
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Multi-component analysis of wind turbine maintenance

with time-varying costs

Ruben van Gelder (572708)

Abstract

In this research we examine the optimization of wind turbine maintenance with multiple components

under time-varying costs. Based on models by Schouten et al. (2022) we find that including time variant

maintenance costs can lead to cost reductions of up to 28%. We formulate two exact models and two

heuristics to look at the optimization of scheduling multiple components at the same time. These models

result in more cost-efficient schedules that plan preventive maintenance for different components in the

same period. We also include the option to delay corrective maintenance to potentially save even more

on setup costs. We find that this inclusion leads to significant cost reductions of up to 18%.

Supervisor: Rommert Dekker

Date final version: 2nd July 2023

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Problem statement 1

2 Literature review 2

3 Methodology 3

3.1 Single component maintenance . 3

3.1.1 Markov Decision Process . 4

3.1.2 Age Replacement Policy . 5

3.1.3 Block Replacement Policy . 6

3.1.4 Modified Block Replacement Policy . 7

3.2 Multiple component maintenance . 8

3.2.1 Multi-ARP . 8

3.2.2 Multi-BRP . 11

3.2.3 Sequential optimisation heuristic for block-based policy 12

3.2.4 Genetic heuristic for block-based policy . 13

4 Results 16

4.1 Single component analysis . 17

4.2 Double component analysis . 18

4.2.1 Double component experiments . 18

4.2.2 Grouping maintenance costs . 20

4.2.3 Model comparisons . 21

4.3 Triple and quadruple component analysis . 22

5 Conclusion 24

1 Problem statement

Renewable energy has become a hot topic in politics over the past decade. The climate crisis has the po-

tential to have long lasting effects on our planet and future generations. Recently the first Dutch minister

of Climate and Energy announced a climate package of around 28 billion euros to go towards the reduction

of carbon emissions and an increase in the production of green energy. One of the main pillars of renewable

energy are wind turbines, which generate energy via the speed of the wind. Hartman (2022) says that wind

turbines have steadily been increasing in size and power capacity over the last 20 to 30 years. Turbines that

are currently being constructed are around 66% larger in height than in 1998-1999 and have had a power

capacity increase of more than 300% since then.

Due to the increase in utility of wind turbines, the efficiency of generating wind energy has become an

increasingly popular research topic. Generating energy in the most cost-effective way is of critical import-

ance to minimize the (carbon) costs of this green energy source. Because the general public is not pleased

with a wind turbine in their backyard, wind farms are often placed offshore. Röckmann et al. (2017) argues

that these wind farms are better at generating electricity due to the higher wind speeds. They also do not

interfere with their natural surroundings like onshore wind farms usually do. However, offshore wind farms

have higher technical risks and are more difficult to maintain. Röckmann et al. (2017) argues that around

25% to 30% of the total life cycle costs for offshore wind turbines hides in the maintenance costs. This means

that optimization of the maintenance policies can result in more efficient green energy, which indirectly lowers

the energy bill for all households that use wind energy.

Röckmann et al. (2017) also describe the difficulties in offshore wind turbine maintenance. They say that

during the winter wind speed is higher than during the summer and waves are bigger. This means that during

the winter time there are far less opportunities to perform maintenance, which results in a lot of scheduling

issues. When maintenance is performed, the wind turbine has to be shut down and thus it cannot generate

any energy in this time frame. This means that the higher wind speed also leads to a higher opportunity

cost in the winter months. So it seems beneficial to perform preventive maintenance during the summer

time and to account for time-varying maintenance costs when modelling its scheduling problem. These costs

are split up in transportation costs, the costs to maintain a component and the costs of shutting down the

wind turbine during the maintenance operation. Transportation costs and component maintenance costs are

roughly the same during the year, because no mayor differences exist for them between the seasons. However,

the opportunity costs of shutting down the wind turbine vary a lot by the season, as KNMI (2023) shows

that the average wind speed in the Netherlands over the past 30 years is around 45% higher in the winter

than in the summer months. That is why it is important to incorporate a time variance in the costs of the

offshore wind turbine maintenance scheduling problem.

Shafiee (2015) describes that maintenance is either performed preventively or when a component has broken

down. Röckmann et al. (2017) argues that preventive maintenance (PM) has significantly lower costs than

corrective maintenance (CM), because during the lead time for CM the wind turbine does not work, which

results in large additional missed production. To distinguish which maintenance schedules are the most

efficient with time-varying costs we have to look at different policies and measure which of them is the

most cost-effective. These policies decide when to perform CM or PM and are traditionally time-, age- or

condition-based. To measure which policy provides the most cost-effective schedule under time-varying main-

1

tenance costs Schouten et al. (2022) suggests using an even playing field, where we first only look at a single

component that needs some maintenance schedule. This leads to the following research question: ‘Which

maintenance scheduling policy provides the most cost-effective single-component schedule with

time-varying maintenance costs?’

When looking at a wind farm we look at a group of multiple wind turbines with multiple components

that evidently all need maintenance at some point. Dalgic et al. (2015) suggests that around 73% of all main-

tenance costs lay in the transportation of vessels and equipment. This means that minimizing the number of

trips made to wind farms is of critical importance to reduce the total maintenance costs. When we schedule

multiple components to be maintained at the same time, we only need to pay the transportation costs once,

which means we can potentially save on costs using this method. To research this we formulate the following

research question: ‘Which maintenance scheduling policy provides the most cost-effective multi-

component schedule with time-varying maintenance costs?’

Intuitively it seems logical to always immediately repair a broken component, to get the wind turbine up

and running again. However, when PM is planned to be performed for another component shortly after

this component breaks down, it might be beneficial to postpone CM to save on transportation costs. This

opportunity arises when the costs of missing production due to a broken component are outweighed by the

transportation costs to the offshore wind turbine. Because transportation costs make up such a large part of

the overall costs of the maintenance this poses a realistic scenario where costs might be saved. This leads to

our last research question: ‘Does the inclusion of delaying CM to the multi-component mainten-

ance scheduling problem lead to a reduction in the maintenance costs?’

This thesis is structured in the following way. Firstly, in Section 2 we provide a short literary review of

earlier works that this research is based on. In Section 3 we provide the methodology that is used to find an-

swers to our research questions. This section is divided in two main parts: Section 3.1 describes the models to

look at single component models, whilst Section 3.2 shows the formulations and heuristics to consider for the

multi-component models. In Section 4 we present the results for respectively the single- and multi-component

models and share our insights regarding these results. Lastly, we provide the conclusion of our research in

Section 5.

2 Literature review

The literary focus of this research has in a large part already been done by Schouten et al. (2022), which

this paper partly reproduces. To give an insight into the main findings we firstly summarize their literature

review, after which we look at literature that belongs to multi-component maintenance.

Barlow & Proschan (1996) introduced the most prominent maintenance policies called the age replacement

policy (ARP) and the block replacement policy (BRP). They respectively perform preventive maintenance

when a critical component age has been reached or when a pre-specified time has passed. Ross (2013)

shows that under the assumption of constant costs and average conditions the ARP is optimal. All mainten-

ance policies considered have a deterioration process that is stochastic by nature, which means the common

condition-based policy is not considered. The only extra policy considered is the modified block replacement

2

policy (MBRP), which is the same as the block replacement policy, but with this policy PM is not performed

if CM has been done shortly before its scheduled date.

Schouten et al. (2022) also mention that the literature regarding time-varying cost in wind turbine mainten-

ance optimization is really limited, which means we mainly look for literature regarding multiple-component

maintenance optimization. Archibald & Dekker (1996) provide multi-component framework for the MBRP

with constant costs and find that it performs better than the single-component MBRP. Perez et al. (2015)

also show in their research that including multiple components in the optimization via the condition based

policy allows significantly more efficient maintenance schedules, by reducing the number of trips made to the

offshore wind farms. Dekker et al. (1997) gives a review on the literature of multiple component maintenance

optimization with only an economic dependence. This can be applied in our case, because the transportation

cost plus missed production cost from maintenance is the only deficit considered in our problem, which means

we only have an economic dependence.

The published literature combining time-varying costs and multiple-component maintenance is very limited.

The master thesis of Schouten et al. (2019) provides a multi-component extension to the models they suggest

in Schouten et al. (2022). They provide a multi-component framework for the ARP, BRP and MBRP policies

with time-varying costs. They show that including time-variance in these multi-component models also leads

to cost reductions in the maintenance schedules. Moreover, they show that the LP- and MILP-formulations

blow up in computation time when we consider more than three components. This means they resort to

heuristics for the block-based policies to create maintenance schedules with more than three components.

