
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Econometrics and Operations Research

Advancing cost function design in Distribution Aware

Counterfactual Explanation

Mees de Vries (458809)

Supervisor: Hakan Akyuz

Second assessor: Name of your second assessor

Date final version: 3rd July 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



Abstract

With the rising use of Machine Learning models for decision making, Distribution Aware

Counterfactual Explanation can quickly become an important technique for obtaining pos-

sible actions to reach a desired prediction result. However, existing implementations simplify

this technique, which saves on compute time at the cost of sub-optimal results. In this thesis,

two paths for improving these results are explored: altering the calculation of the statistical

distance, and the choice of a different outlier detection method. The first path results in

promising improvements when applied on real datasets. In Addition, the effects of using

statistical distances based on lp-norms for different p-values are explored and tested.

1 Introduction

Distribution Aware Counterfactual Explanation, or DACE, is quickly becoming more relevant

in light of recent development in Artificial Intelligence. It specifically addresses the need for

explainable AI (XAI), and Machine Learning Interpretability (ML-I). However, the current im-

plementation is in more than one way a simplification of its theoretical grounds.

Investment in AI and ML has been ever-increasing in recent years and by now has applic-

ations in many different fields (Mou, 2019). With applications in professional fields comes the

need for understanding and explaining these models to better guide a change in the variables

that provide input to the models, as well as for more ethical issues (Bodria et al., 2021). This

has lead to the development of many techniques for XAI and ML-I (Karimi, Barthe, Schölkopf

& Valera, 2022), among which are many variants of Counterfactual Explanation (CE). In this

thesis, the focus will be on Distribution Aware Counterfactual Explanation (DACE) in partic-

ular, as established by Kanamori, Takagi, Kobayashi and Arimura (2020).

1.1 Counterfactual Explanation (CE)

The post-hoc method of Counterfactual Explanation (Wachter, Mittelstadt & Russell, 2017) in-

volves explaining individual predictions made by an ML-model. Generally, CE is applied when

an input instance results in an undesired output. The aim is to identify the smallest changes

in input features that would lead to a more desired prediction outcome. Generating CE’s can

enhance our insight into how the model makes decisions and understand the impact of input

variables on the results.

In an attempt to minimize required change in input features, most variants of CE fail to

sufficiently address the achievability of said input changes, as noted by Kanamori et al. (2020).

They address the need for regarding feature-correlation and outlier risk among the input fea-

tures, and introduce the formulation of DACE.
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1.2 Distribution Aware Counterfactual Explanation (DACE)

In their paper, a sophisticated cost function is defined, that when minimized, should theoretic-

ally solve both the aforementioned problems of CE. To address feature-correlation, Mahalanobis

Distance (Mahalanobis, 1936) between the input instance and the adjusted instance is used as

statistical distance to be minimized. Also part of the minimization is the Local Outlier Factor

(LOF) of the adjusted instance. The LOF (Breunig, Kriegel, Ng & Sander, 2000) is an out-

lier score using k-Nearest Neighbours to measure the distance of an instance to the sample. A

weighted sum of these two metrics forms a cost function that is minimized as a Mixed-Integer

Linear Optimization problem (MILO).

This implementation introduces several challenges, however, as it requires a linear formu-

lation of the problem. Both the Mahalanobis-distance and LOF have non-linear definitions,

and therefore require linearization. In their implementation, Kentaro et al. replace the the-

orized cost function with one that uses an l1-norm based statistical distance. The LOF based

on k-NN is fixed at k = 1 in order to keep that linear as well. The implementation produces

great experimental results in real datasets compared to other CE methods, whilst spurring the

question wether a cost function closer to their theoretic base can improve results further, within

reasonable compute times.

1.3 Contributions

This thesis aims to answer the question of whether an improved linearization of the theoretic

cost function of Distribution Aware Counterfactual Explanation can result in more desirable

experimental outcomes. Three main parts make up this discussion:

• A piecewise linearization of the squared Mahalanobis distance is introduced to replace the

l1-norm based statistical distance. This distance-augmented DACE implementation also

sparks a debate about using higher order lp-norm based statistical distances in potential

cost functions.

• A consideration of different outlier detection methods leads to a calculation for outlier cost

that considers k-Nearest Neighbours for any desired value of k. This outlier-augmented

DACE, however, does not strictly provide a linearization of the Local Outlier Factor that

the theoretical cost function of DACE suggests.

