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Abstract

Assessing spillover effects can hold significant value. Accurately estimating spillovers can

be valuable in policy design, as it allows for the recognition of individuals who have a positive

impact on others. However, estimating spillover effects might turn out to be challenging

in a panel data structure that involves numerous individuals and a relatively short time

horizon. This paper aims to estimate spillover effects by utilizing a Double Pooled Lasso

approach, which is based on the method proposed by Manresa (2016). The approach is

further adapted to apply the Double Pooled estimator to Elastic-Net. This paper considers

an adaptive Lasso and Elastic-Net approach with five different expressions for the weights

and two different expressions for the penalty parameter. This paper performs a simulation in

order to find the best method for estimating spillovers. Finally, the best models are applied

to find the spillover effects of R&D investment on a company’s sales. The data is collected

from the United States and ranges from 1980 to 2001 and it includes 21 years of data and 263

companies. This paper finds that there is no single method which consistently outperforms

all other methods. The best performing methods are the method which uses the penalty

parameter and the weights of Manresa (2016), and the two methods with weights based on

Lasso and Elastic-Net without weights.

1 Introduction

When the economy in one country is all of a sudden performing badly, in most cases this also

affects other countries. This is an example of a negative spillover effect, where one country

influences many other countries. A spillover effect can be positive or negative and is defined as

a phenomenon where one event, which happens at a certain place, company, etcetera, has an

effect somewhere else.

Finding a good model to determine spillover effects in business settings is of great im-

portance. If it becomes possible to determine the effect of spillovers, policies can be designed

to maximize the social benefits of these spillovers. This paper will focus on spillover effect of

the R&D stock of a company on the sales of other companies. Earlier research confirmed the

presence of spillovers in R&D investments. At international level, Coe and Helpman (1995)

and Bayoumi, Coe and Helpman (1999) find that the R&D capital stock in one country can

influence their own factor productivity together with the factor productivity of other countries.

At company level, Bloom, Schankerman and Van Reenen (2013) found a positive spillover effect

from R&D investments on the firm performance, which outperforms the negative business steal-

ing effects from product rival firms. Furthermore, O’Mahony and Vecchi (2009) found a higher

productivity in groups which are more skill intensive and have a higher R&D capital stock. Ad-

ditionally, Jefferson, Huamao, Xiaojing and Xiaoyun (2006) find that, using data from Chinese

companies, R&D expenditure leads to higher sales, and that the returns to investment from

R&D are higher than those of fixed investment. Thus, there seems to be evidence that R&D

investments do not only affect the performance of its own company, but also the performance

of other companies.

Previous research also looked at where spillovers were mainly present. Audretsch and

Feldman (1996) found that industries that rely heavily on knowledge spillovers tend to have a

higher concentration of innovative activity. Furthermore, Audretsch and Vivarelli (1996) found
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that firm R&D expenditure mainly affects the innovation of all companies, while university R&D

expenditure affects mostly the innovations of small firms. Bernstein and Nadiri (1988) estimated

the spillover network between five high-tech industries and found that the private rate of return

of R&D were actually smaller than the social rate of return. Most industries generated spillovers

on two industries, except for the industry nonelectrical machinery. The scientific instruments

industry generated the largest amount of spillovers.

In order to model the spillover effects, this paper uses a Cobb-Douglas production func-

tion. The Cobb-Douglas function models the relationship between the amount of certain inputs

on the amount of output that is produced (Douglas, 1976). The most well-known version of

the Cobb-Douglas production function has two inputs, capital and labor, to generate output

(Zellner, Kmenta & Dreze, 1966). This function also includes the technological progress, but

this influences all companies or countries in the same way. Other research papers have modified

the conventional Cobb-Douglas function to better suit their research objectives. For example,

Yuan, Liu and Wu (2009) added the input factor energy to the Cobb-Douglas function with

capital, labor, and technological process to model the economic growth in China. Additionally,

Vasylieva, Lieonov, Liulov and Kyrychenko (2018) use a Cobb Douglas function with as output

GDP per capita, and as inputs technological progress, capital, labor, macroeconomic stability,

openness of the economy and foreign direct investment. This paper uses the Cobb-Douglas func-

tion established in the paper of Manresa (2016), where the inputs are capital, labor, technological

progress, knowledge capital, and knowledge spillovers.

In order to estimate the parameters in the Cobb-Douglas function, data is necessary. The

data that is collected comes from Compustat and is company-level panel data from the United

States. In the Cobb-Douglas function, the sales of a company is used as a measure for output,

the capital stock of a company is used for the input capital and the number of employees

of a company is used for the input labor. The input knowledge capital uses the company’s

R&D stock as a measure, and the input knowledge spillovers uses the R&D stock of all other

companies in the dataset. This paper uses panel data, which implies that data is collected from

different companies over multiple time periods. In total this paper uses 22 years of data and

263 companies, which implies that for each company in the dataset 22 years of data is available

for all variables. However, in total only 21 years can be used for estimation, as the R&D stock

is lagged in the Cobb-Douglas function.

Even though the presence of spillovers seems to be a widely accepted fact and a model for

estimating spillovers is established, estimating the magnitude of the spillover effects seems to be

empirically challenging. The main issue is that within the dataset the number of time periods,

T = 21, is smaller than the number of companies, N = 263. Therefore, there is the issue of

high-dimensionality, as the final spillovers that should be estimated is an N ×N matrix, while

only N × T observations are available for this estimation (Manresa, 2016). Therefore, a simple

ordinary-least-squares approach to estimate the spillovers can no longer be used, because if there

are more variables to be estimated compared to the number of observations there is no unique

solution and thus the ordinary-least-squares is undefined. Thus, different approaches should

be considered. Another issue could be that spillovers might take place through characteristics

which are not included in the model or that the model chosen might not account for dynamic,
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time-invariant or firm-specific effects (Arcidiacono, Foster, Goodpaster & Kinsler, 2012; Görg &

Strobl, 2001; Dimelis, 2005). This could lead to biased and inaccurate estimates for spillovers.

