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1 Introduction

This past century there have been many tumultuous events, like the Great Recession in 2008 or the

Covid-19 pandemic. These events did not only have a big impact on people’s day-to-day life, but also

the stock markets felt these events constituted big losses which eventually were recovered over time.

Events like these contribute to a higher level of volatility, which is defined as the degree of variation of a

trading price series over time. The question is how to forecast this volatility as well as possible. Volatility

forecasting is relevant for investors as it is directly linked to calculating the risk of investments. Several

forecasting models have been used in the past decades, ranging from simple to more sophisticated models.

Predominately the GARCH(1,1) model [Bollerslev, 1986] has been studied intensively for the past decades

as it would outperform other models in its forecasting ability [Andersen et al., 2005]. However, would

it not be better to combine several models into a more weighted forecast? Furthermore, what weights

would be the best? As recently stated by Franses (2023) it is beneficial to base these weights on the

Shapley values of the explanatory variables based on the R2, instead of simply taking the arithmetic

average, where every forecast gets an equal weight of 1
n (n being the number of forecasts). This leads to

the research question of this thesis:

Can a Shapley value-based forecast combination outperform an equally weighted forecast

combination in volatility forecasting?

To answer the question in this paper, first, the parameters of the models will be estimated in two

different environments. First a series of simulations will be done where a data-generating process (DGP)

simulates daily returns and realized variances. The second environment is based on a real-life data set of

the FTSE100. Via the volatility models, the Shapley values can be calculated to construct the weights in

the combination. Finally, out-of-sample data will be used to calculate forecast metrics and conduct tests

to evaluate and compare different approaches to weighting.

As mentioned there is a variety of models to forecast volatility. There are simpler models, such as

a random walk or also generalized autoregressive conditional heteroscedasticity (GARCH) models which

are more sophisticated. An elaborate description and more models will be given in Section 3. These

different models raise the question of whether superior models will outweigh simpler models significantly

based on their Shapley value. Furthermore, is combining based on these weights beneficial at all? Or

would it be better to just use OLS coefficients?

As said, volatility has a big impact on portfolios as it determines the risk of certain assets. Thus,

when getting a better forecast this increases the insights on certain decisions of asset allocation, which

is useful for asset managers. Furthermore, this method of combining forecasts based on Shapley values

is rather new. The application of volatility models is merely an example. If it shows that Shapley-based

combinations show promising results, they can be applied in forecasting as a concept that is not bounded

by any field. Hence, this research is thus relevant on a scientific basis but also very interesting for practical

applications.

Research on volatility presented itself decades ago as well as the innovation of different models and

their performances. Being able to make good volatility forecasts is beneficial as it plays a crucial role in

the financial world. [Andersen et al., 2005] states that the trade-off between risk and expected return,

where risk is associated with some notion of price volatility, constitutes one of the key concepts in modern

finance. As such, measuring and forecasting volatility is arguably among the most important pursuit, in
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empirical asset pricing finance and risk management. It is crucial to understand the time-varying ele-

ment of volatility (volatility clustering). This plays an important role in asset Value-at-Risk (VaR) and

Expected Shortfall (ES). The current literature on this time-varying volatility is sufficient however the

aspect of combining these models based on Shapley values does not occur yet. Hence, it can contribute

if it shows that it is beneficial to apply this method and give insights into its broader application.

As mentioned, the literature on the concept of volatility is substantial. For example [Andersen et al., 2005],

who provide insights on key theoretical developments and also an empirical application. Furthermore,

[Brooks and Persand, 2003] has researched how to determine the effectiveness of certain forecasts based

on evaluation measures. [Christoffersen and Diebold, 2000] looked at the relevance of volatility forecast-

ing in financial risk management, taking into account what horizon is looked upon.

That same substantial presence in the literature is also there for forecast combinations. Empirical re-

sults suggest that a simple equal-weighted average of survey forecasts outperform the best model-based

forecasts for a majority of macroeconomic variables and forecast horizons. [Aiolfi et al., 2010] considered

multiple types of models and combinations. They conclude that empirical results suggest that an average

of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables

and forecast horizons. [Claeskens et al., 2016] did a theoretical approach on forecast combinations. Com-

paring equally-weighted cases with ’optimal’ combinations and standard models. They state that if the

weights are random rather than fixed and are taken into account during the optimal derivation, then that

creates a biased combination, and its variance will be larger than in the fixed-weight case. Furthermore,

the optimal combination will not automatically outperform the equal-weight case or even the original

forecasts. [Smith and Wallis, 2009] explains how simple combinations tend to outperform sophisticated

model combinations in empirical examples due to the effect of the finite-sample error in estimating the

combining weights. Finally, Shapley values were introduced in 1953 by Lloyd Shapley in game theory

[Shapley, 1953]. Shapley values are used in several applications, for example, [Winter, 2002] discusses its

applicability in cost allocation, and [Rozemberczki et al., 2022] uses it in a machine learning environment.

[Mishra, 2016](2016) wrote about tackling multicollinearity and the usefulness of Shapley value-based

weights. She states that strong multicollinearity harms the confidence intervals of linear regression co-

efficients. Although it does not affect the R2 of the regressors or the unbiasedness of the estimated

coefficients associated with them. It does, however, inflate their standard error often such that, al-

though R2’s could be very high. Individual coefficients may all have poor Student’s t values. Thus,

strong multicollinearity may lead to failure in rejecting a false null hypothesis of the ineffectiveness of the

regressor variable to the regressand variable. Furthermore, [Franses, 2023] looked at a forecast combina-

tion based on Shapley values which came from combinations of R2’s, which will be the basis of this thesis.

Regarding the research question, the results show that in the Monte Carlo simulations, the Shapley

approach outperforms the average weights significantly in all the tests and cases. The same applies to the

FTSE100 case. This paper has the following structure: Section 2 contains a description of the data and

DGP, Section 3 elaborates on the methodology, Section 4 provides the results of the empirical exercises

and Section 5 contains a conclusion.
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2 Data

This section describes the two data environments used in this research. First the DGPs will be proposed

in order to work with Monte Carlo simulations. Secondly, the FTSE100 and its statistical properties will

be discussed.

