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Abstract

Fake reviews pose a significant challenge for online review platforms, undermining trust

and spreading false information. Developing effective models for detecting fake reviews re-

mains a difficult task, with no clear state-of-the-art solution in the existing literature. In this

study, we propose a novel model called the TEFT-Transformer, which combines numerical

and textual information to identify fake reviews. We compare the performance of the TEFT-

Transformer to an extended version of the popular MLP model (TE-MLP). The evaluation

is conducted on a labelled dataset of Yelp reviews, comprising both real and fake reviews.

Our findings demonstrate that the TEFT-Transformer performs comparably to the TE-MLP

when using shorter text descriptions, but encounters challenges with longer text inputs due

to computational complexity. We suggest exploring simplified approaches to handle textual

information and enhance the computational efficiency of the TEFT-Transformer. Further

research is needed to establish the TEFT-Transformer as a robust option for fake review

detection. This study introduces the TEFT-Transformer, highlights its performance in com-

parison to the TE-MLP on a Yelp dataset of labelled reviews, and provides avenues for

improving its performance in the future.

1 Introduction

Over the years, fake reviews have become increasingly common on online review platforms.

With the growing number of internet users and the rise of machine-learning programs capable of

generating human-like messages, there are concerns that these messages and other fake reviews

can diminish the reliability of these platforms and potentially spread misinformation. Fake

reviews can be harmful in many ways, impacting businesses and customers alike. Business owners

can fall victim to negative fake reviews, while customers may be manipulated into purchasing

low-quality products. To combat this problem, major review platforms are actively trying to

remove these fraudulent reviews, even urging users to report suspicious reviews. As a result,

there is a growing need for robust and efficient fake review detection models (Hunt, 2015; Jacob

et al., 2020; Gryka and Janicki, 2023). Therefore, our research addresses a growing problem

that damages the trustworthiness of review platforms, which we have become progressively

more reliant on in the digital age.

However, despite the importance of fake review detection, there remains a gap in the exist-

ing literature, as no state-of-the-art model has consistently outperformed other models in this

domain. To fill this gap, and tackle the challenge that is posed by fake reviews, we introduce a

novel model called the TEFT-Transformer. This model is an extension of the FT-Transformer

presented by Gorishniy et al. (2021), a model that has shown impressive results when handling

tabular datasets comprised of numerical and categorical variables. By incorporating various

text embedding methods, which transform textual data into numerical representations that cap-

ture crucial information about the text’s content, we extend this model by integrating textual

features. To judge the TEFT-Transformer’s performance, we compare it to the TE-MLP, an

extension of the popular MLP model, which is enhanced in the same way. This comparative

analysis leads us to our research question: Is the TEFT-Transformer a viable model for fake

review detection? By comparing its performance against the TE-MLP, we hope to gain insights

into the TEFT-Transformer’s capabilities, particularly in addressing the challenges associated
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with fake review detection and leveraging different text embedding methods.

To perform this research, we use a dataset derived from the popular review website Yelp.com

(Yelp, 2023). The dataset consists of 67,395 reviews of hotels and restaurants located in the

Chicago area. These reviews have been categorized by Yelp as either genuine or fraudulent. The

selection of this dataset is motivated by its large volume, pre-existing labels, and because it offers

additional attributes that provide information about the review and the reviewer. This makes it

an excellent choice for conducting a robust evaluation and comparison of the TEFT-Transformer

and TE-MLP models.

Our main findings reveal two critical results. Firstly, when using a text embedding method

that generates a concise representation of the data, the TEFT-Transformer demonstrates com-

parable but worse performance to the TE-MLP on this embedding method. Secondly, the

TEFT-Transformer proves unsuitable when applied to text embedding methods that generate

more extensive representations of textual features. This limitation arises from the computa-

tional complexity of the multi-head attention mechanism employed in the TEFT-Transformer.

While this attention mechanism is usually advantageous for extracting information from data-

sets with many features, it becomes unfeasible when combined with text embeddings that result

from the TEFT-Transformer. Subsequently, the TEFT-Transformer fails to make use of the

advantages that Transformers usually offer over other deep learning models, such as the MLP,

in effectively processing extensive text embeddings. Notably, the TE-MLP also struggles to

handle these high-dimensional inputs, further emphasizing the need to find a model capable

of effectively managing large embeddings for fake review detection. Based on these findings,

we conclude that it is crucial to explore approximations for the attention mechanism in the

TEFT-Transformer to address its complexity and optimise its computational efficiency. Fur-

ther research should also focus on the comparison of additional methods that are capable of

creating small embeddings that provide an excellent representation of the text. By achieving

the ability to handle larger and more optimized text embeddings in a shorter running time, the

TEFT-Transformer has the potential to become a competitive method for fake review detection.

The contribution of this research can be summarized as follows:

1. We introduce the TEFT-Transformer, which is an extension of the FT-Transformer, spe-

cifically designed to handle textual features through various text embedding methods.

2. Our comparison between the TEFT-Transformer and the TE-MLP reveals that the TEFT-

Transformer is not currently a viable option for fake review detection. However, this

comparison highlights the challenge faced by many machine learning models, including

the MLP, in effectively handling textual features that require large embeddings.

3. We conclude that it is crucial to explore approximations for the attention mechanism in the

TEFT-Transformer and evaluate additional methods to generate small test embeddings, to

optimise the TEFT-Transformer’s computational efficiency and enhance its performance

in the future.

The rest of our article is structured as follows. In Section 2, we provide a concise review of

the existing literature on the application of machine learning methods for fake review detection.
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In Section 3, we outline the methodology employed in our study, including a description of our

models and a discussion of their potential limitations. Section 4 presents the details surrounding

our experiments, including the datasets used and specific implementation considerations. The

findings of our experiments are discussed in Section 5, followed by concluding remarks and

insights in Section 6.

2 Literature Review

This section presents a review of relevant literature for our research, examining deep learning

models for tabular data and specifically addressing the task of fake review detection. The

structure of this section follows a progressive analysis, starting with an overview of the state-of-

the-art deep learning models applied to tabular data. Subsequently, we take a closer look at the

literature comparing the performance of deep learning models for anomalous binary classification

tasks on tabular datasets. Lastly, we analyze the machine learning techniques commonly used

in the detection of fake reviews.

2.1 Machine and Deep Learning Methods for Tabular Data

Tabular data refers to structured data that can contain various types of features, including

numerical, categorical, ordinal, or textual attributes. It is the most common form of storing

and utilizing data worldwide (Shwartz-Ziv and Armon, 2022). Due to the popularity of tabular

data, there is a strong demand for models that can effectively handle and yield accurate results

with such data.

Recent advancements in the fields of machine learning and deep learning have led to the

development of models that show a lot of promise in handling tabular data. Machine learning

models are models with the ability to learn from training data during the building process, while

deep learning models are a form of machine learning models constructed using multiple layers of

an artificial neural network (Janiesch et al., 2021). Although deep learning models have proven

highly effective in tasks involving image, sound, and textual data due to their ability to learn

intricate patterns in high-dimensional data, their usefulness for tabular data is still a subject of

debate. Although numerous research studies claim that deep learning models outperform tree-

based machine learning models that have long been the recommended models (Popov et al., 2019;

Arik and Pfister, 2021), the validity of these claims remains uncertain as the performance of these

models often do not hold when applied to a larger variety of datasets (Shwartz-Ziv and Armon,

2022). As a result, many researchers still prefer and recommend tree-based machine learning

approaches, such as the gradient-boosted tree methods like XGBoost(Chen and Guestrin, 2016),

due to their consistent performance and efficient computations (Fayaz et al., 2022; Vuong et al.,

2022).

However, a recent study conducted by Gorishniy et al. (2021) sought to compare the per-

formances of several state-of-the-art deep learning models on tabular data. Within this study,

a promising deep learning model called the FT-Transformer (Feature-Tokenizer + Transformer)

was introduced and compared to a dozen machine and deep learning models on 11 datasets

comprising numerical and categorical features. Remarkably, the FT-Transformer turned out to
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frequently outperform even the aforementioned strong tree-based models like XGBoost.