In order to estimate spillover effects in a dataset with high-dimensionality, a Lasso and an

Elastic-Net approach is used. Lasso is an abbreviation for least absolute shrinkage and selection

operator and it minimizes the squared residual sum of the model and is subjected to a constraint

that the sum of the absolute values of the coefficients should be smaller than or equal to a certain

constant (Tibshirani, 1996). Lasso essentially shrinks the coefficients, where it selects the most

important variables and sets the coefficients of the other variables equal to zero. As the model

with spillovers that is attempted to be estimated in this paper will likely have sparsity, that is

the total companies that provide spillover effects small compared to all the companies available

that could possibly provide spillovers, the Lasso estimator seems to be appropriate to reduce

dimensionality and select only the variables which cause spillovers. However, Lasso also has

some issues which can lead to a bad performance of this estimator. The first issue is that when

the number of observations, T , is larger than the number of variables, N , Lasso will select at

most T variables (Zou & Hastie, 2005). Furthermore, if a certain group of variables have a

high pairwise correlation, then lasso mostly selects only one variable from the group and does

not care which variable is selected. Lastly, if there are high correlations between predictors and

T > N , the lasso estimator is dominated by a ridge estimator, which sets no coefficients equal

to zero.

In order to overcome the issues of Lasso mentioned in the last paragraph, Elastic-Net

was designed, which should eliminate the first two issues and should deliver a better prediction

than Lasso when the variables are highly correlated and T > N . Elastic-Net is essentially

a linear combination between a Lasso and a Ridge regression (Zou & Hastie, 2005). A Ridge

regression minimizes the squared residual sum of the model and is subjected to a constraint that

the sum of the squared values of the coefficients should be smaller than or equal to a certain

constant (Hoerl & Kennard, 1970). Thus, Ridge shrinks the coefficients towards zero, but does

not actually set any variables equal to zero, which is also the reason why using only Ridge is

not appropriate in this case as scarcity will not be achieved with only Ridge. An Elastic-Net

regression minimizes the squared residual sum of the model and is subjected to the constraint

that the linear combination of the sum of squared values of the coefficients and the sum of

absolute values of the coefficients should be smaller than a certain constant (Zou & Hastie,

2005). As it is a linear combination between Ridge and Lasso, it does set values equal to zero

depending on the value of α, were a larger value of α resembles a Lasso regression more and thus

sets more values equal to zero. Therefore, this model is also appropriate to reduce dimensionality

of the model and only select the variables which are the most important. One would generally

expect Elastic-Net to outperform Lasso when there are correlations and the number of spillovers

are larger than the number of observations, T .

In order to estimate the spillovers in this paper the Pooled Lasso and the Double Pooled

Lasso approach is used from the paper of Manresa (2016). This approach is made more general

so it is also usable for the Elastic-Net estimator. The Pooled estimation technique can estimate

the spillover effect in case no control variables are present and first uses the Lasso (Elastic-

Net) estimator for the selection of the variables and then uses regular ordinary-least-squares for
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estimating the magnitude of the selected variables in order to eliminate shrinkage bias. The

Double Pooled estimation technique is used in case there are control variables, thus in the final

estimation of the model, and essentially applies the Pooled estimation multiple times. It should

be noted though that not the regular Lasso and Elastic-Net models are used, but rather the

adaptive Lasso and a variation of the adaptive Elastic-Net model, which include weights in the

penalty term. The reason for using weights in the penalty term is to try to make the models

consistent for model selection, as without weights this is only true when the estimated model

satisfies a strong condition Zou and Zhang (2009).

This paper considers different expressions for the weights and the penalty parameters in the

Lasso and Elastic-Net methods. There are two different expressions for the penalty parameter,

one is based on the paper of Manresa (2016) and the other one is computed with cross-validation.

There are five different expressions for the weights. Firstly, there is an equally-weighted model,

which is essentially a Lasso or Elastic-Net estimator without weights. Additionally, weights

are constructed using the sample variance of the independent variable x and different weights

are constructed using the procedure described in Manresa (2016). Furthermore, weights are

calculated using the obtained coefficients from a Lasso or Elastic-Net regression without weights,

depending on whether the Lasso or Elastic-Net model is used to estimate the parameters. Finally,

weights are calculated using the obtained coefficients from a Ridge regression without weights.

In total there are ten Lasso models and ten Elastic-Net models, which will be compared against

each other to determine which model has the best performance. The performance measures

for comparison are the Frobenius norm, the mean squared error and the percentage accurate

predicted non-zero and zero values. For the Double Pooled estimator also the performance

measure of the accuracy of the control parameters is included.

This main goal of this paper is to find the best model to estimate the spillover effects

of R&D investments between firms. In order to find the answer to this question it is import-

ant to research which expression for the weights is the most suitable. Furthermore, it should

be determined what the optimal penalty term should be. It is also important to see whether

the additional complexity of the Elastic-Net approach actually gives significantly better estim-

ation results compared to the simpler Lasso approach. Furthermore, this paper uses the best

performing models to interpret the spillover effects.

This paper finds that the method that is used in Manresa (2016) actually underperforms

against some simpler methods that use the estimated coefficients of an Lasso (Elastic-Net)

model without weights in order to set the weights. Only for larger sample sizes the method of

Manresa (2016) performs well, but for smaller samples it performs quite bad. Generally, Lasso

outperforms Elastic-Net even when correlations are introduced. Furthermore, using the penalty

parameter of Manresa (2016) outperforms a penalty parameter found by cross-validation for a

small time period, while the penalty parameter with cross-validation outperforms the penalty

parameter of Manresa (2016) for larger time periods. Thus, the best method seems to be a

method which uses Lasso weights computed with the coefficients estimated from a Lasso model

without weights.

This paper also attempts to calculate spillover effects. Three models find that an increase

in a company’s own R&D stock leads to lower sales, while the other three models find the
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opposite effect. It is thus challenging to determine the actual impact of R&D investment on

sales. Furthermore, most of the companies that provide spillover effects, give negative values for

these effects. However, two companies that do provide positive spillovers are both larger than

the average companies. The companies that receive positive spillovers are small companies.