• Experimental results of DACE are compared to distance-augmented DACE, outlier-augmented

DACE and distance-and-outlier-augmented DACE, in order to assess if any improvements

can be observed.

2 Notations and Preliminaries

Let X be the sample of N observations. D is the number of features in the model. x̄ ∈ X

is an input instance that produces an undesired outcome. a ∈ RD is a perturbation vector
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representing an action on x̄. The covariance matrix of the sample is represented by Σ.

The theoretic cost function for DACE is defined as

CDACE(a|x̄) := d2M (x̄, x̄+ a|Σ−1) + λ · qk(x̄+ a|X)

Where:

• a is a perturbation vector representing an action

• Σ is the covariance matrix of X

• d2M (x̄, x̄+a|Σ−1) is the squared Mahalanobis-distance between the input instance and the

instance perturbated by action a, given covariance matrix Σ

• λ is a tuning parameter that balances the influences of the MD and LOF on the cost

• qk(x̄+ a|X) is the k-LOF of the instance with actions applied, given the sample set X.

Additionally we define:

• wt is the weight of base of the tth base learner

• Id is the size of the action set for dimension d

• c
(n)
d,i is the difference in feature d between x̄+ a and x(n)

• Cn is a sufficiently large constant

• Nk(x) ⊆ X is the set of k Nearest Neighbours of x

• dk = maxx′∈Nk(x)∆(x, x′) is the distance between x and kth nearest neighbour

• rdk(x, x
′) = max(∆(x, x′), dk(x

′)) is the k-reachability distance

• lrdk() is the local reachability density, defined as lrdk(x) = k/
∑

x′∈Nk(x)
rdk(x, x

′)

3 Existing implementation

In order to minimize the cost function of DACE with a MILO-formulation, this cost function

needs linearization. Kanamori et al. define a surrogate objective function using an l1-norm

based statistical distance and a 1-NN Local Outlier Factor:

ĈDACE(a|x̄) := d̂M (x̄, x̄+ a|Σ−1) + λ · q1(x̄+ a|X)

Where the l1-norm based statistical distance d̂M is defined as

d̂M (x, x′|M) = ||U(x′ − x)||1

With matrix U such that UTU = M and ||.||p denoting the lp-norm. This is a linear function that

is easy to model. However, it is substantially different from the squared Mahalanobis distance

it is based on:

d2M (x, x′|M) = ||U(x′ − x)||22
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The full model for Logistic Regression based DACE can be written as:

min
D∑

d=1

δd + λ ·
N∑

n=1

lrd1(x
(n)) · ρn

s.t.

Id∑
i=1

πd,i = 1 ∀d ∈ {1, ..., D} (1)

−δd ≤
D∑

d′=1

Ud,d′

Id∑
i=1

ad′,iπd′,i ≤ δd ∀d ∈ {1, ..., D} (2)

N∑
n=1

νn = 1 (3)

D∑
d=1

Id∑
i=1

(c
(n)
d,i − c

(m)
d,i ) · πd,i ≤ Cn · (1− νn) ∀n,m ∈ {1, ..., N} (4)

d1(x
(n)) · νn ≤ ρn ∀n ∈ {1, ..., N} (5)

D∑
d=1

Id∑
i=1

c
(n)
d,i πd,i − Cn · (1− νn) ≤ ρn ∀n ∈ {1, ..., N} (6)

T∑
t=1

wtξt ≥ b (7)

x̄d +

Id∑
i=1

ad,iπd,i = ξd ∀d ∈ {1, ..., D} (8)

In which the following variables are introduced:

πd,i binary, = 1 if action i on feature d is chosen;

νn binary, = 1 if instance n is one of the k-Nearest Neighbours;

δd the part of the statistical distance between x̄ and x̄+ a that is on axis d;

ρn the reachability distance of n if n is one of the k-Nearest Neighbours;

ξt the tth base learner of x̄+ a;

Constraint (2) defines the statistical distance, and constraints (3 − 6) implement k-NN Local

Outlier Factors for k = 1.

4 Alternative Models

In this section, possible approaches to improve upon the model of the previous section are

proposed. The extensions are confined to the Logistic Regression formulation of DACE.

4.1 distribution-augmented DACE

The first approach is to model a statistical distance that is more similar to the d2M distance.

Instead of the l1-norm based d̂DACE , a piecewise linearized squared Mahalanobis distance is
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proposed. This is later referred to as distribution-augmented DACE or daDACE.

The model described in the previous section can be adapted by removing constraint (2) and

adding constraints (9) and (10).