2.2 Anomalous Binary Classification for Tabular Datasets

While extensive research has been conducted on comparing various machine learning or deep

learning models for binary classification (Kumari and Srivastava, 2017; Mendez et al., 2019),

there is a lack of strong comparative research specifically focused on binary classification on

tabular data. The aforementioned study by Gorishniy et al. (2021) addressed this gap by

including three binary classification tasks, revealing that the FT-Transformer outperformed

other models in two tasks while the tree-based XGBoost model outperformed it in one task

(Gorishniy et al., 2021). However, these results alone do not provide a sufficiently strong basis

to conclusively establish the FT-Transformer as the superior model. Our primary interest lies in

anomalous binary classification, where one of the two events is significantly less frequent than the

other. This is relevant for our research because, although fake reviews have become more frequent

in recent years, they remain strongly outnumbered by genuine reviews online. This imbalance

in the data might affect models differently, meaning that the findings of Gorishniy et al. (2021)

based on the three binary classification tasks might not be as relevant to our research, as they

do not involve classifying anomalous activities. Instead, they focus on classifying two commonly

occurring events.

Thus, there is a gap in the literature regarding deep learning for anomalous binary classific-

ation tasks with tabular data. While tree-based models remain strong contenders due to their

performance on tabular datasets, there is no evidence supporting their effectiveness for binary

classification on this datatype specifically.

2.3 Fake Review detection

Since the appearance of the first paper on the topic of classifying fake reviews in 2007 (Jin-

dal and Liu, 2007), the detection of fake reviews has garnered significant interest. Especially

with the continuous advancements in machine learning techniques for text generation, distin-

guishing between human-written and machine-generated texts has become more difficult. These

methods are often used in the creation of fake reviews (Salminen et al., 2022). However, pre-

vious research, as highlighted by Elmogy et al. (2021), has primarily focused on analyzing the

textual features of reviews, while neglecting additional information provided by numerical and

categorical variables. These variables offer valuable insights into the behaviour of reviewers and

provide additional information about the establishments being reviewed. This paper has also

shown that when comparing multiple machine learning classifiers on datasets also containing

numerical and categorical features, the tree-based Random Forest method was outperformed by

multiple Nearest Neighbor classifiers, that group together reviews based on their mathematical

similarities. However, this research did not include state-of-the-art boosted tree models like

the XGBoost in the comparison, which is considered to have superior performance on tabular

datasets over other tree-based models, or any form of transformer-based model.

In a comprehensive survey conducted in 2021, Mohawesh et al. (2021) compared numerous

papers on fake review detection. This survey highlights the potential of Transformer models

across various fake review detection tasks and shows their convincing superiority over neural
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network-based models when compared on datasets similar to the one used in our research. How-

ever, this survey was published before Elmogy et al. (2021), failing to take into account the

findings of that paper. Overall, although multiple significant surveys have been devoted to fake

review detection, there remains a gap in studies that reach consistent conclusions or conduct

a thorough comparison of all models demonstrating promising results. Furthermore, there is a

lack of evaluation on datasets encompassing both textual and numerical features.

In summary, the proposed model, the FT-Transformer, holds promise for tabular binary

classification tasks involving textual features. Its strong performance on tabular data and other

transformer-based models showing promising results with fake review detection makes it an inter-

esting candidate. However, the model has yet to be tested on datasets containing both numerical

and textual features. With limited literature providing clear direct comparisons between Trans-

former models and tree-based models for fake review detection, a clearly defined state-of-the-art

approach is yet to emerge. This gap in the literature highlights the importance of exploring the

potential performance of the FT-Transformer in this context.

3 Methodology

In this section, we present the methodology employed in this study to develop and compare both

models used for our binary classification task. We begin by discussing the evaluation metrics

used to assess and compare the models’ performances, highlighting the importance of relying on

measures beyond accuracy in the case of anomalous binary classification tasks.

Next, we will explore the processing of textual features by the MLP and FT-Transformer

using textual feature embeddings and highlight the differences between the embedding methods

employed: ’Glove-Twitter,’ ’Word2Vec-from-scratch,’ and ’Sentence-embedding.’

To establish a baseline for classification, we introduce the Multilayer Perceptron (MLP)

as a reliable model commonly used for binary classification tasks. We explain the concept of

MLP, explain how it incorporates the textual embedding models, and acknowledge its potential

limitations when combined with the different textual embedding models.

Lastly, we explore our novel TEFT-Transformer, an expansion of the FT-Transformer. We

provide a detailed explanation of the Feature Tokenizer and the transformer components to gain

a deeper understanding of the model’s internal workings. Moreover, we explore the integration of

these components with text embedding methods to create the TEFT-Transformer. Additionally,

we discuss the potential advantages and challenges associated with applying this model to a fake

review detection dataset.

3.1 Model Evaluation

In the context of fake review detection, appropriate metrics for evaluating binary classification

tasks are crucial. Simply relying on accuracy as a performance measure may not be sufficient

due to the rarity of fake reviews. To address this, we employ the following measures for model

comparisons:
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True and False Positive: In binary classification, ’true positive’ refers to correctly clas-

sified positive instances, while ’false positive’ represents incorrectly classified positive instances.

’True negative’ denotes correctly classified negative instances, and ’false negative’ refers to in-

correctly classified negative instances. These terms are essential in evaluating the performance

of the employed methods in this study.

Accuracy:

Accuracy =
True Positives + True Negatives

Total number of instances
(1)

’Accuracy’ is a widely used metric to evaluate the performance of classification models. It

measures the proportion of correct predictions made by the model. For binary classification

tasks, accuracy is calculated as the sum of true positives and true negatives to the total number

of instances. Accuracy provides a strong overall assessment of the model’s performance.

Macro F1-score (mf1): Precision is a measure that quantifies the proportion of correctly

classified positive instances among all instances predicted as positive. It is calculated by dividing

the number of true positive predictions by the sum of true positive and false positive predictions:

Precision =
True Positives

True Positives + False Positives
(2)

’Recall’, also known as sensitivity or true positive rate, measures the proportion of correctly

classified positive instances among all actual positive instances. It is calculated by dividing the

number of true positive predictions by the sum of true positive and false negative predictions:

Recall =
True Positives

True Positives + False Negatives
(3)

The F1-score combines precision and recall into a single value that represents the balance between

the two metrics. It is calculated as the mean of precision and recall, providing an overall measure

of the model’s performance:

F1-score = 2× Precision× Recall

Precision + Recall
(4)

The F1-score ranges between 0 and 1, with 1 indicating perfect precision and recall, and 0

representing the worst performance. For imbalanced datasets, the macro F1-score (mf1) is often

employed. In the case of binary classification, it computes the average of the F1-score of the

two classes. This approach is valuable for imbalanced datasets as it assigns equal importance to

both classes, rather than focusing mainly on the larger group. It is especially useful when the

performance across all classes is equally significant, regardless of their sizes. The macro F1-score

is calculated using the following formula:

mf1 =
F1-score0 + F1-score1

2
(5)

where F1-scorei represents the F1-score for class i, and it is divided by two as binary classification

tasks are only comprised of two classes.

Receiver Operating Characteristic Area Under the Curve (ROC-AUC): ROC-

AUC is a widely used metric for evaluating binary classification models. It measures the model’s

ability to distinguish between two classes by analyzing the trade-off between true positive rate

(sensitivity) and false positive rate (1 - sensitivity) across different classification thresholds. In

our research, the TEFT-Transformer and MLP models produce a numerical output that needs

6



to be converted into a discrete class label (0 or 1) representing real or fake reviews. This

conversion is determined by a threshold value. Adjusting the threshold allows us to control the

balance between true positives (correctly classified fake reviews) and false positives (incorrectly

classified real reviews). The ROC curve plots the true positive rate against the false positive rate

at various classification thresholds. The area under the ROC curve (ROC-AUC) summarizes

the model’s overall discriminatory power. A higher ROC-AUC value (closer to 1) indicates

better model performance, while a value of 0.5 suggests no ability to distinguish between the

classes, resembling a random classifier. In simpler terms, ROC-AUC provides a single value

that quantifies how well the model can differentiate between real and fake reviews. A higher

ROC-AUC indicates a stronger ability to correctly classify positive instances while minimizing

false positives. Using ROC-AUC as an evaluation metric allows us to assess the performance

of our binary classification models in accurately classifying positive instances while minimizing

false positives.