This paper contributes to existing literature by comparing the performance of a Lasso

and an Elastic-Net estimator on panel data to detect spillover effects. It applies the Pooled and

Double Pooled techniques in the paper of Manresa (2016) and also gives some other variations to

this paper in order to try to improve the technique that was developed in her paper. Furthermore,

this paper also includes a simulation studies which compares many different models in order to

find the best performing model.

The remainder of this paper is organized as follows: Section 2 presents the data that

will be used in this paper and describes the data cleaning process. Section 3 introduces the

main model, the Pooled estimator with the different expressions for the weights and the penalty

parameter, and the Double Pooled estimator. This section also describes how the models will

be compared. Section 4 will describe the results found in the simulation of both the Pooled as

well as the Double pooled estimator. Section 5 will describe how the model will be applied to

the data and gives the results. Finally, Section 6 will conclude.

2 Data

The dataset that is used in this paper is a combination between the NBER match of Compustat

with the U.S. Patent Trade Office (USPTO) patent database. The period of interest in this paper

is 1980-2001 and the data is obtained from the paper Bloom et al. (2013), more specifically on

the site of Nicholas Bloom 1. The dataset contains panel data on U.S. firms over multiple time

periods. Compustat provides data on the real sales, the real market value, the capital stock, the

number of employees, the R&D stock and the R&D expenditure. The USPTO provides data

on the granted patents and all of the citations of these patents. However, this data is not used

in this paper. In total the dataset of Bloom et al. (2013) contains 18,209 observations with 736

companies. However, not all companies have data in the years of interest, or there is missing

data. Some observations may not be very useful because the R&D stock of companies remains

constant over time, making it challenging to estimate parameters accurately. Therefore, some

companies and observations have been removed. The data cleaning process can be found in the

Appendix Section A. The summary statistics of the adapted dataset can be found in Table 1.

Note that this adapted data set contains 22 years of data.

Table 1: Summary statistics of the adapted data set.
Variable Obs. Mean Std. dev. Min. Max.

R&D Stock 5,789 1,126.60 3,910.28 0 47,343.38
Sales 5,789 3,718.23 11,387.07 5.01 140,609.60
Capital stock 5,786 1,482.15 4,580.44 0.91 72,825.98
Employment 5,786 24.07 61.48 0.11 876.80

1The dataset was found on the site https://nbloom.people.stanford.edu/research and the data was taken from
the paper “Identifying Technology Spillovers and Product Market Rivalry”.
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3 Methodology

The main model that this paper estimates can be expressed as:

yit = ai + βixit +
∑
j ̸=i

γijxjt + w⊤
itθ + uit, (1)

where yit is the outcome of company i at time t, xit is the characteristic of company i at time t, wit

is a vector containing D control variables that affect all companies through θ, and uit represents

the idiosyncratic shocks which are uncorrelated with both x1t, ..., xNt and wit. Furthermore, ai

is a company-specific intercept and βi captures the effect of its own characteristic xit on the

outcome of a company yit. Additionally, γij captures the spillover effect from company j to

company i.

Model (1) allows for heterogeneity of spillover effects between the individual companies,

and does not specify the reference groups. This model can become problematic when the number

of companies N surpasses the number of observations T , as in that case there may be an excess

of parameters in comparison to the amount of data points, resulting in an unidentified model.

Therefore this paper focuses on sparse structure of interactions, where the number of connections

between companies, γij ̸= 0, is small but the identity and the magnitude of spillovers remains

unrestricted.

The main goal of this paper is to estimate the spillover effect γ̂ij to see the effect of a

certain characteristic x of one company on the outcome y of another company. To achieve this a

Double Pooled estimation is performed. In order to explain this technique, first the the Pooled

estimation technique is explained, as that technique is repeated several time within the Double

Pooled estimation. Thus, understanding the Pooled estimation is essential for comprehending

the Double Pooled estimation. Lastly, the performance measures used to compare the different

models will be discussed.

3.1 The Pooled estimation

To gain a better understanding of the Pooled estimation technique, we examine the simplified

model presented below (obtained by setting θ = 0 in equation (1)):

yit = ai + βixit +
∑
j ̸=i

γijxjt + uit. (2)

As the number of non-zero spillovers, γij ̸= 0, should be limited, it many values of γij should

be set to zero. This brings us to a Lasso estimator, as that method is known to select only a

few parameters out of a large set of parameters in case an appropriate penalty term is chosen.

More specifically, this paper uses a Pooled Lasso estimator (Manresa, 2016):

Γ̂ = argmin
Γ

1

NT

N∑
i=1

T∑
t=1

ỹit −
N∑
j=1

γij x̃jt

2

+
λ

NT

N∑
i=1

N∑
j=1

ϕij |γij |, (3)
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where the parameter of interest Γ̂ is an N ×N matrix which contains all of the spillover effects,

γij , where γii corresponds to βi. Furthermore, ỹit = yit − 1
T

∑T
t=1 yit and similarly x̃jt =

xjt− 1
T

∑T
t=1 xjt, thus the data is demeaned which is done to remove the fixed effect ai from the

equation. Finally, ϕij are the pair-specific weights and λ is the penalty parameter.

Even though the Pooled Lasso estimator is extremely useful for only selecting the most

important variables, it still has some issues. One of these issues is that the Lasso estimator can

perform quite poorly when the x-variables are highly correlated (Zou & Zhang, 2009). This could

potentially be an issue here, as it is not unthinkable that the R&D capital stock between firms

is correlated. Therefore, also the Pooled Elastic-Net estimator is used (based on (Bonaldi,

Hortaçsu & Kastl, 2015) and (Khan & Shaw, 2016)):

Γ̂ = argmin
Γ

1

NT

N∑
i=1

T∑
t=1

ỹit −
N∑
j=1

γij x̃jt

2

+
λ(1− α)

2NT

N∑
i=1

N∑
j=1

ϕijγ
2
ij +

λα

NT

N∑
i=1

N∑
j=1

ϕij |γij |, (4)

with similar parameters as the Pooled Lasso estimator and where α essentially decides how

closely the estimator resembles a Lasso or Ridge estimator. For α = 0 one can obtain a Ridge

estimator and for α = 1 one obtains the Pooled Lasso estimator. For 0 ≤ α ≤ 1, Elastic-Net

is thus a combination between Ridge and Lasso. This paper will focus mostly on an equal mix

between the two methods with α = 0.5.