−τd ≤
D∑

d′=1

Ud,d′

Id∑
i=1

ad′,iπd′,i ≤ τd ∀d ∈ {1, ..., D} (9)

blτd + rl ≤ δd ∀d ∈ {1, ..., D}, l ∈ {1, ..., L} (10)

With variable τd a positive number. The parameter L is the chosen amount of line segments

in the linearization, with limL→∞ d̂daDACE = d2M . Constraint (10) defines the line segments

with slope bl and intercept rl. Since we are minimizing on a concave function, we can use

these unbounded lines instead of bounded line segments. In general, a line segment of an upper

estimation of function f() between points a and b can be computed as

slope =
f(b)− f(a)

b− a

intercept = f(a)− a · slope

If we choose a lower and higher bound to perform the piecewise linearization between (LB and

UB, resp.) and spread the L intervals equally between those bounds, the lth interval ranges

from (l − 1) · (UB − LB)/L + LB to l · (UB − LB)/L + LB. With function f(x) = x2, this

becomes:

bl = (2l − 1)(UB − LB)/L+ 2 · LB (11)

rl = ((l − 1) · (UB − LB)/L+ LB)2 − bl · ((l − 1) · (UB − LB)/L+ LB) (12)

This will only add O(D) variables and constraints to the model. Because this model for L > 1

more closely resembles CDACE than the model in section 3, we expect to see better results,

however with slightly longer compute times.

4.1.1 Higher order lp-norms

Now that both an l1-norm and l2-norm based approach for statistical distance have been dis-

cussed, it can be of interest to evaluate an implementation of lp-norms for p > 2. The effects

of a higher value of p would be that dimensions with larger deviations are relatively ”punished

harder” in the cost function.

We can generalize the computation of bl and rl for any value of p > 0, resulting in the formula-

tions:

bl =
(l · (UB − LB) + LB · L)p − ((l − 1) · (UB − LB) + LB · L)p

(UB − LB) · Lp−1
(13)

rl = ((l − 1) · (UB − LB) + LB · L)p − bl · ((l − 1) · (UB − LB) + LB · L) (14)
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However, combined with the previously used objective function, this would result in the d̂pp-

distance. When using p = 2 as before, this is the desired result. But when p > 2, this might

completely overshadow the outlier estimation part of the objective function. We can solve this

by adding another linearization, however this does further complicate the model. As the goal is

to approximate the d̂2p-distance, we need to linearize
(∑D

d=1 δd

)2/p
. As p > 2, this is a concave

function and therefore we cannot simply add the linear constraints as before. Instead, some

more constraints are needed to ensure the line segments don’t affect the objective beyond their

bounds. Variables ϕ ∈ R+ and χl ∈ {0, 1} are introduced to assist in this step, as well as

sufficiently large number M . We can then adapt the model to:

min ϕ+ λ ·
N∑

n=1

lrd1(x
(n)) · ρn

s.t.

L′∑
l=1

χl = 1 (15)

l · (UB′ − LB′)/L+ LB′ +M(1− χl) ≥
D∑

d=1

δd ∀l ∈ {1, ..., L′} (16)

(l − 1) · (UB′ − LB′)/L+ LB′ −M(1− χl) ≤
D∑

d=1

δd ∀l ∈ {1, ..., L′} (17)

b′l ·
D∑

d=1

δd + r′l −M(1− χl) ≤ ϕ ∀l ∈ {1, ..., L′} (18)

Combined with constraints (1) and (3 − 10). Note that LB′ and UB′ are the lower and upper

bound of this second linearization, and L′ is the amount of line segments in the second linear-

ization. These are not necessarily the same as LB, UB and L from the first linearization.

4.1.2 linf -norm based distance

If the goal is to minimize the single-dimension statistical distance, an linf -norm based statistical

distance can be used. This d2inf can be implemented using using constraints (1) and (3 − 8),

combined with the following objective function and constraints:

min δ + λ ·
N∑

n=1

lrd1(x
(n)) · ρn

s.t. − τ ≤
D∑

d′=1

Ud,d′

Id∑
i=1

ad′,iπd′,i ≤ τ ∀d ∈ {1, ..., D} (19)

blτ + rl ≤ δ ∀l ∈ {1, ..., L} (20)

Where τ and δ no longer have subscript d, since only the largest value is of interest.
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4.2 outlier-augmented DACE

Another approach is to find an outlier detection method that uses k-Nearest Neighbours for

k > 1 whilst being linear. The Local Outlier Factor used as the outlier detection method in the

definition of CDACE does not lend itself well for linearization. In recent years however, many

other outlier detection methods have been developed (Boukerche, Zheng & Alfandi, 2020). Some

linear outlier detection methods exist that can be implemented without further need for linear-

ization, such as the method by Angiulli and Pizzuti (2002) that uses the sum of distances to

the k nearest points in the sample. However, this method might not be the best option for our

model, as we are aiming to find local outliers, not global outliers. According to Aggarwal (2015),

local density needs to be taken into account in order to reliably detect local outliers.

