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Abstract

Online advertising plays a huge role in present-day marketing, and personalization based on

online user data has never been this easy. We use data from several incrementality experiments

to examine the effects of personalized targeting policies on the website visit rates and conversion

rates resulting from online advertising. We find that a personalized targeting policy based on a

lasso model increases the website visit rates by 26.90% over showing no advertisements, although

it does not significantly outperform a uniform policy of showing all users the advertisement.

We also find that a policy which maximizes website visits performs fairly well on conversion

rates, although optimizing over conversion rates directly does lead to better performance on

this metric. Interestingly, a uniform policy showing advertisement to all users performs slightly

better on maximizing conversion rates. Furthermore, we show that personalized policies are not

always better than a uniform policy by comparing several machine learning methods, showing

that designing and evaluating personalization policies should be done cautiously. Lastly, we

compare two advertising cost models and give conditions under which model which policy

performs better.

1 Introduction

When browsing the internet, there is no escaping from it: advertisements. In 2021 alone,

worldwide expenditures on digital advertising reached 522.5 billion U.S. dollar, which includes

advertisements on mobile, laptop, and desktop. This number is expected to rise to over 800

billion U.S. dollar in 2026 (Statista, 2023). These numbers are not that shocking, given the fact

that in 2021 the average person spent 6 hours and 58 minutes a day on a device connected to

the internet (Howarth, 2023). In addition to this, it is often way cheaper to advertise online,

especially because it is easier to reach a large audience compared to using offline advertising. An

added benefit of online advertising is the fact that through user accounts and the use of cookies,

there is access to many user features and preferences, making it easier to target and personalize

advertising. This paper focuses on the personalization of online advertisement targeting.

In online advertising, there are two common payment models. The first one is pay per click

(PPC), where the company pays the publisher each time a user clicks on the advertisement.

This payment model is most common in search engine advertising. This is an effective form of

advertising as the advertisement is related to the search query of the user and therefore targeted

at the user’s interests. The other most common model is pay per impression (PPM). In this

method, the advertiser pays the publishing service each time an advertisement is shown to a

user (Goldfarb, 2014). In case we wish to personalize advertisement, the optimal personalization

policy also depends on the payment model of advertisement. In a pay per click model, there

is no direct marginal cost of showing more people the advertisement, but an indirect one by

an increase in users who (potentially) click the ad. However, if the policy maximizes the click-

through rate, it is desirable that this policy also increases the conversion rate. Otherwise, the

marginal costs of advertisement will be higher than the marginal benefit. In a pay per impression

model, there are direct marginal costs of showing the advertisement. It may therefore be of
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interest to not show the ad to users who are unlikely to click the ad, let alone purchase the

product.

This raises the question for firms if it is effective to show all users of a certain online platform

their advertisement, or if they should target only specific customers. Therefore, the main ques-

tion this paper tries to answer is: Is the effect of advertising heterogeneous across consumers,

and if so, how can the assignment of advertisements be personalized based on consumer charac-

teristics, and what are the gains from personalization? Additionally, it is investigated if policies

which optimize website visits also translate to higher conversion rates. Lastly, we assess what

policies are more effective under different advertising cost models. This paper is a continuation

of the paper by Yoganarasimhan et al. (2022) on the design of personalized policies on trial

lengths for online software. This paper uses a similar approach, but applies it to a different

context, namely online advertising. In addition to their methods, this paper deploys another

method of designing personalized policies, as well as an additional evaluation score.

In order to answer our research questions, we adopt a three-step approach to design and

evaluate personalized advertising policies. To this end, we use data of several incrementality

tests where an arbitrary part of the population does not see any advertisements. We consider

two outcome variables of interest, namely website visits, and actual conversion. Website visits

are of interest as visits create brand awareness, and users might find products they wish to buy

which were not initially shown in the advertisement. Brand awareness is an important asset for

a company, as in the long run this has the potential to increase performance (Bernarto et al.,

2020). Conversion rates are of importance as this is the main source of income for a firm.

First, we find that a uniform policy where all users are shown advertisements leads to an

increase of 22.98% over not showing any advertisements at all. Next, we develop a 2-step

approach of designing personalized policies. In the first step, we train a lasso (Least Absolute

Shrinkage and Selection Operator) regression which models visit rates as a function of user

features, treatment, and the interaction of these two. In the second stage, we use outcome

predictions of this model in order to assign each user the optimal treatment. Afterwards, we

use the Inverse Propensity Score (IPS) estimator to evaluate this policy, and compare this with

a different off-policy evaluation estimator, namely the Doubly Robust (DR) estimator, which

are popular in the counterfactual policy evaluation literature (Dud́ık et al., 2011).

We find that this personalized lasso policy increases expected visit rates by 26.90% over not

showing any advertisements at all. It does however not significantly outperform the uniform

policy of assigning all users treatment. However, it does assign only 32.93% of users to the

treatment group, which could lead to a sharp decrease in advertising costs under a PPM model.

This finding is in line with previous literature, where the effect of personalization in advertise-

ment is shown to be only slightly positive (Rafieian & Yoganarasimhan, 2021). We also find

that, in our context, the IPS estimates and DR estimates do not differ significantly, and both

give a good estimate of the expected gain.

Next, we find that the policy which optimizes visit rates increases the conversion rates by

72.73% over not showing any advertisements, but it performs worse than the best uniform

advertising policy. Also, the personalized policy which optimizes conversion rates does not
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outperform the best uniform policy, although the difference is moderate. Again, the personalized

policy shows way less users the advertisement, namely only 24.99% of users, which could lead

to lower costs.

Furthermore, we compare the performance of the lasso policy with several other popular

machine learning techniques. We consider five other outcome estimators, namely 1) linear

regression, 2) classification and regression trees (CART), 3) random forests, 4) XGBoost, and

5) Artificial Neural Networks (ANNs). In addition to this, we use two heterogeneous treatment

effect estimators, namely 1) causal tree and 2) causal forests. We find that the policy based

on lasso continues to perform the best, no matter the policy evaluation estimator we use,

followed by the causal tree and linear regression (both around 4.45%). Interestingly, CART

and XGBoost are unable to personalize policies at all, and therefore assign all users to the

treatment group. Random forest and artificial neural network perform even worse than the

best uniform policy, meaning we would be better off by not personalizing at all. The two

recently popularized conditional average treatment effect (CATE) estimators causal tree and

causal forest do perform better than the best uniform policy. This is however only by a slight

amount, even though these methods were performed to specifically model treatment effects.

Note that the findings are specific to the context of this paper, but still provide the managerial

insight that firms should not naively pick a popular modelling technique and expect it to lead

to better performance.

Lastly, we compare the lasso policy based on both outcomes with the uniform policy, and

under which conditions and cost model each policy should be preferred. We find that the lasso

policy optimized over conversion rates requires lower profit margins in order to be profitable

than the policy optimized over visit rates under both a PPM and a PPC model. Moreover,

we find that a personalized policy is often more profitable than a uniform one under the PPM

model, but it is the other way around under the PPC model.