The Pooled Lasso and the Pooled Elastic-Net estimator shown in equation (3) and (4)

will be estimated for each row i in the matrix Γ̂ separately for simplicity. This is possible as

minimizing the sum over each company i will give the same results as minimizing each company

i separately. Therefore each row in Γ̂ in Elastic-Net will be estimated using the formula:

γ̂i = argmin
(γi1,...,γiN

1

T

T∑
t=1

ỹit −
N∑
j=1

γij x̃jt

2

+
λ(1− α)

2T

N∑
j=1

ϕijγ
2
ij +

λα

T

N∑
j=1

ϕij |γij |. (5)

Note that each row γ̂i corresponding to Lasso can also be calculated using equation (5) by setting

α = 1.

Note that the estimator in equation (5) consists of two parts. The first part is the sum of

the squared errors of the model we estimate,
∑N

j=1 γij x̃jt, compared to the actual observations,

ỹit. The second part is a penalization, which consists out two parts for Elastic-Net and only

one part for Lasso. Generally, the sum of squared errors is decreasing in the number of spillover

effects, while the penalization is increasing in the number of spillover effects. The number of

spillover effects, γij ̸= 0, is then determined by the size of the penalty term λ, as a higher value

of λ will results in more zeros in the matrix Γ.

Within equation (3) and (4) both the penalty term λ and the weights ϕij must be specified.

To that end different specifications for the weights ϕij and the penalty term λ will be tested.

There are two different specifications for the penalty term and five different specifications for

the weights. Together with the Lasso and the Elastic-Net model there are in total 20 different

methods that will be considered. Firstly, the different types of penalty parameters will be

described, followed by an explanation about the different types of weights used in this paper.

Finally, Table 2 will give an overview of the 20 methods with a short description of the types of
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weights and penalty term in each model.

3.1.1 The choice of penalty parameter

For the penalty term λ two different specifications are tested. For the first specification the the

penalty term is chosen to be based on the paper of Belloni, Chen, Chernozhukov and Hansen

(2012):

λ = c2
√
TΦ−1(1− v/(2N)), (6)

where Φ is the standardized Gaussian cumulative distribution function, c is a constant above 1,

and v is the pre-specified level of error2. Note that this penalty term is the same for both Lasso

as Elastic-Net.

For the second specification of λ cross-validation (CV) is used to recover λ. The reason for

also looking at a penalty term which uses CV is to see whether this penalty term can outperform

a penalty term based on theory. Note that since each row in the matrix Γ̂ is estimated separately,

λ will also differ for each row. In this case thus λ will differ not only per row, but also per method

(Elastic-Net versus Lasso). The penalty parameter λ will be chosen using 5-fold CV. The choice

for 5-fold CV seems appropriate given that different values of T will be used, including a small

value of 21 years and a larger value of 100 years in the simulation. Therefore, using 5-fold CV

is suitable for a sample size of 21 years, as there is sufficient data to estimate the model in each

of the five parts. Additionally, it is not too computationally heavy for larger sample sizes such

as 100 years. Leave-one-out CV might be more appropriate for 21 years of data, but will be too

computationally heavy for 100 years of data. Finally, with CV the penalty parameter is chosen

such that the mean squared error (MSE) of the estimated model is minimised.

3.1.2 The choice of the weights

For the weights in equation (3) and (4) five different specifications are considered. Firstly, the

weights ϕij = 1, ∀(i, j) ∈ {1, . . . , N} are chosen. This is equal to a Lasso (Elastic-Net) regression

without weights. It will be very interesting to see how well these weights perform compared to

some more complicated weights. The performance of these weights will determine whether the

more complicated weights discussed below are actually necessary or whether simplified weights

already provide a satisfactory performance. The following two specifications choose the weights

ϕ2
ij based on the estimator of V( 1√

T

∑T
t=1 ũitx̃jt). Firstly, the weights are chosen according to

the paper of Belloni and Chernozhukov (2013):

ϕ2
ij =

1

T

T∑
t=1

x̃2jt. (7)

These weights are especially appropriate when the explanatory variable xit is independent from

uit, which is independent and identically distributed (iid). However, this might not always be

the case and therefore also another estimator of V( 1√
T

∑T
t=1 ũitx̃jt) is necessary. Therefore this

2Within this paper all results are obtained using c = 1.2 and v = 0.05.
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paper also looks at a variation of the HAC type estimator proposed by Newey and West (1986):

ϕ2
ij =

1

N

N∑
i=1

(
1

T

T∑
t=1

x̃2jt̂̃u2it + 1

T

T∑
t=1

x̃jtx̃jt−1
̂̃uit̂̃uit−1

)
. (8)

This is a variation of the HAC type estimator as it takes the average over the N companies

to estimate the weights. It should be noted that this estimator is suitable when the error terms

(ũi1, ..., ũiT ) are iid. These weights are robust to heteroscedasticity as well as autocorrelation

of unknown form. However, since the weights are necessary to calculate the error term ̂̃uit, the
iterative strategy in Belloni et al. (2012) is used, which helps to set initial weights which are

independent of ̂̃uit 3.

The other two specifications of the weights are based on the paper of Zou and Zhang (2009).

