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Abstract

In this thesis we present an application of Penalized Matrix Decomposition

(PMD) to construct latent factor models and built minimum variance portfolios

from these factor models. We introduce the PMD algorithms in accordance to Wit-

ten et al. (2009). We will apply this to a simulation example to test the method.

We will then built factor models and portfolios in accordance with Conlon et al.

(2021). We will compare these portfolios with an equal weight portfolio for stocks

from the S&P 500. We find that the new portfolio construction methods do not

improve on the equal weights portfolio.
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1 Introduction

Dimension reduction techniques are more important than ever. Data with large di-

mensionality gives us opportunities, but also gives issues, for example the curse of dimen-

sionality described by Donoho et al. (2000). Another paper that addresses issues with

high dimensional data is Johnstone and Titterington (2009).

One of the ways to address high dimensionality is dimension reduction. A well known

dimension reduction techniques is Principal Component Analysis (PCA). This method

extracts the eigenvectors from the original data matrix and tries to explain the largest part

of the variance with the least amount of vectors. Another approach that closely relates to

PCA is Singular Value Decomposition(SVD). This method decomposes a matrix in three

other matrices, with eigenvectors and eigenvalues. Both techniques will be discussed in

more detail in the section theoretical background.

A method that uses SVD is Penalized Matrix Decomposition(PMD) from Witten et al.

(2009). This technique gives us a flexible set of algorithms to derive either a single-factor

or a multi-factor model. By adjusting the penalty functions on the vectors from the

Singular Value Decomposition we can adjust the algorithms to give different results. One

useful application is sparse PCA. This gives us Principal Components with sparsity. This

means we have a large amount of zero elements in the principal components, which results

in better interpretation and lower computation times. This method has been applied in

different fields, but is quite unknown in the financial world. This is why we will apply

PMD to estimate latent factor models and construct minimum variance portfolios. The

main research question is: Does PMD give minimum variance portfolios that perform well

compared to other portfolios?

The main research question is inspired by Conlon et al. (2021), who created portfolios

from latent factor models using PCA and Sparse PCA. Besides this they use different

machine learning methods, which are not used in this research.

We will contribute to these papers by applying PMD to reduce the dimension of out

stock data from the S&P 500. This will construct new latent factor models which we will

use to construct minimum variance portfolios. After that we will compare the constructed

portfolios with a simple equal weights portfolio using the Sharpe-Ratio and Value-at-Risk.
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The paper is structured in the following way. In section 2 we review the relevant

literature for the research. In section 3 we describe methods needed to get the results.

In section 4 we describe the data and in section 5 we specify the methods to our specific

applications. In section 6 we discuss the results and in section 7 we provide a conclusion

and give options for further research.

2 Literature Review

This section is a review of the literature of several subject relevant for the research.

First we will discuss the literature on Penalize Matrix Decomposition, then we will look

at Sparse PCA and we will finish with Sparse PCA and portfolio construction.

2.1 Penalized Matrix Decomposition

The paper that relates most with my proposed research is Witten et al. (2009). The

paper constructs a new way to build rank-K approximations for matrices. Their goal is

threefold. Firstly they aim to create interpretable factors. Secondly they show that the

algorithms can be used to construct sparse Principle Components similar to the SCoT-

LASS method. Thirdly they show that PMD on a cross-product matrix gives a method for

penalized Canonical Correlation Analysis. For these goals they use both a simulated data

set and a data set containing gene expression. The results show that all three goals are

achieved and therefore PMD seems to be a useful method to create a sparse decomposition

of a matrix.

One of the other papers using PMD is Zheng et al. (2011). PMD is applied here to

extract metasamples from genome data. Compared to other traditional clustering meth-

ods, the paper shows that PMD can identify the features of the samples well. This shows

that PMD works especially well for the DNA datasets.
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2.2 Sparse PCA

As this thesis focuses on the PCA side of PMD, it is logical to look at recent papers

about Sparse PCA. One of these papers is Zou and Xue (2018). This paper gives an

overview of the different methods to construct Sparse PCA and their applications. The

first two methods discussed in Zou and Xue (2018) can also be seen in Witten et al.