3 Methodology

In this section we propose the methodology to approach the problems presented in Section 1. In Section 3.1

we discuss the approach to reproduce the research by Schouten et al. (2022). This is done by solving the

single-component maintenance problem with an LP formulation for the ARP policy and MIP formulations

for the BRP and MBRP policies. In Section 3.2 we discuss our proposed methodologies to approach the

multi-component maintenance scheduling problem. We formulate an LP formulation for the ARP multi-

component model, which allows for delay of corrective maintenance, based upon the model by Schouten et

al. (2019). We also provide two heuristics to solve the multi-component setting with the BRP and MBRP

policies and compare them accordingly.

3.1 Single component maintenance

To establish the structure of the problem it is important to state the assumptions Schouten et al. (2022) makes

to formulate this problem. They consider a single component in a wind turbine that will keep functioning

until it breaks. Because a broken component leads to missed production, the breakage of the component has

a monetary incentive to be avoided. To avoid this problem, preventive maintenance (PM) is performed at

pre-planned times, which are decided with the maintenance policy. When a component does break, corrective

maintenance (CM) is performed instantly. Both types of maintenance replace the current component, albeit

not broken, with a new undamaged component. We discretize time into N periods, which can be anything

from weeks, months to quarters. In some cases we allow the total period cycle to extend over m years. The

component has a stochastic lifetime denoted by X, where P (X = k) > 0 ∀k ∈ N̄\{∞}, with N̄ = {0, 1, ...,∞}.

3

The lifetime distribution is assumed to be known and the failure rate is non-decreasing with component age.

Furthermore, the costs for both types of the maintenance are dependent on the period, which follow a cyclical

pattern according to the seasonal pattern of nature. This means that costs are usually lowest during the

summer, because the average wind speed is lower than during other parts of the year.

3.1.1 Markov Decision Process

To assess the optimization of the maintenance of a single component under time-varying costs, we formulate

a model structure that allows the usage of all three proposed policies. Schouten et al. (2022) suggests to

use a Markov Decision Process, which comprises of a set of states, an action space, a transition probability

matrix and a cost parameter. All states contain a particular period i0 ∈ I0 = {1, 2, ..., Nm} (I0 ⊆ N) and

its respective component age i1 ∈ I1 = {1, 2, ...,M} (I1 ⊆ N), where M is the maximum component age. A

component cannot exceed this constant maximum age, so it gets replaced immediately when it reaches this

age. The state space is thus defined as I = I0 x I1. The action space A consists of two possible actions for

the current period: we do not maintain the component (a = 0) or we do maintain the component (a = 1).

In most states either actions can happen, except for the broken state, in which i1 = 0 or i1 = M . When

the component falters it automatically gets component age 0 and needs to be replaced instantly. This means

we always perform CM in the broken state, whilst we always perform PM in the state where the maximum

component age has been reached, which leads to the following action space:

A(i0, i1) =

{
{1} , if i1 ∈ {0,M}
{0, 1}, otherwise.

(1)

-

To transition between the states in the Markov chain it is necessary to formulate a transition probability

matrix. This probability is dependent on whether we perform planned maintenance or the component breaks

down and we perform corrective maintenance. In all cases the system can only transition between states

that are one period apart and can only transition forward in time, which means it can only transition from a

state with i0 = j to a state with i0 = j+1. As discussed earlier the component age is lowered to 0 in case of

breakage. When we perform preventive maintenance the system can transition to a state with either i1 = 0

or i1 = 1. If the component would break down within the same period that PM was performed the system

would take component age 0, if this does not occur the component age naturally goes to 1. If the component

does not break down nor PM is planned (i.e. a = 0) the component age will simply increase by 1. This leads

to the transition probability π(i0,i1)(j0,j1)(a), which is the probability to transition from state i = (i0, i1) to

state j = (j0, j1) under action a. This leads to the following values for πi,j(a):

π(i0,i1)(j0,j1)(0) =

1− pi1 , if j0 = i0 + 1 (mod N), j1 = i1 + 1, i1 /∈ {0,M},
pi1 , if j0 = i0 + 1 (mod N), j1 = 0, i1 /∈ {0,M},
0 , otherwise,

(2)

π(i0,i1)(j0,j1)(1) =

1− p1 , if j0 = i0 + 1 (mod N), j1 = 1,

p1 , if j0 = i0 + 1 (mod N), j1 = 0,

0 , otherwise,

(3)

4

where px = P (X = x|X ≥ x), which denotes the failure probability at component age x. Mod is the modulo

operator to ensure transitions from period N to period 1 are also included.

The framework now only needs a cost parameter for every state and action combination. Because we only

look at a single component we can choose to exclude explicit fixed transportation costs, as they can be in-

cluded in the price of both types of maintenance. We only have costs if we perform maintenance (i.e. a = 1).

Furthermore we have to differentiate between costs when performing PM or CM, as CM ensues higher costs

due to its unplanned nature. The PM and CM costs are dependent on what period in the year we look at,

which is why we denote them respectively by cp(i0) and cf (i0). This leads to the following cost parameter:

ci(a) =

cf (i0) , if a = 1 & i1 = 0

cp(i0) , if a = 1 & i1 ̸= 0

0 , if a = 0.

(4)

3.1.2 Age Replacement Policy

Now that the framework for the Markov Decision Process is constructed, we can apply particular policies on

it. The first of which is the Age Replacement Policy (ARP), where we replace the component once it has

reached its critical component age. When the component is replaced its component age will reset back again

to 0. Ross (2013) already showed that the ARP policy under constant costs is the optimal policy. Under

time-varying we do not want to look at a constant critical maintenance age, because we want to favor doing

the maintenance during time periods where the costs are low. Schouten et al. (2022) introduces the following

rendition of the ARP policy, which is time dependent:

Definition 1: p-ARP. A periodic Age Replacement Policy (p-ARP) is an adaptation of the ARP where

the critical maintenance age t(i0) ∈ N is dependent on the period i0 ∈ I0. This means that for each period

the component has a critical maintenance age t(i0) at which or above at which PM will be performed.

This critical maintenance age t(i0) can become ∞, which means PM is never performed for this i0 ∈ I0.

When we have at least one t(i0) < ∞ we have a finite p-ARP problem, otherwise we resort to a policy

where only CM is performed. Schouten et al. (2022) also provides three theorems that support the p-ARP

policy. They describe that an optimal policy under time-varying costs exists and this is a p-ARP solution.

Furthermore, they provide that under certain conditions a finite optimal p-ARP solution exists. For details

we refer to Schouten et al. (2022) page 4.

To model this Schouten et al. (2022) suggests to use an LP formulation based on the formulation intro-

duced by Tijms (2003). To make this LP formulation we introduce decision variable xi,a, which represents

the long run fraction of situations where we find the system in state i perform action a. Furthermore, we

need to split the objective in states where PM is performed and states where CM is performed, to allocate

5

the correct cost parameter. We do so by defining at Ib = I0x{0}, i.e. at the states with a broken component.

This leads to the following formulation:

min.
∑

i∈I\Ib

cp(i0)xi,1 +
∑
i∈Ib

cf (i0)xi,1 (5)

s.t.
∑

a∈A(i)

xi,a −
∑
j∈I

∑
a∈A(j)

πji(a)xj,a = 0 ∀i = (i0, i1) ∈ I (6)

∑
i1∈I1)

∑
a∈A(i0,i1)

xi0,i1,a =
1

Nm
∀i0 ∈ I0 (7)

xi,a ≥ 0 ∀i = (i0, i1) ∈ I, ∀a ∈ A(i) (8)

The objective of this LP formulation (5) minimizes the long-run maintenance costs of the problem. Constraint

6 ensures that the in- and outflow for each state is equal, whilst Constraint 7 ensures that each the long

run probability to be in a particular period i0 ∈ I0 is the same for all periods. Important to note is that

in the p-ARP problem we usually look at cases where m = 1, but Constraint (7) is formulated in this way

for completeness. Schouten et al. (2022) provides a method to retrieve an optimal strategy for each period,

which shows for each period if maintenance should be performed.

3.1.3 Block Replacement Policy

The block replacement policy performs PM after a fixed time span since the last PM. CM is still performed

when the component breaks down, but this does not affect the PM schedule. These time intervals need not

be the same for every interval, but do follow a pattern, which repeats itself every m years.

Definition 2: p-BRP. A periodic Block Replacement Policy is a policy where the component is pre-

ventively maintained in all periods T1, T2, . . . , Tn < mN for some n ∈ N, since the the start of the period

cycle.

So, these periods T1, T2, . . . , Tn do not have to have the same period difference between them, but should be

the same for each period cycle. So the first PM can be 6 periods after start, the next can be 8 periods later

and the last can be 4 periods after that. However, when starting a new period cycle this same pattern is

followed again. To allow this behaviour in the system we look at cases where m > 1, instead of m = 1.