First, the weights are calculated by ϕij = (|γ̂(lasso)ij |)−δ for the Pooled Lasso estimator and

ϕij = (|γ̂(enet)ij |)−δ for the Pooled Elastic-Net estimator, where δ is a positive constant. In this

case γ̂(lasso)ij is calculated using equation (3) where the weights ϕij = 1, ∀(i, j) ∈ {1, . . . , N}.
Furthermore, γ̂(enet)ij is calculated using equation (4) where the weights ϕij = 1, ∀(i, j) ∈
{1, . . . , N}. It should be noted that in case γ̂(lasso)ij or γ̂(enet)ij equals zero the weights ϕij

will be set close to infinity, as the formulas specified before would otherwise divide by zero. In

this case, the Lasso or Elastic-Net estimator without weights, pre-selects the parameters that

should be included in the model. Defining the weights according to these expressions might thus

lead to including fewer parameters in the final model, as variables with a small magnitude of γij

will obtain a high weight ϕij and might therefore not be selected in the final model. Therefore,

these weights are appropriate when a model without weights can select the non-zero parameters

quite accurately, but gives too many parameters a non-zero value. These weights can then be

utilized to set inaccurately estimated non-zero parameters to zero.

Even though the formula for the weights as specified before can be useful to determine

weights it should be noted that the weights largely depend on a Lasso (Elastic-Net) regression

without weights. It is possible that these techniques select too few predictors compared to the

actual model and subsequently assign extremely high weights to the predictors that were not

chosen. This could result in the exclusion of these variables from Lasso (Elastic-Net) regression

with weights as well. This could then lead to an underestimation of the effect and the number of

spillovers. Therefore, this paper also considers a specification for the weights that are calculated

using the coefficients which are obtained by a Ridge regression without weights (based on the

paper of Chan and Chen (2011)). Chan and Chen (2011) describe in their paper that if the

sample size is small or multicollinearity is an issue, these weights are more appropriate for giving

estimates for the weights compared to the ordinary least squares approach. As specifications

are considered in this paper where T < N , using a Ridge regression to determine the weights

may be a more appropriate than using ordinary least squares. The weights are defined as

ϕij = (|γ̂(ridge)ij |)−δ, where γ̂(ridge)ij can be calculated using the following equation:

Γ̂(ridge) = argmin
Γ

1

NT

N∑
i=1

T∑
t=1

ỹit −
N∑
j=1

γij x̃jt

2

+
λ

NT

N∑
i=1

N∑
j=1

γ2ij .

3More information about this iterative strategy can be found in the Appendix section B.
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Using the weights from the coefficients of a Ridge regression has one big advantage. As Ridge

shrinks all coefficients towards zero, but does not actually set any of the coefficients equal to

zero that implies that none of the weights will be set to infinity. Thus all weights are defined

and none of the the coefficients will be excluded a priori when applying these weights.

Combining Section 3.1.1 and section 3.1.2, there are in total 10 Lasso methods and 10

Elastic-Net methods. An overview of these methods together with an explanation can be found

in Table 2.

Table 2: The different methods considered in the Pooled estimator
Method Explanation

Panel A: Lasso methods

EW static This method uses weights ϕij = 1,∀(i, j) ∈ 1, ..., N and equation (6) for λ
Var(x) static This method uses equation (7) for the weights and equation (6) for λ
HAC static This method uses equation (8) for the weights and equation (6) for λ
Lasso static This method uses weights ϕij = (γ̂(lasso)ij)

−δ and equation (6) for λ
Ridge static This method uses weights ϕij = (γ̂(ridge)ij)

−δ and equation (6) for λ
EW CV This method uses weights ϕij = 1, ∀(i, j) ∈ 1, ..., N and cross-validation for λ
Var(x) CV This method uses equation (7) for the weights and cross-validation for λ
HAC CV This method uses equation (8) for the weights and cross-validation for λ
Lasso CV This method uses weights ϕij = (γ̂(lasso)ij)

−δ and cross-validation for λ
Ridge CV This method uses weights ϕij = (γ̂(ridge)ij)

−δ and cross-validation for λ

Panel B: Elastic-Net methods

EW static This method uses weights ϕij = 1,∀(i, j) ∈ 1, ..., N and equation (6) for λ
Var(x) static This method uses equation (7) for the weights and equation (6) for λ
HAC static This method uses equation (8) for the weights and equation (6) for λ
Enet static This method uses weights ϕij = (γ̂(enet)ij)

−δ and equation (6) for λ
Ridge static This method uses weights ϕij = (γ̂(ridge)ij)

−δ and equation (6) for λ
EW CV This method uses weights ϕij = 1, ∀(i, j) ∈ 1, ..., N and cross-validation for λ
Var(x) CV This method uses equation (7) for the weights and cross-validation for λ
HAC CV This method uses equation (8) for the weights and cross-validation for λ
Enet CV This method uses weights ϕij = (γ̂(enet)ij)

−δ and cross-validation for λ
Ridge CV This method uses weights ϕij = (γ̂(ridge)ij)

−δ and cross-validation for λ

3.1.3 The Post Pooled estimator

Once the Pooled Lasso (Elastic-Net) estimator has selected its final estimators, γij ̸= 0 for

equation (2), the final spillover effects are estimated using a pooled panel regression on the

selected spillover effects, together with other spillovers that a researcher might want to include

in the model. The final estimator of Γ̂ is then called the Post Pooled estimator (Manresa,

2016):

Γ̂P = argmin
(γi1,...,γiN ):γij=0 if j /∈T̂i

1

NT

N∑
i=1

T∑
t=1

ỹit −
N∑
j=1

γij x̃jt

2

, (9)

where T̂i are all the regressors which are selected in the Pooled Lasso (Elastic-Net) estimator

together with the regressors that a researcher might want to include as well. This paper always

includes the variable xit, and thus the parameter γii, in the Post Pooled estimator, as it is logical

that a company’s own characteristic influences the outcome of that company. The main reason
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for using this Post Pooled estimator is to eliminate shrinkage bias. The Lasso (Elastic-Net)

estimator is likely to underestimate the effect of the coefficients, because of the penalty para-

meter trying to keep the coefficients low. The Lasso (Elastic-Net) estimator has typically a low

variance, because fewer parameters are included and the parameters have a smaller magnitude.