2.1 Monte Carlo Simulation

For the simulation part of this research, simple returns (in %) and realized variances are simulated in a way

that matches the habits of real-life data such as volatility clustering. The data consists of 5295 simulated

observations mimicking the period 2000-2020 for convenience regarding the real-life data set. The real-life

data will be split up in a 60/20/20 ratio and some deviations to check whether the models make sense,

determine weights and eventually conduct comparison tests respectively. For simplicity sake, the first

70% of the generated data points will be used to test the models and simultaneously to determine the

weights. This because the models already proved to be significant, this way it is computational convenient

regarding the Monte Carlo simulations. Furthermore, otherwise it would disregard at least half of the

generated data points. The other 30% will be used for out-of-sample testing. The main reason to use

a Monte Carlo simulation is to diminish the amount of uncertainties in the results of the tests and loss

functions. A table with the distribution of the sample can be found in the Appendix. For the Monte

Carlo simulation 100 different series will be simulated. In the calculated metrics the average of 500 runs

will be taken, this by randomly selecting one of the simulated series and replace it back into the sample.

Since returns often show no particular autocorrelation, in this simulation, the returns have been done

via a Brownian motion. This way all the returns are independent. Furthermore, due to the fatter tails,

instead of the normal distribution, it is T (25) distributed. Furthermore, qt takes an uniform distributed

value on a specified interval per time to simulate volatility spikes.

rt = 100%(
Rt

Rt−1
− 1); Rt = Rt−1 + Ttqt, Tt ∼ T (25) (1)

As mentioned the variable qt follows a specified uniform distribution per interval. Those are the

following:

t ∈ {1, 2000} qt ∼ U [1; 1.5]

t ∈ {2001, 2100} qt ∼ U [1; 2.5]

t ∈ {2101, 4000} qt = 1

t ∈ {4001, 4100} qt ∼ U [1; 3.5]

t ∈ {4101, 5295} qt = 1

The shocks have a minimum/maximum of -/+40%, otherwise extreme outliers would occur and the

simulation would not be reliable. When a random shock outside this interval occurs an uniform random

value is drawn on the interval [-40,40].

Furthermore, for the realized variances the historical volatility is taken by averaging the last T squared

observations. Here T=22 as it represents one month of trading days:

RVt =

22∑
i=1

r2t−i (2)
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The simulated realized variance will then be converted into annualized volatility by multiplying by

252 trading days and taking the square root as volatility is a standard deviation instead of a variance;

(Volt =
√
252RVt). As certain assumptions are done about the distribution of rt, descriptive statistics

are computed and reported in Table 1.

Mean SD Skewness Kurtosis

rt -0.004 4.051 0.096 9.296

Vol. 34.073 54.565 1.857 8.667

Table 1

Descriptive Statistics of simulated returns and

volatility. First the values per simulation was

calculated, then the average of the 100 series’

results was taken.

First, the average return rt is as expected almost exactly at zero. The standard deviation is slightly

above 4 which is way higher than the often assumed standard normal distribution. This however, was to

be expected due to the constructed DGP. The normal distribution in general does not apply as well. The

skewness is around the expected value of zero however there is quite some excess kurtosis. This leads

to having a p-values of 0.000 in the Jarque–Bera test [Jarque and Bera, 1980]. This needs to be taken

into account when computing the GARCH models for volatility modeling as it uses maximum likelihood.

Further discussion can be found in Section 3.1.4.

The following figures are two plots of simulated returns and volatilities. For both returns, the series

is centered around zero as real-life returns do.

(a) Example 1, Simulated Daily Returns (b) Example 1, Simulated Annualized

Volatility

Figure 1
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(a) Example 2, Simulated Daily Returns (b) Example 2, Simulated Annualized

Volatility

Figure 2

Figure 1a-2b: As can be seen in Figure 1a the returns are capped

at 40%, this however is not the case in every simulation (Figure

2a). This way, all levels of returns (and thus the realized vari-

ance) are taken into account in order to get a successful Monte

Carlo simulation who diminishes the uncertainties of all kinds of

situations

2.2 FTSE100

As mentioned, the period 2000-2020 is mimicked as the real data set used in this research is from

the FTSE100. This is the index of the London Stock Exchange (LSE)2 consisting of the 100 biggest

companies in the UK. It contains the daily returns in percentages and the realized variance (5-minute

intra-day returns) as a benchmark for the volatility. The data ranges from January 2000 to December

2020 (n = 5295). The data will be split up into three parts. The first part (4/1/2000-31/12/2012) will

be used to estimate the models. The second part (2/1/2013-30/12/2016) will be used to estimate the

Shapley weights based on the R2 of all the regressions. The final sample (3/1/2017-31/12/2020) will

be used for evaluating the forecast accuracy. These samples give an approximate 60/20/20 partition

respectively. Furthermore, to check for robustness, two other samples (50/25/25) and (70/15/15) will be

used to check the sensitivity of the models, weights, and parameters.

The four moments of the returns rt are computed in the three partitions. For all three samples, the

average return is around zero. The standard deviations are closer to 1 which would indicate tending

towards the standard normal distribution. Often the normal distribution is assumed for stock returns.

However, this is again not at issue. The Jarque-Bera statistics again have p-values of 0.000 for all three

partitions [Jarque and Bera, 1980]. The skewness in the first two samples is close to zero, however, the

kurtosis in all three samples is way above three which means fatter tails and no normal distribution:

2https://www.londonstockexchange.com/indices/ftse-100
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height Mean SD Skew. Kurt.

2000-2012 -0.018 1.257 -0.180 8.845

2013-2016 0.018 0.901 -0.133 5.218

2017-2020 0.009 1.086 -1.337 17.108

Table 2: Descriptive Statistics returns

FTSE100 and histogram of the full sample.

Figure 4a shows the plot of the returns in the FTSE100 2000-2020. The shocks in the plot in 2007

and 2020 are those of the Grand Recession and the Covid-19 crisis respectively. These led to enormous

spikes in the volatility which can be seen in Figure 4b.

