual wind

variability (w-ARP) is introduced. The The policy is aimed at replacing a single-component

off-shore wind turbine and extends a period-dependent age-replacement policy (p-ARP). A

markov decision process model is formulated to model the component age and wind speeds

using wind speed time series data from KNMI. By estimating power a output function

for a particular wind turbine we approximate downtime costs for w-ARP and adjust cost

functions for the p-ARP, which are compared subsequently. The w-ARP, that allows for

higher maintenance age thresholds in the summer periods, results in lower costs and higher

savings compared to p-ARP. A simplified implementation of this model demonstrates the

potential advantage of including actual wind variability in scheduling maintenance for wind

turbines.

Keywords: maintenance, age replacement policy, wind variability, offshore wind turbine.

1 Introduction

By the year 2030, the Dutch government aims to generate 30% of the total energy production

from renewable energy sources and by 2050, the energy supply must be almost entirely sustain-

able (Ministerie van Algemene Zaken, 2023). Consequently, wind farms must supply 16% of

all energy in the Netherlands and 75% of current electricity consumption. Although off-shore

wind energy is the cheapest large-scale renewable energy source, the rapid expansion of both the

number and size of off-shore wind farms presents operational challenges as well as maintenance

costs. Nowadays, the operation and maintenance costs make up around 25 − 30% of the total

life cycle costs for an off-shore wind farm (Zheng et al., 2020). In order to enhance market

competitiveness and attain improved economic returns, it is important to enhance the operation

and maintenance management level of wind farms

To keep the wind turbines operating, two types of maintenance can be performed. Prevent-

ive maintenance (PM) is carried out to prevent the failure of components, while corrective

maintenance (CM) is done to repair a failed component and is typically more expensive. As the

failing of a component and maintenance require the turbine to shutdown resulting in production

loss, corrective maintenance needs to be performed as soon as possible. Popular PM policies are

age-based (ARP), block-based maintenance policies (BRP), and modified block-based mainten-

ance policy (MBRP). Generally, the challenge in maintenance optimisation problems is to find

a cost-efficient balance between corrective and preventive maintenance.

Weather conditions play a big role in off-shore wind turbine maintenance and operation schedul-

ing (Seyr & Muskulus, 2019), with wind speeds being the most important environmental factor

influencing the scheduling (Zheng et al., 2020) in three main ways. First, Many studies have il-

lustrated that the correlation between wind speed and hazard rate is positive. Second, high wind

speeds may restrict maintenance operations because high winds can make maintenance tasks

complicated and hazardous (Zhang et al., 2019). Third, the downtime cost is associated with

the the wind speed during downtime, meaning higher maintenance costs for high wind speeds.

Wind speeds are are characterized by yearly seasonality, with higher wind speeds occurring more
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frequently in the winter. Therefore, one would expect summer periods are the best moments do

do maintenance in. By considering the varying wind speeds in maintenance planning, operators

can schedule maintenance activities strategically by avoiding periods of strong winds, operators

can minimize the number of service visits, reduce the time spent on each visit resulting in cost

savings.

The objective is to determine a preventive replacement policy which minimizes the long-run

average costs. To do this, this study adjust the period-dependent age replacement policy (p-

ARP) model presented by Schouten et al. (2022), by including expected wind speed as an extra

(state) variable. Via discratisation of time, a Markov decision process (MDP) is used to describe

the statistical behaviour of the components age. Historical wind speed data is used to discretize

wind speeds into wind states and to estimate first order wind speed transition probabilities. This

is added to the MDP to also model the behaviour of wind speeds for every period in the main-

tenance cycle. We use power output data for a certain wind turbine and piece-wise (non-)linear

regression method to estimate the power output curve that is then used for downtime costs

estimations. (This way, the maintenance costs depend on the wind speeds and not on the time

of the year.) Given this model, we present the wind-dependent age replacement policy (w-ARP)

and the long-run average maintenance costs can then be optimized using a linear programming

(LP) formulation. The resulting policy defines the period, critical age threshold and wind speed

for which a PM is to be performed.

To implement the model, this paper considers the maintenance scheduling for a single com-

ponent Vestas V164-9.5 MW wind turbine in the North sea at IJmuiden, which is comparable

to the case in Schouten et al. (2022). This implementation example is adjusted to compare the

w-ARP and p-ARP results. This way, we can examine whether the model actually benefits from

including actual wind variability. Due to a restriction of heap space memory in the Java Virtual

Machine (JVM), the MDP model presented in this paper is restricted in its state space size

and therefore some parameter simplifications are introduced. The simplified model serves the

purpose of obtaining results and demonstrating the implementation of the proposed model. In

addition, some adjustments are made to the costs functions presented by Schouten et al. (2022)

to enable cost comparability between p-ARP and w-WARP. For w-ARP, the results show higher

critical maintenance age thresholds in the summer periods than in the winter periods, most

likely because low wind speeds are more prevalent in summer and postponing maintenance to

the next period is more justified. The w-ARP results in lower average annual costs compared

to p-ARP with average costs estimates, but higher than p-ARP with optimistic costs estimates.

Compared to the constant cases with constant costs, the w-ARP model show annual savings

around 11% while the savings for the p-ARP model are small.

The outline of the thesis is as follows. The following section, 2, presents an overview of rel-

evant literature. Next, Section 3 describes the Markov decision process (MDP) model and its

parameters. Section 4 describes, mathematical programming formulations of the the mainten-

ance policies. Thereafter, Section 5 explains the historical wind data set and the power output
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data for the wind turbine. The results are provided and described in Section 6. Next, Sec-

tion 7 discusses the model implementation and idea’s for future research. Lastly, 8 provides an

overview of most important findings of this study.

2 Literature review

2.1 Wind speed variability

There exist a variety of studies on off-shore wind turbine maintenance optimization. Seyr &

Muskulus (2019) provides an overview of factors that influence planning and cost of mainten-

ance, and maintenance models presented in current literature. The most influential factors in

off-shore wind turbine maintenance scheduling are occurrence of failures, availability of main-

tenance crew, spare parts and vessels, weather and external factors, the chosen maintenance

strategy, and economical parameters such as the electricity price and subsidies (Seyr & Musku-

lus, 2019).

Studies that include wind variability in optimizing maintenance scheduling are Byon et al. (2010)

andByon & Ding (2010). Wind variability in maintenance planning is captured by considering

the stochastic nature of weather conditions and solve partially observed Markov decision process

models. In Schouten et al. (2022), some of these strategies are extended to include time-varying

costs, on which our cost functions for the maintenance policies are based. Zhang et al. (2019) ex-

amines an opportunistic maintenance strategy for wind turbines considering stochastic weather

conditions (and spare parts management) is proposed using a Markov chain model.

Modeling weather conditions with a Markov decision process has advantages. Markov states

can be readily updated whenever new wind speed observations are available (Li et al., 2021). A

Markov decision model is capable of representing correct wind speed distribution and captur-

ing their persistence (Scheu et al., 2012). In addition, Markov decision model does not require

long records of wind speed measurements or assume the independence of successive wind speeds

(Sahin & Sen, 2001; Zhang et al., 2019). Moreover, the studies done by Hagen et al. (2013),Sahin

& Sen (2001), Shamshad et al. (2005), Nfaoui et al. (2004) and Karatepe & Corscadden (2013)

show the ability of a Markov chain model to retain the statistical properties of wind speeds

by comparing generated synthetic wind speeds to observed data. As a consequence, a Markov

decision process to model the wind speeds per period is the method of choice. which forms the

basis for the presented model.

2.2 Maintenance policies

In current literature, the most popular maintenance policies for wind turbines are age- and block

replacement policies. The paper from Boland & Proschan (1982) introduces three maintenance

policies: the age replacement (ARP), block re- placement (BRP), and modified block replace-

ment policies (MBRP). In the standard ARP policy, a component is replaced preventively once

it has reached a certain age. Under a BRP components are replaced at a fixed time interval,

regardless of the component age. MBRP is a combination of the two, where components have
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scheduled maintenance times based on intervals, but maintenance is only performed at these

times if the component has reached a certain age. Under mild conditions for a single component

system with constant PM and CM costs, the ARP is most optimal with respect to the average

costs.