Schouten et al. (2022) provides two theorems that, similarly to the ARP, provide a guarantee for an op-

timal p-BRP under certain circumstance and for more details we refer to Schouten et al. (2022) page 5. To

formulate the mixed integer linear programming (MILP) problem for the p-BRP we use the formulation for

the ARP problem as a base and add constraints to get a correct formulation. Schouten et al. (2022) suggests

to introduce decision variables yi0 , which represent the decision to maintain preventively in period i0. We

thus define it as the following:

yi0 =

{
1, if we perform PM in period i0,

0, otherwise.
(9)

6

The addition of the following constraints to the ARP problem forms the MILP formulation of the BRP

problem:

s.t. xi,0 + yi0 ≤ 1 ∀i = (i0, i1) ∈ I : i1 > 0 (10)

xi,1 − yi0 ≤ 0 ∀i = (i0, i1) ∈ I : i1 > 0 (11)

yi0 ∈ {0, 1} ∀i0 ∈ I0 (12)

Constraint (10) ensures that it is impossible to not take action (i.e. a = 0) in periods i0, where yi0 = 1.

Whilst, Constraint (11) ensures that we never take action in periods i0, where yi0 = 0. The combination of

these constraints guarantees we perform PM in the periods that are allowed and thus that yi0 is modeled as

it is designed.

3.1.4 Modified Block Replacement Policy

The p-BRP introduced in Section 3.1.3 has one obvious flaw that is directly tied to its biggest benefit: PM

is completely independent from component age. This means that PM can be performed on components that

have just been installed via CM, which is suboptimal. Schouten et al. (2022) suggests to use a Modified

Block Replacement Policy (MBRP), that only performs PM when the component age is larger than some

time-varying threshold. We formally define it in the following way:

Definition 3: p-MBRP. A periodic Modified Block Replacement Policy is a policy where the compon-

ent is preventively maintained in periods T1, T2, . . . , Tn < mN for some n ∈ N, since the the start of the

period cycle. However, this is under the condition that for situation k a critical maintenance age t(k) is

reached, where t(k) ≤ Tk − Tk−1 for k = 2, 3, . . . ,mN and t(1) ≤ T1 − TNm +mN .

To formulate the MILP for the p-MBRP problem we adapt the notation for the critical maintenance age

slightly. For each period, we denote a set critical maintenance age tk for k ∈ I0. This means that if Tk = i0,

we get that ti0 = t(k), which denotes the minimum age at which we perform PM in period i0. If PM is not

planned in a period the critical maintenance age is set to an arbitrary number bigger than M . Furthermore,

Schouten et al. (2019) provides a theorem that the optimal p-MBRP has a finite cycle, finite critical main-

tenance ages and finite block times, which ensures a usable result. Like in Section 3.1.3 we use the p-ARP

from Section 3.1.2 as a base for the formulation of the p-MBRP problem. We again add decision variables yi0

introduced in Section 3.1.3. On top of that we add extra decision variables zi, which represent the decision

to maintain the component for a certain age in a certain period.

zi =

{
1, if we maintain at component age i1 ∈ I1in period i0 ∈ I0

0, otherwise
(13)

This leads to the addition of the following constraints to form the formulation of the p-MBRP problem:

7

s.t. zi0,i1 − yi0 ≤ 0 ∀i0 ∈ I0, ∀i1 ∈ I1 (14)

zi0,i1 − zi0,j1 ≤ 0 ∀i ∈ I, ∀j1 ∈ I1 : i1 < j1 (15)

ti0 + j0yj0 +mNyj0 ≤ mN + i0 ∀i0, j0 ∈ I0 : j0 < i0 (16)

ti0 + j0yj0 ≤ mN + i0 ∀i0, j0 ∈ I0 : j0 > i0 (17)

Myi0 −Mzi0,i1 − ti0 ≤M − 1− i1 ∀i ∈ I (18)

Mzi0,i1 + ti0 ≤M + i1 ∀i ∈ I (19)

xi,0 + zi ≤ 1 ∀i = (i0, i1) ∈ I : i1 > 0 (20)

xi,1 − zi ≤ 0 ∀i = (i0, i1) ∈ I : i1 > 0 (21)

zi ∈ {0, 1} ∀i ∈ I (22)

yi0 ∈ {0, 1} ∀i0 ∈ I0 (23)

ti0 ∈ N̄ ∀i0 ∈ I0 (24)

Constraint (14) ensures that yi0 behaves as it is defined by enforcing the component to be maintained for all

component ages bigger or equal to the critical maintenance age. Constraints (16) and (17) makes sure that

the critical maintenance age condition as defined in Definition 3 is upheld. This is done by allowing ti0 to

take all values when PM is not performed in period i0, whilst restricting it to its defined condition when PM

is performed, i.e. yi0 = 1. Lastly, Constraints (18) and (19) ensure that the interaction between the yi0 and

zi0 is taken care of by using the maximum age M in clever way. Furthermore, the formulation by Schouten

et al. (2019) actually results in a p-ARP formulation most of the time, because the interaction between the

xi,a decision variables and the other decision variables is not considered. That is why we add Constraints

(20) and (21, which serve the same purpose as Constraints (10) and (11) in the formulation of the p-BRP

model in Section 3.1.3). They ensure that PM is always and only performed (xi,1 ≥ 0) in the states i for

which zi = 1.

3.2 Multiple component maintenance

To extend the framework of our analysis and include grouping of components and delaying CM to save on

transportation costs we have to look at scheduling multiple components at the same time. Schouten et al.

(2019) provides a structure to tackle this problem, which extends the MDP formulated in Section 3.1.1. In

Section 3.2.1 we explain how we extend the p-ARP problem to include multiple components. Because this

formulation blows up for more than three components, Schouten et al. (2019) suggests to use heuristics to

extend the block-based policies, which is explained in Sections 3.2.3 and 3.2.4.

3.2.1 Multi-ARP

To extend the single-component analysis of the p-ARP problem to a multi-component analysis Schouten et

al. (2019) suggests to change the MDP constructed in Section 3.1.1 and change the problem formulation to

allow for multiple components. To incorporate n (n ≥ 1) components in the MDP we increase the state space

to I = I0 × I1 × ... × In. In this case I0 ⊆ N is the period the system resides in and Ij ⊆ Z is the age of

component j = 1, . . . , n.

8

To allow the delay of CM, we extend the state space of Ij ∀j = 1, . . . , n to all integers, so the compon-

ent ages can take negative values. If component j is in the broken state ij = 0, it is not necessary anymore

to immediately repair it. This means that when the system progresses by one period, the component age of

j is lowered by one and becomes ij = −1. This process goes on until CM is performed on component j, after

which its component age can go to 0 or 1, depending on if component j breaks down within the period it is

repaired in. We choose to allow the component to take a negative component age for two reasons. The first

of which is to track for how many periods a component has been broken in this system, which is important to

assess the usefulness of delaying CM. Secondly, it allows us to deal with the difference between a component

that gets repaired immediately (i.e. ij = 0) and a component that stays broken for a number of periods

(i.e. ij < 0). This difference is important because we assume that we cannot combine CM with PM when

the component is repaired immediately, while we do allow this for components that have been broken for at

least one period. This means we have a difference in the cost parameter for these two cases, which is shown

shortly after this. Intuitively it seems logical to just allow the component to stay at the same component age

when it is broken and not repaired immediately. However, the two distinctions mentioned cannot be made

in this scenario unless we create extra decision variables, which is not preferable.

To extend the action space A(i0, i1) from Section 3.1.1 we need to add the other components to it, to

retrieve action space A(i0, i1, . . . , in). Important to note is that the necessity to immediately take action

when a component is broken is not applicable in this case, because waiting for PM on another component

can be beneficial. This means that the action space is forced to perform CM in case all considered compon-

ents are broken. We also enforce the system to repair a broken component if it has reached some maximum

broken age MB. This means the system is forced to take action when a component j has reached compon-

ent age ij = −MB or ij = M . Because delaying CM is only beneficial for the number periods where the

transportation costs outweigh the total missed production costs we can set MB = ⌈ cs
cw(ilow)⌉, where cw(ilow)

is the cost of missed production in the cheapest period ilow. This leads to the action space for component j,

shown in Formula 25. The total action space is comprised of the combination of the individual action spaces

with the same period i0, unless all components are broken, in which case the system would perform CM for

all of them.

Aj(i0, ij) =

{
{1} , if ij ∈ {−MB,M}
{0, 1} , otherwise.