(a) Daily Returns (b) Annualized Volatility

Figure 4: Returns and Volatility FTSE100 2000-2020

3 Methodology

In this section, all the procedures, models, and tests will be described that have been done in the re-

search. The main goal is to compare a combination of forecasts where the weights are determined in

three different ways.

The most simple weights are those by taking the arithmetic average of the n forecasts available, this

will be referred to as 1
n weights. The second approach, the main topic of this research, the Shapley

weights (SH) which will be discussed in Section 3.2. The third and last type of weight is the weight based

on the coefficients of an ordinary least squares (OLS) regression of the volatility on all the forecasts, these

will be referred to as coefficient weights (CW).

The first step in this research is to obtain forecast models (Section 3.1). The models are used to first

check whether they make sense. Secondly, the different weights as mentioned in the previous paragraph

are calculated. Finally, tests are conducted to evaluate the different types of combinations (Section 3.3).
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3.1 Models

3.1.1 Realized Volatility

The dependent variable in this research is the annualized realized volatility. The realized volatility is

calculated by taking 252 (trading days) times the realized variance and then taking the square root,

Volt=
√
252RVt. The realized variance is calculated by taking the sum of the squared intra-day returns

based on 5 minute intervals in a trading day. A often used proxy for volatility is simply r2t on a given

day [Patton, 2011]. The benefit of the realized variance metric opposed to r2t is that the realized variance

reflects what actually happened on a trading day. A share price could for example start at 100 an end

at 101. The r2t would then imply a volatility of 1. However, the share price could also have dropped to

95 and risen back to 101. This means that there occurred more movement in the share price then the r2t

captured.

3.1.2 Random Walk

The first model is a simple method to estimate volatility, the random walk. This is a measure based

on the previous value added with a standard normal random variable. In a regular random walk the

forecast is simply ”calculated” by taking the previous value. In this research however, a standard normal

randomly distributed variable wt is added as well too, furthermore ϵt is the usual error term. This gives

the following formulation:

σ̂2
t = RVt−1 + wt + ϵt, wt, ϵt ∼ N (0, 1) (3)

Previous literature shows that it is hard in most cases to beat the random walk in volatility forecasting

[MCMillan et al., 2000]. Furthermore, it has a big advantage because of its simplicity. The drawback

of course is the forecast window being small as its variance increases linearly when forecasting further

ahead. For example, yt follows a standard normal distribution as well as wt in Formula 3. In that case,

the one-step ahead forecast has a variance of V (yt−1)+V (wt)+V (ϵt) = 1+1+1 = 3. Then the two-step

ahead forecast has a variance of V (ŷt) + V (wt+1) + V (ϵt) = 3 + 1 + 1 = 5 etc.

Since volatility cannot be negative but the prediction due to this random walk can, when a negative

predicted value occurs this will be re-estimated till it is positive. Furthermore, this research uses a

”second-order” random walk in the Monte Carlo simulations. This will be done by taking the estimate

in Equation 3, σ2
1,t, and adding another standard normal randomly distributed variable gt. Per definition

the estimate of σ̂2
2,t should in general be worse as gt increases the uncertainty. Also here applies that

when the estimate is negative it will be re-estimated:

σ̂2
2,t = σ2

1,t + gt + ϵt, ft, ϵt ∼ N (0, 1) (4)

3.1.3 Hetero Autoregressive Model

The Heterogeneous Autoregressive Model (HAR) as proposed by Corsi (2009) makes use of lags of pre-

viously captured realized volatilities. In this way, it is an autoregressive model using three lags. Namely

one day, the average of the previous week (five days), and the average of the previous month (22 days).

This constitutes into the following formulations:
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RV d
t−1 = RVt−1

RV w
t−1 =

1

5

5∑
i=1

RVt−i

RV m
t−1 =

1

22

22∑
i=1

RVt−i

σ̂2
t = β0 + β1RV d

t−1 + β5RV w
t−1 + β22RV m

t−1 + ϵt

(5)

The HAR model is estimated using OLS and is predominately a good fit for certain features of financial

data such as long memory and fat tails [Corsi, 2009]. The HAR model allows for an easy estimation, it

can simply approximate long memory and is parsimonious. Given these reasons, it is widely used within

the research community.

3.1.4 GARCH Models

The GARCH models are often used in volatility forecasting and were invented in 1986 by Bollerslev

[Bollerslev, 1986] as an addition to the ARCH models in 1982 [Engle, 1982]. The specification of the

GARCH models consists of a return equation and a variance equation. Furthermore, the GARCH pa-

rameters are estimated via maximum likelihood.

The first GARCH model is the GARCH(p, q) which includes squared lagged errors and lagged estimated

variances. In this research, the order is (1,1) with the following formula:

rt = µ+ ϵt

σ̂2
t = ω +

p∑
i=1

αiϵ
2
t−i +

q∑
j=1

βjσ
2
t−j , (p, q) = (1, 1) (6)

To start the recursion in the GARCH(1,1) the unconditional variance E(σ2) = σ̄2 is used as the first

observation . To calculate this unconditional variance there are some assumptions in time series analysis.

Namely E(σ2
t ) = ϵ2t and E(σ2

t ) = E(σ2
t−1). This leads to the derivation of σ̄2 = ω

1−α−β , the derivation

can be found in Formula 15 in the Appendix.

The second GARCH model is the component GARCH (C-GARCH). The volatility, which is mea-

sured by the conditional variance of stock returns, is decomposed into a long- and short-run component

[Lee and Engle, 1993].

qt = ω + ρqt−1 + ϕ(ϵ2t−1 − σ2
t−1)

σ̂2
t = qt + α(ϵ2t−1 − qt−1) + β(σ2

t−1 − qt−1) (7)

The C-GARCH has two differences compared to the GARCH. First of all, the ω in Formula 6 is con-

stant whereas in Formula 7 it is time-varying. qt is dependent on its lag and the difference between the

squared lagged error and the lagged estimated variance. The second difference is that in the σ2
t part of

the C-GARCH the ARCH and the GARCH part are reduced with qt−1. The C-GARCH is especially a

good fit for sets with fatter tails [Lee and Engle, 1993]. The unconditional variance is ω
1−ρ (Appendix

Formulas 16&17).
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The final GARCH model considered is the Glosten, Jagannathan, and Runkle-GARCH(1,1) (gjr-

GARCH(1,1)) with the following formulation:

σ̂2
t = ω + αϵ2t−1 + γϵ2t−1I[ϵt−1 ≤ 0] + βσ2

t−1 (8)

The difference is in the error term which now contains an indicator function making a distinction

between positive and negative errors. Negative news tends to have a bigger influence on volatility than

positive news, so including this leverage term can capture this bigger effect [Glosten et al., 1993]. The

theoretical expected value of I[ϵt−1 ≤ 0] = 0.5. The derivation of the unconditional variance can be found

in the Appendix Formula 18.