3.2 Textual Embedding

To enable the MLP and FT-Transformer models to process textual features, it is necessary to

extend them by incorporating textual embedding methods. These are methods whose purpose is

to transform textual features into a numerical representation, allowing the models to effectively

handle the textual data. To ensure a fair comparison between the MLP and FT-Transformer,

we employ the same text embedding methods for both models.

In order to select the most suitable variant of the models for comparison, we explore multiple

textual embedding methods. This approach allows us to evaluate the performance of the models

under different text embedding techniques. The text embedding methods employed in this

study involve several common steps, including tokenization, converting tokens into numerical

embeddings, and summarizing the information contained in the text.

By converting textual variables into properly formatted numerical values, the models can

successfully use textual information during the learning process. However, choosing the appro-

priate text embedding technique is not a straightforward task, as its effectiveness depends on

various factors such as the specific task, the type of textual data, and the size of the dataset.

Additionally, the choice of text embedding technique can have an impact on the size of the

resulting numerical representation, potentially affecting the models’ runtime. Considering our

objective of not only evaluating the effectiveness of the FT-Tokenizer for binary classification

tasks involving text but also determining whether it can offer a time-efficient alternative to cur-

rent state-of-the-art machine learning models, it becomes even more crucial to compare multiple

text embedding techniques. In this paper, all text embedding methods follow the same steps.

These steps include text preprocessing, which involves cleaning and transforming the text data,

followed by tokenization, where the preprocessed text is split into individual tokens, that can

be of various lengths depending on the chosen tokenization method (e.g., word-level, sentence-

level). The next step is embedding, which converts each token into numerical representations

that capture their semantic meaning. Finally, additional measures are taken to ensure consistent

embedding lengths across different observations.

Final embedding length: As each token is embedded into a vector of a fixed length,
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the final length of the embedding is calculated by multiplying the number of tokens in an

observation by the length of the embedding vector per token. In longer texts, this can result in

a very long representation of the text when using small tokens combined with large embedding

vectors. This results in an important trade-off between the information contained by the final

text embedding versus the noise and size of said embedding. Having longer embeddings allows

for more information to be captured, but it may also introduce more noise to the model and

increase the risk of overfitting or slower model performance due to a large number of input

variables.

In all the text embedding methods used in this paper, we apply preprocessing techniques

to the data, including the removal of special characters and splitting the text into individual

sentences before tokenization. After this common preprocessing step, the three methods start

to differ in their specific approaches. An overview of these methods is presented in Table 1.

Table 1: An overview of the three textual embedding methods used

Model Description Advantages Disadvantages
Glove-Twitter Pretrained Glove model using

word tokenization with embed-
dings of size 50 and variable total
embedding size

Captures semantic rela-
tionships, trained on large
body of text

Large embeddings, longer
training time

Word2Vec-
from-scratch

Word2Vec model trained on Yelp
dataset with word tokenization
of size 50 and variable total em-
bedding size

Captures dataset-specific
interdependencies and se-
mantic relationships

Large embeddings, longer
training time

Sentence-
Embedding

Pretrained Bert model using sen-
tence embedding of size 384 and
a total representation of length
384 through mean pooling

Compact representation,
trained on large body of
text

Possible loss of word-
specific information for
long texts

For both the Glove-Twitter and Word2Vec-from-scratch models, tokenization is performed

at the word level. This means that each word is individually embedded, and punctuation marks

are removed from the text before tokenization. This removal helps eliminate noise and prevent

unnecessary increases in the final embedding size. In these models, each token is transformed

into a vector representation of length 50.

The Glove-Twitter model utilizes a pre-trained Glove model trained on a dataset of two

billion tweets containing 27 billion tokens. Developed by Stanford University, Glove provides

the ability to capture semantic relationships between words, distinguishing it from other models

(Pennington et al., 2014). Semantic relationships refer to the meaningful associations between

words based on their shared meaning, giving the model the ability to recognise synonyms. The

Glove-Twitter model has shown promising results in text classification tasks, similar to the one

we are working on (Badjatiya et al., 2017). The choice of using a Glove model pre-trained on

tweets is motivated by the similarity in language between the pre-trained model and our dataset

since Yelp reviews also are short text pieces posted online, written in informal language, using

abbreviations, and less correct English.

The Word2Vec-from-scratch model is built upon the Word2Vec model, which was originally

developed by Google in 2013 (Mikolov et al., 2013). The Word2Vec model introduced a novel

model architecture for learning high-quality word vectors from large data sets, demonstrating

significant improvements in accuracy at a lower computational cost compared to previous tech-

niques. In our implementation, instead of utilizing a pre-trained Word2Vec model trained on

a large dataset, we opted to train a Word2Vec model from scratch using the textual reviews
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themselves. While the existing literature often demonstrates that pre-trained models outperform

this approach, training a text embedding model from scratch offers notable advantages (Arslan

et al., 2021). This method of training allows the model to construct a vocabulary that better

encompasses uncommon words frequently used in the dataset. Additionally, it provides more

flexibility in choosing the embedding size for each token compared to pre-trained models.

Lastly, the Sentence-Embedding method operates at the sentence level. An algorithm is used

to accurately splits sentences based on the presence of punctuation marks while distinguishing

between periods indicating the end of a sentence and those used in abbreviations. Instead

of directly embedding the whole sentences, individual words within sentences are embedded

separately first, and then combined using mean pooling. Mean pooling is the process of taking

the average over the embeddings of all tokens within a piece of text, resulting in a more concise

yet accurate representation of the text. This means that each word is embedded into a 384-

dimensional vector, and the average is taken across all words to represent a single sentence. The

chosen sentence embedder, ’all-MiniLM-L6-v2’, is a widely used model based on an extension

of the Bert framework (Reimers and Gurevych, 2019). The Sentence-Embedding’s use in this

research aims to provide a concise yet accurate representation of text, serving as a practical

alternative to the previously mentioned word embedding methods that lead to longer execution

times for MLP and FT-Transformer. ’all-MiniLM-L6-v2’ was selected based on research that

compared various BERT sentence embedders across diverse embedding tasks, demonstrating a

very strong performance, fast execution, and most importantly the smallest embedding output

of all sentence embedders (Reimers, 2022). Furthermore, this model also shows frequent strong

performance when applied in other research studies (Frick and Vogel, 2022; Grootendorst, 2022).

In order to maintain consistent embedding sizes across all observations in MLP and FT-

Transformer, it is necessary to address the challenge posed by varying numbers of words or

sentences in each observation.

For ’Glove-Twitter’ and ’Word2Vec-from-scratch’, padding is used to match the length of

the longest embedded observation. The remaining observations are extended to this length. For

shorter observations, missing words are replaced by empty vectors of length 50, equivalent to

the embedding size of a single token in these models. This ensures that all observations have

the same embedding length before being used in the MLP and FT-Transformer.

On the other hand, the sentence embedder aims to generate a concise text representation. To

achieve this, an additional step of mean pooling is applied. It involves computing the average

across all sentences within an observation. Each observation is represented by a single 384-

dimensional vector, as a result offering a compact representation of the entire text.

3.3 MLP

In our research, we utilise the MLP as a baseline model to establish a performance benchmark

and evaluate the effectiveness of the TEFT-Transformer. The Multilayer Perceptron (MLP) is a

deep neural network commonly used for binary classification tasks. It consists of multiple layers

of interconnected neurons that are able to capture complex patterns in the data. Each layer

performs a linear transformation on the inputs received from the previous layer. An activation

function is then applied to determine whether the neuron should transmit information to the
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next layer. Additionally, dropout regularization is employed to improve the overall performance

of the MLP. This technique randomly sets a small fraction of the neurons to zero, enhancing

the model’s robustness and preventing overfitting.