As an outlier-augmented DACE (oaDACE) implementation, a local outlier detection method

can be used that combines Angiulli’s method for global outliers with the local density, by dividing

the sum of distances to the k-Nearest Neighbours by the average k-NN distance sum of those k

Neighbours.

q̂k(x|X) =

 k∑
j=1

c
(n)
d,i

 k∑k
m=1

∑k
n=1∆d(x

(n)
d , x

(n)(m)

d )

where xn is the instance in the sample that is the n-th closest instance to x. The fraction that

makes up the right part of the equation above can be pre-calculated for all N instances, making

linear implementation in our model possible. This fraction will be referred to as oaldk(x
(n)),

standing for oa-local density.

We can now model oaDACE by adapting the model described in section 3. Constraints (1),

(2), (7) and (8) will stay unchanged. Instead of Constraints (3 − 6), we introduce constraints

(21− 23):

N∑
n=1

νn = k (21)

D∑
d=1

Id∑
i=1

(c
(n)
d,i − c

(m)
d,i ) · πd,i ≤ Cn(1− νn + νm) ∀n,m (22)

D∑
d=1

Id∑
i=1

c
(n)
d,i · πd,i − Cn(1− νn) ≤ ρn ∀n (23)

Furthermore, in the objective function, we replace the lrd1(x
(n)) with oaldk(x

(n)) to obtain the

model for oaDACE. This model doesn’t add time complexity compared to the model described

in section 3. However, because a different outlier detection method is used, it is hard to predict

if it will improve results, and if results will be consistently better across different datasets.

7



4.3 distribution-and-outlier-augmented DACE

After considering both alterations separately, they can be combined into a single model:

min
D∑

d=1

δd + λ ·
N∑

n=1

oaldk(x
(n)) · ρn

s.t.

Id∑
i=1

πd,i = 1 ∀d ∈ {1, ..., D} (1)

−τd ≤
D∑

d′=1

Ud,d′

Id∑
i=1

ad′,iπd′,i ≤ τd ∀d ∈ {1, ..., D} (9)

blτd + rl ≤ δd ∀d ∈ {1, ..., D}, l ∈ {1, ..., L} (10)

N∑
n=1

νn = k (13)

D∑
d=1

Id∑
i=1

(c
(n)
d,i − c

(m)
d,i ) · πd,i ≤ Cn · (1− νn + νm) ∀n,m ∈ {1, ..., N} (14)

D∑
d=1

Id∑
i=1

c
(n)
d,i πd,i − Cn · (1− νn) ≤ ρn ∀n ∈ {1, ..., N} (15)

T∑
t=1

wtξt ≥ b (7)

x̄d +

Id∑
i=1

ad,iπd,i = ξd ∀d ∈ {1, ..., D} (8)

Where we now have 3 parameters instead of 1: λ, k and L. Note that setting L = 1 gives the

oaDACE model, while setting k = 1 results in a model that is very similar to but not entirely

equivalent to the daDACE model. Having 3 parameters can be a disadvantage, as they might

need to be adjusted for every dataset.

5 Results

For the analysis of daDACE, oaDACE and doaDACE, two datasets were used. One that con-

tains German consumer credit data, where the expectation whether a customer will default is

the output of the Machine Learning model, and D = 61 variables are present. The other dataset

is referred to as FICO and contains data on Home Equity Line of Credit, where we are again

interested in the risk of default. This model contains D = 23 variables. The code is adapted

from the code for DACE by Kanamori et al., written in Python 3.7 and using IBM CPLEX as

optimizer. On all models, an extra constraint is applied: ||a||0 ≤ 3.