(25)

The probability for component j to fail depends on the the age of component and the particular failure

distribution component j has. We use a discretized Weibull failure distribution for each component, where

differences are caused by differences in the shape and scale parameters. This means that the transition

probability to move towards the failed state (i.e. ij = 0) is similar to that in Section 3.1.1. However the

transition probability to move forward one period while decreasing component age ij by one period is now

possible, under the condition that the component is broken, i.e. ij ≤ 0. We introduce the individual transition

probability πk
(i0,ik)(j0,jk)

(ak), which represents the probability to transition from period i0 to j0 with the age

of component k transitioning from ik to jk under action ak. Because the individual transition probabilities are

independent from the other components we multiply these probabilities to get the total transition probability

π(i0,i1,...,in)(j0,j1,...,jn)(A(i0, i1, . . . , in). The individual transition probability for component k is the following,

9

where pkik denotes the failure probability for component k at component age ik:

πk
(i0,ik)(j0,jk)

(0) =

1 , if j0 = i0 + 1 (mod N), ik ∈ {−MB + 1,−MB + 2, . . . , 0}, jk = ik − 1,

1− pkik , if j0 = i0 + 1 (mod N), jk = ik + 1, ik /∈ {−MB,−MB + 1, . . . , 0,M},
pkik , if j0 = i0 + 1 (mod N), jk = 0, ik /∈ {−MB,−MB + 1, . . . , 0,M},
0 , otherwise,

(26)

πk
(i0,ik)(j0,jk)

(1) =

1− pk1 , if j0 = i0 + 1 (mod N), jk = 1,

pk1 , if j0 = i0 + 1 (mod N), jk = 0,

0 , otherwise,

(27)

The individual cost parameters stay largely the same, but get the addition of a cost cw(i0), which represents

the cost of lost production of a broken wind turbine due to component j not being repaired for a whole period.

We furthermore differentiate the costs of PM and CM of different components by adding a component index

to their costs. Schouten et al. (2019) suggests that transportation costs are always paid if we perform CM

immediately after a component breaks. This is because CM is performed on unplanned moments within a

period, so we do not group it with other maintenance in this period. However, as will be shown in Section 4.2.2,

the results gathered by Schouten et al. (2019) actually do not correctly implement this assumption. That is

why we allow for CM to be grouped other maintenance and thus add fixed costs once if any maintenance is

performed in period i0. The individual cost parameter for component j thus becomes:

cj(i0,ij)(a) =

0 , if a = 0, ij > 0,

cw(i0) , if a = 0, ij ≤ 0,

cjp(i0) , if a = 1, ij ̸= 0,

cjf (i0) , if a = 1, ij ≤ 0.

(28)

To get the total cost for a state ci,a we add all individual costs together, that share the same period but

have their own component age and action combination. We add transportation costs cs to the total, if we

perform any type of maintenance in period i0. This means that if we perform either PM and/or CM we add

the transportation costs to the total costs. This is because we assume that all maintenance in a period is

performed in the same maintenance session and thus we only need to go to wind turbines once. Using this

way, we guarantee that the fixed costs are only added when performing at least one form of maintenance.

With this model structure we can formulate the multi-component p-ARP problem. Schouten et al. (2019)

does this in a similar way as is done in Section 3.1.2. This formulation does not include delay of CM and

does not allow the component ages to be negative. When comparing the model with and without delay we

use the formulation by Schouten et al. (2019) to gather results for the problem without delay. We adjust this

formulation slightly to incorporate delay of CM. We again introduce decision variables xi,a, which represents

10

the long-run probability to be in system state i and perform action a. This leads to the following formulation:

min.
∑
i∈I

∑
a∈A

ci,axi,a (29)

s.t.
∑

a∈A(i)

xi,a −
∑
j∈I

∑
a∈A(j)

πji(a)xj,a = 0 ∀i = (i0, i1, . . . , in) ∈ I (30)

xi,a = 0 ∀k ≤ n, i ∈ I, a ∈ A : ik ∈ {−MB,M}, ak = 0 (31)∑
i1∈I1)

∑
a∈A(i0,i1)

xi0,i1,a =
1

mN
∀i0 ∈ I0 (32)

xi,a ≥ 0 ∀i = (i0, i1) ∈ I, ∀a ∈ A(i) (33)

This formulation has largely the same interpretation as the one in Section 3.1.2. Only Constraint (31) is

added to ensure that the system always performs PM (or CM) when one of the components reaches the

maximum or minimum age.

3.2.2 Multi-BRP

Schouten et al. (2019) provides a MILP formulation for the the multi-component block-based policies. They

show that this formulation blows up in computation time when looking at three or more components, which

makes it unsuitable for usage in real life situations. We introduce heuristics to circumvent this problem in

Sections 3.2.3 and 3.2.4. However, in small scale problems we want to compare these heuristics to the exact

solution to get a grasp of the usefulness of these heuristics. That is why we also look at the MILP formulation

for the multi-BRP problem. We introduce decision variable yki0 , which describes if we perform PM in period

i0 for component k.

yki0 =

{
1, if we perform PM in period i0 for component k,

0, otherwise.
(34)

This problem uses the exact same framework as the multi-ARP formulation and only needs two additional

constraints, similarly to the single component model from Section 3.1.3. This means that delaying CM is

also an option for the exact multi-BRP problem. We add the following constraints on top of multi-ARP

formulation from Section 3.2.1 to get the multi-BRP formulation:

xi,a + yki0 ≤ 1 ∀k ≤ n, i ∈ I, a ∈ A : ik > 0, ak = 0 (35)

xi,a − yki0 ≤ 0 ∀k ≤ n, i ∈ I, a ∈ A : ik > 0, ak = 1 (36)

yki0 ∈ {0, 1} ∀k ≤ n, i0 ∈ I0 (37)

Constraints (35) and (36) fulfill similar purposes as Constraints (10) and (11) from Section 3.1.3. They ensure

that the yki0 decision variables enforce the system to only perform PM on component k in the periods i0 ∈ I0

that are allowed by the yki0 decision variables.

11

3.2.3 Sequential optimisation heuristic for block-based policy

Schouten et al. (2019) provides a MILP formulation for the the multi-component block-based policies. They

show that this formulation blows up in computation time when looking at three or more components, which

makes it unsuitable for usage in real life situations. Because block-based policies base their decision to per-

form PM completely independent of component age, they are suitable for heuristics Here we describe the

sequential optimisation algorithm and in Section 3.2.4 we describe the genetic algorithm, which are both

based on the heuristics proposed by Schouten et al. (2019). We compare these heuristics in terms of perform-

ance and adaptability to determine which is the most useful. While both are possible to create for both the

BRP and MBRP, Schouten et al. (2019) argues that the heuristics systematically overestimate the costs for

the MBRP problem. This can only be solved by implementing a simulation for the MBRP process. Because

this takes a long time for little gain, we only look at the heuristics for the BRP problem.

The sequential optimisation algorithm is a simple algorithm to find a maintenance schedule. The algorithm

essentially optimizes a single component and adds the result to the maintenance schedule. It does this re-

peatedly for each component in the given component order until all components are scheduled. We update

the cost parameter for a period where PM is planned for the first time by reducing it with the transport-

ation costs for the next components. In this way we avoid paying fixed transportation costs for PM in a

period where PM is already planned for another component. However, Schouten et al. (2019) shows that

the algorithm has no guarantee to be near the optimal solution, which seems logical due to the pre-planned

order of the components that need to optimized. This means that periods where PM is performed for the

first few components are favored, while those might not have been chosen if the order of the components

is changed. We can add delay in this algorithm by allowing the components to take on negative ages, as

discussed in Section 3.2.1. If the gain of not paying fixed costs outweighs the costs of losing production, CM

can potentially be delayed. This needs some change to the structure of the ‘normal’ p-(M)BRP structure

discussed in Sections 3.1.3 and 3.1.4, but these are straightforward versions of the ones presented in Section

3.2.1. We provide a pseudocode for the algorithm to make it easy to understand:

12

Algorithm 1 Sequential Optimisation

Require: List of components L ordered via order method OM

List of periods where PM is performed: P ← ∅
Cost parameter ci0,i1(a), including fixed cost for transportation cs

Total cost ct ← 0

for L do

Solve single component p-(M)BRP for current component l and remove l from L

Retrieve all periods in which PM is performed for component l

Add solution cost to the total cost ct

for Periods in which PM is performed for component l do

if Current period k /∈ P then

ck,i1(1) = ck,i1(1)− cs

add k to P

end if

end for

end for

Return ct

The order methods Schouten et al. (2019) suggests are based on characteristics of the components. These

order methods do not guarantee better results, but varying the orders might provide a lower total cost, due to

difference in order. They suggest ordering the components in one of three following ways, where we start with

the component with the characteristic on the left descend the list to the component with the characteristic

on the right:

• (SF) Highest maintenance frequency −→ lowest maintenance frequency

• (SR) Lowest maintenance frequency −→ highest maintenance frequency

• (SC) Most expensive component maintenance −→ cheapest component maintenance

3.2.4 Genetic heuristic for block-based policy

The genetic algorithm is a heuristic that is used to perform a smart search through all combinations of

periods in which PM is performed. The algorithm performs this smart search by optimizing the maintenance

schedule for each component according to the formulations in Section 3.1.3 and 3.1.4. However, it only allows

PM to be performed in certain periods of the cycle by adding an additional constraint. To do so, we define

a chromosome containing l = Nm genes. Each gene represents a period in the system, where we either allow