The activation function used in our MLP is the rectified linear unit (ReLU), defined as

ReLU(x) = max(0, x). ReLU introduces non-linearity to the MLP, enabling it to model complex

relationships between input features and the target variable. It allows positive values to pass

through while setting negative values to zero. The dropout then applied to the neurons randomly

sets a proportion of neurons to zero during each training iteration. By doing so, it reduces

interdependencies among neurons, encourages diverse feature representations, and prevents over-

reliance on specific features. Dropout layers are shown to lead to a more robust and generalized

model (Ha et al., 2019). The internal structure of our MLP using these three layers can be

represented by the equations:

MLP(x) = Linear(MLPBlock(. . . (MLPBlock(x)))) (6)

MLPBlock(x) = Dropout(ReLU(Linear(x))) (7)

In these equations, x represents the input to the MLP. Each MLPBlock consists of a linear

transformation performed through matrix multiplication followed by a bias term. The output

is then passed through ReLU activation and dropout regularization. The MLP is trained using

backward propagation, a process that adjusts the weights of the linear transformations within

the neurons based on the model’s accuracy on the training data. The MLP serves as a useful

baseline model for binary classification tasks on tabular data due to its simplicity and flexibility.

It tends to be effective at capturing non-linear relationships and approximating any continuous

function given when fed sufficient information. MLPs also demonstrate versatility in handling

different types of input data, including numerical, categorical, textual, and image data. However,

it is important to consider some potential drawbacks of MLPs. They require a large amount

of labelled training data to effectively learn underlying patterns. MLPs can also be sensitive

to hyperparameter choices, such as the number of layers, neurons per layer, and learning rate.

Tuning these hyperparameters and finding the MLPs’ optimal inner structure can be a time-

consuming task. Lastly, the MLP may encounter challenges when handling the embedded textual

data due to potential issues with the large dimensionality of the input features provided by the

text embedding methods. Mainly when using the ’Glove-Twitter’ and ’Word2Vec-from-scratch’

methods, the input size tends to increase significantly with longer texts. This can lead to

suboptimal performance and potential overfitting issues in the MLP model (Rynkiewicz, 2012).

3.4 TEFT-Transformer

The TEFT-Transformer is a novel extended version of the FT-Transformer, which was intro-

duced in the paper by Gorishniy et al. (2021). The FT-Tokenizer is comprised of a Feature

Tokenizer and a Transformer. The Feature Tokenizer is responsible for the conversion of nu-

merical and categorical features into more complete vector representations, enabling the model

to extract more information from the input data. The Transformer, a deep learning model,

further processes these features transformed by the Feature Tokenizer. By combining these two
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components, the FT-Transformer has been shown to effectively handle tabular data containing

numerical and categorical features.

In the TEFT-Transformer, the Feature Tokenizer is expanded by integrating one of the Text

Embedders presented in Subsection 3.2 into the Feature Tokenizer. This enables the model to

utilise textual features by embedding them in two steps: first in the Text Embedder, and then

in the Feature Tokenizer, where the embedded textual features can be treated as numerical

features.

By incorporating textual features, the TEFT-Transformer can handle both numerical and

textual features, expanding its range of applications.

3.4.1 Feature Tokenizer

The Feature Tokenizer plays a crucial role in processing the numerical, categorical, and tex-

tual features that have previously been to a numerical representation by the text embedder. It

transforms these features into numerical representations that can be processed by the Trans-

former. Furthermore, this transformation applied to the categorical and numerical features has

been shown to improve the Transformer’s performance. This is because the Feature Tokenizer

provides an enhanced representation of the input features, which complements the Transformer’s

capability to handle larger feature representations effectively. This is achieved through the self-

attention mechanism, explained in detail in Section 3.4.2, which forms the foundation of the

Transformer model. The self-attention mechanism allows the Transformer to selectively focus

on different parts of the input sequence, enabling it to capture complex patterns and dependen-

cies within the data.

For numerical features, the Feature Tokenizer performs a matrix multiplication between the

feature values and a learnable weight matrix Wnum. This operation produces numerical embed-

dings that capture the semantic information of the numerical features. The resulting embeddings

are then combined with a feature bias bnum to obtain the transformed numerical embeddings.

It is worth noting that the textual features have already been transformed into numerical rep-

resentations during the textual embedding step. As a result, they are treated identically as the

numerical features. Specifically, each element of the embedding vector representing a textual

feature, which exits from the Textual Embedder, is transformed into its own vector. As a result,

the final representation of textual features can be viewed as a matrix of size (embedding length,

dtoken), where embedding length corresponds to the total length of the vector representation of

the text embedding method, and dtoken represents the chosen length of the embedding for all

numerical features within the Feature Tokenizer. On the other hand, for categorical features,

the Feature Tokenizer employs a lookup table approach. It uses a weight matrix Wcat that

maps each categorical feature value onto an embedding vector. This process enables the model

to convert categorical features into a continuous representation. The categorical embeddings

are combined with a feature bias bcat to obtain the transformed categorical embeddings. By

representing categorical features in this way, the model can effectively learn the relationships

between different categories. Additionally, the Feature Tokenizer incorporates a special token

called the CLS-token at the beginning of the numerical feature sequence. This token is treated

as a numerical feature and undergoes a transformation using a learnable weight matrix and fea-
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ture bias. Subsequently, it is used by the Transformer as a representation of all input features

and plays a crucial role in the final classification of the observations. By employing the Feature

Tokenizer, the TEFT-Transformer can handle diverse types of input features and transform

them into meaningful numerical representations. These transformed features are then fed into

the subsequent Transformer layers, where the model can effectively learn complex patterns and

dependencies within the tabular data.

3.4.2 Transformer

The Transformer is a powerful model architecture that has revolutionised natural language

processing tasks. It was specifically designed to overcome the limitations of state-of-the-art

models like recurrent neural networks and effectively capture long-range dependencies in textual

data (Uszkoreit, 2017). The Transformer introduces the concept of self-attention, which allows

the model to focus on different parts of the input sequence while processing it. This attention

mechanism enables the Transformer to better understand the relationships between words and

helps it to capture contextual information in long texts.

The Transformer model incorporates the concept of attention, inspired by how humans read

texts, where certain parts or features of the input receive more focus to draw conclusions. Within

the transformer, multiple layers of a self-attention mechanism serve as the building blocks.

Specifically, the TEFT-Transformer employs a popular attention mechanism known as multi-

head attention, which was introduced by Vaswani et al. (2017) and has demonstrated strong

performance in various applications. This mechanism an extension of the self-attention mech-

anism, which computes a weighted sum of input embeddings to create a representation that

is sensitive to the context. In the self-attention mechanism, three linear layers are employed,

namely the query, the key, and the value.

The query serves as the input that poses a question or seeks specific information. It helps

identify what needs attention and plays a crucial role in determining the relevance of different

parts of the input. The key provides the context or relevant information that aids in understand-

ing the query. It acts as a reference for comparison and helps establish connections between

different elements in the input. The value contains the actual information or content that the

model focuses on based on the query and key. It holds the details that are attended to and

contribute to the final representation.

By using these query, key, and value components, the multi-head attention mechanism allows

the model to selectively attend to different parts of the input and weigh their contributions based

on their relevance. This enables the model to effectively capture dependencies and relationships

in the data, extract meaningful information, and generate context-aware representations that

facilitate downstream tasks.

Mathematically, a multi-head attention layer can be represented as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V, (8)

Here, Q, K, and V refer to the query, key, and value matrices, respectively, while dk repres-

ents the dimensionality of the key vectors. Through self-attention, the model assigns different
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weights to key-value pairs based on their relevance to the query, allowing it to attend to the

most important information.