In order to compare the models, we evaluate them on their results values of the theoretical

CDACE . That is, The actual Mahalanobis Distance between the input instance and the instance

with actions applied is calculated, as well as the k-Local Outlier Factor with k=10. For both of

these measures, we prefer lower values.
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5.1 Reproduction

Before evaluating the extensions, we first look at the reproduction of the experiments from

Kanamori et al. For both datasets, the results of DACE are compared to a cost function based

on a weighted inverse of Median Absolute Deviation (MAD) (Russell, 2019), as well as one based

on the Total Log-Percentile Shift (TLPS) (Ustun, Spangher & Liu, 2019), and a cost function

based the Pearson’s correlation coefficients (PCC) (Ballet et al., 2019). All methods are applied

both on a Logistic Regression model as discussed so far, as well as a Random Forest model. The

results can be found in tables 1 and 2.

LR RF
Model dM 10-LOF Time (s) dM 10-LOF Time (s)

MAD 8.21± 6.31 1.27± 0.38 0.095± 0.019 2.38± 1.49 1.37± 0.66 3.56± 5.70
TLPS 6.85± 4.59 1.35± 0.42 0.079± 0.015 2.29± 1.46 1.37± 0.66 4.39± 6.67
PCC 11.82± 7.32 1.32± 0.48 0.072± 0.021 3.53± 3.43 1.33± 0.44 5.03± 5.72

DACE 3.59± 2.77 1.29± 0.28 40.48± 15.53 2.30± 1.46 1.30± 0.62 34.66± 17.45

Table 1: FICO dataset, 100 instances, λ = 1

LR RF
Model dM 10-LOF Time (s) dM 10-LOF Time (s)

MAD 6.96± 3.92 1.28± 0.72 0.064± 0.025 3.20± 3.02 1.33± 0.75 5.70± 3.51
TLPS 2.75± 1.32 1.43± 0.56 0.061± 0.013 1.45± 1.50 1.15± 0.46 8.25± 7.87
PCC 8.04± 2.54 1.28± 0.72 0.058± 0.024 6.07± 2.74 1.34± 0.75 2.20± 1.63

DACE 2.32± 1.25 1.21± 0.22 3.23± 1.29 1.82± 1.39 1.04± 0.17 28.47± 20.07

Table 2: German dataset, 228 instances, λ = 0.01

5.2 daDACE

We confine the evaluation of the extensions to the Logistic Regression models. For 228 instances

of the German dataset and 100 instances of the FICO dataset, results from DACE and daDACE

models are compared in table 3. For these runs, we set L = 40, LB = 0, UB = 10. Both models

were ran with λ = 0.01 and λ = 0. In all experiments, daDACE resulted in a lower average dM ,

with a similar 10-LOF value. This did consistently come at a cost in run time, however that

difference was smaller than perhaps expected. These results are in line with the expectation

that daDACE would result in lower MD-values.

5.3 Different lp-norm based daDACE

To compare DACE implementations with lp-norm based statistical distances for different values

of p, 93 instances of the German dataset were ran using the the l1-norm (DACE), l2-norm

(daDACE), l3-norm (3-daDACE), l5-norm (5-daDACE) and linf -norm (inf-daDACE). Besides

the average Mahalanobis-distance (dM ), 10-LOF and run time, we now also report the maximum

single dimensional statistical distance (max-d). The results can be found in table 4. As expected,
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for higher values of p, the dM is larger, but the value of max-d is lower. The average value of

max-d for inf-daDACE is higher than that of 5-daDACE though. However, the median value is

much lower, and in 54 instances inf-daDACE does have a lower max-d value, compared to 25

instances the other way around.

German FICO
Model dM 10-LOF Time (s) dM 10-LOF Time (s)

DACE 1.97± 1.32 1.21± 0.24 2.98± 1.34 3.59± 2.77 1.29± 0.28 40.4± 15.5
daDACE 1.91± 1.25 1.19± 0.23 3.95± 1.47 3.09± 1.89 1.36± 0.44 39.1± 18.8

DACEλ0 1.72± 1.27 1.27± 0.44 0.59± 0.12 3.33± 2.22 1.41± 0.61 1.90± 0.60
daDACEλ0 1.62± 1.15 1.28± 0.41 1.68± 0.67 2.86± 1.92 1.50± 0.54 6.86± 3.08

Table 3: daDACE on German and FICO datasets, with λ = 0.01 and λ = 0

Model dM max− d 10-LOF Time (s)

DACE 1.81± 1.21 1.24± 0.85 1.24± 0.27 3.30± 1.23
daDACE 1.77± 1.15 1.12± 0.73 1.20± 0.23 4.25± 1.29