This paper contributes to existing literature by comparing many machine learning ap-

proaches in the field of policy design, with the addition of quickly popularized neural networks

and heterogeneous outcome estimators. Furthermore, it compares two different policy evalua-

tion estimators in a field experiment, whereas until now this has mostly been done in synthetic

or simulated settings. From a managerial perspective, we provide a framework of designing

and evaluating personalized policy design, which managers can use to design, evaluate, and

implement personalization policies in advertisement targeting. Most importantly, we show that

not all popular estimators perform well on policy design, and therefore the evaluation is the

most critical step. We also show that policies which optimize over visit rates do not perform

particularly poorly on conversion rates, and may therefore, based on the goal of the advertis-

ing campaign, may be preferred. Additionally, an analysis of which policy to deploy in which

advertisement pricing model is given, which is useful for managers as we show that the optimal

policy may differ between cost models.

In the remainder of this paper, we first discuss the theoretical background of our problem

at hand. Next, we describe our data and the plan of approach. After this, the used estimators

are discussed in detail. Then, we present and discuss the findings of the research. We end with
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a discussion on the limitations of the research and pathways for future research.

2 Theoretical Background

Advertising is one of the most important marketing strategies for any brand. Without any

form of advertising, consumers might not know of the brands existence, let alone have any

knowledge on the quality of the brand. Bagwell (2007) considers three possible effects of ad-

vertisement, namely the persuasive effect, the informative effect, and the complementary effect.

The persuasive effect implies that advertisement leads to a change in taste of the consumer

and leads to brand loyalty. The persuasive effects therefore means that advertisement has an

anti-competitive effect, as it has no actual value to consumers, but creates artificial product

differentiation. The informative effect means that advertising reduces the amount of imperfect

consumer information, and therefore helps consumers choose the correct product or service.

The complementary effect says, contrary to the persuasive effect, that advertisement does not

directly alter the choice of the consumer. However, it assumes that consumers have a stable set

of preferences, and that advertisements should directly appeal to those preferences. Especially

this last effect indicates a need for personalized advertisement. If advertisements can directly

enter a consumer’s preferences, the likelihood of the advertisement being effective increases.

This research focuses on the heterogeneous effect of online advertising. In the remainder of this

section we discuss the goal, the design, and evaluation of personalization policies.

2.1 Personalization

The main reason we are interested in personalization policies in marketing, is the fact that it

could lead to an increase in a company’s performance. For instance, personalization leads to

improvement of a customer’s browsing or shopping experience (Adomavicius and Tuzhilin, 2005;

Arora et al., 2008). Furthermore, it could lead to an increase in profits, customer lifetime value,

and brand loyalty (Adomavicius and Tuzhilin, 2005; Arora et al., 2008). Anshari et al. (2019)

show that personalization can lead to an increase in customer acquisition. Rossi et al. (1996)

find that personalized couponing lead to an increased gain of 155% over a uniform couponing

policy, and Ansari and Mela (2003) find an increase of 62% in click-through probabilities when

sending customized e-mails to potential customers. De Keyzer et al. (2015) show that person-

alizing advertising on only gender already increased the click through intention of users when

shown advertisements on Facebook. Becker et al. (2017) find that personalizing the channels

through which users are shown advertisements increases the conversion probability of customers.

However, Kim et al. (2022) show that when advertisements became too personalized, there was

a negative effect on the attitude of users towards a brand and the advertisements, meaning

that making advertisements too personal might have negative consequences for the brand. In

addition to this, users often value their privacy while also wanting personalized services, the

so-called privacy-paradox (Barth & De Jong, 2017). Malheiros et al. (2012) find that greater

personalization of ad content almost doubles the time that users spent looking at the adver-

tisement, but at the same time also increased discomfort experienced by the user by 80%. This
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implies that when designing a personalization policy, the selection of the correct user features to

personalize on should be carefully selected. Goldfarb and Tucker (2011) find that the targeting

in advertising is effective, but this effect is limited. This is supported by the findings of Yoga-

narasimhan (2020) and Rafieian and Yoganarasimhan (2021), who find positive but only slight

gains from personalized digital interventions. This paper contributes to the existing literature

on personalization by discovering methods which select the futures to personalize on, and there-

fore implicitly try to minimize discomfort of users while still forming an effective advertising

model. Kietzmann et al. (2018) note that the use of artificial intelligence could improve the

targeting policy of advertisers, making sure the right user is shown the right advertisement,

while using information as efficient as possible.

2.2 Design of Personalized Policies

The design of a personalized policy is a complex task on its own. The amount of customer data

available is increasing every day, and deciding which variables are relevant for the design of the

policy is not straightforward, yet important. Therefore, methods which select these variables

are popular in the field of policy design. Here, regularization methods like lasso or Elastic-net,

and tree-based methods like classification and regression trees (CART) and random forests are

often used. In the two following sections, the design and evaluation of personalized policies are

described.

A personalized policy prescribes each user a treatment which maximizes an outcome of inter-

est. However, a major issue in designing personalized policies is the fact that in an experiment

there is only an observed outcome per individual under one of the treatments, meaning that it

is impossible to directly compare the effect of treatment(s) for the same individual. Therefore,

often a two-step approach is used in order to design the optimal personalized policy. In the

first step, a model is estimated and used to predict the outcome variable under each treatment

as accurate as possible given and individual’s characteristics. In the second step, this model is

used to assign each individual the treatment which would lead to the highest possible value of

the outcome variable (Guelman et al., 2015). This two-step model is often used in combination

with machine learning based models like regression trees, random forests, and variations on

these methods (like boosted trees) (Athey and Imbens, 2016; Wager and Athey, 2018; Yoga-

narasimhan, 2020). In addition to this, there are also methods based on k-nearest neighbours,

causal trees, and causal forests (Wager & Athey, 2018). These methods aim to first split all

individuals in sub-groups where individuals within a sub-group are roughly the same (based on

characteristics in the case of k-nearest neighbours, or based on the CATE for causal trees and

forests). Then, within each sub-group the average treatment effect is estimated, which can be

interpreted as the CATE for these individuals. The policy based on these methods assigns each

individual to the treatment which gives them the highest CATE.

A method not yet used often in marketing, and especially not in the design of personalized

policies, are ANNs. In this research, an ANN will also be used to this end, and therefore

contributes to existing literature. ANNs come with both pros and cons, which will now be

discussed.
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The first advantage of ANNs is that they do not require any pre-existing knowledge on the

model specification (Heinrichs & Lim, 2008). Additionally, the standard regression assumptions

need not be satisfied, meaning it can also handle nonlinear models, nor do they need any

assumptions on the distribution of errors and covariates (Gorr et al., 1994). Furthermore, there

is no issue of multicollinearity (DeTienne & DeTienne, 2017). Next, ANNs can easily adjust to

new information added without having to be re-estimated as a whole, making them effective to

use in dynamic contexts (Rumelhart et al., 1994).

However, there are some downsides to using ANNs. The first one being the fact that they

are somewhat of a black box, meaning that model parameters are not easily interpretable. They

are therefore effective for predicting outcomes, but not so much for understanding mechanisms

(Stern, 1996). Also, when the standard regression assumptions are met, and the model is

correctly specified, standard linear analysis tends to outperform ANNs. In this case, regression

models are preferred, as the relationship between input and output variables can be interpreted,

which is where ANNs are lacking (Warner & Misra, 1996). However, as consumer behaviour

is often unpredictable and of non-linear nature, it is quite unlikely that in practice all these

conditions are met (DeTienne & DeTienne, 2017).

2.3 Off-Policy Evaluation

Nowadays, policy evaluation is a quintessential part of impact evaluation and governmental

policy making. It arose from the idea that more rational policy design could be achieved by

critically and analytically evaluating a policy, especially before the actual policy is implemented.