(2009), namely SCoTLASS and SPCA. The downside of SCoTLASS is that it is hard to

compute, which makes it inconvenient in practice. They also introduce iterative thresh-

olding methods, which are similar to PMD. Different methods they mention are DSPCA

and a generalized power method. Both these methods have shown promise through re-

search. After the overview of methods the paper discusses the benefits and the downsides

of sparse PCA. One important downside of normal PCA that is is not consistent in high

dimension data sets, but literature shows that sparse PCA is consistent, which is a great

improvement. One of the important downsides of Sparse PCA is that there is no clear

procedure to set the sparse parameters in Sparse PCA. Another big discussion in the

paper is the trade-off between sparsity and the variance explained.

2.3 Sparse PCA and portfolio construction

One of the area’s where PMD hasn’t been applied yet is the financial sector. However

there are papers on sparse PCA in this field. Wang et al. (2013) looks at sparse PCA for

high dimensional multivariate vector autoregresive time series. The paper itself doesn’t

give a clear conclusion of the use of sparse PCA for the Vector-Auto-Regressive (VAR)

model in practice, but it shows that sparse PCA is of interest in finance.

However, we choose to follow more closely the work of Conlon et al. (2021). In this

paper they use machine learning methods to build Factor-Based portfolios and to optimize

them. They create a latent factor model, and they use different methods to estimate the

weights for the factor model. Among the methods are PCA and Sparse PCA. We will

extent on these methods and apply PMD to try and improve the factor model and resulting

portfolios.

Also interesting is a paper on portfolio construction using normal PCA. Chen (2014)

constructs portfolios by combining PCA and Markowitz portfolio theory. This paper how-
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ever creates the portfolios differently then we do, hence we cannot apply these methods

in combination with our chosen framework.

3 Theoretical Background

In this section we introduce important theoretical concepts for my research. In the

first three subsections we explain Principal Component Analysis, Penalized Matrix De-

composition and the basis of latent factor models and their connection to portfolio theory

respectively.

3.1 Principal Component Analysis

Principal Component Analysis (PCA) is one of the most used dimension reduction

techniques given inHotelling (1933). The goal is to explain a large part of the variance of

the original data in a linear combination of the original variables. Besides reducing the

dimension of the original data it also helps with interpretation. A good representation of

PCA is given in Johnson and Wichern (2014). For PCA we need to know the estimated

covariance matrix and the original data X, which is a n x p matrix. From there we can

determine the eigenvalues λi and their corresponding eigenvectors ei. Next we order them

by eigenvalue starting with the highest eigenvalue. Now we can construct the ith Principal

Component by:

yi = Xei (1)

In this equation ei is a vector of length p and the resulting principal component yi is a

vector of length n.To choose the number of principal components, we use the variance

explained by the k first principal components. A common choice is to retain around 80%

of the total variance, as chosen by Johnson and Wichern (2014). We can calculate the

percentage of the variance explained by the first k first principal components by:

Pk =

∑k
i=1 λi∑p
i=1 λi

(2)

where p is the total number of eigenvalues.
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For the method in the next subsection we need the Singular Value Decomposition(SVD).

This method can also be used to reduce the dimensionality of a matrix. The method uses

the following decomposition:

X = UDVT (3)

In this equation U is an n x n matrix, V is a p x p matrix and D is a n x p diagonal

matrix, where the elements are in descending order. Also the following holds for the SVD:

UTU = In and UTU = Ip. The Penalized Matrix Decomposition, which is discussed in

the next subsection, will be a generalisation of the SVD by implementing additional

constraints on the matrices U and V.

The relation between the SVD and PCA is in the use of eigenvectors. The V in the SVD

is matrix containing the same eigenvectors as are used in PCA.

3.2 Penalized Matrix Decomposition

Penalized Matrix Decomposition (PMD) is a method proposed by Witten et al. (2009).