3-daDACE 1.79± 1.13 1.03± 0.62 1.20± 0.21 12.07± 7.53
5-daDACE 1.79± 1.09 0.93± 0.47 1.19± 0.22 8.74± 6.12

inf-daDACE 2.25± 1.51 1.01± 0.70 1.24± 0.92 3.33± 1.28

Table 4: daDACE with different lp-norms for 93 instances of the German dataset

Model MD 10-LOF Time (s)

DACE 1.97± 1.32 1.21± 0.25 2.98± 1.32
daDACE 1.91± 1.25 1.19± 0.23 3.95± 1.25

oaDACEk=5 1.72± 1.25 1.24± 0.44 3.67± 2.11
oaDACEk=10 1.71± 1.24 1.23± 0.39 3.59± 2.10

doaDACE 1.68± 1.24 1.23± 0.36 6.97± 1.72

Table 5: oaDACE and doaDACE for 228 instances of the German dataset

5.4 oaDACE and doaDACE

oaDACE was ran with both k = 5 and k = 10, with almost no difference in run time between the

two. A lower value for the 10-LOF at a similar value for MD compared to DACE was expected,

however the results show the opposite.

for doaDACE, we see similar results. A k-value of 10 and L = 40 was used to run the same

228 instances with the doaDACE-model. We can observe a lower MD than the oaDACE-model

in 122 instances, compared to only 30 instances with a higher score. However, the differences

are almost negligible. Both the oaDACE and doaDACE models do not succeed in providing

significant improvements over the DACE and daDACE models.

6 Conclusion

In this thesis, an existing implementation of Distribution Aware Counterfactual Explanation

(DACE) was evaluated that uses a MILO-formulation. Multiple possible improvements were
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proposed and tested.

With distribution-augmented DACE (daDACE), a piecewise linearized quadratic Mahalan-

obis distance was implemented to replace the l1-norm based statistical distance in the cost

function of the previous implementation. This resulted in some promising improvements when

applied to real datasets, consistently lowering the observed Mahalanobis distance of the experi-

ments at the cost of slight increases in run time.

With outlier-augmented DACE (oaDACE), a different oulier detection method was imple-

mented to replace the 1-Nearest Neighbour based Local Outlier Factor of the previous imple-

mentation. The idea was to implement a simpler outlier detection method that could more

easily be implemented in a MILO-formulation for k-Nearest Neighbours with k > 1. This failed

to produce a significant improvement over the previous implementation. However, as not all

existing outlier detection methods were tried, this might be of interest for future work.

Also considered were the effects of using a lp-norm based statistical distance for p > 2.

An implementation using two linearization steps is formulated. The l2-norm minimizes the

Mahalanobis distance of the proposed action, the l-infinity norm minimizes the dimension with

the largest distance. By choosing a value of p between that, one can balance the importance of

the two effects. The implementation succeeded in producing those desired results in a run time

that takes two to three times as long as the daDACE-implementation.
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A Programming code

This code i s based on the code from Kanamori e t a l .

## aggregator . py

To execute , run aggregator . py . The amount o f i n s t an c e s to run ,

the datase t to use and formulat ion type can be s e t on l i n e s 8−10

o f t h i s s c r i p t . Other parameters , such as lambda , L and p , can be

s e t per formulat ion , as parameters o f the ” ex t r a c t ” f unc t i on s .

The s c r i p t w i l l run every in s t ance f o r a l l f o rmu la t i ons mentioned

in the t h e s i s . After completion , the r e s u l t s are outputted again ,

but t h i s time in CSV−format f o r use with other data ana l y s i s

so f tware .

## l i n e a r c e . py

Contains a l l f o rmu la t i ons and c a l l s the CPLEX−s o l v e r f o r the

Lo g i s t i c Regres s ion fo rmu la t i ons . Contains the models f o r a l l

e x t en s i on s .

## f o r e s t c e . py

Contains f o rmu la t i ons f o r Random Forest f o rmu l ta i ons . Only used

f o r r e p l i c a t i o n , does not conta in implementat ions f o r daDACE,

p−daDACE, oaDACE or doaDACE.

## u t i l s . py

Contains most func t i ons , i n c l ud ing c a l c u l a t i o n s o f cons tant s and

d i s t r i b u t i o n s . Also conta in s c l a s s e s f o r a c t i on s .

Datasets are to be s to r ed in a f o l d e r c a l l e d ”data” in the root

o f the p r o j e c t .
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