Whereas systematic policy evaluation was first mostly used for regulatory policies, it later

became popular in the field of environmental impact evaluation (Adelle & Weiland, 2012).

This type of ex ante policy evaluation is important, as the implementation of these policies

is expensive, especially when the desired result is not achieved. For this reason, off-policy

evaluation has recently became more and more popular in the field of medicine, as giving the

wrong medicine to a person can have detrimental consequences (Hanberger, 2001). Since the

amount of available data is increasing every day, data-driven policy evaluation, often based on

machine learning methods, has gained traction. Bertot and Choi (2013) claim that the use

of big data in policy making and evaluation can have large positive impact on these policies.

Later, the concept of policy-evaluation was also found in the evaluation of advertising policies,

for instance in Lambert and Pregibon (2007) and Chan et al. (2010).

As mentioned in Section 2.2, we only observe outcomes for each individual under one treat-

ment, and therefore use a 2-step approach to find the optimal policy. In order to estimate the

gains from this policy, without observing an individual under all treatments, off-policy evalu-

ation estimators are used. Commonly used estimators are the Direct Method (DM) and the

IPS estimator. The first method averages the estimated reward per individual when assigned

treatment by a given policy. The IPS estimator makes an approximation of the fraction of the

population which receives a certain treatment, the propensity score, and uses this estimate to

re-scale rewards from the policy. See section 4.2 for further mathematical details. Both methods

require some assumptions in order to be unbiased. DM requires that the estimated outcome
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under the policy needs to be unbiased. However, in practice it turns out that this is often not

the case. The estimates of the rewards under the policy are made without prior knowledge of

the policy, and might therefore not be accurate (Beygelzimer & Langford, 2009). The IPS does

not require this assumption to be unbiased. However, in order for the IPS to be accurate we

require that the propensity scores are accurate. In practice, this assumption is more likely to

hold than the unbiasedness assumption for DM. However, the IPS estimator tends to have a

higher variance than the DM estimator (Dud́ık et al., 2011; Dud́ık et al., 2014).

Dud́ık et al. (2011) therefore suggest using the DR estimator. This estimator combines

the previous methods into one estimator. Again, the exact mathematical details are in section

4.2. In order to be unbiased, this estimator requires only one of the two estimates, the expected

reward or the treatment probability, to be unbiased. In general, the variance of the DR estimator

is larger than the one of the DM estimator, but smaller than the variance of the IPS estimator

(Dud́ık et al., 2011; Dud́ık et al., 2014). These papers also find that the DR estimator tends to

estimate expected rewards more accurately than the IPS estimator.

3 Data Collection and Description

The data used is the CRITEO-UPLIFT1 data set as used by Diemert et al. (2018). The data

was collected from several incrementality tests, where an arbitrary sub-sample of the population

is prevented from being targeted from advertisement. The full data set has about 25 million

observations, with a treatment ratio of 84.6% However, the set has been randomly sub-sampled

in order to remain privacy, and to make the analysis computationally feasible. This sub-sample

consists of 50,000 observations with a treatment ratio of 85.1%. Such high treatment ratios

are quite regular in related research, as it can be quite costly to a company to not show

any advertisements. For each user we observe the following: twelve user features, a binary

treatment variable, and two binary outcome variables, one indicating whether the user visited

the advertiser’s website during the test period, the other indicating if the user converted during

the test period. The test period was two weeks long. In order to remain privacy, the user feature

names are anonymized, and values are projected randomly. This to ensure that it is practically

impossible to recover the initial features, while retaining predictability. The summary statistics

of the covariates are presented in Table 1.
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Table 1 Mean values of user features and outcome variables.

Full Sample Control Group Treatment Group

f0 19.642 19.598 19.650

f1 10.069 10.067 10.070

f2 8.446 8.448 8.446

f3 4.183 4.223 4.176

f4 10.336 10.332 10.337

f5 4.030 4.044 4.028

f6 -4.147 -4.009 -4.171

f7 5.102 5.064 5.108

f8 3.934 3.935 3.934

f9 15.989 15.833 16.016

f10 5.334 5.332 5.334

f11 -0.171 -0.170 -0.171

N 50,000 7447 42553

In terms of outcome variables, visit and conversion are binary variables, where a value of

1 means the user visited the website/was converted. The summary statistics of the outcome

variables can be found in Table 2.

Table 2 Summary Statistics of Visit and Conversion Outcomes.

Variable Mean Std. Dev. Min. 25% 50% 75% Max. N

Visit 0.046 0.209 0 0 0 0 1 50,000

Conversion (all) 0.003 0.051 0 0 0 0 1 50,000

Conversion (visitors) 0.058 0.233 0 0 0 0 1 2294

The data set will be split into a training set and a test set, using a 70-30% split. The

training set will be used for model estimation, as well as hyper-parameter optimization. The

test set will be used for model evaluation of policy performance. Note that the joint distribution

of variables between the two sets should be the same in theory due to the randomization, but

in practice might differ slightly. For our approach to work, we need the two sets to follow the

same distribution (Simester et al., 2020), which we will assume throughout this paper.

The data and code used for the analysis can be fount in the code package. A short description

of the code can be found in Appendix C. A more extensive description is found in the readme.txt

file in the code package.

4 Methodology

4.1 Optimal Policy Design

In order to design the optimal policy, we make use of the lasso estimator. Let i ∈ {1, . . . , N}
be the set of users, where each user has characteristics described by covariate vector Xi ∈ X.

Next, Wi ∈ W denotes the treatment individual i receives. The set of W possible treatments
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is given by W = {0, . . . ,W − 1}. Lastly, let Y (Xi,Wi) be the outcome variable, dependent

on covariates Xi and treatment Wi. In this paper, the covariate vector Xi consists of the 12

user features. Treatment Wi ∈ {0, 1}, where 0 means no advertisement was shown. Lastly the

outcome variable Y is either the visit or conversion variable.

Define a personalized treatment assignment policy, π, as a mapping from a users character-

istics to one treatment, π : X → W. The set of all possible policies is given by Π. The objective

is to find such a policy π which maximizes a reward function defines as the expected outcome,

R(π, Y ) = 1
N

∑N
i=1 E [Y (Xi, π(Xi))]. For a given reward function, the optimal policy π∗ is then

given by

π∗ = argmax
π∈Π

[R(π, Y )] . (1)

In order to find the optimal personalized policy, a 2-step approach is used. For this approach,

we need three standard assumptions, namely 1) unconfoundedness, 2) Stable Unit Treatment

Value Assumption, and 3) positivity. Given proper randomization, assumptions 1 and 2 are

likely satisfied, although unconfoundedness is not guaranteed by randomization (Sävje, 2021).

In addition to this, assuming no communication between users, assumption 2 is also satisfied.

Assuming all users had a probability of being put in either the treatment or control group, the

assumption 3 is also satisfied. Further discussion on the unconfoundedness assumption is found

in section 4.2.