GARCH models are estimated using maximum likelihood (ML). The ϵt term is used for this and its

distribution therefore is necessary. For this, often a normal distribution is assumed however in practice

this does not always apply. In this research, in the maximum likelihood the t-distributed is assumed due

to the excess kurtosis (Table 1).

3.2 Shapley Values

In order to evaluate the relative contribution of volatility forecasts, a series of regression models is esti-

mated. The R2 is used to decompose the relative contributions of each forecast method as an explanatory

variable of the realized volatility. This, by evaluating the R2 for all possible combinations of explanatory

variables and taking a weighted average of each variables’ contribution to the R2. This constitutes into

Shapley values. Initially these values where used to calculate the utility of players in cooperative game

theory [Shapley, 1953]. Its concept has found applications in fields such as economics and mathematics.

Furthermore, Shapley values are convenient to use as they are easy to interpret.

The main purpose of this research is to check whether a combination based on Shapley values outper-

forms 1
n weights in its forecasting ability. The Shapley weights are calculated in the following way. First,

the different forecasts have been made to obtain these as explanatory variables X1, ..., XK , in this research

K=5. Then separate regressions are performed to obtain the R2’s of the regressions. All the combinations

of one explanatory variable
(
5
1

)
first, then all the combinations of two explanatory variables

(
5
2

)
, etc. This

gives 5+10+10+5+1=31 different R2’s. In total, there are 2K − 1 regressions performed, where K is the

amount of explanatory variables [Franses, 2023]. The R2’s are used to find the individual contribution of

an explanatory variable Xi. This is done via the following formula [Chantreuil and Trannoy, 1999]:

SHj =
∑
j

(s− j)!(k − s)!

k!
(R2(S)−R2(S{j}))

sj =
SHj

R2
12345

(9)

In this formula, SHj is the net contribution of variable j before scaling it to R2
12..k, which is the R2

of the regression with all the variables. K is the amount of variables and S is a subset of K containing

|S| explanatory varables. An example for K = 4 can be found in the Appendix of Franses 2023. After
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obtaining the Shapley weights the following linear combination will be our Shapley-based forecast:

yt =

K∑
j

sjfj,t + ϵt (10)

In this formula fj is an individual forecast. This combination, yt, will be compared to two different

forecast combinations, the 1
n weights and the coefficient weights. The coefficient weights will be normal-

ized by dividing each weight with the sum of the weights. This, as their sum is not necessarily equal to

one which is the case for the Shapley weights.

3.3 Evaluating Forecasts

When the models are estimated and the proper weights have been calculated, the next step is to test out-

of-sample how the models perform. As the goal is to evaluate the combinations rather than the models

themselves, new model parameters are estimated for the out-of-sample data. However, the combination

weights are based on the second sample. Thus, it is still valid to evaluate it as an out-of-sample. For this

evaluation, several metrics have been proposed and used in the field of forecasting. For this research the

following five metrics are chosen [Andersen et al., 2005]:

MAD = N−1
N∑
i=1

|yi − fi|

ME = N−1
N∑
i=1

(yi − fi)

RMSE =

√√√√N−1

N∑
i=1

(yi − fi)2

R2Log = N−1
N∑
i=1

[log(y2i f
−2
i )]2

QLike = N−1
N∑
i=1

(log(f2
i ) + y2i f

−2
i )

(11)

Here, yi is the actual value and fi is the forecast. For all the five metrics hold, the closer they are to

zero the better the result. The Mean Absolute Deviance (MAD) calculates on average how far a forecast

is from the actual value. The Mean Error (ME) is the only value that can get negative, as it simply

takes the mean of the actual values and subtracts the mean of the forecasts to check for a certain bias. If

the ME is positive the forecast underestimates and vice versa. The Root Mean Squared Error (RMSE)

is quite similar to the MAD although it penalizes bigger errors by taking the square. Then the R2Log

which takes the average of the squared Log of the squared ratio yi

fi
. Finally, the QLike which consists of

the sum of the Log squared forecasts and again uses the squared ratio yi

fi
. [Patton, 2011] further discusses

these loss functions in a volatility forecast environment.

Not only the metrics above are useful in order to determine what a good forecast can be. In fore-

casting there is a trade off between a point forecast and the variance it comes with. A forecast can be

good compared to another however its confidence intervals could be substantially bigger. This could lead

to meaningless forecasts. Since the combinations provided in this research are linear combinations its
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variance is simply calculated by the following formula, here wi is a weight and Xi an explanatory variable.

V ar(

N∑
i=1

wiXi) =

N∑
i=1

w2
i V ar(Xi, Xj) +

∑
1≤i<j≤N

2wiwjCov(Xi, Xj) (12)

This is computed using a weight vector w and the variance matrix V . Formula 12 can be reformulated

as wTV w. The purpose of the calculation is to see whether besides the outperformance on point forecasts,

the confidence intervals also are useful and to see whether or not there is a trade-off.

Another method to evaluate forecasts is the Mincer Zarnowitz regression [Mincer and Zarnowitz, 1969].

This regression simply regresses the actual value of the forecast in the out-of-sample set. It has the fol-

lowing formulation:

yi = α+ βfi + ϵi (13)

If a forecast is accurate, the ideal situation is where α=0 and β = 1. This, assuming that E(ϵi) = 0,

would then come down to yi = fi which is the target of our forecast. Furthermore, a high R2 is expected

as the explanatory variable is already a forecast of yi.