Other maintenance methods that are examined in current literature are opportunity- and condition-

based policies. The few studies that include time-varying costs consider opportunity mainten-

ance, where operations are initiated by a stochastic event, consequently ensuring a degree of

unpredictability. Condition-based maintenance also lack this plannability of operations. In ad-

dition, many studies on the maintenance optimization of wind turbine components assume the

availability of sensor data. However, a problem is that not all deterioration can be accurately

measured (Schouten et al., 2022). Therefore, models that use a deterioration process of com-

ponents with known statistical behavior and where failures occur unexpectedly, such as ARP

and BRP, are the main focus of Schouten et al. (2022).

In the maintenance literature, it is mostly assumed that the cost rates are known and constant

over time. Since maintenance costs depend on varying wind speeds, this assumption would res-

ult in non-realistic maintenance policies. The paper from Schouten et al. (2022) that presents

period-dependent maintenance policy optimization models (p-ARP, p-BRP and p-MBRP) ad-

dresses wind variability by allowing costs to change over periods of a cycle e.g. weeks of a year.

The yearly seasonality characteristic of wind speeds is by depending the cost estimates on the

period of the year. This study shows that the p-ARP to be the optimal policy with respect to

average costs, while the p-BRP has the advantage that maintenance can be planned in advance,

and p-MBRP is combination of low costs and plannability. To the best of their knowledge, first

time addressing time-dependent cost rates in single- component maintenance optimization. The

research done in their paper is the main inspiration for our research. However, as the model is

time dependent, it does not account for the actual wind variability. To address this, this paper

extends their model by introducing an extra state variable expected wind speed. In the papers of

Boland & Proschan (1982) and Schouten et al. (2022), the ARP is proven to be the most optimal

with respect to averaged costs in constant cost and time-varying cost case. Therefore, this study

extends the p-ARP model to account for actual wind variability. For further research, it would

be interesting to investigate incorporating wind variability in block based BPR and MBRP.

Overall, modeling a state variable indicating the actual wind speed at a wind turbine site and

incorporating it into the MDP framework can provide a more accurate representation of the sys-

tem’s performance and enable more effective maintenance scheduling to minimize maintenance

average costs. To the best of knowledge, it is first study addressing wind speed depended cost

rates in single-component maintenance optimization for an off-shore wind turbine.

3 Methodology

This section describes the Markov decision Process (MDP) model and its parameters that are

used to model the age of the component and the expected weekly average wind speed. This
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extends the MDP presented in Schouten et al. (2022) that is used for the p-ARP and the

formulation of this method is provided in Section A.1. Due to a heap space memory (error)

restriction in the Java Virtual Machine (JVM) of the software of choice, Eclipse 2019-12 (4.14.0),

there is relative low limit to the number of states in the MDP that could be examined. In this

paper, this restriction is referred to as the ’memory restriction’. As this study investigates

periods of weeks (N = 52), this restriction allows for W = 3 wind states at most. The number

wind states W is preferred to be high as possible because wind speed discretisation into a small

number of states leads to inaccurate power output - and donwtime cost estimations. In addition,

this restriction does not allow for examining multiple years in a maintenance cycle (m > 1).

Hence, this section will describe the parameters for a restricted and an unrestricted model.

Table 1: NomenclatureExtended.

Parameter Meaning

N Number of periods within a year
M Large number representing maximum age of component
m Number of years in a PM cycle
W number of wind speed states
v wind speed (m/s), measured at 10m height (relative to sea level)
vrh wind speed (m/s) at height of the rotor (relative to sea level)
v Maximum wind speed above which maintenance prohibited
N+ Set of positive integers, {1, 2, ..}
N̄ Set of extended natural numbers, {0, 1, 2, ...,∞}
I1 Set of periods within a year
I2 Set of component ages
I3 Set of wind speed states
I State space of the Markov decision process, I1 × I2
Ib Set of states representing a failed component, I1 × {0}
Ibw Set of states representing a failed component and high wind speeds, I1 × {0} × {W}
X Lifetime of component
α Scale parameter of Weibull distribution
β Shape parameter of Weibull distribution
A(i1, i2) The set of possible actions in MDP in state (i1, i2) ∈ I
π(i1,i2)(j1,j2)(a) Transition probability from state (i1, i2) ∈ I to state (j1, j2) ∈ I under action a ∈ A(i1, i2)

px Probability that component fails in period directly before reaching age x
c(i1,i2)(a) Cost of taking action a ∈ A(i1, i2) in state (i1, i2) ∈ I

cf (i1) CM cost for expected winds speeds i3 ∈ I3
cp(i1) PM cost for expected winds speeds i3 ∈ I3
cd(i3) downtime cost for expected winds speeds i3 ∈ I3

3.1 Maintenance model description

This paper considers a single-component in a continuously operating off-shore wind farm. To

prevent failure of the component, preventive maintenance (PM) replaces the component re-

tentively, while corrective maintenance (CM) in case of a component failure. The system is

maintained by replacing the component by an as-good-as-new component. For every period,

we plan maintenance based on the state of the component and the expected weekly average

wind speeds, where we assume wind speeds are perfectly forecasted. When a component fails,

it is assumed that the wind turbine stops operating and income is missed (downtime costs).

Therefore, Corrective maintenance (CM) has to be performed directly. In case of failure and

wind speeds for a period exceed a high wind speed threshold vw , maintenance is not allowed
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and therefore postponed. The expected downtime costs depend on the expected average wind

speed, corrected for the height of the rotor. These lost production costs can be computed using

the power output curve and the duration of the maintenance which is assumed to be known for

PM and CM. All other costs related to maintenance operations are assumed to be constant over

time. The transition probabilities are determined by the failure probability of the component,

which depends on its age, and the wind speed transitions probability between consecutive peri-

ods. For simplicity, this papers assumes that the wind speeds do not affect the failure probability

of the component. The goal is to determine a preventive replacement policy which minimizes

the long-run average costs. The policy should specify the age, the period (of the cycle) and the

winds speed in which a PM is to be performed. This model considers a yearly maintenance cycle

but the model could also be used for any other cycle lengths and could also be applied to other

wind turbines in other systems.

3.2 Markov decision process (MDP)

The life of the component is modeled by a discrete-time Markov decision process (MDP) with a

partially ordered state space I = I1× I2× I3, consisting of periods of a year, the component age

and the expected weekly average wind speeds. Time is discretized into N periods presented by

the set I1 ∈ {1, 2, ...,mN} ⊆ N+, where N is the number of periods in a year (N = 52 for weeks)

and m is the number of years in a maintenance cycle. The component age is presented by the

set I2 ∈ {0, 1, 2, ...} ⊆ N̄ and the lifetime of the component is denoted by X and IP(X = k) > 0

for all k ∈ N̄ \ {∞}, where N̄ = {0, 1, 2, . . . ,∞} is the set of extended natural numbers. The

expected weekly average wind speeds for week i1, I3 = {1, 2, ...,W}, is the set of discretized

expected weekly average wind speeds, where W is the total number of wind speed states and

also represents the state with the highest wind speeds.

3.3 Wind speed discretization

The wind speed at the height of the rotor is larger than the wind speed at the measured height

of 10 meters KNMI (n.d.). Consequently, the expected power output should be estimated using

wind speeds at the height of the rotor. To correct the the measured wind speed v to the wind

speed at the height of the rotor vrh, we use vrh = Crhv, where Crh is the height-correction-factor.

A more detailed explanation of the wind correction method is given Schouten et al. (2022). To

estimate wind speed transition probabilities and downtime costs, first, weekly average wind

speeds are corrected for the height of the rotor (vrh) and then discretized into states.

Discretization of wind speeds is applied to simplify the representation of the continuous range

of wind speeds into a finite number of discrete states, represented by I3(i1) = {1, 2, ...,W}. For
every period i1, we allow the range of each wind speed state to be different, as ’high’ wind

speeds is relative to the period of the year. Using historical wind speed data, the wind speed

distribution with pdf fi1(v) for every period i1 of the year can be derived. Next, the discretiza-

tion criteria (i.e. the ranges of each wind speed state) can be determined using the percentiles

of fi1(v). Through the utilization of percentiles, you ensure that the wind speed ranges are

determined based on the distribution of the wind speed data, which ensures that the model
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accounts for the annual seasonal pattern observed in wind speeds. As a result, the first state

of period i1 contains the winds speeds 0 m/s up to the wind speed value of the first 100/(W )th

percentile (i.e. lowest wind speeds), the second state contains wind speeds between the value of

the 100
W th and the 2 ∗ 100/(W )th percentile, and so on. The W th state contains the high wind

speeds for which maintenance is not allowed (vW ). The wind speed state in period i1 is

i3 =



1 for pi10 ≤ vrh < pi1100\(W )

2 for P i1
100\(W ) ≤ vrh < pi1200\(W )

...