Now define f(x,w) = E [Y |Xi = x,Wi = w], where f(·) is a lasso model. The set of param-

eter estimates in the model is then given by:

(
β̂1, β̂2, β̂3

)
=argmin

n∑
i=1

(Yi −Xiβ1 −Wiβ2 −XiWiβ3)
2

+ λ (∥β1∥1 + ∥β2∥1 + ∥β3∥1) ,

(2)

where λ is a hyper-parameter to be selected using 5-fold cross-validation with the glmnet package

in R. Furthermore, ∥βj∥1 is the L1 norm of the vector βj . A desirable property of lasso is that

when several predictors are (weakly) correlated, it picks a subset of predictors, and sets the

others to zero. The model in Equation (2) contains a total of 25 explanatory variables, namely

the treatment variable W , the twelve covariates X and the interaction between these two, XW .

With this many variables, the selection property is desirable, as otherwise it is likely that the

model would overfit on the training data.

The second step is to estimate the expected outcome ŷ (x = X,w) using the lasso model.

We then obtain the optimal personalized policy for individual i as follows:

πlasso (Xi) = w∗, where w∗ = argmax
w∈W

ŷ (x = Xi, w) . (3)

4.2 Policy Evaluation

In order to evaluate and quantify the gains of the personalization policy, the policy πlasso

is compared to two uniform policies, namely π0, and π1. Here, π0 is the policy with no

advertising, and π1 denotes a policy where all users are shown the advertisement. We take π0
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as the baseline policy. We evaluate the estimated reward from the policies using two different

estimators, namely the IPS and the DR estimator.

The first one is given by:

R̂IPS (π, Y ) =
1

N

N∑
i=1

1 [Wi = π (Xi)]Yi
êXi (Wi)

, (4)

where êXi (Wi) is the propensity score, namely Pr(Wi = wi|Xi), where wi is the treatment

received by user i. Given that a study is unconditionally unconfounded, the propensity score

is the same for the whole population, and we can estimate it using the treated fraction, or the

treatment assignment probabilities if the assignment model is known (Sävje, 2021). However,

this assumption needs to be tested. We regress treatment on covariates of all users in order to

test if the treatment is independent of user features. We reject the null hypothesis of features

being jointly insignificant at a 5% level (p = 0.033), and therefore conclude treatment is likely

not independent of user features. Hence, the propensity scores are not equal for the entire

population. Therefore, we model the propensity scores as a function of the user features, mak-

ing the study conditionally unconfounded. The propensity scores are calculated by regressing

treatment on the covariates Xi. As a sanity check we verify if these estimated propensity scored

lie between 0 and 1, which is the case.

Next, the DR estimator is given by the following:

R̂DR (π, Y ) =
1

N

N∑
i=1

1 [Wi = π (Xi)]

êXi (Wi)

(
Yi − ŶWi

)
+ Ŷπ(Xi), (5)

where Ŷp is the expected reward Yi given treatment p.

As discussed in section 2.3, the main difference in performance between the two estimators

is in the assumptions needed for unbiasedness. The IPS estimator requires the propensity scores

to be accurate, whereas the DR estimator requires either the propensity scores or the estimates

Ŷp to be accurate in order to be unbiased.

4.3 Model Comparison

In addition to the lasso model as described in Section 4.1, Several other models will also be

considered as a comparison of performance. This will be done using five outcome estimators,

namely 1) linear regression, 2) CART, 3) random forests, 4) XGBoost, and 5) ANNs. Further-

more, two additional CATE estimators are considered, namely 1) causal trees and 2) causal

forests. All these methods will be used to design policies, and are evaluated based on their

estimated visit rate. Note that the DR estimator uses the predicted outcome in its calculation,

and therefore this estimator can not be used in combination with the CATE estimators, as these

do not make a prediction of the outcome variable. The mathematical details of these methods

will now be discussed in more detail.
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Linear model

The linear regression model is estimated using Ordinary Least Squares (OLS) in the following

model:

Yi = Xiβ1 +Wiβ2 +XiWiβ3 + εi. (6)

A linear regression needs no parameter tuning, and can therefore be estimated directly. The

interpretation of the coefficients is the same as for the lasso model. Linear regression models are,

given the standard OLS assumption, unbiased. However, they often have poor out-of-sample

performance due to the large number of variables, leading to higher variance and possible

overfitting. As out-of-sample performance is of high importance when creating personalized

policies, this method will likely perform poorly.

Tree-based Methods

Tree-based methods partition the covariate space into subregions recursively. This is done based

on a certain criterion, mean squared error in our case. After the partitioning is done, the average

value of the outcome variable in a region is the predicted value for that region. A CART model

can be represented as follows:

y = f (x,w) =

K∑
k=1

ρk1 (x,w ∈ Rk) , (7)

where K is the total number of subregions, Rk is the kth subregion, and ρk is the predicted

value in that region. The CART model has one hyper-parameter that requires tuning, namely

the complexity parameter ζ. This is a penalty term on the number of terminal nodes of the

tree, used to prune a large tree (James et al., 2013). This parameter will be tuned using

GridSearchCV from the sklearn API (Pedregosa et al., 2011) in python.

CART models are simple and easy to interpret, but often have poor performance compared

to other supervised learning approaches due to high prediction variance, as well as them being

quite sensitive to outliers (James et al., 2013). Therefore, there are methods to improve the

performance of these regression trees, namely bagging, random forests, and boosting. We will

discuss these methods next.

The idea of bagging is the process of growing multiple regression trees based on several

distinct training sets, and then averaging the predicted outcomes of all these trees to form a

final prediction. These trees are grown deep, yielding low bias but high variance. Averaging

out predictions reduces this variance. As there is often no access to more than one training set,

these training sets are generated using bootstrapping.

The next variance reduction method for regression trees is the random forest regression.

Random forests work in a similar way to bagging, but instead of bootstrapping samples, each

tree in a random forest is grown using a subset of observations and predictors of the original data

set. Therefore, each tree is different. The final prediction is again made by averaging out the

prediction of each tree in the forest. A random forest has three hyper-parameters, namely the

number of trees n tree, the maximum number of features the alogrithm tries at each split max f,
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and the the minimum number of samples required to split a node n min. These parameters are

tuned using the hyperopt package in Python.

The last tree-based method considered is boosting. Boosting is performed by first fitting a

shallow tree. The residuals of this shallow tree are calculated, and then a new tree is grown

based on these residuals instead of on the actual outcomes. In the end, all these trees are added

to form a final model. Boosting is different from the last two methods, as each time a new tree

is grown, this tree depends on the last tree. A general boosting algorithm is given by Algorithm

1.

Algorithm 1 Regression Tree Boosting

1. Let f̂(x) = 0 and ri = yi for all i.

2. for b = 1, 2, . . . , B, do:

(a) grow tree f̂ b with d max number of splits to the data (X, r)

(b) f̂(x) = f̂(x) + ηf̂ b(x)

(c) ri = ri − ηf̂ b(xi)

3. f̂(x) =
∑B

b=1 ηf̂
b(x)

In this paper we use XGBoost, which was proposed by Chen and Guestrin (2016). XGBoost

requires tuning of six parameters, but often shows to only be sensitive to few of them (Yoga-

narasimhan et al., 2022). We therefore optimize over the L1 regularization parameter on the

loss function α, the shrinkage paramater or learning rate η, the L2 regularization parameter on

the weights λ, and the maximum depth of trees d max. These are also tuned using hyperopt in

Python.