PMD is an adaptation of the Singular Value Decomposition. This gives the following

optimization problem for PMD:

min
d,u,v

1

2
∥X− duvT∥2F subject to ∥u∥22 = 1, ∥v∥22 = 1,P1(u) ≤ c1,P2(v) ≤ c2, d ≥ 0, (4)

In this equation we use ∥X∥2F, which is the squared Frobenius norm and ∥u∥22,which is

the squared L2 norm. The squared Frobenius norm is the sum of squared elements of a

matrix and the squared L2 norm is the equivalent of the Frobenius norm but for vectors.

In equation 4 d, u and v comprise the results of the SVD and P1 and P2 are convex

penalty functions, which can be chosen in accordance with the data or application. The

Penalty functions we will implement are lasso and fused lasso. Next we want to rewrite

equation 4 to a more convenient problem. This can be done using theorem 2.1 from

Witten et al. (2009). This theorem helps remove the norm in the objective. However,

because of the equality constraints, the criterion is not convex, when we fix either u or

v . We can solve this by relaxing the equality constraints and iteratively fix u and v as
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done in Witten et al. (2009). This gives the following problem:

max
u,v

uTXv subject to ∥u∥22 ≤ 1, ∥v∥22 ≤ 1,P1(u) ≤ c1,P2(v) ≤ c2. (5)

From equation 5 an algorithm can be build for a single factor PMD model, similar to

Algorithm 1 in Witten et al. (2009) :

Algorithm 1 Computation of single-factor PMD model

1. initialize v to have L2-norm 1.
2. iterate until convergence:

(a) u←− arg maxu u
TXv subject to P1(u) ≤ c1 and ∥u∥22 ≤ 1.

(b) v ←− arg maxv u
TXv subject to P2(v) ≤ c2 and ∥v∥22 ≤ 1.

3. d ←− uTXv.

We can adjust the PMD algorithm by choosing the penalty functions. Examples of

pairs of penalty function are (L1, L1), (L1, FL) or (−, L1). L1 represents a penalty of the

form Σn
i=1|ui|, where ui are the elements of the vector u. The FL represent a fused lasso

penalty of the form Σn
i=1|ui| + λΣn

i=2|ui − ui−1|, where λ > 0. The last set of penalty

functions applies no additional restrictions on u and gives a method for sparse PCA.

Besides the single factor algorithm, Witten et al. (2009) also constructs algorithm 2, a

PMD algorithm for multiple factors:

Algorithm 2 Computation of K-factor PMD model

1. Let X1 ←− X.
2. for k ∈ 1, ..., K:

(a) Find uk,vk and dk by applying algorithm 1 (Single factor PMD) to data Xk.
(b) Xk+1 ←− Xk − dkukv

T
k .

First we focus on algorithm 1 and compare this method to other sparse PCA methods

on both simulated data and on gene expression data, as done in Witten et al. (2009). To

extend on this paper we will apply PMD Algorithm 2 to data from the stock market. For

this data we will use the stocks in the S&P500, which we will need to adjust for dividend

and splits, to give the daily returns.
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3.3 Factor-Based portfolio optimization

We apply PMD on the financial data, using methods proposed by Conlon et al. (2021).

First we need to build the latent factor model. To do this we can use the general form

defined in Conlon et al. (2021). First we choose i = 1, ..., N assets with t = 1, ..., T

observations and k = 1, ..., K and let p be the number of predictors. The general form for

latent factor models is as follows:

ri,t = αi + βi(XtW) + ui,t = αi + βiFt + ui,t (6)

In this equation ri,t are the returns of asset i at time t, the αi is the intercept for asset

i, βi is the estimated factor loading for asset i and ui,t are the error terms for asset

we at time t. The matrix Xt is a set of predictors of size T x p and W is the matrix

containing the weights of size p x K, which we will construct using PCA and Sparse PCA.

The multiplication gives an estimate of the Factors Ft, a matrix of size T x K. After

constructing the factors, we apply Ordinary Least Squares (OLS) to estimate αi and βi.

From this estimated model we can calculate the error terms ui,t.