While self-attention focuses on capturing dependencies within the input sequence, multi-

head attention takes this a step further by allowing the model to attend to different parts of the

input simultaneously, through parallel computation across multiple heads.

By incorporating multiple heads, each with its own set of query, key, and value linear layers,

the multi-head attention mechanism enables the model to capture a broader range of depend-

encies and relationships within the data. Each head specializes in attending to different aspects

of the input, and their individual attention scores are then combined to produce a final repres-

entation.

This addition of multiple heads in the attention mechanism is useful because it allows the

model to encode multiple relationships and nuances for each word or element in the input se-

quence. It enhances the model’s ability to capture complex patterns, extract meaningful inform-

ation, and generate context-aware representations. The parallel computation across heads makes

the attention mechanism more efficient while maintaining its powerful attention capabilities.

The Transformer consists of multiple layers of self-attention and feed-forward neural net-

works, often referred to as Transformer encoder layers. Each layer applies multi-head attention

to the input and then passes the resulting representations through a feed-forward network. To

stabilise and accelerate the training process, the TEFT-Transformer employs residual connec-

tions, which pass through and combine the representation of the features before the multi-head

attention with its output, along with layer normalization.

As the CLS-token passes the layers of the Transformer model, it captures valuable inform-

ation from the input features. Once it reaches the final layer, the CLS-token is extracted from

the rest of the transformed features. It then undergoes a series of transformations, comprised

of several layers that incorporate techniques such as layer normalization, Rectified Linear Unit

(ReLU) activation, and a linear layer. These operations reshape the embedded CLS-token, con-

verting it into a single numerical value. This numerical value serves as the final representation

of the observation, denoted as the estimated output ŷ, and is used for the classification.

The TEFT-Transformer model holds great promise for achieving strong performance on

tabular tasks that involve textual features. This is because when applied to numerical and

categorical features it functions the same as the FT-Transformer, which has demonstrated ex-

cellent performance on these features. Additionally, the multi-head attention mechanism within

the Transformer is specifically designed to effectively handle large textual features, meaning that

the model could thrive under the addition of textual features.

However, it is important to acknowledge a potential drawback of the TEFT-Transformer

model, which lies in its computational complexity. The TEFT-Transformer model incorporates

both the multi-head attention mechanism and a matrix representation of textual features, which

is the result of the double embedding process involving the Text Embedder and Feature Token-

izer. Due to the quadratic complexity of the multi-head attention mechanism (Keles et al.,

2023), the computational demands of the TEFT-Transformer model increase at a faster rate

compared to traditional machine learning and deep learning models like MLPs and XGBoost.

Therefore, as the length of the text embedding grows, there may be a point where the difference

13



in running time between the TEFT-Transformer and these traditional models becomes too large

to still consider it as a viable alternative.

4 Experiment

The TEFT-Transformer model extends the FT-Transformer by incorporating an additional step

to handle textual features, while the handling of numerical and categorical variables remains

unchanged. To verify the correct extension of the model, a replication phase is conducted in

this paper. This phase involves a partial recreation of the experiment in the paper by Gorishniy

et al. (2021) that introduced the FT-Transformer. This replication involves comparing our

results using the TEFT-Transformer and TE-MLP models on a dataset used in the original

paper to the results that were obtained using the FT-Transformer and MLP models in said

paper. The purpose of this comparison is to verify whether the TEFT-Transformer handles

categorical and numerical variables in the same way as the FT-Transformer.

The second and main part of the experiment, the extension phase, compares the TEFT-

Transformer and TE-MLP on a dataset originating from Yelp, on which binary classification

is performed to identify fake and real reviews. The Yelp dataset provides labelled data, where

reviews are classified by Yelp as either true or fake. This section is divided into two parts. First,

the data used and its preprocessing are discussed in Subsection 4.1. Then, the implementation

details of the experiments are described in Subsection 4.2.

4.1 Data

For the recreation phase, the Adult (AD, income estimation, Kohavi et al. (1996)) dataset is

used. This dataset focuses on income estimation for individuals in the US, between the ages

of 16 and 99. The model aims to predict whether individuals make over $50,000 per year

based on provided features. The Adult dataset is chosen for its inclusion of both numerical and

categorical values, which is important to test the correct handling of such features. Additionally,

this dataset is well-suited for the intended purpose of the model, which is binary classification

on labelled data. The dataset is comprised of 6 numerical features and 8 categorical features. It

consists of a total of 48842 observations. 26,048 observations for training, 6,513 observations for

validation, and 16,281 observations for testing. Among these observations, approximately 24%

belong to the >$50k income class.

The main part of the experiment uses a dataset collected from Yelp.com (Yelp, 2023), first

used by Mukherjee et al. (2013). This dataset consists of 67,395 reviews for hotels and restaurants

in the Chicago area. It is comprised of various features, including product and user information,

timestamps, ratings, and plaintext reviews. The selection of features in the dataset is based

on their relevance to the anomaly detection task. Specifically, features that might help with

distinguishing between real and fake reviews are chosen. These features include a product ID,

used to represent the establishment being reviewed, the star rating assigned in the review, the

establishment type (hotel or restaurant), the date of the review, the opinions expressed by other

Yelp users on the reviews, and the review text. The opinions of other users that read a review

can be expressed through three possible reactions: cool, funny, or useful.
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In the dataset, each observation includes a textual review of at least one word, as this was

the inclusion criterion for the dataset. These reviews however exhibit significant variations

in length. The range of review lengths is quite extensive, with a high standard deviation,

indicating the diverse nature of the reviews. Notably, a two-sample t-test comparing the lengths

of the two groups (genuine and fake reviews) demonstrates a statistically significant difference

between them. The information about the length of reviews expressed in the number of words

is summarized in table 2. These findings have implications for the text embedding methods

discussed in Subsection 3.2. For the ’Word2Vec-from-scratch’ and ’Glove-Twitter’, which replace

each missing word with an embedding vector filled with zeros, this can result in noisy text

embeddings. Considering that the chosen embedding length per word for these models is 50,

the numerical representations of shorter reviews will contain tens of thousands of zeros. This

abundance of zeros may make it challenging for the TE-MLPmodels to extract useful information

from the input data. While the TEFT-Transformer may still be able to function on such data

due to the use of multi-head attention, it may encounter difficulties with the large input data

resulting from a large number of zeros.

However, the significant difference in length between real and fake reviews may provide a

potential advantage for ’Word2Vec-from-scratch’ and ’Glove-Twitter’. The models could poten-

tially use the number of nonzero inputs as additional information to better classify the reviews.

Although this noise could complicate the extraction of useful information from the input data,

it has the potential to help the model in achieving more accurate classification results.

Table 2: Statistics of the textual data for the full Yelp dataset

Metric Average length range Average real length Average fale length Standard deviation of all reviews T-statistic P-value

Value 142.45 (1, 1012) 148.11 105.29 123.07 35.15 9.53× 10−259

Two different versions of the Yelp dataset are used to train and evaluate the model, referred

to as Full and Balanced. The Full version of the dataset involves a standard train-validation-test

split using the entire dataset of 67,395 reviews. This split is performed at a ratio of 50-25-25 for

training, validation, and test sets, respectively. The larger validation and test sets allow for a

more accurate evaluation of the model’s final performance, while still maintaining a substantial

training set for effective training on a large amount of data. However, due to only 13.23%

of the observations in the dataset being labelled as fake, the model might prioritise correctly

classifying the real reviews, resulting in a higher overall accuracy but potentially neglecting the

classification of real reviews. To counteract this bias, a second version of the dataset is created

to better assess the model’s ability to identify anomalies. This version, referred to as Balanced,

is obtained by trimming the observations labelled as true until there is an equal representation of

true and false reviews, resulting in 17,838 observations in total. The process involves randomly

shuffling the true results and keeping only the first 8,919 observations. This balanced dataset

ensures an equal representation of real and fake reviews. For this dataset, a train-validation-test

split of 60-20-20 is chosen to provide the model with a larger pool of observations for better

performance, as machine learning models generally require ample data for optimal performance.