CATE Estimators

The next class of models we consider are the CATE estimators. Instead of predicting an

outcome for each observation, these methods predict the heterogeneous treatment effect for

each individual, and use these estimates to assign treatment. In our setting this heterogeneous

treatment effect can be defined as

τ(x) = E [Y (Xi,Wi = 1)− Y (Xi,Wi = 0)|Xi = x] . (8)

A policy assigns treatment Wi = 1 to a user i if and only if τ(xi) > 0. However, when the

sample space is finite and the covariate space is large, we often do not have enough observations

with the same Xi to estimate the precise treatment effect. Therefore, we use methods which

pool observations whose covariates are close to each other in the covariate space, and estimate

the heterogeneous treatment effects for these pooled observations. The main challenge in these

methods is the way of chosing the sub-samples. If the sub-samples are chosen on a covariate

sub-space that is too small, there will not be enough observations to accurately estimate the

treatment effect for each sub-sample. Contrarily, if the covariate sub-space in each pool is to
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large, the model will not capture enough heterogeneity. Therefore, data-driven approaches for

finding the best covariate sub-spaces based on machine learning methods have been developed,

of which we will discuss causal trees and causal forests.

The causal tree method is similar to CART, except that it uses a different splitting criterion.

Whereas CART uses the MSE as a splitting criterion, causal trees split based on similarity of

treatment effects within each partition. Athey and Imbens (2016) find that maximizing the

variance of the treatment effect within each partition, with an added complexity penalty term,

achieves this goal. The objective function to be maximized than becomes V ar [τ̂ (X)] − ζT ,

where T is again the number of terminal nodes. In addition to ζ, causal trees have the additional

hyper-parameter q, indicating the minimum of treatment and control observations in each leaf.

ζ is tuned using the CausalTree package in R and q is found by manual grid search.

Next, we consider causal forests or the generalized random forest. This algorithm combines

the ideas of causal trees and predictive random forests. Again, each tree is built on a random

sub-sample of observations and covariates. Every time a split is made, the treatment effect in

the parent leaf P is estimated by minimizing the R-learner objective function, given by:

τ̂P (·) = argmin
τ

[
1

nP

nP∑
i=1

((
Yi − m̂(−i) (Xi)

)
−
(
Wi − ê(−i) (Xi)

)
τ̂ (Xi)

)2
+ Λn(τ(.))

]
. (9)

Here, nP is the number of observations in the parent node, Λn(τ(.)) is a regularization term

which decides the complexity of the model. m̂(−i) is an estimate of the outcome, and ê(−i) is

the estimate of the propensity score. Here −i denotes the set of out of bag observations. The

next split is chosen by maximizing the following function:

nL · nR

(nP )2
(τ̂L − τ̂R)

2 , (10)

where nL and nR are the number of observations in the nodes left and right of the split re-

spectively. In the second step of the algorithm, a weighted kernel regression is performed to

estimate the treatment effect at each point x using weights αi(x):

τ̂(x) =

∑N
i=l αi(x)

(
Yi − m̂(−i) (Xi)

) (
Wi − ê(−i) (Xi)

)∑N
i=l αi(x)

(
Wi − ê(−i) (Xi)

)2 , (11)

where αi(x) is the frequency with which the i-th training sample ends up in the same leaf as x

in the first step.

Causal forest has five tunable hyper-parameters, namely 1) frac, the fraction of the data

used when training each tree, 2) max imb, indicating the maximum imbalance allowed in every

split, 3)n min, the number of samples required to split a node, 4) mtry, the number of considered

covariates in each split, and 5) q, the minimal number of observations in each partition from

both the treatment and control group. These parameters are tuned using CausalForestDML in

python.
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Artificial Neural Networks

Artificial neural networks are based on biological neural networks in the brains of animals.

A neural network has several layers which consists of nodes called artificial neurons. The

neurons are connected between layers through edges, through which signals with information

are transmitted, similar to the synapses in the human brain. In a neural network, these signals

are real numbers. See Figure 1 for a simple example of an ANN.

Figure 1 Simple representation of a two-layer neural network

In the first layer, or input layer, all explanatory variables are inserted into the model. Then,

in each node of the hidden layer a weighted sum of the explanatory variables is calculated, to

which then a transformation is applied. In other words, in each node j in the hidden layer the

following operation is applied:

ϕ

(
m∑
i=1

wijxi

)
(12)

Where xi is the i-th explanatory variable, and wij is the weight of the signal of from the

i-th explanatory variable to the j-th node in the hidden layer. Next, the output of the nodes

in the hidden layer is passed to the output layer, where again a transformation of the weighted

sum of these signals is calculated, which then gives the final prediction.

The transformation function ϕ(·) is called the activation function. The discussion on activa-
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tion functions will be based on the paper by Sharma et al. (2017). The most common activation

functions are:

1. Binary step function (ϕ(x) = 1 if x ≥ 0, 0 otherwise)

2. Linear function (ϕ(x) = ax with a some constant)

3. Sigmoid function (ϕ(x) = 1
1+e−x )

4. Tanh function (ϕ(x) = e2x−1
e2x+1

)

5. Rectified linear unit (ReLU) function (ϕ(x) = max(0, x))

Of these functions, the binary step function is most suited for binary outcome variables. How-

ever, since we do not wish to estimate a 0/1 outcome when designing the policies, but wish to

find a continuous prediction, we can not use this function. The linear function is useful when

an intepretable model is desired, however that is not the aim of our study. Additionally, it is

not good in modelling complex patterns. The sigmoid and tanh function are smooth functions

that have outputs from 0 to 1 and -1 to 1 respectively. The ReLU is the most used function,

as it makes sure not all neurons are activated at the same time, increasing efficiency. We make

use of the ReLU function in the hidden layer, and the sigmoid function in the output layer such

that we get output between 0 and 1.

The weights of the model are learned by optimizing a cost function. One of the most common

cost functions is the MSE, but other cost functions can be used as well. In this paper we use

the MSE as cost function. There is no closed form solution for the weights, and they are found

using gradient descent. Gradient descent is an optimization method where in each iteration the

parameters in the model are updated using the gradient of the cost function. In other words,

in each iteration the parameters are updated as follows:

θn+1 = θn − η∇C(θn), (13)

where θ is the vector of parameters, η is the learning rate, and C(·) is the cost function. When

the data set used to train the model is large, this procedure can take a long time. Therefore,

often variations of gradient descent are used to reduce computation time, as well as decrease the

variance of parameter updates (Ruder, 2016). These versions use either only one observation per

iteration (Stochastic Gradient Descent) or a subset of the observations (Mini-Batch Gradient

Descent). In this paper we make use of Mini-Batch Gradient Descent. Once the algorithm has

run through the whole data set once, this is called one epoch. We use 100 epochs.

There are several hyper-parameters in an ANN model. First, there is the number of hidden

layers n layers. As we do not have that complex of a model, one hidden layer should suffice.

Next, the number of neurons in the hidden layer n nodes needs to be chosen. We make use

of a rule-of-thumb method suggested by Karsoliya (2012) of selecting the number of neurons,

namely that the number of neuron should be around two thirds of the number of input nodes,

and between the number of input and output nodes. We therefore try values around eight

neurons in the hidden layer, and find that seven nodes in the hidden layer leads to the lowest
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in-sample MSE, but eight nodes gives the lowest out-of-sample MSE. As mentioned earlier,

out-of-sample performance is crucial in policy design, and we therefore choose for 8 neurons in

the hidden layer. Lastly, we have the learning rate η and the mini-batch size b size. For this

we use the standard options in TensorFlow in python, which are 0.01 for η, and 32 for b size.