PM in this period or not. If we do allow for PM in the period gene i0 represents, we call gene i0 an active

gene. We do this by assigning the value of 1 to gene i0, if we allow PM to be performed in period i0, and 0

otherwise. We introduce g ∈ {0, 1}l, with the following definition:

gi0 =

{
1, if we allow PM in period i0 ∈ I0

0, otherwise
(38)

13

Furthermore, Schouten et al. (2019) defines a formula that calculates the costs for each chromosome. This

is done by determining the maintenance costs without setup costs ck for each component k ∈ K, as is done

when solving the MILP described in Sections 3.1.3 and 3.1.4. After which we add the setup costs cs for each

period, where PM can be performed. Schouten et al. (2019) also adds an inflation factor e(g) that depends

on the failure probability bki0 , which represents the probability for component k = 1, . . . , n to fail in period

i0. This leads to the following formulas:

c(g) =
∑
k∈K

ck + cs

l∑
i0=1

gi0 + e(g) (39)

e(g) =
cs
m

∑
i0∈I0

gi0((1− b1i0) . . . (1− bni0)− 1 + b1i0 + · · ·+ bni0 (40)

bki0 = Nm
∑
a∈Ak

∑
ij∈{i1,...,in}

xi0,ij ,ap
k
ij (41)

Schouten et al. (2019) does not describe how to find the failure probability per period, only that it should be

used in the formula. So we decided to use Formula 41, which is based on the solution of the single component

problems. It calculates the chance to be in a particular component age and multiplies this chance with the

chance to fail at this component age. By adding all separate values for the same period together we get the

inflation factor for one period. Thus, we per-multiply this large sum with Nm to account the inflation factor

for the complete time period.

With these parameters defined we can construct the algorithm as is done in Algorithm 2. In this algorithm

we frequently solve the p-(M)BRP problem formulated in Sections 3.1.3 and 3.1.4. However, in this algorithm

the following constraint is added, to enforce that PM is only performed in the periods where this is allowed.

yi0 = 0 ∀i0 : gi0 = 0. (42)

14

Algorithm 2 Genetic Algorithm

Require: List with initial starting population G, which contains a group of starting chromosomes

List of components K

while Improvement in last 3 iterations do

for g ∈ G do

Solve single component p-(M)BRP with additional constraint 42 for each component k ∈ K, where

we allow PM in the periods according to g.

end for

Pick the fittest αfit > 0 chromosomes from the solutions. Fitness is determined by the formula f(g) =
1

c(g) , i.e. the fittest chromosomes are the cheapest ones.

Create child chromosomes from the fittest αfit chromosomes via cross-over and mutation, explained in

more detail in Schouten et al. (2019).

Empty G and add the n fittest children chromosomes to form the new starting population.

end while

Create set Ng as the set of neighbours of the 10 fittest chromosomes.

for g ∈ Ng do

Solve single component p-(M)BRP with additional constraint 42 for each component k ∈ K, where we

allow PM in the periods according to g.

end for

Return Fittest chromosome of original 10 and neighbours

We create children of chromosomes in the same way as is done by Schouten et al. (2019). We combine the

genes of two parents via cross-over to create two children and mutate each gene of the children with mutation

probability ρ = 0.1
Nm . We also determine the starting population via the same method as Schouten et al.

(2019). This is done by performing the single component optimization for each component and creating

chromosomes with the minimum and maximum number of required active genes spread evenly through the

chromosome.

To perform the local search Schouten et al. (2019) defines the set Ng, which contains all neighbours of a

chromosome g like in Formula 43. The neighbours of a chromosome consist of all combinations that are

possible to make with their active genes and their neighbours, while maintaining the same number of active

genes in the total time period. The neighbours of a gene i0 are simply the genes that represents the period

before or after the period gene i0 represents. So if we consider a setting with N = 12, m = 1 with the

genes that represent periods 2 and 7 active, the set of neighbours consist of all chromosomes that have a

combination of a gene from {1, 2, 3} and a gene from {6, 7, 8} as their active genes. If more than three genes

in a chromosome are equal to 1, we limit the number of neighbours by only considering neighbours where

one gene is shifted by a period or where all genes are shifted by one period in the same direction.

Ng = {g′ : ∀i ∈ {1, . . . , l} with gi = 1 ∃! j ∈ {1, . . . , l} with |(i− j) mod l ≤ 1} (43)

15

4 Results

In this section we present the results gathered in this research. To gather the results we implement the

methodology explained in Section 3 in Java using the CPLEX solver. The code that is used to gather these

results is available as a separate download link with the research paper. In Section 4.1 we present the results

for the single component models and our insights regarding these findings. In Section 4.2 we present our

findings regarding the multi-component models for either two, three or four components scheduled at the

same time.

To conduct these experiments we need to establish at what rate and costs the system transitions to the

following state. As mentioned in Section 3.1.2 we assume the the component lifetime X follows a discret-

ized Weibull function, which is dependent on the component age of the component. The appropriate CDF

for this function is the following: F (x) = 1 − exp (xα)
β , where α > 0 is the scale parameter and β is

the shape parameter of the CDF. Furthermore, we calculate the failure probability per component age via

P (X = x|X ≥ x) = F (x)−F (x−1)
1−F (x−1) for x ∈ N̄. We also need a cost function that follows a cyclical pattern,

which roughly follows the seasonal patterns. Due to the wind patterns we need the highest point to be in

the winter periods and the lowest point in the summer periods. Because we choose N = 12, January is the

month with index 1. To accomplish that January is the most expensive month and July (the 7th month of

the year) the cheapest month of the year, Schouten et al. (2019) suggests to use the following formulas to

calculate the time-varying PM, CM and delay costs:

cp(i0) = c̄p +∆cos

(
2πi0
N
− 2π

12

)
, (44)

cf (i0) = c̄f +∆cos

(
2πi0
N
− 2π

12

)
, (45)

cw(i0) = c̄w +∆cos

(
2πi0
N
− 2π

12

)
, (46)

where the index p, f and w respectively represent the preventive, corrective and delay parameters. Further-

more, c̄l are the average costs of index l = p, f, w, while ∆ is the fractional difference in costs between the

peak months and the average months. For all experiments we use that c̄p = cs = 5, because this creates an

even playing field to test the influence of other parameter decisions on the model. We choose the PM costs

to be equal to the fixed transportation costs, because Dalgic et al. (2015) argues that a sizeable portion of

the maintenance costs lay in the transportation costs. So, we assume for our computational experiments that

half of all preventive maintenance costs are caused by the transportation costs.

When we include the delay of CM in a model we use delay cost c̄w = 4. We choose this value, because

we intuitively know that the delaying costs need to be lower than the fixed costs that can be saved, otherwise

delaying CM is never performed. But, delaying CM comes at the cost of missing production for a whole

period, which means that it does amount to a significant cost barrier. That is why we choose the average to

be 80% of the fixed transportation costs. Note that the delay cost is dependent on the season and can thus

become bigger than the fixed costs in the periods where missing production comes at higher cost. We also

use αfit = 15 for the genetic algorithm unless stated otherwise. This parameter is kept at such a level where

we have enough chromosomes for the starting population, but do not blow up the computation time.

16

4.1 Single component analysis

We examine the performance of the single component models from Section 3.1 by running the p-ARP, p-BRP

and p-MBRP models with the same parameters. We perform the same experiment as Schouten et al. (2022)

to show our models work the same as theirs. They assume that the CM costs cf are 5 times higher than the

PM costs, which means cf = 50 and cp = 10. Furthermore, they choose to run two configurations, where one

has the combination of α = 1, β = 2 and m = 1, while the other combination looks at a longer time duration

by looking at α = 3, β = 2 and m = 3. The results are presented in Figure 1.