Finally, a Diebold Mariano test can be done to find if one forecast is significantly outperforming the

other [Diebold and Mariano, 2002]. The test uses a variable dt, where dt = e21,t − e22,t. Meaning that it

takes the difference between the squared errors of two different forecasts. The test statistic of the Diebold

Mariano test is

DM =
d̄√

V ar(d)
∼ N (0, 1) (14)

When the DM test statistic is negative it means that the first forecast outperforms the second one

and vice versa (if the corresponding p-value is below the chosen α).

4 Results

The result section be split up in the Monte Carlo simulation section and in the section about the FTSE100.

First the weights will be discussed, than the forecast metrics and finally the Mincer Zarnowitz regression

and the Diebold Mariano test. Also the model specifications of the FTSE100 will be presented.

4.1 Monte Carlo Simulation

4.1.1 Shapley Weights

The first step after simulating the 100 series of returns and realized variances is to estimate the models as

described in Section 3. One remark, for the HAR model, is that the first autoregressive term β1 each time

is multiplied by a uniformly distributed random variable between 0.5 and 1.5 as otherwise the forecast

will be to good due to the DGP. The forecasts form a matrix which can be seen as the explanatory

variables who’s Shapley weights can be computed. The simulated series are chosen randomly 500 times

with replacement. From where the average of these computed scores are taken. The following table

provides the average weights of the Shapley approach.
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RW RW2 GARCH(1,1) gjr-GARCH HAR

Shapley 0.120 0.102 0.296 0.229 0.252

CW* 0.166 0.026 0.529 0.088 0.191

*Weights normalized to sum up to 1

Table 3: Average Shapley and OLS weights

Table 3 shows the average weights based on the simulations. The GARCH(1,1) is in both approaches

the main driver for the forecast combination. In the Shapley approach its weight is half of the CW

approach, this again due to the correlation where Shapley values account for. The random walks show

different behaviour across the two approaches. In the Shapley weights, there is no big difference between

RW and RW2 whereas in the CW RW2 is approximately a sixth of RW . This again shows that OLS

coefficients almost exclude worse forecasts such as RW2 while the Shapley approach looks at its indi-

vidual relative contribution. In order to compute the standard deviation of the forecast combination

covariance\correlation matrix of the out-of-sample data is given:

V̂ \ρ̂ =



RW RW2 GARCH(1, 1) gjr −GARCH HAR

RW 30.3 0.52 0.10 0.02 0.08

RW2 18.7 39.3 0.13 0.04 0.03

GARCH(1, 1) 5.8 5.6 15.8 0.49 0.23

gjr −GARCH 4.49 4.6 9.1 9.3 0.02

HAR 4.3 4.1 7.0 5.5 55.9


Note: the bottom left matrix including the diagonal

can be read as the (co)variance matrix V̂ . The upper

right matrix as the correlation matrix ρ̂.

Using Formula 12, the standard deviations can be calculated by taking the square root of the com-

puted variance. The Shapley weight approach has the lowest standard deviation with 3.37 followed by

the 1
n approach (σ = 3.40) and the coefficient weights are the highest with a standard deviation of 3.67.

Furthermore, Figure 5 displays the average Shapley weights of the previous simulations. After approxi-

mately 100 runs the Shapley weights start to convert and after 300 there is no real change in the weights.

13



Figure 5: The average Shapley weights of the past n calculated weights

of the randomly chosen simulation. From top to bottom: GARCH(1,1),

HAR, gjr-GARCH, RW , RW2. After 100 iterations the average weights

become stable, after approximately 300 iterations the average weights do

not change.

4.1.2 Evaluation Metrics

SH 1
n CW

MAD 3.19 3.81 2.69

ME 1.25 0.53 0.21

RMSE 4.67 5.29 4.00

R2Log 0.07 0.19 0.06

QLike 7.35 7.40 7.35

Table 4: Average forecast performance metrics of the three weight approaches

Table 4 shows the average forecast metric values of the simulations. The coefficient weights outperform

the other two approaches in all the five metrics meaning it has the best out-of-sample performance. The

Shapley approach is second to best beating the 1
n approach in all the metrics except for the mean error.

The Shapley approach compared to 1
n tends to have a overall lower deviance (MAD) however a bigger

bias (ME). This, looking at the RMSE, comes from bigger outliers in the 1
n approach.
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4.1.3 Mincer Zarnowitz & Diebold Mariano

First, a Mincer Zarnowitz regression will be done on the simulations. The average of the α, β and R2 are

calculated. Starting with the 1
n , with -0.54, 0.73 and 0.57 respectively . Then the Shapley weights with

on average values of -1.57, 0.85, 0.670. Finally, the coefficient weight approach with α =-1.68, β = 0.84

and a R2 of 0.678. Comparing the three, the CW approach shows to have the highest R2 on average.

However, its corresponding α and β are further away from the ideal values than the other two approaches.

Again all the α’s are negative which coincides with the ME in Table 4 as the models overestimate the

volatility.

Finally, the average Diebold Mariano statistics are computed of the three different comparison possi-

bilities. The Shapley approach statistically outperforms the 1
n with a DM of -12.43 (on average). The

CW approach however significantly outperforms the Shapley and 1
n approaches with DM -statistics of

(-)5.37 and 12.03 respectively. The corresponding p-values to the average DM -statistic are all 0.000.

This is also in line with the values in Table 4.