Table 7 in Appendix A gives an overview of all the models, the hyper-parameters that need

tuning, and the tuning method. Appendix A also gives the parameter values searched over, and

the final parameter values.

5 Results

The expected visit rates of the two uniform policies and the personalized policy based on lasso

are presented in the top two panels of Table 3.

Table 3 Gains in website visits using different counterfactual advertisement policies,
based on the IPS estimator.

Policy

Category
Policy

Estimated

Visit (%)

Increase

in Visit (%)

Prescribed

Treatment (%)

Training Set Test Set Training Set Test Set Training Set Test Set

Personalized

based on lasso
πlasso 4.87 4.52 22.98 26.90 33.48 32.93

Uniform
π0 3.96 3.56 - - 0 0

π1 4.85 4.38 22.24 22.98 100 100

πreg 4.90 4.44 23.63 24.73 39.25 39.30

πCART 4.85 4.38 22.24 22.98 100 100

Personalized
πrf 4.72 4.28 19.01 20.10 31.48 31.54

πXGBoost 4.85 4.38 22.24 22.98 100 100

πANN 4.34 4.32 9.43 21.44 25.61 25.67

πc tree 5.11 4.47 29.09 25.59 28.11 27.80

πc forest 4.82 4.40 21.63 23.63 99.62 99.58

First, we see that assigning all users to the treatment group (π1) leads to an increase in

estimated website visits of about 23% in the test set. Furthermore, the personalized policy based

on lasso πlasso leads to an even bigger increase in website visits, namely of 26.90%. In order to

assess if these differences are significant, the full data set is repeatedly split into a 70%-30% train-

test split, for a total of 30 times. Then, for each split the lasso model is estimated, and the IPS

rewards for the three policies is calculated. Finally, a two-sample paired t-test is performed to

assess the significance of these differences. The paired t-test between the two uniform policies

has a t-statistic and p-value of -14.7 and 0.000 respectively, rejecting the null-hypothesis of

equal means. Therefore, we conclude that π1 significantly outperforms π0. Next, the paired

t-test between πlasso and π1 has a t-statistic of 0.008 with a p-value of 0.999. This means

that we do not reject the null-hypothesis, and cannot conclude that one policy significantly

outperforms the other. This is in line with the findings of the recent literature on personalized
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advertising (Goldfarb and Tucker, 2011; Yoganarasimhan, 2020; Rafieian and Yoganarasimhan,

2021), which also shows positive but relatively small gains form personalization.

5.1 Robustness Checks and Comparisons

As mentioned, the IPS estimator needs the assumption of accurate propensity scores in order

to be unbiased. We therefore also compute the DR estimates and compare these to the IPS

rewards. Note that we can not make DR estimates for the uniform policies, as these do not

make any predictions on the outcome variable. The DR estimate of the lasso policy is shown

in the top panel of Table 4.

Table 4 Gains in website visits using different counterfactual advertisement policies,
based on the DR estimator.

Policy

Estimated

Visit (%)

Increase in

Visit (%)

Training Set Test Set Training Set Test Set

πlasso 5.17 4.78 30.42 34.18

πreg 4.84 4.38 22.21 23.15

πCART 4.83 4.36 21.99 22.55

πrf 4.90 4.09 23.70 14.83

πXGBoost 4.85 4.38 22.25 22.94

πANN 4.59 4.30 16.04 20.84

Note. The increase percentages are compared to the IPS estimate of the policy π0. For the uniform

policies, and the policies based on CATE estimators we cannot make a DR estimate as these do not

have outcome estimates.

We see that the DR estimator has slightly higher values than the IPS estimates, namely

5.17% and 4.78% compared to 4.87% and 4.52%. We again use the same testing procedure

to assess the significance of the difference between the two estimators, and find a t-statistic of

-1.320 with a p-value of 0.197, concluding that the two estimators do not differ significantly. We

also test if the DR estimate for the policy πlasso differs significantly from the IPS estimate for

the uniform policy π1. The t-statistic equals 0.723 with a p-value of 0.478. We again conclude

that the lasso policy does not significantly outperform the uniform policy of assigning all users

treatment.

Next we look at the other machine learning methods and see how these perform. The IPS

results are in the bottom panel of Table 3, and the DR estimates in the bottom panel of Table

4. First, based on the IPS estimates, we notice that the polcies based on CART and XGBoost

have the exact same estimates as the uniform policy π1. This is because these methods were

unable to create splits on the treatment variable, and only created subregions based on the user

features. Therefore, the best policy is the one who assigns all users to the treatment group. We

also see that the causal forest policy assigns almost everyone to the treatment group. All other

methods assign approximately 30% of the users to the treatment group, and the linear regression

model about 40%. Next, we find that the policies based on linear regression and causal trees

17



perform better than the lasso policy in the training set, but perform worse on the test set.

This is likely due to these methods having low bias, and therefore good in-sample fit, but have

high variance and thus worse out-of-sample fit. Another interesting thing to notice is that the

random forest policy has quite a bit worse performance than the lasso policy, but the MSE values

are lower for the random forest model (see Appendix B), and several other estimators show

similar relationships. We therefore conclude that there is little correlation between predictive

performance and policy performance. Lastly, we see that the addition of a neural network did

not give a better policy performance than the other methods, only outperforming the uniform

policy of no advertising, and the random forest policy on the test set. Similar conclusions hold

when using the DR estimator of policy evaluation, although now the policy πlasso outperforms

all the other methods on the training set as well.

5.2 Conversion

Next, we are interested in the expected conversion rate after personalization. To this end, we

perform the same two-step procedure as described in section 4.1 using a lasso model, but this

time the dependent variable Yi is the conversion variable. The results are in Table 5.

Table 5 IPS estimates of conversion rates under different counterfactual policies.

Policy

Category
Policy

Estimated

Conversion (%)

Increase in

Conversion (%)

Prescribed

Treatment %

Training Set Test Set Training Set Test Set Training Set Test Set

Uniform π0 0.15 0.11 - - 0 0

π1 0.30 0.22 96.43 102.52 100 100

Personalized πlasso 0.29 0.20 87.71 81.74 25.14 24.99

We see that personalizing treatment using the lasso model no longer outperforms the uniform

policy of assigning every user treatment, although they differ only slightly. It still outperforms

π0 by a lot, namely 87.71% and 81.74% on the training and test set respectively. Notice that

the percentage increase in conversion rates for π1 and πlasso compared to π0 is substantially

higher than the increase in visit rates as shown in Table 3. This can be explained by looking

at the definition of the conversion probability:

Pr (Y c
i = 1|Wi) = Pr (Y v

i = 1|Wi) · Pr (Y c
i = 1|Wi, Y

v
i = 1) (14)

Where Y c
i is the conversion variable of individual i, and Y v

i is the visit variable of individual

i. This equation shows why the increase in conversion is different than the increase in website

visits. The advertisement does not only influence the visit probability, but also the probability

of conversion. Therefore, the gains in these outcomes are naturally different. This formula also

shows that increasing the conversion probability should lead to an increase in the conversion

probability.

Next, it is assessed if the policy which maximizes visits also translates to the highest con-

version rates. This is done by calculating the IPS estimator using conversion rates as outcome
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variable Yi, based on πlasso which optimized visits. Note that we can not use the DR estimator

here, as we do not have en estimate for this outcome under the policy which optimizes the visits.