Using both versions of the dataset offers distinct advantages. The first version reflects a realistic

scenario where the majority of reviews are real, allowing the model to learn from a broad range of
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data and perform well on typical reviews. On the other hand, the second version with balanced

classes enables the model to specifically focus on detecting anomalies. It provides a more accurate

assessment of the model’s performance in identifying and flagging fake reviews. By leveraging

both versions of the dataset, a comprehensive understanding of the model’s performance can be

obtained. The first version evaluates its overall effectiveness in handling a variety of reviews,

while the second version specifically assesses its ability to identify and handle anomalies. This

combined approach aids in the development of a robust and effective model for anomaly detection

in reviews. After the cleaning process, two datasets are obtained, their information is presented

in Table 6.

4.2 Implementation Details

In this subsection, we will discuss the implementation details of the experiment, focusing on

data preprocessing, and the tuning of the models’ hyperparameters.

Data Preprocessing: To ensure a fair comparison between the MLP and FT-Transformer

models, we employed the same data preprocessing steps for both. For both datasets Quantile

transformation is performed on the numerical features (Pedregosa et al., 2011). The prepro-

cessing of the textual features is dependent on the text embedding method applied and is de-

scribed in Section 3.2.

Tuning: As both the TE-MLP’s and TEFT-Transformer’s inner structure can be varied by

changing a large number of hyperparameters, the specific values chosen for these hyperparamet-

ers can impact their performance. To ensure a fair and comprehensive comparison, hyperpara-

meter tuning is essential, as it allows us to evaluate each model at its best potential. However, it

is important to note that the FT-Transformer model has a drawback in terms of computational

requirements, making large-scale hyperparameter tuning impractical due to its high computa-

tional cost. To address this limitation, a restricted version of hyperparameter tuning is employed.

The Optuna library (Akiba et al., 2019) is utilized to compare the performance of the models on

the validation set using different hyperparameter sets from a predefined space (Appendix ??).

Optuna is a popular tuning algorithm, as it employs a version of Bayesian optimization which

has been shown to outperform random search (Turner et al., 2021). However, due to hardware

constraints, we could only perform 5 trials using the Optuna library. It is important to note

that Optuna truly starts optimizing after 10 trials, which means that our current approach in-

volves comparing 5 random sets rather than achieving a full hyperparameter optimization. The

study conducted by Gorishniy et al. (2021) demonstrates that the FT-Transformer’s perform-

ance exhibits minimal change with and without tuned hyperparameters. Therefore, while our

approach of limited tuning may not be optimal, it is unlikely to significantly affect our conclu-

sions regarding the TEFT-Transformer’s performance. The hyperparameter tuning process is

only conducted for all versions of the TEFT-Transformer and TE-MLP on the balanced dataset.

Due to the significant computational time required for tuning the TEFT-Transformer on the

full dataset, we opt to use the best hyperparameters obtained from the tuning process on the

balanced dataset as the default settings for both the TEFT-Transformer and TE-MLP models

on the full dataset. This approach has the benefit of giving improved hyperparameter settings

while avoiding the excessive computational load caused by the tuning on the full dataset.
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5 Results

In this section, we first evaluate the performance of the TE-MLP and TEFT-Transformer models

on the Adult dataset to ensure they function as intended for numerical and categorical data. We

compare their outputs to the results reported by Gorishniy et al. (2021). Once confirmed, we

examine the model tuning process on the balanced dataset and compare the models based on

their performance using the optimal hyperparameters found. Finally, we compare the models’

performances under these optimal hyperparameters when applied to the full dataset.

5.1 Reproduction

To validate the outputs of TEFT-Transformers and TE-MLP and ensure their consistency with

the original research, our objective is to accurately reproduce the results in the original paper

by comparing evaluation metrics and training time on the Adult dataset. It is worth emphas-

izing that both models are constructed as direct replications of the MLP and FT-Transformer

presented in the paper by Gorishniy et al. (2021). The expansion of these models, the TE-MLP

and TEFT-Transformer, has been implemented in a manner that guarantees the handling of

categorical and numerical variables remains unchanged. This means that when applied to a

dataset without any textual features, the models should produce the same outputs as the MLP

and FT-Transformer in the paper by Gorishniy et al. (2021).

To verify this, we employ the tuned hyperparameters reported in the original research for

both the MLP and FT-Transformer models. These hyperparameters are used for a single seed

and applied to our TE-MLP and TEFT-Transformer models. The comparison between the

original research and our findings is presented in Table 3. In order to highlight that we are

essentially running the MLP and FT-Transformer models and not utilizing text embedding for

this particular dataset, we report the model names as (TE-)MLP and (TE)FT-Transformer.

Table 3: Comparison of our Model Performance with Original Research on the Adult dataset

Model Accuracy mf1 ROC-AUC Running Time

MLP (Gorishniy et al., 2021) 0.8519 0.7893 0.9059 00:27
(TE-)MLP 0.8549 0.7863 0.9052 06:05
FT-Transformer (Gorishniy et al., 2021) 0.8594 0.7933 0.9135 02:27
(TE)FT-Transformer 0.8593 0.7948 0.9144 51:36

Upon examination of the results, it is evident that the differences in the evaluation met-

rics between the original models and our extended models are minimal, with variances of no

more than 0.003. This indicates the accurate implementation of the original models within our

extended framework. However, an important difference is noticeable in terms of computing

speed, where our hardware demonstrates a significant difference, approximately 25 times slower,

compared to the hardware used in the original research. It is therefore important to interpret

the reported running times within the context of our hardware limitations. While the running

times can be useful to understand the computational differences between the TE-MLP and the

TEFT-Transformer for the following tasks, they might differ significantly from the running times

that can be achieved when using a high-performance GPU, rather than the Intel core i7-1165g7

CPU used for this research.
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5.2 Tuning

As explained in Subsection 3.4, the multi-head attention mechanism used in the TEFT-Transformer

exhibits quadratic complexity, that is partly reliant on the number of features, and the embed-

ding size of each feature. Consequently, when the combination of these two factors becomes

large, the multi-head attention mechanism can demand significant amounts of RAM, potentially

reaching hundreds of gigabytes. Due to this memory constraint, conducting Optuna tuning

for the FT-Transformer model using the ’Word2Vec-from-scratch’ and ’Glove-Twitter’ text em-

bedders became infeasible. However. The performance of the TE-MLP model under these

embedding models is still reported. This decision serves two key purposes: Firstly, it sheds

light on the potential limitations of the TE-MLP model, highlighting the advantages that the

TEFT-Transformer could offer if it were able to effectively handle a large number of features.

Secondly, it aids in evaluating the ability of the ’Sentence-embedder’ text embedding method to

accurately capture the information contained in the reviews. By using multiple text embedding

models, we can assess whether the performance of the TE-MLP is affected by the utilization of

a subpar text embedder that fails to provide valuable information to the model.

The analysis of the tuning performed for the TEFT-Transformer using the ’Sentence-Embedder’

and the TE-MLP for all three embedding methods leads to two key findings: Firstly, both the

TE-MLP and the TEFT-Transformer show similar performance in terms of both average and

best performance for both metrics. However, there is one outlier in the case of the TEFT-

Transformer. This outlier can be attributed to the fact that the TEFT-Transformer model

had fewer multi-head attention layers compared to the other iterations of the tuning. This

suggests that the number of layers in the transformer might have a more significant influence

on the TEFT-Transformers performance than it had on the FT-Transformer in the paper by

Gorishniy et al. (2021), where the FT-Transformer was reported to be less influenced by hyper-

parameter tuning. On the other hand, ’Glove-Twitter’ and ’Word2Vec-from-scratch’ performed

significantly worse when applied to the TE-MLP. This can be attributed to the sizes of their

embeddings, which caused the TE-MLP model to overfit the training set while tuning. As a

result, the MLP model achieves a high accuracy of 0.99 on the training set. However, this high

accuracy caused by overfitting on the test set does not generalise well to the test and validation

sets, leading to poorer performance in those datasets.