Table 1: Single component yearly costs in $ with cp = 10, cf = 50, where both the combinations α =
1 years, β = 2, m = 1 and α = 3 years, β = 2, m = 3 are considered. ∆ represents the percentage wise
difference in costs between the peaks of the season and the average costs.

p-ARP p-BRP p-MBRP

∆ Costs Savings % Costs Savings % PM months Costs Savings % PM months

0% 40.098 41.501 5, 11 40.311 4, 10

10% 40.035 0.16 41.420 0.20 6, 11 40.263 0.12 6, 11

20% 39.701 0.99 40.933 1.37 6, 11 39.855 1.13 6, 11

30% 39.224 2.18 40.361 2.75 6, 10 39.338 2.41 6, 10

40% 38.461 4.08 39.439 4.97 6, 10 38.556 4.35 6, 10

50% 37.635 6.14 38.466 7.31 7, 10 37.773 6.29 6, 10

alpha = 1, m = 1

0% 13.530 14.173 1, 19 13.622 11, 29

10% 13.252 2.06 13.828 2.44 6, 21 13.338 2.08 18, 33

20% 12.707 6.09 13.135 7.32 7, 19, 31 12.707 6.72 7, 19 , 31

30% 11.779 12.94 12.114 14.53 7, 19, 31 11.779 13.53 7, 19 , 31

40% 10.844 19.85 11.093 21.73 7, 19, 31 10.844 20.39 7, 19 , 31

50% 9.900 26.83 10.072 28.93 7, 19, 31 9.900 27.32 7, 19 , 31

alpha = 3, m = 3

As expected we see the same results in 1 as presented in Schouten et al. (2022). We see that the costs decrease

when the difference in costs between the seasons becomes larger, which means the time-variance in the costs

provides an opportunity to save on costs. We also see that the savings become even larger when we look at

components with a lower maintenance frequency, because we see bigger savings percentages for the results

where multiple years are considered rather than a single year. This is because the system can perform PM

in the cheapest month for each year, as we see for the p-BRP and p-MBRP solutions with ∆ ≥ 20%. This

means that components with a higher average lifetime benefit more from adding time-variant costs to their

scheduling problem. Furthermore, we see that the p-ARP is best performing model in all cases, as suggested

by the theorems formulated by Schouten et al. (2019). The costs of the p-MBRP solutions are quite close to

those of the p-ARP, while they both outperform the p-BRP by quite a margin. Although the computation

times are not mentioned in this table, none exceeded 3 seconds and thus the single component models solve

rather quickly.

17

4.2 Double component analysis

Here we present the findings of the multi-component models introduced in Section 3.2. For all these exper-

iments we use the same failure probability and cost parameter as used for the single component problem.

It is important to note that the moments when PM are performed can become very complex when looking

at more than one component. That is why our multi-component model results mainly focus on the cost

advantages that may be gained by including certain variables in the model and we do not provide elaborate

insights in the strategy to be used by maintenance teams when they find themselves in a particular situation.

To properly dissect the multi-component models and their advantages and disadvantages we create three

different main settings.

All three of these settings examine the effects of the time-variant costs on multi-component models, to assess

the importance of adding this variance in the model. In Section 4.2.1 we schedule two identical components

using all multi-component models presented. In this setting we also look at the influence of delaying CM and

assess the preciseness of the two heuristics. In Section ?? we examine the same variables but now in a setting

with two different components, to also view the interaction between components that do not naturally follow

the same lifetime cycle. In Section 4.2.2 we again view the models with two identical components, but view

if the the assumption of Schouten et al. (2019) to not allow for grouping of CM is influential to the costs

of the solution. In Section 4.2.3 we compare the models for the double component problem based on the

experiments performed in the sections prior to it. Lastly, we view a setting where we look at more than 2

components in Section 4.3. In this setting we can look at the Sequential Optimisation algorithm and Genetic

algorithm, to find solutions for the presented problem. We look at both a three and four component problem

and see how the heuristics fare compared to each other in terms of computation time and gained results.

4.2.1 Double component experiments

The first step to examine the effects of scheduling multiple components at the same time is by looking at the

gains of scheduling two identical components together. These components naturally follow the same lifetime

cycle and thus would be scheduled to be repaired on the same moments via the single component BRP model.

Similarly we can argue that when the components are identical their critical maintenance ages are similar,

which would result in similar maintenance patterns. To test this we use the same average PM, average delay

and fixed costs as for all other experiments (i.e. c̄p = cs = 5, c̄w = 4), with α = 1 year, β = 2, m = 1 for all

models. To get a broader view of the impact of all variables we look at two different values for c̄f . The first

average CM cost is c̄f = 15, which would only maintain once a year in the single component model, while

the second value c̄f = 45 results in two scheduled maintenance moments in the single component model, as

we have seen in Table 1.

The results of all presented models (including the delay models) in these settings are presented in Table

2. The first thing we notice is that, as is the case for the single component problem, the costs of the optimal

solutions decrease when the variance in costs over time increases, with the biggest difference amounting to

around 12 %. As expected the optimal BRP solution in the case of cf = 15 is to schedule maintenance once

a year in July. Both components get maintained in this month and thus setup costs are saved once. When

looking at the case of cf = 45 we always maintain twice a year. When ∆ = 10% we maintain January and

July, while we maintain in July and December for ∆ ≥ 20%. We also see that the heuristics find the optimal

solution for all cases and thus follow the same schedule.

18

Table 2: Double identical component yearly costs in $ with cs = cp = 5, α = 1 years, β = 2, m = 1 as its
parameters and a cf that varies. ∆ represents the percentage wise difference in costs between the peaks of
the season and the average costs.
∗ Schedules are optimal even though costs are lower than exact model

ARP ARP Delay BRP BRP Delay Genetic SF/SR/SC

∆ Costs ∆ % Costs Delay % Costs ∆ % Costs Delay % Costs Costs cf

0% 37.879 37.870 0.03 42.645 41.135 3.54 42.603∗ 42.643

15

10% 37.761 0.31 37.722 0.10 41.600 2.45 40.072 3.67 41.472∗ 41.598

20% 37.480 1.05 37.396 0.23 40.555 4.90 38.797 4.34 40.341∗ 40.553

30% 37.070 2.14 36.604 1.26 39.510 7.35 37.313 5.56 39.210∗ 39.508

40% 36.533 3.55 35.195 3.66 38.465 9.80 35.613 7.42 38.079∗ 38.463

50% 35.902 5.22 33.361 7.08 37.421 12.25 33.721 9.89 36.948∗ 37.418

CPU 7 min 9 min 5 min 10 min 6 min 1 sec

0% 70.184 70.087 0.14 73.046 70.962 2.85 73.003∗ 73.043

45

10% 70.020 0.23 69.221 1.14 73.046 0.00 70.017 4.15 73.003∗ 73.043

20% 69.805 0.54 66.899 4.16 72.530 0.71 67.725 6.62 72.364∗ 72.528

30% 69.473 1.01 63.856 8.08 71.866 1.62 64.881 9.72 71.638∗ 71.863

40% 68.977 1.72 60.322 12.55 71.202 2.52 61.209 14.03 70.913∗ 71.199

50% 68.140 2.91 56.162 17.58 69.971 4.21 57.301 18.11 69.742∗ 69.969

CPU 7 min 9 min 5 min 12 min 5 min <1 sec

We also want to look at two different components, to see how these can synergize without having the exact

same characteristics. To do this we look at two different components that get paired with the component

from the first experiment with cf = 15, which get maintained once a year in the single component solution.

This means we want to find two components that get maintained more times in a year, to see how these

different characteristics interact with each other. For the first experiment we choose to use same component

as the second experiment, i.e. the component with cf = 45, which gets maintained twice a year in its single

component solution. The second experiment is executed with a component that has CM costs and a different

scale parameter of the lifetime distribution. We choose to use a component with α = 2
3 years and cf = 35,

which is maintained three times a year in the single component model. All parameters not mentioned are

the same for the components from the last experiment.

The results of the first experiment are shown in Table 3. We immediately see similar results in terms of

time-variant cost differences and the delay cost reductions as the second experiment in Table 2. We delve

more into these factors during the model comparison in Section 4.2.3. The BRP solution presented in Table

3 always performs PM twice for the component with cf = 45, while it only performs PM twice on the other

component for ∆ ≤ 10%. When ∆ ≥ 20% the component with cf = 15 gets maintained in the cheapest

month that the other component also gets maintained in, which is August. The other maintenance takes

place in either December or January depending on the ∆.

19

Table 3: Double component yearly costs in $ with cs = cp = 5, α = 1 years, β = 2, m = 1 for both
components with c1f = 15 and c2f = 45 . ∆ represents the percentage wise difference in costs between the
peaks of the season and the average costs.
∗ Schedules are optimal even though costs are lower than exact model

ARP ARP Delay BRP BRP Delay SF/SR SC Genetic

∆ Costs Costs Delay % Costs Costs Delay % Costs Costs Costs

0% 55.830 55.778 0.09 59.358 57.428 3.25 59.355 59.355 59.315∗

10% 55.802 55.019 1.40 59.358 56.887 4.16 59.355 59.355 59.315∗

20% 55.527 53.428 3.78 58.896 55.458 5.84 58.926 58.926 58.885∗

30% 55.011 51.329 6.69 58.105 53.427 8.05 58.155 58.155 58.339

40% 54.356 48.863 10.11 57.314 50.819 11.33 57.383 57.383 57.794

50% 53.653 45.981 14.30 56.213 47.375 15.72 56.383 56.383 56.140

CPU 4 min 9 min 6 min 11 min <1 sec <1 sec 11 min

The results for the second experiment are shown in Table 4 and they also follow similar patterns regarding the

cost differences caused by time-variant costs and the addition of the delay of CM. When looking at the BRP

solution we find that PM is performed three times for the component with cf = 35 for ∆ = 10, 20%, while

the component with cf = 15 gets maintained in the cheapest month of the three, i.e. August. For ∆ = 0%

both components get maintained twice in the same period, while for ∆ ≥ 30% we see that the component

with cf = 35 is only maintained twice and the other component again joins the PM in August. So we clearly

see that scheduling maintenance for two components can lead to a massive decrease in the costs, because the

schedules of the two components collide together to ensure that only the setup costs that are necessary are

paid.