SH- 1n SH-CW CW- 1n

DM -12.43 5.37 12.03

Table 5: Average Diebold Mariano statistics for the simulated series

4.2 FTSE100

4.2.1 Models and Weights

The simulated experiment shows promising results to try and use it on a real data set. For this, as

mentioned in Section 2.2 the 100 biggest UK-listed companies (FTSE100) are used to create volatility

models and calculate Shapley values to determine the weights. Again the procedure of calculating the

models first gives the following formulations for the 60/20/20 partition:
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Model specifications 60/20/20

µ Model

2000-2012

HAR - σ̂2
t = 0.215 + 0.149RV d

t−1 + 0.481RV w
t−1 + 0.218RV m

t−1

GARCH 0.033 σ̂2
t = 0.012 + 0.101ϵ2t−1 + 0.893σ2

t−1

C-GARCH 0.034 σ̂2
t = qt + 0.067(ϵ2t−1 − qt−1) + 0.891(σ2

t−1 − qt−1)

qt (C-GARCH) - qt = 0.004 + 0.998qt−1 + 0.051(ϵ2t−1 − σ2
t−1)

gjr-GARCH 0.000 σ̂2
t = 0.016 + 0.163ϵ2t−1I[ϵt−1 ≤ 0] + 0.904σ2

t−1

2013-2016

HAR - σ̂2
t = 0.411 + 0.028RV d

t−1 + 0.276RV w
t−1 + 0.164RV m

t−1

GARCH 0.032 σ̂2
t = 0.050 + 0.163ϵ2t−1 + 0.782σ2

t−1

C-GARCH 0.032 σ̂2
t = qt + 0.145(ϵ2t−1 − qt−1) + 0.751(σ2

t−1 − qt−1)

qt (C-GARCH) - qt = 0.005 + 0.994qt−1 + 0.020(ϵ2t−1 − σ2
t−1)

gjr-GARCH 0.004 σ̂2
t = 0.039 + 0.283ϵ2t−1I[ϵt−1 ≤ 0] + 0.815σ2

t−1

2017-2020

HAR - σ̂2
t = 0.186 + 0.026RV d

t−1 + 0.927RV w
t−1 − 0.125RV m

t−1

GARCH 0.049 σ̂2
t = 0.018 + 0.107ϵ2t−1 + 0.879σ2

t−1

C-GARCH 0.052 σ̂2
t = qt + 0.100(ϵ2t−1 − qt−1) + 0.704(σ2

t−1 − qt−1)

qt (C-GARCH) - qt = 0.005 + 0.992qt−1 + 0.036(ϵ2t−1 − σ2
t−1)

gjr-GARCH 0.034 σ̂2
t = 0.018 + 0.121ϵ2t−1I[ϵt−1 ≤ 0] + 0.895σ2

t−1

First, the HAR model shows some differences in the parameters for the different periods. The constant

starts at approximately 0.2, jumping to 0.4 and then back again to 0.2. As in Table 3 can be seen, the

second sub-sample is less volatile thus the constant has a bigger impact on the forecast as the parameters

of the autoregressive tend to decline. In the third HAR equation, the weekly average has a big impact

looking at the relative values of the parameters β1, β5, and β22. This period is relatively volatile, meaning

that a weekly average tends to be a good estimator as the volatility is high in a period. For the GARCH

models, the µ is rather stable across the periods with some minor fluctuations. The α (or γ in the

gjr-GARCH) increases in the 2013-2016 period as the GARCH models show to emphasize more on

occurring shocks in the stabler periods. In the C-GARCH model, the qt equation shows no major shifts

in parameters.

After implementing the models, as in the simulation, the 31 regressions per partition are done to receive

the R2’s to calculate the Shapley weights. Furthermore, the weights based on the coefficients of the

regular regression on all the explanatory are computed.
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RW HAR GARCH(1,1) C-GARCH gjr-GARCH

50/25/25
Shapley 0.063 0.264 0.199 0.203 0.272

CW* 0.015 0.614 -1.273 0.979 0.664

60/20/20
Shapley 0.053 0.148 0.226 0.243 0.330

CW* 0.044 0.245 -1.160 1.215 0.657

70/15/15
Shapley 0.051 0.175 0.218 0.237 0.319

CW* 0.012 0.343 -1.050 1.050 0.645

*Weights normalized to sum up to 1

Table 7: Weights of models for the three different partitions

First, comparing the weights across the periods. For the Shapley weights, the random walks weight

fluctuates around 5%. This, as it does not perform well but still has some forecasting power. The HAR

model does well in the first sample having the second highest weight, although declining in the second

and third models where it is second to last. Here the difference can be seen comparing the DGP to the

real-life set. The GARCH models take most of the weight ranging from around 65% in the first period to

almost 80% in the second period. For the coefficient weights the random walk is, except for the second

period, almost at zero showing its randomness as in a normal regression it would not have very strong

explanatory power. The HAR model, again has a relatively high weight in the first sample partition but

decreases in the other two. The gjr-GARCH model remains to hold a stable weight of around 0.650 over

the three periods. Interesting to see is the GARCH and C-GARCH. Their respective correlations in the

three periods are 0.994, 0.991, and 0.981. Due to this high correlation, the weights look to be chosen to

almost diversify the combination. This way the two models almost cancel each others’ contribution out.

This happens in all three periods; in the first sample the GARCH takes a more negative value as in this

period the GARCH overestimates the volatility slightly more than the C-GARCH with 1.83 and 1.77

percentage points on average respectively. In the second sample distribution the two weights are almost

the same and in the third they are the same where the weights are practically canceling each other out.

This does not necessarily mean that the individual models do not contribute at all due too to the forecast

not having the same values. However, given the track record of the GARCH(1,1) it does not make sense

to use this combination approach. This shows the relevance of the forecast combination based on Shapley

values.

Note that as the coefficient weights can be negative and above 1/ below -1), the variance of an individual

regressor (E(w2
iX

2
i )) can be way higher. For example comparing the GARCH(1,1) in the 60/20/20,

the Shapley weight squared is 0.05 and that from the CW approach is 1.36. This can lead to very

high standard deviations when the variance of the corresponding explanatory variable is high. Which

eventually can lead to higher and less reliable confidence intervals. This makes methods such as OLS to

determine weights less convenient. However, these negative weights do compensate when the covariance

is also high which is the case with the GARCH(1,1) and the C-GARCH. When the standard deviations

are calculated on the three different partitions for the three methods, the coefficient based weights show

the lowest variance using the out-of-sample data. The Shapley and 1
n approach alternate per period with

the second lowest variance. All in all, the standard deviations do not differ that much (see Table 8).
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σ 50/25/25 60/20/20 70/15/15

SH 7.7 8.2 8.7

1
n 7.6 8.2 9.0

CW 7.6 8.1 8.0

Table 8: Standard deviations per weight approach per partition

4.2.2 Evaluation Metrics

Again, for the different samples the metrics mentioned in Section 3.3 are computed, the bold figures are

the lowest across the three methods:

50/25/25 60/20/20 70/15/15

SH 1
n CW SH 1

n CW SH 1
n CW

MAD 4.20 4.44 3.84 3.88 4.20 3.41 4.23 4.26 3.79

ME -1.87 -2.15 -1.37 -1.46 -1.98 -0.08 -1.49 -1.22 -0.33

RMSE 6.70 6.86 6.51 6.18 6.28 5.87 6.67 6.74 6.56

R2LOG 0.59 0.65 0.51 0.54 0.64 0.45 0.55 0.56 0.45

QLIKE 6.14 6.16 6.14 6.03 6.05 6.03 6.21 6.23 6.20

Table 9: Forecast metrics for three sample partitions

Compared to the simulation in Table 4 the Shapley approach is again not the best performing ap-

proach being beaten by the CW on almost every metric for all the three sample distributions. The

Shapley approach only performs the best on the QLIKE in two of the three cases. The 1
n is again the

worse method, being beaten by the Shapley approach for all the three partitions. Across the three sample

distributions, the values maintain approximately the same indicating no sensitivity in the outcome when

adapting certain features or parameters which is beneficial from a robustness perspective. The 60/20/20

partition of the observations has the lowest values in Table 9 meaning that this, among the three, is the

most favorable.

In the simulation, the Shapley weights showed the best results and in the FTSE100 data, the coeffi-

cient weights proved to be the best. This could be due to the presence of multicollinearity, meaning that

an explanatory variable is (too much) correlated to other explanatory variables. Therefore the variance

inflation factor (VIF) is calculated. This is done by regressing the explanatory variable Xi on all the

other variables. Then the VIF is 1
1−R2 where the R2 of the regression is used. A VIF of 1 indicates

no correlation between the other variables, a VIF of 1 to 5 indicates moderate correlation, and above 5

severe correlation.

Calculating the VIFs, the GARCH and C-GARCH stand out with 76.2 and 67.6 respectively, indicat-

ing severe correlation. The problem in this instance is that for a normal OLS regression, some correlation

between certain variables occurs. In this case, it makes sense that the forecasts are correlated as they

all individually are already prediction of the same variable. However, when this correlation is too high

(in this example the GARCH and C-GARCH) one should be removed and replaced with a different, less

correlated, volatility forecaster in the case of OLS.
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Furthermore, again the 1
n shows to be inferior to the Shapley approach having less favorable values

for all the three partitions of the data set. This indicated, that not only in the simulations but also in

real-life it is more useful to determine weights based on Shapley values instead of the arithmetic average.

4.2.3 Mincer Zarnowitz & Diebold Mariano

50/25/25 60/20/20 70/15/15

SH 1
n CW SH 1

n CW SH 1
n CW

α -1.27 -1.42 -1.08 -1.29 -1.99 -0.22 -1.81 -0.83 -1.93

β 0.96 0.95 0.98 0.99 1.00 1.01 1.02 0.974 1.11

R2 0.567 0.556 0.574 0.648 0.652 0.663 0.649 0.637 0.651

Table 10: Mincer Zarnowitz regression statistics for the three sample partitions

In the Mincer Zarnowitz regressions, all three partitions show similar results. The α’s are fluctuating

between -2 and -0.2, this means that the models in general overestimate the volatility. The β’s are all

very close to 1.0 which is the ideal result, only for the coefficient weight approach in the last sample the

β deviates more than 0.05 from this value. The R2’s range from 0.55 in the first partition to 0.65 in

the other two. In the 60/20/20 split, the values are the best having the highest R2 and the α’s being

almost exactly 1.0 for all the three methods. This again shows that among the three splits this is the

best performing one.

50/25/25 60/20/20 70/15/15

SH- 1n SH-CW CW- 1n SH- 1n SH-CW CW- 1n SH- 1n SH-CW CW- 1n

DM -3.884 2.773 -4.990 -2.352 2.951 -4.260 -1.034 1.219 -1.536

p 0.000*** 0.006** 0.000*** 0.019* 0.003** 0.000*** 0.302 0.223 0.125

Table 11: Diebold Mariano test statistics and p-values

Finally, the Diebold Mariano tests. Across all three partitions, there is no shift in the sign of the DM

statistic. The Shapley outperforms the 1
n weights and the coefficient weights outperform the Shapley

weights. This results is also in line with the findings in Table 9. Furthermore, the significance in the

first two samples also remains at the same level around 0.000. However, in the final sample (70/15/15)

the significance drops heavily with p-values increasing way above the 5% level. This is due to the out-of-

sample set containing only one major shock namely the Covid-19 crisis, whereas the other out-of-sample

sets had more shocks. In these samples, the superior approaches had enough data points to significantly

outperform the inferior. This amplifies the relevance of robustness checks.

5 Conclusion

This paper investigated combinations of several volatility forecasts based on different weight combinations.

In particular, three different combinations were chosen and compared. These are equally weighted, based

on Shapley values of the R2 and regular OLS coefficients. The main question this research tried to answer

is:
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Can a Shapley value-based forecast combination outperform an equally weighted forecast

combination in volatility forecasting?

This research was done using two different environments; the first one used 100 different Monte Carlo

simulated returns and realized variances with a data generating processes, 500 runs have been done with

the replacement of drawn series. Furthermore, a real-life data set of the FTSE100 has been used for the

period 2000-2020. The procedure in short is that the data was split up into three partitions. The first is

to check the validity of the models, the second is to estimate the weights of the forecast models, and the

third is to test out-of-sample. For the volatility forecasts, several models were chosen. The models used in

this research are the following: Random walk, a second-order random walk, GARCH(1,1), gjr-GARCH,

C-GARCH, and HAR models.

The Shapley weights showed to take the correlation between the forecasts into account. In the Monte

Carlo simulation, the weights of the more advanced regressors showed to be reduced due to the Shapley

values looking at individual contribution. For the Monte Carlo simulation, the GARCH(1,1) had the

highest weight (29.6%), and in the FTSE100 the gjr-GARCH had the highest weight (33.0%) which only

took negative shocks into account. These weights also contribute to the variance in the linear combina-

tion. In the Monte Carlo simulation, the Shapley approach had the lowest standard deviation of 3.37.