Table 4 presents the statistics of the best-performing model based on accuracy on the test

set, selected from the five trials conducted during the Optuna tuning process. It shows the

performance of the best trial of the four models, along with the total tuning time across all

five trials. The table includes accuracy, mf1, and ROC-AUC scores for each model across the

train, validation, and test sets. This table demonstrates that the TE-MLP models outperform

the TEFT-Transformer in terms of overall performance and has notably faster training time

when using the ’Sentence-Embedder’. Although the TE-MLP models trained on ’Word2Vec-

from-scratch’ and ’Glove-Twitter’ also demonstrate high accuracy, mf1 and ROC-AUc scores on

the training set, their performance is far worse then the models using the ’Sentence-Embedder’.

The evaluation of the four models on the full dataset, using the hyperparameters obtained

during tuning on the balanced dataset, is summarized in table 5 and reveals several important

findings. Firstly, there is a significant imbalance in running time among the models, emphasizing
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Table 4: Performance and Tuning Time of the Four Best Models

Model, Tuning Time Set Accuracy mf1 ROC-AUC

TEFT-Transformer, Sentence-Embedder Train 0.7695 0.7692 0.8631
4 days, 10:47:05 Test 0.7612 0.7607 0.8474

TE-MLP, Sentence-Embedder Train 0.7947 0.7936 0.8826
3:11:08 Test 0.7665 0.7648 0.8521

TE-MLP, Glove-Twitter Train 0.9511 0.9511 0.9844
0:21:11 Test 0.6827 0.6814 0.7291

MLP + from-scratch Train 0.9852 0.9852 0.9983
0:25:03 Test 0.6847 0.6846 0.7404

not only the impracticality of conducting tuning on the TEFT-Transformer model but also

training on high-dimensional datasets.

Additionally, it becomes evident that the TE-MLP models utilizing word embeddings exhibit

poor performance, particularly the ’Glove-Twitter’ model. These models tend to suffer from

overfitting after a few epochs, resulting in high accuracy on the training set but deteriorating

performance on the validation and test sets. Notably, the ’Glove-Twitter’ model even selects its

first epoch during the training as its best, where it categorizes every observation as real. This

outcome can be attributed to the majority of the data being labelled as real in the dataset. As

a result, the model struggles to extract meaningful information from the noisy dataset, leading

to lower overall accuracy when it attempts to correctly classify observations as fake. Similarly,

the from-scratch model shows a slight improvement in accuracy after a few epochs but quickly

becomes too overfitted to the train set, resulting in a sharp decline in accuracy. This behaviour

highlights the challenge posed by the full dataset, where the majority of observations are real in

a binary classification task. The overfitting of the models causes them to lose their effectiveness

as they initially classify all observations as true, leading to inflated accuracy. However, when

attempting to classify observations as fake, their accuracy drops significantly.

When comparing the two models utilizing the ’Sentence-Embedder,’ it is crucial to note the

difference in their performance. While they show similar accuracy on the test set, there are

notable differences in their mf1 and ROC-AUC scores. This difference in performance measures

results from the recall of fake reviews, with the TE-MLP model using the Sentence Embedding

method achieving a recall of 0.252, while the TEFT-Transformer only reaches a recall of 0.1378.

This indicates that the TE-MLP model successfully identifies almost twice as many fake reviews.

Table 5: Performance and Training Time of the Four Best Models

Model, Training Time Set Accuracy mf1 ROC-AUC

TEFT-Transformer , Sentence-Embedder Train 0.8772 0.5896 0.8584
3 days, 10:16:23 Test 0.8802 0.5818 0.8473

TE-MLP, Sentence-Embedder Train 0.8839 0.6536 0.8821
0:04:36 Test 0.8800 0.6253 0.8580

TE-MLP, Glove-Twitter Train 0.8638 0.4635 0.6411
0:09:23 Test 0.8712 0.4656 0.6392

TE-MLP, Word2Vec-from-scratch Train 0.8791 0.5807 0.8763
0:14:04 Test 0.8711 0.5017 0.7609

19



6 Conclusion

The FT-Transformer, which shows promise with numerical and categorical data, falls short when

extended to the TEFT-Transformer to incorporate embedded textual features. The TEFT-

Transformer performs at a similar level to the TE-MLP when incorporating the sentence em-

bedder, but it consistently leads slightly inferior performance in comparison. Nevertheless, the

TEFT-Transformer does not present itself as a viable option, with a training time on the full

dataset which is almost 1000 times longer than that of the TE-MLP, without any clear compu-

tational advantage shown. The multi-head attention mechanism, which typically proves itself

as effective in capturing important information from noisy datasets by highlighting significant

aspects of input data, does not perform well when applied to textual inputs in the TEFT-

Transformer. The combination of two steps of embedding the textual features go through in the

Text Embedder and Feature Tokenizer that result in large matrices representing each textual

feature, along with the quadratic complexity of the multi-head attention mechanisms, leads to

significantly increased processing times. In some cases, the model even fails to process textual

features with extensive embeddings in the Text Embedder. This limitation eliminates one of

the advantages that Transformers are designed to have over other deep learning methods, such

as MLPs. On the other hand, the TE-MLP overfits on this task, indicating the necessity for

alternative models in similar scenarios.

In summary, two main conclusions can be drawn. Firstly, the TEFT-Transformer fails to out-

perform the baseline TE-MLP’s performance when using smaller textual embeddings. Secondly,

the attention mechanism’s potential advantage is lost in this model because the larger textual

embeddings, which could offer a more comprehensive numerical representation of the text, can-

not be used due to the size of computations performed when passing the matrix representation

of the text through the multi-head attention mechanism.

In order to confirm the superiority of TE-MLP over TEFT-Transformer on smaller textual

embeddings like the Sentence Embedder method, further experimentation involving tuning, seed

variations, and possible ensembling should be conducted. Although the TEFT-Transformer can

process short textual inputs when combined with larger models like ’Word2Vec-from-scratch’

and ’Glove-Twitter,’ it still leads to very large time consumption. However, it remains uncer-

tain whether the TEFT-Transformer outperforms TE-MLP in scenarios involving tabular data

with short textual features, making additional research necessary before using this method for

this task. To make the TEFT-Transformer a viable option, it is imperative to reduce its com-

putational requirements. One potential solution is to employ approximations for the attention

mechanism. More efficient alternatives have been discovered, some of which exhibit linear com-

plexity (Wang et al., 2020). By addressing its computational complexity, the TEFT-Transformer

can be applied to tasks such as fake review detection or binary classification with tabular data

and textual features. Additionally, exploring alternative methods to create smaller embeddings

may yield improved results. This study evaluated the performance of the TEFT-Transformer

using a single text embedding method of moderate size, suggesting that exploring alternative

techniques to generate embeddings of moderate size could lead to better results.
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A Information Yelp dataset

Here the information about the features in the dataset is presented, as well as the total number

of features in each dataset. This highlights the difference in the proportion of fake reviews in

both datasets.

Table 6: Summary of the Yelp full and Yelp balanced Dataset Characteristics

Dataset

Numerical variables Date Marked useful Marked funny Marked cool

Categorical variables Venue ID Venue type Star rating

Textual variables Plaintext review

Full Train Validation Test Fake reviews (%)

Number of Observations 33696 16848 16849

Number of fake reviews 4587 2162 2170 13.23

Balanced Train Validation Test Fake reviews (%)

Number of Observations 10702 3568 3568

Number of fake reviews 5337 1776 1806 50
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B Hyperparameters Reproduction

Here the exact hyperparameters used for the reproduction of the original paper are noted. The

parameters for the (TE-)MLP can be found in Table 7, and those of the (TE)FT-Transformer

in Table 8.