Table 6 IPS estimates of the visit and conversion rates under lasso policies optimized
under each outcome.

Data set Outcome optimized on Visit Conversion

Training set
Visit 4.87 0.27

Conversion 4.71 0.29

Test Set
Visit 4.52 0.19

Conversion 4.28 0.20

We see that optimizing over the visit rate does indeed lead to higher expected visit rates

than optimizing over conversion rates, namely by 3.40% on the training set, and by 5.61% on

the test set. We see however that these increases are moderate.

Similarly, optimizing over conversion rates instead of visit rates increases the expected con-

version rates only slightly, namely by 7.41% and 5.26% on the training set and test set respec-

tively. The best variable to optimize over, either visit rates or conversion rates, depends on the

goal of the advertisement campaign, as well as the cost of advertisement. The latter will be

discussed in the following section.

6 Cost Analysis

As mentioned in Section 1, the cost model of advertising decides which policy is optimal. In

this section, we analyse which method is most effective under two different cost models, namely

PPM and PPC. We first introduce some notation. Define the cost of advertising under the

PPM model as ci and under the PPC model as cc, and the price of the product advertised p.

Next, let the number of advertisements shown be A, the number of products sold Q, and the

number of people who clicked the advertisement T . Assuming the seller only has advertising

costs and no other costs, under the PPM model, the total profit over the advertisement period

can be defined as:

ProfitPPM = Qp−Aci, (15)

and under the PPC model:

ProfitPPC = Qp− Tcc. (16)

Following these equations, we find that the break-even profit-margin p−c
c ∗100% under the PPM

model is equal to A−Q
Q ×100%, and under the PPC model it is T−Q

Q ×100%. For instance, when

using the policy πlasso optimized over visit rates, we get a break-even profit-margin under the

PPM model on the test set of 32.93−0.19
0.19 = 17231.58%. In order to calculate this margin under

the PPC model, we first need to know how many people who received treatment also clicked the

advertisement, which is equal to the product of the policy assigned treatment and the estimated

outcome under this policy. For the policy πlasso optimized over visits, this equals 4.26% in the

test set. The break-even profit-margin under the PPC model on the test set is therefore equal
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to 4.26−0.19
0.19 = 2110.53%. This shows that under the PPC model, the required profit-margin is

way lower than under the PPM model when using πlasso. However, often the cost of advertising

is higher in PPC models, exactly for this reason (Asdemir et al., 2012). In a similar fashion,

we calculate these margins for the policy π1. This leads to, under the PPM model, a margin of
100−0.22

0.22 ×100% = 45354%, and under the PPC model it is 4.38−0.22
0.22 ×100% = 1890.91%. We see

that, as expected, under a non-personalized policy where everyone is shown the advertisement

and the advertisement costs follow a PPM model, a substantially higher break-even profit-

margin is required than under the personalized policy πlasso. However, under a PPC model,

the uniform policy requires a lower break-even profit-margin than the personalized policy. This

is logical, as under a PPM model the company pays per advertisement shown, and the lasso

model prescribes only about 33% of users treatment, which is only a third of the advertisements

shown under the uniform policy. The uniform policy does lead to a slightly higher expected

conversion rate, but this increase is moderate.

When, using the lasso policy optimized on conversion rates, the break-even profit-margin

under the PPM model on the test set is equal to 24.99−0.20
0.20 × 100% = 12395%. The expected

click through rate in the test set under the lasso policy optimized on conversion rates is 3.99%.

This leads to a required profit-margin under the PPC model of 3.99−0.20
0.20 × 100% = 1895%. We

see that both under the PPM and the PPC model, the policy optimized over conversion rates

requires a lower profit margin than the policy optimized over visit rates to be profitable. This

is due to the fact that both the expected conversion is higher, and the percentage of people

assigned treatment is lower.

Lastly, we assess under which conditions πlasso is more desirable than π1. To this end,

define {Ql, Al, Tl} and {Qu, Au, Tu} as the aforementioned variables Q,A, and T under the

lasso and uniform policy respectively. Under the PPM model, the policy πlasso is preferred if

Qlp− Alci > Qup− Auci, and similarly under the PPC model when Qlp− Tlcc > Qup− Tucc.

We again use the policy πlasso which was optimized over conversion rates, as this policy requires

a lower profit margin than the one optimized over visits. In the test set, we obtain the following

condition under the PPM model: 0.20p− 24.99c > 0.22p− 100c, which comes down to a profit

margin below 374950%. Under the PPC model we get 0.20p−3.99c > 0.22p−4.38c, implying a

profit margin below 1850%. Under these conditions, the lasso policy optimized over conversion

rates is preferred over the uniform policy π1. This gives a simplified example of how firms can

evaluate different policies under two common cost models for online advertising, and make a

decision based on this evaluation.

Note that the profit margins on advertising shown in this section are extremely high and

quite unrealistic, as a typical margin on advertising is somewhere between 200% and 600%

(Brown, 2023). However, the comparison of margins between the different policies is still useful

and the general procedure of the cost model analysis is still applicable in practice. Furthermore,

the relative difference of the margins between the different policies is intuitive, as we do expect

a policy assigning everyone treatment to require a higher profit margin under a CPM model

compared to a policy assigning only few people treatment. The other comparisons made in this

section remain intuitive in a similar manner.
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7 Discussion and Conclusion

Online advertising is a fundamental part of promotional activities of all companies nowadays.

In this paper, we tried to answer the question Is the effect of advertising heterogeneous across

consumers, and if so, how can the assignment of advertisements be personalized based on con-

sumer characteristics, and what are the gains from personalization? This effect of advertising

strategies on website visits and conversion rates is examined using data from several incremen-

tality experiments. Using the IPS estimator for off-policy evaluation, We find that in terms of

uniform policies, the policy showing advertisements to all users performs better than showing

no advertisements at all, with an increase in visit rates of about 23%, and more than doubling

the expected conversion rate.

Next, a personalization strategy based on lasso regression is developed to examine hetero-

geneous effects of advertising on users decisions. We find that this policy increases expected

visit rates by about 27% over showing no advertisements at all, and about 3% over showing all

users advertisements, although this last increase is not statistically significant.

As the IPS estimator makes quite a strict assumption in order to be unbiased, we also es-

timate expected pay-offs using the DR off-policy estimator. We find that in our context, the

estimates of both estimators do not differ significantly, Is the effect of advertising heteroge-

neous across consumers, and if so, how can the assignment of advertisements be personalized

based on consumer characteristics, and what are the gains from personalization?and lasso still

outperforms the uniform policies, although not necessarily by a statistically significant amount.

The performance of the lasso policy is also compared to other methods in machine learning,

using both popular outcome estimators like random forests and the recently more popular

artificial neural network, as well as recently proposed CATE estimators like causal trees and

causal forests. We find that these policies do not outperform the lasso policy, which is in line

with the findings of Yoganarasimhan et al. (2022). The random forest policy even performs

worse than the best uniform policy, whereas CART and XGBoost are unable to differentiate

between users at all. Additionally, the recently popularized causal tree and causal forest also

fail to outperform the lasso policy, as well as the policy based on neural networks, despite its

increasing popularity. An important takeaway from a managerial standpoint is that companies

should not blindly choose a popular estimator and assume that it leads to a good personalization

policy, but should carefully evaluate several policies, for instance using IPS or DR, to decide

what strategy to deploy.