W − 1 for pi1100(W−2)\(W ) ≤ vrh < vW

W for vW ≤ vrh < pi1100

(1)

, where pi1100(W−1)\(W ) is the (W − 1)th percentile of wind speed pdf fi1(v).

To keep the state space small, the wind speeds are discretized into three states. In addition, the

wind speed state ranges for all periods are set equal, which is done for simple use and because of

time restrictions. Maintenance actions are only carried out when the wind speed is less than 10

m/s (Zhang et al., 2019). Subsequently, the other two wind states ranges are set to have equal

ranges. This results in the following wind speed discretization

i3 =


1 for 0 ≤ vhr < 5

2 for 5 ≤ vhr < 10

3 for 10 ≤ vhr

(2)

3.4 Action space

In each state i = (i1, i2, i3), except for the states with a failed component and high wind speeds,

there are two actions possible: either replace the component (a = 1) by performing a PM or to

do nothing (a = 0). For the states with a failed component, denoted by age i2 = 0, only CM can

be performed as is must be performed directly. However, for the states with high wind speeds

i3 = W no maintenance can be performed. The state-dependent action space can be expressed

as follows

A(i1, i2, i3) =


{1} if i2 ∈ {0,M}, i3 ̸= W

{0, 1} if i2 /∈ {0,M}, i3 ̸= W

{0} if i3 = W, ∀i2

(3)

, where i1 ∈ I1, i2 ∈ I2, M represents the maximum component age at which a PM is performed,

and W represents state containing the wind speeds for which maintenance is not carried out.

In case the maximum age M = ∞, PM is never performed. In case of failure and wind speeds

exceed threshold vw, no maintenance is performed. For all other wind speeds, the action depends

on the state of the component.
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3.5 Transition probabilities

The transitions of the Markov chain are dependent on whether we plan a PM, a failure occurs

and high wind speeds are expected to be present. For simplicity, we assume that the wind speeds

do not affect the failure probability of the component. As a result, the transition probabilities

for the components age and wind speed state are independent.

The probability of component failure depends on the age of the component, but is assumed

to be independent of the time of the year. The system jumps to a state with age 0 and a

higher time period in case of failure, whereas there is a transition to a state with higher age

and time period if no failure occurs. In case of PM, there is an instantaneous jump to age 0,

after which the component can reach age 1 at the end of the period, or have a failure and end

with age 0. The transition probability π(i1,i2)(j1,j2)(a) from state (i1, i2) to state (j1, j2) under

action a ∈ A(i1, i2) is given in Section A.1.2. The failure probabilities from Schouten et al.

(2022) under action a = 0 are corrected, since they depend on pi2+1 rather than on pi2, as the

probability of failure between i2 and i2 + 1 is required.

If we assume in our model that PM to last one period length and PM is performed in period i1,

the age of component reaches 0 at beginning of the next period i1 + 1. The age can then reach

1 at the end of the period i1 + 1, or have failure at end with age 0. Therefore the transition

probabilities would not be applicable in our model. Nevertheless, for reproducibility, conditions

for the transition probabilities from Schouten et al. (2022) are not adjusted.

The transition probabilities for wind speeds are assumed to be period dependent because of

the yearly seasonality nature of wind speeds. Under the Markov chain property, it is assumed

that the current state of the wind contains all the relevant information about the wind situation

and its possible future development Hagen et al. (2013). The conditional transition probabilities

from state (i1, i3) to (j1, j3) are independent on time and can be written in terms of matrix ele-

ments denoted in (4a). Using daily historical time series data on wind speeds, we can estimate

transition probabilities for every period i1 with wind state i3 ∈ I3 to j1 = i1 + 1 with wind

speeds j3 ∈ I3. Empirical frequencies are used to estimate the wind speed transition probabilit-

ies, which gives the maximum likelihood estimators p̂i3,j3(i1) given in (4b) (Hagen et al., 2013;

Shamshad et al., 2005).

pi3,j3(i1) = IP(wi1+1 = i3∥wi1 = j3) (4a)

p̂i3,j3(i1) =
mi3,j3(i1)∑W

j3=0mi3,j3(i1)
(4b)

, where wi1 is the wind speed in period i1, mi3,j3(i1) is the amount of transitions from state i3

in period i1 to state j3 in week j1 = i1 + 1, and W the number of wind states. This results in a

total of N transition probability matrices, one matrix for every period i1 to period j1 = i1 + 1.

The model assumes piecewise stationarity by only considering data from one period and its

consecutive period when estimating the transition probabilities (Hagen et al., 2013). To ensure
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It can be checked that
∑W

j p̂i3,j3(i1) = 1 , for i1 ∈ I1, i3, j3 ∈ I3, ensuring discrete Markov chain

property holds (Shamshad et al., 2005; Hagen et al., 2013).

Although, studies have shown that the correlation between wind speed and hazard rate of

the wind turbine is positive (Zheng et al., 2020), for simplicity, it is assumed that the failure

probability of the component is unaffected by winds speeds. Hence, the transition probabilities

π(i1,i2,i3)(j1,j2,j3)(a) from state i = (i1, i2, i3) to state j = (i1, i2, i3) under action a ∈ A(i1, i2, i3)

are defined as follows:

π(i1,i2,i3)(j1,j2,j3)(a) = π(i1,i2)(j1,j2,)(a)× p̂i3,j3(i1)

, for i1, j1 ∈ I1, i2, j2 ∈ I2, i3, j3 ∈ I3, a ∈ A(i1, i2, i3). The transition probabilities are given in

Equations 5,6 and 7, where pi3,j3 is estimated by p̂i3,j3 .

π(i1,i2,i3)(j1,j2,j3)(1) =



(1− p1)× pi3,1(i1) for j1 = i1 + 1 (mod N), j2 = 1, i3 ̸= W, j3 = 1

...

(1− p1)×i3,W (i1) for j1 = i1 + 1 (mod N), j2 = 1, i3 ̸= W, j3 = W

p1 × pi3,1(i1) for j1 = i1 + 1 (mod N), j2 = 0, i3 ̸= W, j3 = 1

...

p1 × pi3,W (i1) for j1 = i1 + 1 (mod N), j2 = 0, i3 ̸= W, j3 = W

0 else,

(5)

π(i1,i2,i3)(j1,j2,j3)(0) =



(1− pi2+1)× pi3,1(i1) for j1 = i1 + 1 (mod N), j2 = i2 + 1, i2 /∈ {0,M}, j3 = 1

...

(1− pi2+1)× pi3,W (i1) for j1 = i1 + 1 (mod N), j2 = i2 + 1, i2 /∈ {0,M}, j3 = W

pi2+1 × pi3,1(i1) for j1 = i1 + 1 (mod N), j2 = 0, i2 /∈ {0,M}, j3 = 1

...

pi2+1 × pi3,W (i1) for j1 = i1 + 1 (mod N), j2 = 0, i2 /∈ {0,M}, j3 = W

0 else,

(6)

In case i2 ∈ {0,M} and i3 = W , no maintenance is done (a = 0) because we assume safety

of maintenance crew is of greater importance than incurring downtime costs. For states i =

(i1, i2, i3) with i2 = 0, i3 = 0 and j = (j1, j2, j3) with j2 = 0, we have π(i1,0)(j1,0)(0) = 1, because

not maintaining a failed component in period i1 will lead to a failed component in period i1+1,

and π(i1,0)(j1,j2)(0) = 0 for j2 ∈ I2 \ {0}. This is the same for states with i2 = M, i3 = 0, where

π(i1,M)(j1,M+1)(0) = 1. The transition from state i = (i1, i2, i3) to state j = (j1, j2, j3) then only

depends on the wind transition probabilities pi3,j3(i1) , i3, j3 ∈ I3, where pi3,j3 is estimated by

p̂i3,j3 . These probabilities are:
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π(i1,i2,i3)(j1,j2,j3)(0) =



pW,1(i1) for j1 = i1 + 1 (mod N), i2 = 0, j2 = 0, j3 = 1

...

pW,W (i1) for j1 = i1 + 1 (mod N), i2 = 0, j2 = 0, j3 = W

pW,1(i1) for j1 = i1 + 1 (mod N), i2 = M, j2 = M + 1, j3 = 1

...

pW,W (i1) for j1 = i1 + 1 (mod N), i2 = M, j2 = M + 1, j3 = 1j3 = W

0 else,

(7)

It can checked that
∑|I|

j πij(a) = 1 , for i = (i1, i2, i3), j = (j1, j2, j3) ∈ I and a ∈ A(i), where

|I| is the cardinality of state space set i.e. the total number of states. Lastly, it can be verified

that the Markov decision chain defined by 5,6 and 7 is unichain.