Table 4: Double component yearly costs in $ with cs = cp = 5, β = 2, m = 1 for both components with
c1f = 15, α1 = 1 years and c2f = 35, α2 = 2

3 years. ∆ represents the percentage wise difference in costs
between the peaks of the season and the average costs.
∗ Schedules are optimal even though costs are lower than exact model

ARP ARP Delay BRP BRP Delay SR / SC SF Genetic

∆ Costs Costs Delay % Costs Costs Delay % Costs Costs Costs

0% 67.606 66.395 1.79 72.395 68.769 5.01 72.639 73.265 72.314∗

10% 67.581 65.442 3.17 72.179 67.369 6.66 72.117 72.742 72.223

20% 67.310 63.564 5.56 71.657 65.417 8.71 71.761 71.916 71.613∗

30% 66.880 61.212 8.48 70.800 62.953 11.08 70.938 71.030 70.769

40% 66.256 58.527 11.66 69.616 60.024 13.78 69.573 69.800 69.837

50% 65.486 55.453 15.32 68.376 56.602 17.22 68.333 68.560 68.672

CPU 3 min 9 min 5 min 12 min <1 sec <1 sec 8 min

4.2.2 Grouping maintenance costs

In Section 3.2.1 we described that Schouten et al. (2019) assumes that corrective maintenance costs always

include the fixed transportation costs. This means that when we perform preventive maintenance in a period

we do not group this with corrective maintenance that needs to be performed on a broken component.

However, during the result gathering we found the same results as Schouten et al. (2019), while we did group

20

CM and PM in the same period. This should not be the case, as the costs are lower for each state with

our assumption. To find out if this difference in assumption indeed does not make a difference, we also ran

experiments where CM and PM can not be grouped, as suggested by Schouten et al. (2019). For a fair

comparison, we use the same parameters as done in Section 4.2.1 and the results are shown in Table 5.

Table 5: Double component model yearly costs in $ with cf = cp = 5, α = 1 year and β = 2 under the
assumption that we cannot group CM with PM to save on fixed costs. The percentage increase is compared
to the model we use with the same parameters as displayed in Table 1.

ARP BRP

∆ Costs Increase % Costs Increase % Costs Increase % Costs Increase %

0% 40.43 6.72 72.53 3.34 43.48 1.96 74.27 1.68

10% 40.21 6.49 72.50 3.54 42.43 2.00 74.27 1.68

20% 39.67 5.84 72.38 3.69 41.39 2.06 73.74 1.67

30% 39.00 5.20 72.06 3.72 40.34 2.11 73.08 1.68

40% 38.26 4.74 71.43 3.55 39.30 2.17 72.40 1.69

50% 37.48 4.39 70.47 3.42 38.25 2.23 71.14 1.67

cf 15 45 15 45

CPU 4 min 6 min 5 min 4 min

Even though the results concerning when to perform PM are the same regardless of the assumption, we

immediately see the difference in total cost values between the two. With a cost increase ranging between

1.67% and 6.72%, it becomes clear that the assumption of grouping CM with PM provides a significant

difference in the costs presented. The schedules created can differ quite significantly with both the possibility

to schedule PM more often and less often, because both offer a benefit when allowing for the delay of CM.

We either have more opportunities to delay CM, or we have to pay less guaranteed fixed costs, so the exact

reasons for difference in schedules are quite complex. Furthermore, we see that this increase is smaller for

the BRP than the ARP, which means that the BRP is less reliant on corrective maintenance operations than

the ARP policy. We also see that the cost increase diminishes when the CM costs increase, which is most

likely due to the proportional impact of the fixed costs being smaller when the CM costs are higher. This

means avoiding the need for CM gets a higher priority above the opportunity to group CM with PM, which

results in a smaller difference between the costs of the two assumptions.

4.2.3 Model comparisons

We have seen in the experiments so far that the just like the single component model, the ARP formulation

always outperforms the BRP formulation. We also see that the inclusion of the possibility to delay CM can

lead to huge gains reaching up to 18% and always provides a positive impact on the total costs, as long

as c̄w < cs. Interestingly, the inclusion of delaying CM seems to have a higher average cost decrease for

the BRP problem than for the ARP problem. This can be explained by the planned nature of the BRP.

Because the schedule of the BRP is always adhered to, the components have a bigger chance to stay in sync,

which presents more opportunities for a component to break down just before PM is performed for another

component. The influence of including delay also becomes bigger when ∆ increases, because this presents

more opportunities to cheaply postpone CM by one or two periods to save on fixed costs. The last difference

we notice is between the component combinations that need to be maintained once a ear and the ones that

21

need to be maintained more often. We see that including delay has a stronger effect the more PM we perform

in a period cycle, which makes sense as we have more periods to delay to and thus more opportunities to

save on costs. The computation time of the models with delay are about twice as high as the computation

time of the models without delay, due to increase in state space.

When looking at the heuristics we see that both find the optimal solutions for at least 75 % of all set-

tings. The Genetic algorithm has a systematic underestimation of the costs, because even though it selects

the correct chromosome the costs appear to be smaller than the optimal costs. This is likely caused due

to a faulty inflation factor, because the one in our algorithm never returns values higher than 0.03. The

biggest difference between an optimal cost value and an optimal genetic value is $ 473, for the BRP model

with ∆ = 50%, cf = 15 and identical components. To account for this underestimation we add $ 500 to all

solutions in Section 4.3 when we look at models with more than two components. Furthermore, we see no

real big difference between the values gathered via the different order methods and thus can not say that one

of these is decisively better than the other. The computation time of the Genetic algorithm is actually quite

high and exceeds the exact problem formulations in half the cases. The computation time of the Sequential

Optimisation algorithm is extremely fast, due to its simple nature.

4.3 Triple and quadruple component analysis

The big advantage of using heuristics to find solutions when scheduling maintenance is that we can examine

a lot more components at the same time. Now that their precision has been shown by comparing them to

the exact double component models, we can look at the actual usefulness of these heuristics. We do so by

examining how the Sequential Optimisation Algorithm and the Genetic Algorithm perform when optimizing

for three or four different components. We do so by looking at two combinations of components show in

Table 6.

Table 6: Component parameters for respectively the triple component and quadruple component experiments.

Comp no. c̄p c̄f α β
1 5 15 12 2
2 5 45 12 2
3 5 35 8 2

Comp no. c̄p c̄f α β
1 5 15 12 3
2 5 25 24 3
3 5 25 24 2
4 5 45 36 2

The components from the three component configuration are the ones that were present in the experiment

from Section 4.2.1 with two different components. We have chosen them again, because they separately

they would be maintained once, twice or three times a year. So seeing this interaction could prove to be

interesting. The four components are chosen with bigger differences between their characteristics. They start

with cheaper but more volatile components and gradually become more expensive to perform CM on, but

also less volatile. We chose this configuration, because usually cheaper components can break more easily

and are less optimized, while more expensive components are usually designed to last longer and have less

volatile lifetime spans.

For the triple component models we looked at both m = 1 and m = 3, while we examine m = 3 for

the quadruple component models. However, these results proved to be the same, so we used the lowest m per

model to get the lowest computation times. The results regarding the triple and quadruple component models

22

are shown in Table 7. Note that the costs for the Genetic algorithm are actually an upperbound for the costs.

This is because the actual solution costs have been increased by $ 500, due to the underestimation of the

costs found in the previous sections. For the triple component model we find that the genetic algorithm find

the best solution for ∆ ≥ 20%, while the Sequential Optimisation algorithm with order method SR performs

the best for the other values of ∆. we also see that the SR order method outperforms the Sf and Sc order

methods in this case. The cost values do not differ massively across the models, deviating by a maximum of

around $ 2000, which amounts to a 2 % difference. We do see some interesting behaviour for the SR order

method, where the costs are lower for ∆ ≤ 10 than for ∆ = 20, 30% for the first time in any model. This

can be explained by the order of the components causing a period to be chosen for the first or even second

component, which does not provide a cost decrease sharp enough for the last component to also maintain in

this period. This leads to extra fixed costs, which causes the increase in price.

Table 7: Yearly costs for the triple and quadruple component models with the parameters described in Table
6.