However, the use of penalty in parameter estimation may result in a higher bias, as it can lead

to underestimation of the true value for some parameters. The Post Pooled estimator then in-

troduces a higher variance, as more parameters might be included and the parameters typically

have a larger magnitude. Nevertheless, the bias will be reduced, as the parameters are now

estimated in such a way that the MSE, and thus the bias, is as small as possible. Therefore,

the Post Pooled estimator is useful to find the true parameters without shrinkage bias, even if

it comes at the cost of a higher variance.

3.2 The Double Pooled estimator

The Double Pooled estimator attempts to estimate model (1), where θ ̸= 0. Therefore, the

Double Pooled method utilizes the Pooled method multiple times. However, not all 20 methods

described in Table 2 are used in this case. Only the three best performing Elastic-Net and the

three best performing Lasso models will be used for the Double Pooled estimator. These choices

are based on a simulation study where the y-variable is generated without control variables.

Thus, the 20 methods in Table 2 will be reduced to six for the Double Pooled estimator.

In order to provide estimates for the model in equation (1) one should first obtain a

consistent estimate for θ. In order to estimate θ the double selection procedure from Belloni,

Chernozhukov and Hansen (2014) will be used. This procedure will construct orthogonal projec-

tions of yit and wit on x1t, ..., xNt separately in order to minimize omitted variable bias because

of selection mistakes. The final estimator of model (1) is called the Double Pooled estimator

and is calculated using the following steps.

First, an orthogonal projection of w on x1t, ..., xNT is constructed. For each d ∈ {1, . . . , D}

wd
it = ηdi +

N∑
j=1

λd
ijxjt + edit, (10)

where the number of λd
ij ̸= 0 is limited and the mean of the error term edit conditional on the

x-variables is zero. Note that D represents the number of control variables and this regression

will thus be performed for each control variable d. Then the values of λd
ij are calculated using

the methods described in Section 3.1, where the variable yit is replaced by wd
it and we want to

estimate Λ̂d, which is a matrix containing all the values λd
ij , instead of Γ̂. The HAC weights are

estimated using ϕd
ij
2
= V̂

(
1√
T

∑T
t=1 x̃jtẽ

d
it

)
4.

Secondly, an orthogonal projection of y on x1t, ..., xNT is constructed:

yit = µi +

N∑
j=1

νijxjt + υit, (11)

4The precise expressions for the weights and the initial weights of the HAC method can be found in the
Appendix Section C.
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where µi = αi+η⊤i θ, νij = γij+λ⊤
ijθ, and υit = e⊤itθ+uit. Additionally, once again the number of

variables νij ̸= 0 is limited. Similar to before, the values of νij are calculated using the methods

described in section 3.1, where in this case we want to estimate V̂ , which contains all the values

νij , instead of Γ̂. The HAC weights are estimated using ϕ2
ij = V̂

(
1√
T

∑T
t=1 x̃jtυ̃it

)
5.

The next step is to use the obtained estimates of λ̂d
i and ν̂i to estimate θ̂. Therefore, θ̂

will be estimated by the following pooled panel regression:

ỹit − ν̂ix̃t = θ(w̃it − λ̂ix̃t) + ϵit, (12)

where θ is a vector containing (θ1, . . . , θD), w̃it is a vector containing (w̃1
it, . . . , w̃

D
it ), λ̂i is a

matrix containing (λ̂1
i , . . . , λ̂

D
i ), and ϵit is the error term of the regression. Thus, θ̂ will be a

1×D vector containing D values of θ for all of the D control variables.

Finally, to estimate the actual spillover effects the following formula is used:

ỹit − θ̂w̃it =

N∑
j=1

γij x̃ij + uit + (θ̂ − θ0)w̃it, (13)

where uit is the error term, θ0 is the actual value of θ and thus (θ̂−θ0)w̃it is the estimation error

from estimating θ6. The values γij are calculated using the methods described in Section 3.1,

where the variable yit is replaced by yit− θ̂wit. The HAC weights, ϕ2
ij , are based on the estimator

of V̂( 1√
T

∑T
t=1(ũit + (θ̂ − θ0)w̃it)x̃jt)

7. Note that for the real data the value θ0 is unknown and

thus it will be assumed that θ̂ − θ0 = 0.

3.3 Comparison between the models

As this paper will estimate different models to measure the spillover effects, the performance of

these models is of the utmost importance. To determine which model provides the best estimates

this paper will generate some data according to equation (1) where the values of ai, βi, γij , and θ

are generated according to a data generating process explained in Section 4.1. Then the multiple

techniques discussed in section 3.1 and 3.2 will be used to estimate those parameters.

To determine the best-performing model, it is useful to consider which model can provide

estimates that closely resemble the actual value of Γ. One way to do this is to see how many

variables are correctly given a non-zero value. This can be done by dividing the number of

correctly estimated non-zero values by the actual number of non-zero values. However, it could

also be that a certain method sets too many variables to a non-zero value. To that end one

should also see how many variables are correctly set to zero. This can be done by dividing the

number of correctly set zero values by the actual number of zero-values. Note that for both of

these percentages we would want it to be as close to 100% as possible. Another way to assess

the effectiveness of an estimator is to compare the estimated values with the actual values. This

is important because even if the estimator selects too many variables, it may still accurately

5The precise expressions for the weights and the initial weights of the HAC method can be found in the
Appendix Section C.

6It should be noted that θ̂w̃it is equal to
∑D

d=1 θ̂
dw̃d

it
7The precise expressions for the weights and the initial weights of the HAC method can be found in the

Appendix Section C.

12



estimate the values of the actual non-zero variables while setting the values of the actual zero

variables close to zero. It could also be that the model selects mostly correct variables, but that

the estimates of these variables deviate significantly from the true values, which is undesired.