The goal for the portfolios we construct is minimum variance, which means we want

to minimize the risk. This is also the approach from Conlon et al. (2021). We first need a

definition for the variance of the portfolio, which can simply be derived from equation 6:

Σr = BTΣfB+Σu (7)

In this equation the sigmas represent the the covariance matrix to the corresponding

indices and the B is a K x N matrix where each column contains the factor loadings βi.

To estimate the weights for a minimum-variance portfolio we need to solve the following

optimization:

argmin
ω

ωT Σ̂rω, s,t ω1N = 1, ωi ≥ 0, for i = 1, ...N (8)

In this equation the ω is the portfolio weight factor and 1N is a unit vector of size N.

The last constraint states that the portfolio weights can not be negative. This is used in

theory by for example Conlon et al. (2021). However, in practice we can choose to remove

this criterion and allow shortselling of assets.
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4 Data

For the research we use several datasets. First we use a simulated data set with

the following Data Generating Process: we create a dataset X, which is 12x1000. This

represents 12 patients with each 1000 genes. For the values in X we use:

1. For i ∈ 1, ..., 5 and j ∈ 100, ...500, Xi.j ∼ N(1, 1)

2. Otherwise, Xi,j ∼ N(0, 1).

This is the same as described in appendix 3 from Witten et al. (2009). This means that

patients 1 to 5 have higher values between positions 100 and 500.

For the Risk Model we use a data set comprised of the stocks in the S&P500. Not all

stocks are available for the full sample period, so some stocks have been removed from the

sample. This leaves us with 441 stocks with 1759 observations for each stock. For these

stocks we calculate the daily log returns. First the stock prices have been adjusted for

dividend and then they are transformed in daily log returns by the taking the difference of

the log price on the day minus the log price on the previous day. For the sample we choose

the time period 2012 to 2018 and split them in a training sample from 2012 through 2016

and a test sample from 2017 through 2018. This sample is chosen to avoid the effect of

COVID on daily returns, which are highly volatile.

5 Methodology

We split the research into two parts. We first study the medical data, as used in

Witten et al. (2009) and replicate their results. After that we focus on using the PMD to

construct portfolios and compare it to other possible portfolios.

5.1 Simulation Example

In this part we follow Witten et al. (2009) and their simulation example. First we

introduce a soft threshold function:

S(a, c) = sgn(a)(|a| − c)+ (9)
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In this equation c is a constant larger than 0 and the (...)+ indicates that the part between

the brackets equals zero if it is negative and the normal value if it is positive. The sgn(a)

function returns 1 if a is positive or zero and returns −1 if a is negative.

Next we change algorithm 1 to fit two different penalty functions for PMD: PMD(L1,L1),

shown in algorithm 3, and PMD(L1,FL), shown in algorithm 4. These algorithms are iden-

tical to Algorithms 3 and 4 in Witten et al. (2009). To get this we only have to change

steps 2(a) and 2(b).

Algorithm 3 Computation of single-factor PMD model for L1,L1

1. initialize v to have L2-norm 1.
2. iterate until convergence:

(a) u ←− S(Xv,∆1)
∥S(Xv,∆1)∥2 , where ∆1 = 0, if this results in ∥u∥1 ≤ c1, otherwise, ∆1 is

chosen such that ∥u∥1 = c1, where ∆1 is a positive constant.

(b) v ←− S(XTu,∆2)
∥S(XTu,∆2)∥2 , where ∆2 = 0, if this results in ∥v∥1 ≤ c1, otherwise, ∆1 is

chosen such that ∥v∥1 = c1, where ∆2 is a positive constant.
3. d ←− uTXv.

Algorithm 4 Computation of single-factor PMD model for L1,FL

1. initialize v to have L2-norm 1.
2. iterate until convergence:

(a) u ←− S(Xv,∆1)
∥S(Xv,∆1)∥2 , where ∆1 = 0, if this results in ∥u∥1 ≤ c1, otherwise, ∆1 is

chosen such that ∥u∥1 = c1, where ∆1 is a positive constant.
(b) v ←− argminv{12∥X

Tu− v∥2 + λ1

∑
j |vj|+ λ2

∑
j |vj − vj−1|}

3. d ←− uTXv.