3.6 Cost parameters

Maintenance costs typically consist of the following components: man- power, material, and

lost production costs due to downtime. The costs parameters used for p-ARP as presented by

Schouten et al. (2022) are proveded in Section A.1.3. In our model, the costs depend on the wind

winds speed i3 and on the period i1, since the discretization of wind speeds is period dependent.

The costs for PM and CM are

cp(i1, i3) = ccp + cd(i1, i3) (8a)

cf (i1, i3) = ccf + cd(i1, i3) (8b)

, where ccp and ccf are all the other costs related to PM and CM (i.e. manpower and material

costs), respectively, and cd(i3) are the lost production costs due to downtime. The costs of

taking action a in state i = (i1, i2, i3) is

c(i1,i2,i3)(a) =



0 if a = 0, i2 ̸= 0

cd(i1, i3) if a = 0, i2 = 0

cp(i1, i3) if a = 1, i2 ̸= 0

cf (i1, i3) if a = 1, i2 = 0

(9)

, where action a can only be 1 if i3 ̸= W . When a a component fails and the wind speeds

are too high to maintain immediately (i.e. i2 = 0 and i3 = W ), the downtime costs are the

only costs. cd(i3) is related to expected the power output for (expected) wind speeds i3 in

period i1. This can be computed using power output function of wind turbine P (v) and the

downtime, which we assume is known. The power output function for a certain wind turbine can

be estimated using piece-wise (non-)linear regressions on power output and wind speed data (for

this particular turbine). By fitting functions for different wind speed intervals, we can estimate

P (v) with P̂ (v). The relation between the power output of a wind turbine and the wind speed
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is non-linear and Figure 1 shows such a relation. Therefore, we estimate the average power

output for every state i3 in period i1 using the wind speed distribution of this period. Since

wind speeds are discretized, for each wind state i3 we compute the expected power output by

taking the average of power outputs for all wind speeds in the wind speed range of i3. This can

be computed by taking the integral of P̂ (v) over the interval and dividing by the length of the

interval. That is, Expected/average power output for wind speed state i3 in period i1 with wind

speed pdf fi1(v)

P̄ (i1, i3) =
1

bi1,i3 − ai1,i3

∫ bi1,i3

ai1,i3

P̂ (v) dv (10)

where ai1,i3 and bi1,i3 are the wind speed ranges for state i3 in i1 (see Equation 1). The higher

the number of wind states we choose, the more accurate power output estimates we obtain

for every (expected weekly average) wind speed v. Subsequently, the daily downtime costs for

period i1, cd(i1, i3) can be estimated by the following equation, where we assume a constant

average hourly electricity price estimate pe (euro/kWh):

cd(i1, i3) = 24pe × P̄ (i1, i3) (11)

In this paper, comparisons are made with the case where PM and CM costs are constant through-

out the year. For this case, we assume the expected power output for period i1 is the historical

average power output, resulting in constant yearly (downtime) costs. We estimate the historical

(weekly if N = 52) average power output using the same wind speed data used for estimating

the transition probabilities. With the estimated power output function P̂ (v), the power output

can be averaged over all periods and all years. For the p-ARP, the constant PM and CM cost

rates are simply the the yearly average PM and CM costs (see Section A.1.3). We refer to this

case as the constant cost case.

The wind speeds for a simplified model are discretized into W = 3 states, which are not time

dependent (see Section 6.2). Therefore, the simplified (downtime) cost parameters will only

depend on wind speed. Each wind speed state power output can be approximated using P̂ (i3).

In this paper, the wind speed upper bound for the state i3 = 3 range is set as the maximum

recorded wind speed for the historical wind speed data set, also used for the constant cost case

average power estimation.

4 Maintenance policies

In the paper by Schouten et al. (2022), three period-dependend replacement policies are ex-

amined. Namely, the age-based, block-based and modified block-based maintenance policies

(ARP, BRP, and MBRP, respectively). This paper limits its scope to the ARP policy, which

is proven to be the most optimal in with respect to costs under mild conditions (2). The ARP

is adapted by Schouten et al. (2022) to the time-varying cost case by defining a separate crit-

ical maintenance age for each time period, leading to the p-ARP. Subsequently, the p-ARP is

adjusted to account for actual wind speed variability, resulting in the w-ARP.
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4.1 Period-dependent age replacement policies (p-ARP)

A p-ARP policy in which in each period i1 ∈ I1 of the year, there is period-dependent critial

maintenance age t(i1) ∈ N̄ \ {0} at or above which PM is performed (Schouten et al. (2022)).

The following LP leads to the optimal policy that minimize the long-run average cost for p-ARP

(p-ARP) min
∑

i=(i1,i2)∈I\Ib
cp(i1)xi,1 +

∑
i=(i1,i2,)∈Ib

cf (i1)xi,1 (12a)

s.t.
∑

a∈A(i)

−
∑
j∈I

∑
a∈A(j)

πji(a)xj,a = 0, ∀i = (i1, i2) ∈ I (12b)

∑
i2∈I2

∑
a∈A(i1,i2)

xi1,i2(a) =
1

mN
,∀i1 ∈ I1 (12c)

xi0 = 0, ∀i = (i1, i2) ∈ I : i2 ∈ {0,M} (12d)

xi,a ≥ 0, ∀i = (i1, i2) ∈ I, a ∈ A(i) (12e)

, where Ib = I1×{0} is the set of states representing a failed component. xi,a can be interpreted

as the long-run probability of being in state i = (i1, i2, i3) ∈ I at the beginning of the period

and action a ∈ A(i1, i2, i3) is chosen. Constraint (12d) as presented by Schouten (2019) is added

to the model to ensure that maintenance is done if the age of the component is either 0 or M .

4.2 Wind-dependent age replacement policy (w-ARP)

The w-ARP opperates the same as p-ARP, except that the policy also depends on the expected

weekly average wind speed, i.e. the expected maintenance costs for period i1 depend on the

expected wind speeds i3 for period i1 and maintenance is not done if winds speeds are too high

(i3 = W ). The following LP leads to the optimal policy that minimizes the long-run average

cost for w-ARP:

(w-ARP) min
∑

i=(i1,i2,i3)∈I\Ib
cp(i1, i3)xi,1 +

∑
i=(i1,i2,i3)∈Ib

cf (i1, i3)xi,1 +
∑

i=(i1,i2,i3)∈Ibw
cd(i1, i3)xi,0

(13a)

s.t.
∑

a∈A(i)

−
∑
j∈I

∑
a∈A(j)

πji(a)xj,a = 0, ∀i = (i1, i2, i3) ∈ I (13b)

∑
i2∈I2

∑
i3∈I3

∑
a∈A(i1,i2,i3)

xi1,i2,i3(a) =
1

mN
,∀i1 ∈ I1 (13c)

xi0 = 0, ∀i = (i1, i2, i3) ∈ I : i2 ∈ {0,M}, i3 ̸= W (13d)

xi1 = 0,∀i = (i1, i2, i3) ∈ I : i3 = W (13e)

xi,a ≥ 0,∀i = (i1, i2, i3) ∈ I, a ∈ A(i) (13f)

The objective function (13a) represents the long-run average cost of the policy. (13b) ensures

the inflows of the states are equal to the outflows. The long-run probabilities of being in each

state must be 1
mN , since N periods over a cycle of m years are considered, which is defined by
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restriction (13c). Constraint (13d) ensures that we do maintenance when age is 0 or critical age

M and the wind speeds are not too high (i3 = W ). The additional constraint (13e) ensures that

we do no maintenance when wind speeds are too high.