For the FTSE100, the standard deviations were rather similar however the coefficient weights showed

to have the lowest in the three different splits. Furthermore, loss functions were calculated where the

forecasts were compared to the actual values using out-of-sample data. In the Monte Carlo simulation,

the Shapley approach showed to beat the 1
n on four of the five calculated metrics. The coefficient weights

showed to beat both the Shapley and 1
n approach. A quite similar result occurred in the FTSE100

case. The Shapley approach again is superior to the 1
n weights however being inferior to the coefficient

weights. Finally, a series of Diebold Mariano tests were done. In the simulation, the average of values

was computed (-12.43) which indicates significant outperformance of the Shapley approach versus the

1
n benchmark. In the FTSE100 three different splits were looked upon. In all three splits the Shapley

approach outperforms the 1
n approach, only in the last split it was not significant due to the data and

number of observations. This all, concludes that it is beneficial to use Shapley values based on the R2 to

determine weights in combining volatility forecasts rather than the arithmetic average. Shapley weights

show a slightly lower standard deviation and do better regarding loss functions. Furthermore, compared

to OLS, Shapley includes the forecast model in a manner where the correlation is taken into account,

whereas the OLS is not prone to multicollinearity. Finally, the Diebold Mariano test also shows that the

Shapley approach significantly outperforms the 1
n approach. Still, the performance of the forecast model

based on the normalized OLS coefficients tends to outperform the Shapley weight approach. Therefore

a recommendation for further research would be the trade-off between Shapley weights and coefficient

weights, predominately regarding the multicollinearity. Furthermore, in this research simple returns were

used. In a comparison, Log returns could also be applied to see whether this would change results.
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A Appendix

A.1 Tables and derivations

50/25/25 60/20/20 70/15/15 Monte Carlo

Model validation 23-2648 (n = 2626) 23-3273 (n = 3251) 23-3707 (n = 3685) 23-3723 (n = 3701)

Weight calculation 2649-3972 (n = 1324) 3274-4285 (n = 1012) 3708-4500 (n = 793) 23-3723 (n = 3701)

Out-of-sample 3973-5295(n = 1323) 4286-5295(n = 1010) 4501-5295(n = 795) 3274-5295 (n = 2022)

E(σ2
t ) = E(ω + αϵ2t−1 + βσ2

t−1)

= ω + αE(ϵ2t−1) + βE(σ2
t−1)

= ω + αE(σ2
t ) + βE(σ2

t )

σ̄2 = ω + ασ̄2 + βσ̄2

σ̄2 =
ω

1− α− β

(15)

E(qt) = E(ω + ρqt−1 + ϕ(ϵ2t−1 − σ2
t−1))

= ω + ρE(qt−1) + ϕE(ϵ2t−1 − σ2
t−1)

= ω + ρE(qt) + ϕ[E(ϵ2t−1)− E(σ2
t−1)]

= ω + ρE(qt) + ϕ[E(ϵ2t−1)− E(ϵ2t−1)]

E(qt) = ω + ρE(qt)

E(qt) =
ω

1− ρ

(16)

E(σ2
t ) = E(qt + α(ϵ2t−1 − qt−1) + β(σ2

t−1 − qt−1))

= E(qt + αϵ2t−1 − αqt−1 + βσ2
t−1 − βqt−1)

= E(qt) + αE(ϵ2t−1)− αE(qt−1) + βE(σ2
t−1)− βE(qt−1)

σ̄2 =
ω

1− ρ
− α

ω

1− ρ
− β

ω

1− ρ
+ ασ̄2 + βσ̄2

σ̄2 =

ω
1−ρ (1− α− β)

1− α− β

σ̄2 =
ω

1− ρ

(17)

E(σ2
t ) = E(ω + αϵ2t−1 + γϵ2t−1I[ϵt−1 ≤ 0] + βσ2

t−1)

E(σ2
t ) = ω + αE(ϵ2t−1) + γE(ϵ2t−1I[ϵt−1 ≤ 0]) + βE(σ2

t−1)

E(σ2
t ) = ω + αE(σ2

t ) + 0.5γE(σ2
t ) + βE(σ2

t )

σ̄2 = ω + ασ̄2 + 0.5γσ̄2 + βσ̄2

σ̄2 =
ω

1− α− 0.5γ − β

(18)

A.2 Code Description

In this research, R-studio and Excel have been used. A brief description will be given about all the steps

taken.
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A.2.1 Excel

For the FTSE100 data, the models have first been made in R-studio which will be discussed further on.

For the three partitions two files are created in Excel, the first one with the estimated models and the

second one where the estimated values are converted to annual volatility.

A.2.2 R-Studio

In R-studio the following packages are used; rugarch, tseries, ggplot2, car, lgarch, forecast, zoo, HARModel

and moments. Three files are used for programming. The first one specifies and estimates the models

for the simulations and the FTSE100, furthermore, the VIF calculation is also in this file. Secondly, the

Monte Carlo simulation, The returns, and realized variances for the 100 series are generated following

the DGP in Section 2. Then the models are estimated and new matrices are made to fill the model

per simulation (for example, all the 100 GARCH(1,1) models are in one matrix of 5295x100). Then

in a for loop, a random number i is drawn between the simulations (with replacement). The weight

data and out-of-sample data matrices are made by appending the i-th column of the matrices containing

the volatility and its corresponding forecasts. All the R2’s of the regressions are then computed and

using Formula 9 the Shapley weights are calculated. Finally, a matrix with the loss functions is filled

(handwritten functions are in the other R-studio file) and the Diebold Mariano tests are done. After this

for loop, all the values are calculated by taking the average of the accumulated values. The third file

is used for the FTSE100 data. First, three different splits were used for the 50/25/25, 60/20/20, and

70/15/15 distributions. From there it is equivalent to the Monte Carlo simulation except for the for loop

as it is only one run. Again, in the end, the metrics and statistics of the loss functions and tests are

computed.
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