Table 7: Hyperparameters for the repro-
duction using (TE-)MLP model

Parameter Value

Embedding model name None

Text embedding size 0

Category Embedding size 421

Number of layers (including the last) 5

Size of layers* [42, 503, 111]

Dropout per layer 0.0

Training batch size 256

Evaluation batch size 8192

Training learning rate 3.21e-04

Training weight decay 7.17e-05

Note: see Table 10

Table 8: Hyperparameters for the repro-
duction using (TE)FT-Transformer

Parameter Value

Embedding model name ’None’

Text Embedding size 0

Attention dropout 0.29

d ffn factor 2.04

d token 352

ffn dropout 0.16

number of layers 3

Residual dropout 0.0

Training batch size 256

Evaluation batch size 8192

Training learning rate 2.67e-05

Weight decay 1.88e-05

C Tuning space Yelp-Balanced

Here you can see the hyperparameter spaces used in the tuning of all model-embedding method

combinations on the yelp-balanced dataset. In Graph 1 a visualization of the 5 tuning iterations

of each model can be seen, whose results were briefly discussed in Section 5.1. Here you see

the accuracy plotted against the mf1 on the validation set on each trial of the tuning. The

most notable findings from this tuning were the outlier of the TEFT-Transformer and the poor

performance of the word tokenizing embeddings for the TE-MLP.
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Figure 1: Tuning Performance of Models
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C.1 TE-MLP

The same tuning space is used for all three text embedding methods.

Table 9: Tuning Stats of the TE-MLP

Parameter Optimization Space Tuning Type

Category embedding size [64, 512] Integer

Number of layers [1, 8] Integer

Size of layers [1, 512]* Integer

Dropout [0.0, 0.0, 0.5] Uniform

Training learning rate [1e-05, 0.01] Loguniform

Training weight decay [0.0, 1e-06, 0.001] Loguniform

Note: The dimensions of the layers within the MLP are tuned in three separate parts. If the

number of layers is set to 1, the MLP consists of only the first and final layers, each with an

individual size. However, if the number of layers is between 2 and 8, there are 1 to 7 middle

layers, all with the same size.

C.2 TEFT-Transformer

Table 10: Tuning Stats of the TEFT-Transformer

Parameter Optimization Space Tuning Type

Attention dropout [0.0, 0.5] Uniform

d ffn factor [1.0, 4.0] Float

d token [64, 256] Integer

ffn dropout [0.0, 0.5] Uniform

d layers [1, 4] Integer

Residual dropout [0.0, 0.0, 0.2] Uniform

Training learning rate [1e-05, 0.001] Loguniform

Weight decay [0.0, 1e-06, 0.001] Loguniform

D Optimal parameters TE-MLP and TEFT-Transformer Yelp

Here the parameters used for the TE-MLP and TEFT-Transformer are denoted. These are

the hyperparameters used for both the Yelp-balanced and Yelp-full datasets since the best

hyperparameters found during the tuning on the Yelp-balanced dataset are also used for the

full dataset.
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Table 11: Final hyperparameters of the TE-MLP models

Parameter Glove-Twitter Word2Vec-from-scratch Sentence Embedder

Embedding model name pretrained from scratch sentence

Text embedding size 50 50 384

Category Embedding size 236 236 236

Number of layers (including the last) 8 8 4

Size of layers* [118, 193, 324] [118, 193, 324] [286, 148, 148]

Dropout per layer 0.27 0.27 0.0

Training batch size 1024 1024 1024

Evaluation batch size 1024 1024 1024

Training learning rate 1.87e-04 1.87e-04 1.45e-03

Training weight decay 1.42e-05 1.42e-05 2.69e-06

Note: see Table 10

Table 12: Final hyperparameters of the TEFT-Transformer

Parameter Value

Embedding model name ’sentence’

Text Embedding size 384

Attention dropout 0.24

d ffn factor 2.27

d token 216

ffn dropout 0.34

number of layers 4

Residual dropout 0.0

Training batch size 256

Evaluation batch size 256

Training learning rate 1.46e-04

Weight decay 4.09e-05

E Reproducing the Research

Before implementing the code through Windows PowerShell, make sure to have Miniconda 3

installed on your device. Follow the steps below to reproduce the research:

E.1 Environment Setup

Navigate to the project directory, Username should be changed by the name of your device:

$PROJECT DIR = ”C:\ Users \Username\Downloads\ tabular−dl−r e v i s i t i n g −
↪→ models−main\

tabular−dl−r e v i s i t i n g −models−main\ tabular−dl−r e v i s i t i n g −models−main

↪→ −extens i on ”

cd $PROJECT DIR
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Activate the Conda environment:

conda c r ea t e −n r e v i s i t i n g −models−extens i on python=3.8.8 −−f o r c e

conda a c t i v a t e r e v i s i t i n g −models−extens i on

Install the required packages:

conda i n s t a l l pytorch==1.7.1 t o r c hv i s i o n ==0.8.2 cuda too l k i t

↪→ =10.1.243 numpy=1.19.2 −c pytorch −y

conda i n s t a l l cudnn=7.6.5 −c anaconda −y

pip i n s t a l l −r requ i rements . txt −−progress−bar=on

conda i n s t a l l node j s −y

jupyte r l abex t en s i on i n s t a l l @jupyter−widgets / jupyter lab−manager

Download Spacy language models and the Sentence Transformers library:

python −m spacy download en co r e web l g

python −m spacy download en core web sm

pip i n s t a l l sentence−t rans fo rmer s

Set environment variables:

conda env con f i g vars s e t PYTHONPATH=”$env :PYTHONPATH;$PROJECT DIR”

conda env con f i g vars s e t PROJECT DIR=”$PROJECT DIR”

conda env con f i g vars s e t LD LIBRARY PATH=”$env :CONDA PREFIX\ l i b ;

↪→ $env :LD LIBRARY PATH”

conda env con f i g vars s e t CUDAHOME=”$env :CONDA PREFIX”

conda env con f i g vars s e t CUDAROOT=”$env :CONDA PREFIX”

Deactivate and reactivate the environment and navigate to the project directory again:

conda deac t i va t e

conda a c t i v a t e r e v i s i t i n g −models−extens i on

cd $PROJECT DIR

If GPU is used, Set CUDA visible devices:

$CUDA VISIBLE DEVICES = ”0”

E.2 Training and Tuning

After setting up the environment using the previous steps, you can perform the desired training

and evaluation tasks using the instructions as seen below. If you already have an existing file

called draft that you do not need anymore, you should run the line:

Remove−Item −Path ” d ra f t ” −Recurse −Force

to delete this file in order to create a new file to save the outputs of the model in. Once this file

can be created, you can train or tune the models on the datasets using the following steps.

To perform training:
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mkdir d r a f t

cp output / ye lpba lanced /mlp/tuned /0 . toml d r a f t / check environment .

↪→ toml

python bin /mlp . py d ra f t / check environment . toml

Note: This code is to train the mlp on the yelpbalanced dataset. However, you can substitute

”mlp” with ”ft transformer” or change ”yelpbalanced” to ”yelp” or ”adult” to train on different

datasets. For the reproduction phase of the experiment, the adult dataset was used. While for

the extension the yelp datasets have to be used. ”yelp” is used to refer to the full dataset.

To perform tuning:

cp output/ ye lpba lanced / f t t r an s f o rme r / tuning /0 . toml output /

↪→ ye lpba lanced / f t t r an s f o rme r / tuning / reproduced . toml

python bin / tune . py output/ ye lpba lanced / f t t r an s f o rme r / tuning /

↪→ reproduced . toml

Note: This code is to train the ft transformer on the yelpbalanced dataset. However, again you

can replace ”yelpbalanced” with other dataset names and ”ft transformer” with other model

names to tune different combinations. However, in this paper, the tuning was only performed

for the yelpbalanced dataset.

E.3 Changing the embedding method used

To change the embedding method used on the Yelp and yelpbalanced dataset, the files starting

with output written in the code snippets for the tuning and training should be accessed, and

modelname variable should be set to ’sentence’, ’pretrained’, or ’from scratch’.

So to alter the text embedding method used in the tuning phase by the MLP on yelpbalanced,

the file at the location output/yelpbalanced/mlp/tuning/reproduced.toml should be accessed

and changed.
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