5 Data

5.1 Wind speed data

For modeling wind speeds using MDP, this paper uses historical weather data from KNMI (2023)

containing daily average wind speeds in the coastal town IJmuiden in the Netherlands . This

time series data is updated daily and we select the years 1971 to 2023 as the aim is to incorpor-

ate data for complete annual periods. The total mean wind speed is 6.63 m/s and the highest

recorded 22.6 m/s. The wind speed are measured at 10m, meaning the wind speeds need to be

corrected to wind turbines with rotors higher than 10m for cost estimations. In total there are

129 missing observations, which are replaced by the total sample average of 6.63 m/s. A more

sophisticated method would be replacing the missing observation by the average wind speed of

the month in which the missing observation is measured. This gives a more accurate sample

average. However, due to time restrictions and the demand for coding more data preparation,

this latter method is left for extended research. In addition, as only 129 of the total 18993

observations is unobserved, this method might not have a noticeable effect on average cost ap-

proximations.

Estimating transition probabilities based on non-stationary data leads to time varying estimates,

which introduces additional complexity to the modeling and analysis of the Markov chain. To

examine this, using R Studio 4.2.2., the Augmented Dickey-Fuller (ADF) test is performed to

test whether the wind speed time series is stationary. The test statistic of −20.881 with p-value

of 0.01 indicates that the wind speeds data is stationary. Therefore, the estimated transition

probabilities are considered time-independent.

5.2 Wind turbine power output data

Data from Commissie-M.E.R. (2016) is used for estimating the power output function for a

Vestas V164-9.5 MW turbine. This data contains the the power output per wind speed for a

Vestas V164-8.0 MW turbine. The power output for the 9.5 MW turbine is approximated by

linearly scaling the data for the 8.0 MW turbine, using the same scaling method as explained

by Schouten (2019). Here, the power output data (kW) is scaled from [4, 13] to [3.5, 14] and

the wind speed values (m/s) from [0, 8] to [0, 9.5]. The data set starts for wind speed 3.5 m/s

with power output 194 kW, and since we do not know the specific cut-in power output for 9.5

MW turbine, scaling from v = 0 m/s wont give correct scaled data. Therefore, it is assumed

that the cut-in power for 9.5 MW turbine is the same as the 8MW turbine, and we scale the

power value’s from [0.194, 8] to [0.194, 9.5]. Data for the 8 MW turbine and the scaled data for

the 9.5 MW turbine are shown in Table 3 in Section A.2. The linear scaling functions for the

power output and wind speeds are also provided in this Section. The power output function for
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9.5 MW is plotted in Figure 1, which shows the non-linear relationships between power output

and wind speed.

Figure 1: Power output for a Vestas V164-9.5 MW wind turbine

6 Results

To implement the model, this paper considers the maintenance scheduling for a single-component

Vestas V164-9.5 MW wind turbine in the North sea at IJmuiden. Due to heap space restriction

(see Section 3), the model considers a maintenance cycle of one year m = 1, discretized into

weeks (N = 52). In addition, the number of wind states W and the maximum critical age M of

the component are restricted to 3 and 53 respectively. Only the gearbox is maintained through-

out life of the wind turbine and maintenance is performed by replacing the component by an

as-good-as-new component. The scheduling is based on the age of component and the weekly

(expected) average wind speed, where we assume weekly weather forecasts to be accurate. Ar-

wade & Gioffrè (2014) show that the assumption of stationarity of the wind speed process over

a time period of approximately a week is reasonably well justified. This implies that the mean

and variance of wind speeds in a period of a week do not change significantly, and the expected

average wind speed for a week is a good indication for the daily wind speed of that particular

week. Therefore, it is assumed that if wind speed i3 allows for maintenance in week i1, say PM

last one week, there is not a day in that week that will not allow for maintenance. This study

refers to an offshore wind turbine, but the model can also be applied to other installations with

predictable time-varying production

This particular implementation influences the parameters of the model in the following way.

We assume that deterioration of the component is not visible, but assume that the lifetime

distribution follows a Weibull distribution. For simplicity, it is assumed that wind speeds do

not affect the hazard rate of the wind turbine components. For discretization, wind speeds

are corrected for the height of the rotor which is assumed to be 138 meters. The downtime

costs are dependent on wind speed, assuming the rest of the other costs (manpower, material)

are constant over time. For comparison reasons, the downtime costs function for the p-ARP is
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slightly adjusted to obtain results. In the following subections (6.1-6.3), this implementation

for the parameters is explained in more detail. Under these parameters, the model is optimized

using CPLEX 22.1.0 in Java and the implementation results are provided in Section 6.4.

6.1 Lifetime distribution

It is assumed that the component’s lifetime is distributed according to a Weibull distribution,

with cdf F (x) = 1 − exp((− x
α)

β) and IP(X = x) = F (x) − F (x − 1) for x ∈ N̄, where scale

parameter α > 0, denotes the characteristic life of the component, and shape parameter β > 1

indicates an increasing component failure pattern. Hence, the probability mass is shifted to the

right and the distribution is strictly positive (Schouten et al., 2022). Both x and α are measured

in Weeks. We choose β = 3 and α = mN = 52, implying an average time to failure of 46.43

weeks.

6.2 Wind speed discretization

For the Vestas V164-9.5 MW wind turbine turbine, we assume a rotor height of 138 meters

(Schouten, 2019). The wind speed at this height (vrh = v138) is larger than the wind speed

at the measured height of 10 m (KNMI, n.d.). The relation between these wind speeds is

v138 = 1.181v, which means that the average wind speed in IJmuiden 1971-2023 at the rotor of

the wind turbine is 7.83 m/s instead of 6.63 m/s, while the percentage wind speed fluctuations

remain the same.

6.3 Maintenance costs

Maintenance costs consist of the following components: man-power, material, and lost produc-

tion costs due to downtime for PM and CM. Wind variability affects the downtime costs and

assuming the rest of the costs are constant over time. The downtime costs for p-ARP and w-

ARP are computed using a different approach. Both relate the downtime costs to the expected

downtime of the components, the power output curve, and historical wind speed data. However,

the downtime costs for w-ARP depend on the expected power output for wind state i3, where

as the downtime costs for p-ARP depend on the expected power output for period i1. For each

maintenance action, we assume that we know the downtime of the component. First, in Sub-

section 6.3.1the power output curve for the Vestas V164-9.5 MW turbine is estimated and used

to derive the cost functions for the w-ARP in Subsection 6.3.2. Next, the cost functions for the

p-ARP are formulated in Subsection 6.3.3, by adjusting the ones presented in Schouten et al.

(2022).

6.3.1 Estimating power output curve

The energy output of a wind turbine increases approximately with a third power of the wind

speed up to a level of bout 12m/s, after which the energy output generated remains constant

(Figure 1). The typical power output function of a wind turbine is described by the follwing

function (Jin & Tian, 2010; Tian & Wang, 2020)
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P (v) =


0 , v < vc, v ≥ vs

0.5µmaxρAx
3 , vc ≤ v ≤ vr

Pr , vr ≤ v ≤ vs

(14)

,where vc is the cut-in wind speed, vr the rated wind speed and vs the cut-out wind speed of the

turbine in m/s. For the Vestas V164-9.5MW turbine power output data, plotted as the blue line

in Figure 2 on the interval v = [0, 15], it is known that vc = 3.5, vr = 14, vs = 25, and Pr = 9.5

(MW).

To fit a function that describes non-linear part of the the scaled 9.5MW data, piecewise non-

linear regression is used in R-studio (4.2.2). The more and smaller the intervals, thus more

regressions are performed, the better we can capture the curvature of the underlying function

of the data. The downside of considering a large number of intervals, is the increase of compu-

tational requirements and the possibility of overfitting. As the data is of one type of turbine on

a particular location, an overfitted estimated function would not be a good representative for

other systems. Therefore, the number of intervals is selected as low as possible.