Triple component costs Quadruple component costs

∆ SR SF SC Genetic SR SF SC Genetic

0% 102.232 103.855 103.855 102.692 56.433 54.816 54.816 62.706

10% 101.709 103.855 103.855 102.126 51.658 51.622 51.622 60.664

20% 103.005 103.005 103.005 101.561 47.648 49.430 49.430 58.621

30% 101.849 101.849 101.849 100.995 45.355 47.498 47.498 56.579

40% 100.361 100.694 100.694 99.963 43.059 43.056 43.056 54.536

50% 98.537 98.980 98.980 97.923 40.759 40.759 40.759 52.494

CPU 1 sec <1 sec <1 sec 27 min 38 sec 33 sec 32 sec >2 hours

For the quadruple component problem we immediately notice that the Genetic algorithm performs way worse

than the Sequential Optimisation models. No clear explanation can be found for this, partly due to the high

computation time of the Genetic algorithm not allowing for tests to be performed quickly and efficiently. We

find that the SF and SC order methods provide the lowest cost solutions for all values of ∆. Furthermore, we

see that the Sequential Optimisation model outperforms the Genetic algorithm by a landslide regarding the

computation times. The Genetic algorithm takes more than two whole hours to solve the four component

model and takes half an hour to solve the three component problem.

This experiment shows the downsides of our Genetic algorithm. Even though it finds the optimal solu-

tion with more reliability than the Sequential Optimisation algorithm in the double component models, it

blows up in computation item and does not guarantee better results for more than three components. This

means that the Genetic algorithm in its current state finds itself in an awkward position where it performs

better than the Sequential Optimisation algorithm for the models that we can actually compute exactly.

However, it performs worse than the Sequential Optimisation algorithm in models that can not be computed

exactly.

23

5 Conclusion

To goal of this research is to optimize the strategic maintenance scheduling problem for wind turbines. We

do so by incorporating maintenance costs that vary over time and are at their lowest during the summer,

to simulate the variance of the wind speed during the year. We aim to optimize this maintenance problem

via one of three policies: the Age Replacement Policy (ARP), the Block Replacement Policy (BRP) or the

Modified Block Replacement Policy. The first chooses when to perform preventive maintenance (PM) based

on the age of our component of interest in the wind turbine, while the others base it on the time that has

passed since the last PM. We respectively make an LP and two MILP formulations, based on the ones created

by Schouten et al. (2022).

To extend this problem we also look at models that can solve multiple components at the same time to

save on setup costs. We introduce two MILP formulations for both the multiple component ARP and BRP

problems. We also introduce two heuristics to avoid potential lengthy computation time problems: the Se-

quential Optimisation algorithm and the Genetic algorithm. For the exact formulations of the ARP and BRP

problems we also introduce a way to delay corrective maintenance (CM) until the next PM is performed, to

avoid paying for fixed costs.

This selection of models provide a plethora of variability in the results of the maintenance scheduling problem.

Similarly as Schouten et al. (2019) we find that the sole inclusion of time variant maintenance costs can lead to

a reduction of up to 28% in maintenance costs for slowly degrading components, while we see a maximum cost

reduction of 12% for components that need to be maintained at least once a year. We also find that scheduling

multiple components at the same time leads to numerous possibilities to perform maintenance in the same

period and thus save on setup costs. This is the case when looking at two of the same component, but also

when examining two components that do not share many characteristics. Also including the possibility to

delay CM in the double component models proved to be fruitful as this can lead to cost reductions up to 18%.

Both heuristics proved to be near optimal when looking at only two components. While the Sequential

Optimisation algorithm has a really small computation time, the Genetic algorithm performed as slow or

even slower than the MILP models. We also found that the Genetic algorithm explodes even further in

computation time when looking at more than three components, similarly to the exact models. It also per-

formed extremely poor when optimizing for four components, because it gathered optimal costs that where

20 - 30 % higher than the costs for the Sequential Optimisation algorithm. We thus conclude that in its

current state the Genetic algorithm is not that useful, because it functions as a worse variant of the exact

MILP formulations. However, the Sequential Optimisation algorithm provides a fast and decently reliable

solution with the potential to optimize dozens of components at the same time. So we highly recommend

this heuristic to be used when optimizing for a large number of components.

For further research we recommend to take a deeper look at the Genetic algorithm. Schouten et al. (2019)

already showed its potential, but by improving on its computation speed and providing the correct inflation

factor this can be a very useful heuristic. We also recommend to examine an extension of the heuristics to

allow for the delay of CM. We could not do this due to time constraints, but the inclusion of the delay of CM

seems relatively simple to implement. Because we found that there is a big gain in including this possibility,

we recommend that this option is investigated further.

24

References

Archibald, Y. & Dekker, R. (1996). Modified block-replacement for multiple-component systems. IEEE

transactions on reliability , 45 (1), 75–83.

Barlow, R. E. & Proschan, F. (1996). Mathematical theory of reliability. SIAM.

Dalgic, Y., Lazakis, I., Dinwoodie, I., McMillan, D. & Revie, M. (2015). Advanced logistics planning for

offshore wind farm operation and maintenance activities. Ocean Engineering , 101 , 211–226.

Dekker, R., Wildeman, R. E. & Van der Duyn Schouten, F. A. (1997). A review of multi-component

maintenance models with economic dependence. Mathematical methods of operations research, 45 , 411–

435.

Hartman, L. (2022, Aug). Wind turbines: The bigger, the better. Retrieved from

https://www.energy.gov/eere/articles/wind-turbines-bigger-better

KNMI. (2023). Climate of the netherlands. Retrieved from https://www.knmi.nl/klimaat

Perez, E., Ntaimo, L. & Ding, Y. (2015). Multi-component wind turbine modeling and simulation for wind

farm operations and maintenance. Simulation, 91 (4), 360–382.

Röckmann, C., Lagerveld, S. & Stavenuiter, J. (2017). Operation and maintenance costs of offshore wind

farms and potential multi-use platforms in the dutch north sea. Aquaculture Perspective of Multi-Use Sites

in the Open Ocean: The Untapped Potential for Marine Resources in the Anthropocene, 97–113.

Ross, S. M. (2013). Applied probability models with optimization applications. Courier Corporation.

Schouten, T., Dekker, R., Hekimoğlu, M. & Eruguz, A. S. (2022). Maintenance optimization for a single

wind turbine component under time-varying costs. European Journal of Operational Research, 300 (3),

979–991.

Schouten, T., Rommert, D. & Eruguz, A. S. (2019). Optimal maintenance policies for wind turbines under

time-varying costs (MSc). Master’s thesis. Rotterdam, the Netherlands: Erasmus Universiteit.

Shafiee, M. (2015). Maintenance logistics organization for offshore wind energy: Current progress and future

perspectives. Renewable energy , 77 , 182–193.

Tijms, H. C. (2003). A first course in stochastic models. John Wiley and sons.

25

Code explanation

All codes to gather results in this research are programmed in Java and are provided with both Javadocs and

comments to make them more understandable. There are five classes that have a main method and are used

to run the codes to get the results from Section 4. These are named the following and we providea short

description:

• MainARP: This class is used to run the single component p-ARP formulation from Section 3.1.2. It

also includes codes to get all states, to get the cost parameter and to get the transition probability

matrix that is used for all single component models.

• MainBRP: This class is used to run the single component p-BRP formulation from Section 3.1.3.

• MainMBRP: This class is used to run the single component p-MBRP formulation from Section 3.1.4.

• MultiARP: This class is used to run the multi-component ARP and BRP formulations from Sections

3.2.1 and 3.2.2.

• Sequential: This class is used to run both the heuristics from Sections 3.2.3 and 3.2.4. It contains all

the codes to run these algorithms.

To recreate the runs that are used in this research all three single component models (i.e. MainARP, Main-

BRP and MainMBRP) need to be run once with the combination of alpha = 12, m = 1 and once with alpha

= 36, m = 3.

The following runs are all in MUltiARP. If a parameter is not mentioned it does not need to be altered. This

goes for: int M = 50, int N = 12, int minAge = 5, double[] avgCostPM = {5, 5}, double avgCostSetup = 5,

double avgCostDelay = 4 and double[] beta = {2, 2} We need to run the system with the following config-

urations for both boolean BRP = true (we use the BRP) and BRP = false (we use the ARP) and for both

boolean delay = true and delay = false:

• Separately run assumption = true or assumption = false for double[] avgCostCM = {15, 15} or

double[] avgCostCM = {45, 45}. Thus 4 combinations all with α = {12, 12}, with the two options for

BRP and delay we get to 16 combinations. After this we always assume assumption = false.

• avgCostCM = {15, 45} and α = {12, 12}, i.e 4 combinations.

• avgCostCM = {15, 35} and α = {12, 8}, i.e. 4 combinations.

The last runs are all done in Sequential. For the both heuristics simply comment out 5 of the 6 combinations

of components (from either line 83 to 102 or line 118 to 137) and leave the one that needs to be optimized.

By doing this for all 6 component combinations we can find all values necessary for the algorithm we are

interested in. This is done for both m = 1 and m = 3, all other parameters can stay untouched.

26