To that end the Frobenius norm of the difference between the estimated model and the actual

gamma matrix will be calculated using the formula

∥Γ− Γ̂P ∥F =

√√√√ N∑
i=1

N∑
j=1

|γij − γ̂Pij |2, (14)

where γij is the actual value of Γ and Γ̂P
ij is the estimated value of Γ. In this case it is preferred

to have the Frobenius norm as low as possible, as a Frobenius norm of zero implies that the

estimated model predicts the values with an accuracy of 100%. Note that this comparison with

the real Γ is only possible for the simulated data and not for the actual data, as for the actual

data Γ is unknown.

Another performance measure is the Mean Squared Error (MSE) which can be calculated

with the formula

1

NT

N∑
i=1

T∑
t=1

(yit − ŷit)
2,

where yit is the actual value of the observation and ŷit is the predicted value of yit using the

estimated model. To estimate ŷit, Γ̂
P is used together with θ̂ to estimate the fixed effect âi:

âi =
1

T

T∑
t=1

yit −
1

T

T∑
t=1

 N∑
j=1

γ̂Pijxjt

− 1

T

T∑
t=1

θ̂wit,

and then using all these estimates it becomes possible to calculate ŷit:

ŷit = âi +

N∑
j=1

γ̂Pijxjt + θ̂wit.

The MSE is useful to determine how close a model can predict values compared to its actual

value. It can be used both on actual data and on simulated data.

Once these performance measures are computed for the Pooled estimator, this paper will

choose the best performing Elastic-Net models and the best performing Lasso models. These

models will then be used on the Double Pooled estimator and on the actual data to estimate

the spillover effects. For the actual data, the MSE will be calculated. It is interesting to see

whether the same model as before performs best in a real-life application, where there might be

a larger dependence between observations and fewer assumptions hold.

4 Simulation

As explained in section 3 two main models are compared with different expressions for weights

and penalty terms. It should be noted that in this section Elastic-Net is always estimated

with α = 0.5. The remaining of this section will be divided as follows. First the general data
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generating process (DGP) will be discussed. Then, the 20 different models as described in Table

2 will be estimated without control variables. In the simplified model, it is helpful to determine

which estimation technique performs the best before moving on to more complicated methods. If

a certain method is already performing poorly for the Pooled method, it might not be advisable

to use it for the Double pooled method. Lastly, the three best performing Lasso and the three

best performing Elastic-Net models will be chosen and the Double Pooled technique will be

applied using these models. In the entire simulation studies N = 263, as this equals the actual

amount of companies in the dataset. The number of years, T , will both be 21 years and 100

years. It is interesting to see how well the methods perform if the number of companies and

the time period closely resembles the actual data. If the methods already perform poorly in the

simulation, where the model we attempt to estimate follows the right model specification, we

cannot expect to get very reasonable results when applying this model to the data. The reason

for also focusing on a larger time frame, is to see whether the models perform better when more

information is available and to thus determine whether the applied models are appropriate for

estimating spillover effects.

4.1 Data generating process

The DGP is designed so it can be tested for different number of years, and different number of

companies. The simulated data is created to closely mimic real-world data, while also offering

reliable estimates. First, this subsection discusses the DGP of the variables followed by the DGP

of the parameters.

First of all, the DGP of the variables is based on the logarithm of the actual data. Fur-

thermore, to keep the model realistic, for each company a variable is taken from a normal

distribution with mean and variance of the logaritm of the actual data. Then for each time

period, it is assumed that the observations are again from a normal distribution, but with a

smaller standard deviation. This is done such that for each company the observations over time

are reasonably close together, as it is unlikely that there are big differences within a timespan

of a few years. Furthermore, since the generated data is based on the logarithm of the actual

data, only values of 0 and larger are being generated. As the actual data contains no negative

numbers and log(1 + x) is taken for all variables, all log-values are equal or larger than zero.

The final DGP of the variables can be described by the following equations:

xi ∼ N (4.7, 2.2), ∀i ∈ {1, . . . , N} and xit ∼ N (xi, 1), ∀t ∈ {1, . . . , T},

w1
i ∼ N (2.1, 1.4), ∀i ∈ {1, . . . , N} and w1

it ∼ N (w1
i , 0.5), ∀t ∈ {1, . . . , T},

w2
i ∼ N (5.4, 2.1), ∀i ∈ {1, . . . , N} and w2

it ∼ N (w2
i , 1), ∀t ∈ {1, . . . , T},

uit ∼ N (0, 1), ∀i ∈ {1, . . . , N} ∀t ∈ {1, . . . , T}.

It should be noted that all values for xit, w
1
it and w2

it which are smaller than zero, are set to zero.

This paragraph will discuss the parameter choices. The spillover effects γij ̸= 0 for i ̸= j

are assumed in the simulation to only take place between firms with the same Standard Industrial

Classification (SIC). To that end each company gets assigned a random SIC, which is a number
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ranging from 1 to 50. Thus, a spillover γij ̸= 0 is assigned to company i if company j and

company i have the same value for SIC. This implies that there are on average 5 spillovers

per company. Furthermore, the DGP for the parameters can be described by the following

expressions:

ai ∼ N (2, 1), ∀i ∈ {1, . . . , N}

βi = γii ∼ N (3, 0.5), ∀i ∈ {1, . . . , N}

γij ∼ N (1, 0.2), (i, j) ∈ {1, . . . , N}, for i ̸= j, and SICi = SICj

θ1 ∼ N (1, 0.5) and θ2 ∼ N (0.5, 0.2)

These coefficients are chosen based on the assumption that the logarithm of y is not excessively

large, thus the coefficients should also not be too large. However, the coefficients should not

be made too small either because in that case Lasso and Elastic-Net might not detect these

numbers as different from zero and might not select these numbers. Therefore, the numbers are

set in such a way that Lasso and Elastic-Net can detect them without being set so extremely

large that it becomes unrealistic.