Figures 1 and 2 show that the underlying function describing this data is convex on the approx-

imated interval [3.5, 10], concave on [10, 13] and linear for wind speeds above ±13m/s. Therefore,

the power output curve P (v) is estimated by a hybrid-function P̂ (v) consisting of three different

functions. As the function for wind speeds on the last interval is known, Pr = 9.5(MW ), only

the functions for the first and second interval need to be estimated using non-linear regressions

on the 9.5MW power output data. The interval bounds are selected by examining different

interval (lengths) and examining the plot compared to 9.5MW power output data. For the first

function on interval [3.50, 10.50], we assume the cubic relationship y = ax3 and obtain estimated

coefficient â = 6.54817 (p-value < 2× 10−16). The function for the second interval [10.50, 12.83]

is assumed to have the quadratic relation ship y = b − a(x − c)2. As the maximum power the

wind turbine can generate is 9500 kW, parameter b is set equal to 9500. The estimated coeffi-

cients are â = 341.58696 (p-value = 5.11×10−4) and ĉ = 12.77971 (p-value =2.34×10−7). This

leads to the following estimated power output function for the 9.5MW turbine:

P̂ (v) =



0 , v < 3.50, v ≥ 25.00

6.54817v3 , 3.5 ≤ v < 10.50

9500− 341.59(v − 12.78)2 , 10.50 ≤ v < 12.83

9500 , 12.83 ≤ v < 25.00

(15)

,where P̂ (v) is in kW and v in m/s. This function is plotted as the red line in Figure 2, which

shows in combination with the significant p-values that P̂ (v) is a good fit the 9.5MW wind

turbine power output data. For the simplified wind states, i.e. the three wind states, the

(expected) power output is calculated by taking the integral of P̂ (v) over the interval of the

wind speed state range, divided by the wind speed interval lengths of the state range (equation
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Figure 2: Power output function fits

2). To compute power output for the 3rd wind state, we take the wind speed upperbound for

the 3rd state as the maximum wind speed recorded at IJmuiden 1971-2023 KNMI (2023), which

is approximately 23 m/s. This leads to the following power outputs in kW:

P̄ (i3) =


155 if i3 = 1

3069 if i3 = 2

9296 if i3 = 3

(16)

6.3.2 Costs function w-ARP

Maintenance costs for both PM and CM consist of the following components: man-power,

material, and lost production costs due to downtime. Missed income due to downtime are

related to the expected power output for wind state i3, which represent the weekly average wind

speed at sea level, corrected for the height of the rotor, and the downtime of the component. For

the downtime costs we use a constant electricity price of 0.06 euro/kWh.(Schouten et al., 2022),

and we assume for each maintenance action that we know the downtime of the component. The

other costs (i.e. set-up costs and costs of the maintenance action itself) are considered constant

over time. Papatzimos et al. (2018) state that some 10 days are needed for the PM of a gearbox

for a 2.3 MW turbine and estimate the maintenance costs as 148.20 thousand euro. Schouten

et al. (2022) therefore assumes the downtime of 40 days and maintenance cost of 592.80 for CP.

To fit the time discretization in weeks, this study assumes PM and CM to take up 7 and 28

days, respectively. Adding these constant costs to the downtime costs, we arrive at the following

costs values for w-ARP in thousand euro. A more detailed derivation of the following functions

is shown in Appendix Section A.3.1.

cp(i3) = 103.740 + 0.01008P̄ (i3) (17a)

cf (i3) = 414.960 + 0.04032P̄ (i3) (17b)
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For the constant cost case, we use the historical daily average power output for the wind turbine

for the years 1971 to 2023 from KNMI (2023). For every day, the power output is estimated

using P̂ (v138). Next, for every week the power output is averaged over all 52 years, resulting in

a historical weekly average power output of 3.853 MW, which is will be the constant expected

power output for every period.

6.3.3 Adjusted costs function p-ARP

For the p-ARP, Schouten et al. (2022) estimate period dependent downtime costs by estimating

power the historical power output for every week of the year. They use the historical wind speed

data from Commissie-M.E.R. (2016), but for the years 1971 to 2017, and the V164-8.0 MW tur-

bine power output data that is scaled up to the 9.5 MW turbine. Two output approximation

are obtained, the first is computed by taking the average of daily average power outputs over

all years within each week (i.e. historical weekly mean), and the second by taking the lowest

daily wind speed per week, averaged over the 47 years (i.e. historical weekly minimum). To

both power output estimations, a cosine approximated is fitted. Figure 3a show the historical

weekly mean (upper data) and minimum (lower data) power output approximations for a Vestas

V164-9.5 MW turbine with the corresponding cosine fits. These cosine fits are used to construct

the time-dependent downtime costs for p-ARP and can be compared to the downtime costs for

w-ARP.

Using the estimated power output curve P̂ (v) obtained in Section 6.3.1 and the same estim-

ation method presented in Schouten et al. (2022), we can estimate the average historical power

output for each week of the year. Although he approximated power output function shows a

good fit to the estimated power output data for a 9.5 MW turbine, the historical power output

estimates using this function do not align with the estimates from Schouten et al. (2022), which

is shown in Figure 3b. This is in contrast to my expectation, since P̂ (v) shows a good fit to the

scaled power output data for the 9.5MW turbine and the same historical wind speed data set

is used. This significant difference in estimations would not lead to comparable downtime costs

results for w-ARP and p-ARP. Given the time restriction, I was not able to locate the cause

of this estimation difference and is left for extended research. In order to obtain comparison

results, the cosine fits from Schouten et al. (2022) are transformed downward with 1000 kw, to

approximately match the historical average power output estimated by P̂ (v) (see Figure 3c).

The adjusted downtime costs in thousand euro using mean wind speed estimates is given in

equation (18a) and using lowest wind speeds is given equation (18b).

Cmean
d (t) = 5.396 + 1.295cos(

2πt

52
+ 0.034) (18a)

C low
d (t) = 1.917 + 0.850cos(

2πt

52
+ 0.020) (18b)

These downtime costs can be added to the adjusted constant maintenance costs for PM and CM

(see Section 6.3.2). The obtained PM and CM cost in thousand euro are given by equation 19

for mean wind speeds, where the same constant electricity price is used as for the w-ARP costs
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functions. The cost values for p-ARP can then be compared to the values for the w-ARP.

Cmean
p (t) = 141.512 + 9.065cos(

2πt

52
+ 0.034)) (19a)

Cmean
f (t) = 566.048 + 36.26cos(

2πt

52
+ 0.034)) (19b)

The PM and CM costs using low wind speeds power output estimates in thousand euro are

shown in section A.3.1 in the Appendix, as well as the constant cost functions.

6.4 Implementation results

The single-component p-ARP and w-ARP models are optimized for N = 52,M = 53,W =

3,m = 1, α = 52 and β = 2. For every period and wind speed, the critical maintenance age

is the first the lowest age for which PM is performed, as it is also optimal to do PM for ages

higher than this critical age threshold Schouten et al. (2022). The critical maintenance ages (in

weeks) for p-ARP and the w-ARP are shown in Figure 4, where maximum age for the component

M = 53.

Figure 4a shows that for both average costs estimates using (18a) and low costs estimates using

(18b), the critical ages for p-ARP are identical for most periods. The critical ages threshold in

the winter periods are set at M more frequently compared to summer. The reason could be

that, due to lower wind speeds occurring more frequently in the summer periods, maintenance

costs are lower compared to winter months and therefore there are higher critical age threshold

is in the winter compared to summer.

Figure 4b shows the critical maintenance ages for wind states i3 = 1 and i3 = 2 (for wind

state i3 = W = 3 we do no maintenance). Critical aintenance ages for lower wind speeds are

lower than for higher wind speeds, which is intuitive because the downtime costs are lower.

leading to a lower age threshold for PM. Moreover, critical maintenance ages for all wind speeds

(a) Power output approxima-
tions graph from Schouten et al.
(2022).

(b) Un-adjusted cosine fits.
Blue: cosine fit historical
weekly mean (28a). Orange:
cosine fit historical weekly min-
imum (28b).