Next, we find that a personalized lasso policy which optimizes conversion rates does not lead

to an increase in conversion over the best uniform policy, although the differences are small.

We also find that the policy optimized over website visits performs slightly worse on expected

conversion rates than a policy explicitly maximizing conversion rates, though the difference

is moderate. The same holds the other way around. This implies that based on the goal of

the advertising campaign, a firm should optimize over different outcome variables. If the only

goal is to sell more products in the short run, optimizing over conversion is most likely the

best strategy, especially since this is cheaper under certain cost models since the prescribed

treatment percentage is lower. However, optimizing over visit rates still leads to only slightly
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lower sales. Therefore, if the firm wishes to expand their brand awareness, it should likely

optimize over visits as more people are then exposed to the advertisement, and more users visit

the website. In the short run this might lead to lower sales, but brand awareness could lead to

an increased long term performance (Bernarto et al., 2020).

Lastly, we look into different cost systems, and which policy is preferred under these cost

systems. We find that the personalized lasso policy which optimizes over conversion rates

requires lower profit margins than the policy optimized over visit rates in order to be profitable,

no matter what cost system. Furthermore, we find that under a PPM model, a personalized

strategy is often more profitable than the best uniform strategy, whereas under a PPC model it

is the other way around. This shows that when choosing what advertising policy to use, firms

should take into consideration what cost model they are dealing with, and choose their strategy

accordingly.

8 Limitations and Further Research

This paper comes with several limitations. First, not all available data was used, but only a

subset of observations due to computational limitations. Even though the subsetting was done

randomly, and the distribution of the subset should be similar to the full data set, this might

lead to small biases. In addition to this, there is little managerial motivation to not use all

available data.

Secondly, as the user features were anonymized completely, both in the naming and the

levels of the variables, interpretation of the personalization policies is impossible and we cannot

identify underlying mechanisms. Though finding these mechanisms were not the goal of this

research, it does give managers insight as to what and who to target on, making the advertising

process more efficient. It can therefore be of importance to perform a similar study with known

user features.

Another limitation is related to the test period of the experiment the data was retrieved

from. The data was collected over a time span of only two weeks, meaning long term effects of

advertisement are unobservable. Depending on the type of product advertised, it is likely that

a user who is shown an advertisement might take more than two weeks to decide on buying

a product. Furthermore, users shown the advertisement at the end of the test period would

have to buy the product within the last few days in order to be considered a converted user.

Therefore, the information on the actual effect of the advertisement is incomplete.

Furthermore, in computing the IPS and DR estimates, we use a propensity score following an

estimated linear model. However, we can not know for sure if these scores are correct, especially

if treatment assignment also depends on unobserved covariates. In this case, the study would

not be conditionally unconfounded either, which we assumed to be true throughout the paper.

It may therefore be useful to perform a similar research with an unconditionally unconfounded

study, or a study where the actual propensity scores are known. In addition to this, we use

the DR estimator as first proposed by Dud́ık et al. (2011). However, in more recent literature

different forms of the DR estimator are proposed, which might be more optimal. Li and Shen
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(2020) use a DR estimator which does not calculate the average absolute outcome (visit rates

for instance), but it estimates the average actual uplift. Kennedy (2020) extend this idea, where

the uplift is calculated per individual, and afterwards regressed on the observed confounders to

obtain the estimated uplift per individual, which is again averaged in the end. This method

leads to more efficient estimates than the DR estimator used throughout this research. It

may therefore be of use to explore if other definitions of this estimator would lead to different

outcomes.

Next, for the models that require parameter tuning, some parameters were handpicked,

whereas tuning all parameters should lead to better model performance. This is mainly the

case for the ANN and XGBoost models. However, additional tuning would lead to better

predictive performance, but we have shown that this does not automatically lead to higher

gains in visit and conversion rates, and may therefore not lead to better policy design. This is

something worth wile to be further investigated.

An interesting finding is that some personalization policies perform worse than the best

uniform policy, with some policies being unable to personalize at all. Furthermore, we find

that methods explicitly designed to model treatments effects do not necessarily perform well.

A useful followup to this study is to investigate if these findings are generalizable, or arise due

to the structure and nature of the data.
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Appendix

A Parameter Estimation

Table 7 Overview of used methods, their hyper-parameters, and the method of param-
eter tuning

Model Hyper-Parameters Tuning Method and Language

Linear regression - None - R

Lasso λ glmnet - R

CART ζ GridSearchCV - Python

RF n tree, max f, n min hyperopt - Python

XGBoost α, η, λ, d max hyperopt - Python

Causal Tree ζ, q CausalTree & grid search - R

Causal Forest frac, max imb, n min, mtry, n trees causalForestDML - Python

ANN n nodes, n layers, η, b size TensorFlow & grid search - Python

Below, the search space and optimal value for each parameter are given

Lasso:

• λ ∈ [9.7× 10−6, 9.7× 10−2] and λ∗ = 2.0× 10−5

CART:

• ζ ∈ [1× 10−10, 2× 10−1] and ζ∗ = 1.0× 10−4

Random Forest:

• n tree ∈ [100, 1200] and n tree∗ = 600

• max f ∈ {k,
√
k} and max f∗ = k, where k is the number of features

• n min ∈ [10, 300] and n min∗ = 70

XGBoost:

• α ∈ {1, 5, 10, 15, 20, 25} and α∗ = 20

• η ∈ [0, 1] and η∗ = 3.8× 10−2

• λ ∈ {0, 1, 5, 10, 15} and λ∗ = 10

• d max ∈ {6, 8, 10, 12} and d max∗ = 6

Causal Tree:

• ζ∗ = 5.4× 10−6

• q ∈ [100, 1000] and q∗ = 300
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Causal Forest: Note that CausalForestDML does not offer the option to retrieve optimal param-

eters.

• frac ∈ (0, 1]

• max imb ∈ [0, 0.5]

• n min ∈ [2, N ], where N is the total number of observations

• mtry ∈ {k,
√
k, log2 k}, where k is the number of features

• n trees > 1

ANN: Note that only the number of nodes was tuned using grid search, the other parameters

were set manually

• n nodes ∈ {6, 7, 8, 9} and n nodes∗ = 8

• n layers∗ = 1

• η∗ = 0.01

• b size∗ = 32
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B Mean Squared Errors of Personalization Policies

Table 8 Comparison of the predictive performance of policy design methods.

Method
Mean Squared Error

Training Set Test Set

Linear Regression 0.0330 0.0308

Lasso 0.0329 0.0308

CART 0.0313 0.0301

Random Forest 0.0294 0.0293

XGBoost 0.1326 0.1322

ANN 0.0314 0.0300

Note. Notice that there is no MSE for the CATE estimators, as we do not know the actual values of

the CATE.
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C Code Description

The code provided in the code package consists of several parts. Data Preparation.R samples

the data and creates the train/test split. Summary Statistics.R computes the values shown

in Table 1 and Table 2. Next, Lasso And Lr.R, CART.py, Random Forest.py, XGBoost.py,

ANN.py, Causal Tree.R, and Causal Forest.py are used to design and evaluate personalized

policies. Lastly, Lasso Significance Analysis.R is used to compute the significance of differences

in expected gain between several policies. A more detailed explanation of the code is found in

the readme.txt in the code package.
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