The selection of the tuning parameters c1 and c2 is done in accordance with algorithm

5 in Witten et al. (2009). As this part is not a big part of the research wechoose to not

implement any additional methods for choosing these parameters.

5.2 Factor-Based portfolio optimization

Next we use the model in equation 6 and apply different methods to estimate the

factors. The methods we apply are normal PCA, PMD(L1,L1) and PMD(L1,FL). After

using these methods we construct the portfolio weights using 8. After this we analyse

three different aspects: the factors and their loadings and the portfolios created. For the

factors and the loadings we try to find an interpretation. From the portfolio we asses if

the risk is reduced and if the returns of the portfolios are good out of sample compared to
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other portfolios. We can compare them to a simple 1/N portfolio and the weighted index

of the S&P 500. A good measurement for risk is the Sharpe ratio. This can be found by:

r̄p − r̄f
SD

(10)

In this equation r̄p is the average of the value of the out of sample portfolio returns

and the r̄f is the average risk-free rate. SD represents the standard deviation of the

portfolios returns. Another strong measurement of risk is historical Value-at-risk(VaR).

The historical VaR at 1-α level is:

−zaσ̂p − r̂p (11)

In this equation za is the a% quantile of a standard normal distribution and its Cumulative

Density Function(CDF) and σ̂p is the average standard deviation of the portfolio.

6 Results

In this section we will examine the results from the two parts described in the method-

ology. First we will look at the simulation example and then the application of the PMD

on the stock market data described in the Data section.

6.1 Simulation Example

We apply the algorithms 3 and 4 on the simulated data described in the data section.

This creates two sets of (u,v) pairs. These results are shown in 1. We can compare these

to the generative model and to the results of Witten et al. (2009).

In figure 1 the PMD(L1,FL) is a clear improvement over PMD(L1,L1). The u closely

follows the one of the generative model closely, while v is more smooth than for PMD(L1,L1).

However our results are different than those from Witten et al. (2009). These differences

can be found in the fact that the simulation datasets will not be identical and that we

could have used different tuning parameters, although the difference remains curious.

10



Figure 1: Reproduction of Figure 2 from Witten et al. (2009). See section 4 for the
data generating process. In this figure the simulation example is given for PMD(L1,L1),
PMD(L1,FL) and the original generative process.

6.2 Minimum Variance Portfolios

In this section we will look at the minimum variance portfolios using the statistical

latent factor models. We will look at the results of the methods, the factors and the

portfolios and their performance out of sample.

The first thing we look at in this section is the first Principal components. These are

plotted in figure 2.

11



Figure 2: Plot of the first Principal Component for the different methods.

It is clear to see that there are large differences in sparsity between the different

methods. This makes sense for the normal PCA, and we can attribute the difference of

sparsity between the other methods to the fact that we didn’t choose any restrictions

on the level of sparsity besides letting the Algorithm 5 form Witten et al. (2009) decide

the tuning parameter. Also the most remarkable result from this figure is the PMDL1FL

graph. We can see that most values are close to zero, with the exception of one. This is the

stock of The Williams Company. The results can be explained by the large fluctuations

in the price of this stock. In our training sample the stock has a highest price close to 60

and a lowest price of around 15.

Next we will look at the first factors and see if we can find an interpretation. The first

factors are shown in figure 3.
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Figure 3: Plot of the first Factor for the different methods. The last plot shows the S&P
500 returns as comparison.

We can see that the different factors have their differences, but tend to have similar

shapes. If we compare the factors to the returns from the S&P 500 we can see that there

is a clear relation between the first factors and the returns from the S&P 500. The first

factor tends to follow the inverse of the returns of the S&P 500. This can be clearly seen

at the large outlier around observation 1100 in figure 3 for the PCA and PMDL1L1. For

the returns we see a relatively large negative return from the S&P 500 returns, whereas

most of the factors show a large peak. Also the rest of the trends follow this correlation.