(c) Adjusted cosine fits. Blue:
cosine fit historical weekly
mean (18a) Orange: cosine
fit historical weekly minimum
(18b)

Figure 3: Approximated power output of Vestas V164-9.5 MW in IJmuiden
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are higher in the summer than in the winter. This seems contradictory to the patterns of the

p-ARP and the results from Schouten et al. (2022), where the maintenance ages tend to be lower

than in the winter months. However, in w-ARP model the maintenance costs depend on the

wind speeds and not on the period of the year (p-ARP), therefore the critical maintenance age

for PM is determined differently. In the p-ARP model the period costs are relative to the other

periods in the year, whereas in the w-ARP model the period costs are relative to the wind speeds

prevailing in that particular period. The reasoning behind the resulting age thresholds for w-

ARP could be the following. Intuitively, it makes sense to have a lower critical maintenance age

in periods where preventive maintenance is relatively cheap. Maintenance costs are on average

more expensive in winter periods because higher wind speeds are more prevalent compared to

summer leading to higher power outputs (See Figure 3). Consequently, the occurrence of low

wind speeds in the winter leads to relatively low maintenance costs for that time of the year

compared to summer. Because of this, the critical age threshold for PM in the summer is higher

than in the winter weeks for every wind speed. Compared to winter periods, the probability of

the next summer period having low wind speeds is higher, therefore postponing maintenance is

more justified in the summer, resulting in a higher maintenance age thresholds for PM. This be-

haviour of the critical maintenance age does not imply that we prefer winter periods to summer

periods to do PM, rather it shows that we allow for higher component ages in the summer than

in the winter.

In Figure 4c the critical maintenance ages for the constant cost cases are plotted. The or-

ange line represents the constant critical maintenance age of 31 weeks for p-ARP constant cost

case, for both the ’mean’ and ’low’ cost estimations using Equations (18a) and (18b). The

blue and red line in Figure 4c correspond to w-ARP ages for wind state i3 = 1 and i3 = 2,

respectively. The critical maintenance age for wind speed state i3 = 2 remains around 30 weeks,

while the age for state i3 = 1 fluctuates considerably between ± 30 and M = 53 weeks. This

implies that for some periods, maintenance will be performed for winds speeds i3 = 2 rather

than for wind speeds i1 = 2, which is not logical since the costs for PM and CM are constant.

I would expect every wind speed to have the same constant PM age over the year. The results

might be caused by winter months having a low probability of low wind speeds compared to high

wind speeds (with equal downtime costs), therefore the model relates this to a low probability

of performing maintenance with wind speeds i3 = 1 in the winter and sets a high critical age

threshold. However, this would not explain why the maintenance ages for wind speed i3 = 2 are

almost constant throughout the year. Therefore, identifying the true underlying cause of this

result and perfecting the model requires extended research.

Table 2 shows the annual (long-run) maintenance costs in thausand euros. We see that costs

w-ARP are lower than for the p-ARP using the mean cost function (18a) and higher than p-ARP

using the low costs function (18b). For the latter, the costs approximates are only based on

historical average lowest daily wind speed per week, leading to very optimistic cost estimates.

These costs only incur if maintenance is planned on the day of the selected week with the lowest

wind speeds, which would not be realistic estimates when is preventive maintenance is assumed
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(a) p-ARP
Purple: average costs using (18a).
Orange: low costs using (18b).

(b) w-ARP
Blue: ages for wind speeds in i3 =
1. Red: ages for wind speeds i3 =
2.

(c) Constant costs cases. Blue:
w-ARP wind state 1. Red: w-
ARP wind state 2. Orange: p-
ARP constant costs, using mean
(18a) and low wind speeds (18b).

Figure 4: Critical maintenance ages for p-ARP and w-ARP

Table 2: Long-run annual maintenance costs (in thousand euro), N = 52,m = 1

costs constant cost case savings

p-ARP using average costs (18a) 501.181 501.564 0.08%
p-ARP using low costs (18b) 382.887 383.287 0.10%
w-ARP 453.287 510.568 11.22%

to last a week. When comparing the maintenance costs to the constant costs cases for the case

N = 52,m = 1, we see that the w-ARP has 11.22% savings, while for p-ARP there are barely

saving. The savings for p-ARP compared to the results from Schouten et al. (2022), that ex-

amine the case for N = 52 and m = 4, are considerably lower. One reason for this could be

the the adjustments of the p-ARP cost functions or the lower m = 1. The transformation of

the downtime cost functions for the p-ARP heavily influences the p-ARP costs results, which

should be carefully observed when comparing p-ARP and w-ARP average costs estimates.

7 Discussion

The heap space restrictions limits the scope of this research to a relatively small state space. In-

creasing the state space size would allow for a more accurate representation of the off-shore wind

turbine maintenance system. Increasing the number of wind speed states leads to more accurate

maintenance costs estimates. In our implementation example where the number of wind states

W = 3 is small, the average power output per wind state is computed over a larger wind speed

interval. Therefore, the power output for state i3 does not give a accurate approximation for

every wind speed v in state i3, resulting in less realistic cost estimations. In addition, since wind

speeds can vary significantly on hourly basis, it would be interesting to consider periods lengths

less than a week, say days, and examine how this would affect the maintenance scheduling.

Moreover, the results form Schouten et al. (2022) show that the annual average maintenance

costs decrease for an increase in the number years in a maintenance cycle (m). With sufficient

heap space availability, further research could investigate larger state space sizes and can give

more insights in maintenance policy optimization and scheduling. Furthermore, future research

21



can investigate other maintenance policies such as (p-)BRP and (p-)MBRP considering actual

wind variability. The addition of a maximum wind speed constraint for maintenance could lead

to interesting block-based modeling as it could affect the fixed block times the BRP and MBRP

rely on.

In this research, some simplifications and adjustements are made with the purpose of obtaining

results and/or because of time constraint. These include, setting the wind speeds discretization

ranges for all periods equal i.o. using the period wind speed distributions. Next, Missing wind

speed values setting as total sample mean i.o. the period of observation mean. In addition,

the downtime costs functions for p-ARP model presented by Schouten et al. (2022) are adjus-

ted because the power output estimates did not align accurately. Moreover, the constant cost

critical ages for w-ARP appear not to align with the expected results that are also presented in

the paper from Scheu et al. (2012). Elaborating on these aspects and investigating their imple-

mentation in the model should result in a more accurate representation of the single-component

off-shore wind turbine maintenance system and requires extended research. All in all, because

of some these model simplifications and adjustments, one should not base their choice of using

and implementation of p-ARP or w-ARP solely on the results of this research. Nevertheless,

this research shows the potential of including wind variability in maintenance optimization for

a single component off-shore wind turbine.

8 Conclusion

In this paper, the single-component p-ARP model for time varying costs presented by Schouten

et al. (2022) is extended to include actual wind variability. A Markov decision process is used to

model the age of a component and wind speeds, for which historical daily wind speed data is used

from KNMI (2023). Regression techniques and power output data are used to estimate power

output curve a wind turbine, on which we base maintenance cost approximations. The mainten-

ance of a single gearbox in a Vestas V164 9.5 MW off-shore wind turbine setting is investigated

and some simplifications are introduced to illustrate the implementation of the model. A Linear

Problem for an age replacement policy considering wind variability is formulated (w-ARP) and

optimized. The w-ARP is compared to the period dependent age replacement policy and a case

with constant costs, with respect to the long-run annual average maintenance costs and critical

maintenance age for PM. Around 11% savings for w-ARP are obtained, while for p-ARP there

are barely saving. The w-ARP is also the most optimal with respect to the annual average costs.

In addition, the p-ARP sets higher critical age thresholds for PM in the winter periods because

maintenance is more expensive than in summer periods. On the other hand, the w-ARP model

allows for higher threshold in summer periods compared to winter periods, which is most likely

due to the yearly seasonality in wind speed patterns.

In this research, an age replacement policy considering time-varying costs is extended to ac-

count for actual wind variability. Some model simplifications and adjustments are made with

the purpose of comparing policies and demonstrating the implementation of the the model, which

should be carefully observed when interpreting the results in this paper. Nevertheless, this re-
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search shows the potential advantage of including wind variability in optimizing maintenance

scheduling for a single component off-shore wind turbine.
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Programming code

In this research, the following programs and software are used. The Linear problems are optim-

ized using CPLEX 22.1.0 Java. The Java IDE that is used is Eclipse Version 2019-12 (4.14.0).