This is similar to the market factor from the classic Fama-French model as described in

Fama and Frech (1993). This shows that the factor models created follow the literature.

Again the PMDL1FL shows a difference. But we can see that if we compare this factor

to the returns for The Williams Companies we can see that the factor for the PMDL1FL

follows the inverse of these returns. This is logical if we look at the first PC in figure 2.

Next we will look at the portfolio weight for the different methods. Wechose to use

the number of factors that would equal a variance explained of 50%. We would like this

to be higher, but this would result in a very large number of factors. This results in 128
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factors. This is quite a large number of factors needed. The portfolio weights are shown

in figure 4.

Figure 4: Plot for the portfolio weights for the different methods. The red line are the
1/N portfolio weights.

From these graphs it becomes clear that the different portfolio weights all are close

to the equal weights portfolio. Interesting to note is that the weights for the portfolios

using sparse methods do not result in sparse portfolio weights. This means that we can’t

compensate lesser returns with less transaction costs. Furthermore, there are no large

outliers in the portfolio weights.

Next we examine the performance of the different portfolios. The Sparpe-Ratio and the

Value-at-Risk are shown in 1 below. The results in this table give a strong indication

that the methods do not improve existing portfolio construction methods. This is best

shown in the Sharpe-Ratios. The fact that all the portfolios get outperformed by the

equal weight portfolio(1/N) shows that the methods do not perform well, at least for the

current specifications. Among the different methods PMDL1L1 performs best and is close

to the equal weights portfolio. The Sharpe-ratios are all below 1. This means that the

portfolios carry more risk than return according to this metric. If we look at the VaR we

14



Table 1: Performance metrics for the portfolios

Methods Sharpe-Ratio Value-at-Risk

PCA 0.866 -0.0131
SPC 0.749 -0.0131

PMDL1L1 0.93 -0.0131
PMDL1FL 0.804 -0.0133

1/N 0.967 -0.0131

can see that almost all the values are the same. The only difference is the result from

the PMDL1FL. The VaR values are all negative and this is a positive result. This means

that with 95% probability the portfolios will give at least a 1% return.

7 Conclusion

We have applied the PMD to both simulated gene data and used it in latent factor

models to construct minimum variance portfolios. For the PMD we have followed the

algorithm derived in Witten et al. (2009) and to construct the portfolios we have used

the factor model and minimum variance problem from Conlon et al. (2021). The com-

bination of these papers allowed us to look at different minimum variance portfolios and

the underlying factors.

As an answer to our research question we find that the portfolios constructed using PMD

didn’t improve on existing techniques. All the methods involving some sort of dimension

reduction performed worse than the traditional equal weights portfolio in Sharpe-Ratio

and were close to identical for the VaR. In further research the tuning parameters and

the number of factors could be a point of interest. Also other penalty functions can be

considered for the PMD.

15



8 Appendix

8.1 Code description

For the code description we have two parts. The first part is for the simulation results

in section 6.1 and the second part is for the results from the portfolio construction in

section 6.2.

For the simulation results, we import the PMA package from Witten et al. (2009).

Then we setup the simulation data as explained in the data section. Then we apply

the PMD and find the optimal tuning parameters. Then we plot the results and the

representation of the data generating process. This gives figure 1.

For the portfolio construction we use the same package again. We first import the

stocks in the S&P 500 and then remove the ones we cant use for our sample. Next we

import the prices for the stocks and then transform them to daily log returns. We then

adjust the sample and split it in a training sample and a test sample. After that we

calculate the first components for the different methods and plot them. This gives figure

2. Then we decide what number of factors results in 50% variance explained. Then

we apply the methods to extract the number of factor loadings and the calculate the

factor. We can then plot figure 3. After that we estimate the factor model using OLS and

calculate the residuals. Then we construct the covariance structure for the factors and

the returns according to equation 7. Then we can solve the optimization problem given

by equation 8. After that we can plot the portfolio weights for figure 4. The last thing

we do is calculate the Sharpe-Ration and VaR.
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