This program is also used to prepare the used data in this research. R studio 4.2.2. is used for

data preparation, estimating the power output curve and plotting the necessary figures.

The Java class ’windData2022’ is mainly used to process the historical wind speed data from

KNMI (2023) and to discretize the wind speeds. The wind speed transition probabilities for every

period are calculated using class ’WindTransProbCalculator’. In addition, the class’PowerOutputData’

is used to examine historical average weekly power output using the historical wind speed data

24



set for the years 1971 to 2017 (as used in Schouten et al. (2022) and the estimated power output

curve. To optimize the p-ARP and the w-ARP models, the Java class files with title p ARP and

w ARP respectively, can be used. The classes with code to model the p-BRP and p-MBRP with

titles p BRP and p MBRP are also included. The classes are structure identically. Namely, at

the beginning of the file, parameters can be inputted to set the desired size of state space of the

model. Based on these inputs and parameters, the decision variables, objective function and

constraints are formulated for the maintenance policy. The linear programming (LP) code for

p ARP and w ARP models the formulations in Sections 4.1 and 4.2, respectively. The models

are optimized using CPLEX 22.1.0 in Eclipse, and the values of the objective value and variables

are examined.

The R Script ‘StationaryTest’ is used to test for stationarity in the KNMI historical wind speed

data set. data set is imported and lastly, the adf test is performed. The R Script ‘OutputTur-

bineFit’ is used to estimate the power output function for the 9.5 MW turbine using piecewise

non-linear regression on different data intervals. The R Script ‘YearlyOutput2017Final’ is used

to plot the historical weekly average power output, estimated with the power output function

approximated using R Script ‘OutputTurbineFit’. In addition, it plots the (adjusted) cosines

power output functions presented by Schouten et al. (2022). Lastly, the R Script ‘critical ages

output’ is used to plot the critical maintenance ages, which are the results of the different cost

cases obtained from the Java classes p ARP and w ARP.

A Appendix

A.1 Methodology

A.1.1 Action space

In each state i = (i1, i2), except for the states with a failed component, there are two actions

possible: either replace the component (a = 1) by performing a PM or to do nothing (a = 0).

For the states with a failed component, denoted by age i2 = 0, only CM can be performed as is

must be performed directly. The state-dependent action space can be expressed as follows:

A(i1, i2) =

{1} if i2 ∈ {0,M}

{0, 1} if i2 /∈ {0,M}
(20)

where i1 ∈ I1, i2 ∈ I2, M represents the maximum component age at which a PM is performed.

In case the maximum age M = ∞, PM is never performed.
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A.1.2 Transition probabilities

Let π(i1,i2)(j1,j2)(a) be the transition probability from state (i1, i2) to state (j1, j2) under action

a ∈ A(i1, i2), we have:

π(i1,i2)(j1,j2)(0) =


1− pi2+1 for j1 = i1 + 1 (mod N), j2 = i2 + 1, i2 /∈ {0,M}

pi2+1 for j1 = i1 + 1 (mod N), j2 = 0, i2 /∈ {0,M}

0 else,

(21)

π(i1,i2)(j1,j2)(1) =


1− p1 for j1 = i1 + 1 (mod N), j2 = 1

p1 for j1 = i1 + 1 (mod N), j2 = 0

0 else,

(22)

,where px = IP(X = x∥X ≥ x) indicates the failure probability at age i2 and mod is the modulo

operator. In addition, the failure probabilities from Schouten et al. (2022) under action 0 are

corrected, since they depend on pi2+1 rather than on pi2, as the probability of failure between

i2 and i2 + 1 is required.

A.1.3 Costs

In Schouten et al. (2022), the costs of maintenance are dependent only on the period of the year

i1 ∈ I1. They are denoted by cp(i1) and cf (i1) for PM and CM respectively. The cost of taking

an action a ∈ A(i1, i2) in state i = (i1, i2) ∈ I, denoted by c(i1, i2)(a), can thus be calculated as:

c(i1,i2)(a) =


0 if a = 0

cp(i1) if a = 1, i2 ̸= 0

cf (i1) if a = 1, i2 = 0

(23)

The cost equations take the following form

cp(i1) = c̄p +∆pcos(
2πi1
N

+ ϕ) (24a)

cf (i1) = c̄f +∆fcos(
2πi1
N

+ ϕ) (24b)

For the (p-ARP) constant costs case, the costs value’s are estimated with the cyearly average

PM and CM cost rates, denoted by

c̄p :=
1

N

N∑
i1=1

cp(i1) , c̄f :=
1

N

N∑
i1=1

cf (i1) (25)
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A.2 Data

Table 3: Vestas V164 8MW - to 9.5MW wind turbine scaled data

8 MW 9.5 MW

Wind speed (m/s) Power (kW) Wind speed (m/s) Power (kW)

4.0 194 3.500 193.560

4.5 369 4.083 402.628

5.0 583 4.667 657.750

5.5 843 5.250 967.712

6.0 1141 5.833 1322.976

6.5 1489 6.417 1737.847

7.0 1899 7.000 2226.633

7.5 2372 7.583 2790.525

8.0 2912 8.167 3434.291

8.5 3520 8.750 4159.124

9.0 4197 9.333 4966.217

9.5 5724 9.917 6786.645

10.0 6504 10.500 7716.530

10.5 7186 11.083 8529.583

11.0 7657 11.667 9091.090

11.5 7888 12.250 9366.479

12.0 7972 12.833 9466.621

12.5 7997 13.417 9496.425

13.0 8000 14.000 9500.000

13.5 8000 14.583 9500.000

... ... ... ...

24,5 8000 24.500 9500.000

Data linear scaling functions:

xscaled = 1.16667x− 1.16668 (26a)

yscaled = 1.19216y − 37.279 (26b)
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A.3 Results

A.3.1 Cost equations

w-ARP) PM and CM costs in thousand euro:

cp(i3) = 7 ∗ (14820 + P̂ (i3) ∗ 0.06 ∗ 24)/1000 (27a)

cp(i3) = 103.740 + 0.01008P̂ (i3) (27b)

cf (i3) = 28 ∗ (14820 + P̂ (i3) ∗ 0.06 ∗ 24)/1000 (27c)

cf (i3) = 414.960 + 0.04032P̂ (i3) (27d)

p-ARP) Daily downtime costs in thousand euro, unadjusted:

Cmean
d (t) = 6.836 + 1.295cos(

2πt

52
+ 0.034) (28a)

C low
d (t) = 2.061 + 0.850cos(

2πt

52
+ 0.020) (28b)

p-ARP) Daily downtime costs in thousand euro, with adjustment to match 9.5 MW power

output data:

Cmean
d (t) = 6.836 + 1.295cos(

2πt

52
+ 0.034)− 1.44 (29a)

C low
d (t) = 2.061 + 0.850cos(

2πt

52
+ 0.020)− 1.44 (29b)

p-ARP) PM and CM costs using mean wind speeds power output estimates in thousand

euro:

Cmean
p (t) = 7 ∗ (20.216 + 1.295cos(

2πt

52
+ 0.034)) (30a)

= 141.512 + 9.065cos(
2πt

52
+ 0.034)) (30b)

Cmean
f (t) = 28 ∗ (20.656 + 1.295cos(

2πt

52
+ 0.034)) (30c)

= 566.048 + 36.26cos(
2πt

52
+ 0.034)) (30d)

p-ARP) PM and CM costs using lowest wind speeds power output estimates in thousand

euro:

C low
p (t) = 7 ∗ (15.441 + 0.850cos(

2πt

52
+ 0.020)) (31a)

= 108.087 + 5.95cos(
2πt

52
+ 0.020)) (31b)

C low
f (t) = 28 ∗ (15.441 + 0.850cos(

2πt

52
+ 0.020)) (31c)

= 432.348 + 23.8cos(
2πt

52
+ 0.020)) (31d)
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p-ARP) constant costs functions in thousand euro:

C̄mean
p (t) = 141.512 (32a)

C̄mean
f (t) = 566.048 (32b)

C̄ low
p (t) = 108.087 (33a)

C̄ low
f (t) = 432.348 (33b)
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