4.2 The pooled estimator

Our initial focus is on evaluating the performance of the Pooled Lasso (Elastic-Net) estimator

with varying weights and penalty parameters. To that end equation (2) is used to generate the

y-variable and to estimate the final model. This equation is utilized to ensure the appropriate

DGP is applied to the variable y, thereby avoiding the inclusion of any additional variables

that may negatively impact the model’s performance. An incorrect model specification could

make models perform poorly, even when the model used for estimation is appropriate. The

remaining of this subsection will be divided into multiple parts. First, the general observations

will be discussed. Then the two penalty terms will be compared, followed by a discussion on

the performance of the different types of weights. Subsequently, a comparison between the

Elastic-Net and Lasso will be given. Finally, the three best Lasso and Elastic-Net models will

be selected.

4.2.1 General observations

Applying all the models of Table 2 to the data, the performance measures in Table 3 are obtained.

These performance measures include 21 years of data and these are the means of the performance

measures taken over 100 simulations8. None of the models seem to perform very well in terms

of accurately predicting spillovers, where of the actual values where γij ̸= 0 none of the models

can set more than 40% of those parameters at a non-zero value. On top of that, it should be

taken into consideration that the Post Pooled estimator forces the model to select the cross-

products γii,∀i ∈ {1, . . . , N}. Therefore, the percentage correct non-zero is inflated because

some parameters are still selected, even if Lasso or Elastic-Net does not select them. Therefore

also the measure correct spillovers is considered, which shows the percentage of the spillovers

8The corresponding standard deviations of these performance measures can be found in Table 8 in Section D
in the Appendix.
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Table 3: The mean of the performance measures using 100 simulations over 21 years of data
Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 44.01 19.90% 4.63% 99.79% 197.55
Var(x) static 70.11 19.96% 4.70% 98.08% 1,390.07
HAC static 55.57 19.21% 3.81% 99.26% 642.58
Lasso static 44.04 19.93% 4.67% 99.79% 198.69
Ridge static 126.66 37.95% 26.12% 95.03% 68,984.82
EW CV 299.47 38.04% 26.24% 95.74% 159,418.52
Var(x) CV 657.82 23.21% 8.58% 96.63% 908,440.68
HAC CV 321.63 30.74% 17.53% 95.83% 41,347.67
Lasso CV 50.64 32.69% 19.87% 97.97% 367.71
Ridge CV 489.59 37.93% 26.10% 94.82% 106,341.37

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 71.79 34.38% 21.87% 97.18% 3,526.01
Var(x) static 582.48 26.42% 12.40% 95.27% 240,295.10
HAC static 202.87 29.88% 16.51% 96.43% 72,266.26
Enet static 71.75 34.38% 21.87% 97.18% 3,525.13
Ridge static 13,243.09 39.85% 28.38% 93.57% 222,024,100.00
EW CV 2,298.26 37.39% 25.46% 94.41% 3,233,280.00
Var(x) CV 2,991.83 24.47% 10.08% 95.77% 24,320,420.00
HAC CV 2,895.14 31.65% 18.62% 94.69% 11,825,140.00
Enet CV 74.95 34.08% 21.52% 97.11% 984.88
Ridge CV 2,672.13 39.11% 27.51% 93.90% 53,656,300.00

Notes: This table shows the mean of the performance measures of the methods considered for 100 simulations
over 21 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm refers to the
Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given a non-zero
value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %
zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods,
static implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.

γij , i ̸= j the model does not set to zero, when the value is non-zero. This percentage is even

smaller, so that all models correctly select less than 30% of the spillovers.

In contrast, the percentage of observations which are set correctly to zero is much larger,

above 93% for all models. Nevertheless, it should be noted that there are far more observations

for which γij = 0, than for which γij ̸= 0. As there are approximately 5 spillovers between

companies together with the fact that γii ̸= 0, ∀i ∈ {1, . . . , N}, there are approximately 67,591

observations in the actual matrix Γ which are zero and only 1,578 observations which are non-

zero. Therefore, an increase of 1% in correct non-zero implies that approximately 16 more

variables are correctly set to non-zero, while a decrease of 1% in correct non-zero implies that

approximately 676 variables are wrongly set to a non-zero value. Therefore, even when a model

has higher percentages of correct non-zero and correct spillovers, a lower percentage of correctly

identified zeros may result in a model that produces more miscalculated spillovers than accurate

ones. In order to improve the model the increase in the percentage correct non-zero must thus
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be more than 40% to mitigate the effect of a 1% decrease in the percentage correct zero. Thus,

when selecting a model more value should be given to the percentage correct zero compared to

the percentage correct non-zero or correct spillovers.

Thus for 21 years of data none of the models considered in this paper seemed to perform

very well. However, this could potentially be because of the small value of observations T .

Therefore, it is important to determine whether the model performs better when a larger time

horizon is used. To that end all the models are re-estimated with 100 years of data and 50

simulations9. The mean of the performance metrics of the 50 simulations can be found in Table

410. When we increase the time horizon T , there is a noticeable increase in both the percentage

of correct non-zero values and correct spillovers. For T = 21 all percentages correct non-zero

and correct spillovers were below 40%, while for T = 100 these percentages are all higher than

54%. Furthermore, the Frobenius norm and the MSE have decreased a lot compared to 21 years

of data. This is not unexpected, as more years of data imply more available information which

leads to more accurate predictions of the coefficients, and thus also the outcome y. Further

increasing the time horizon makes the results even better.

4.2.2 Comparison between the penalty terms

For deciding which models are the best models, first the two penalty terms are compared against

each other. If we inspect a time period of 21 years for the Lasso methods, it immediately becomes

clear that using the static formula for λ instead of using CV leads to a lower Frobenius norm

and a lower MSE for all methods. The percentage for correct non-zero and correct spillovers is

generally higher for the methods that use CV to compute λ for Lasso, but this is paired with

a lower percentage for correct zero. For Lasso, the static λ thus seems to outperform the λ

calculated using CV.

Then looking at a larger time period of 100 years for the Lasso methods, the λ calculated

with CV outperforms the static λ in most cases for all performance measures except the per-

centage correct zero. The static value of λ seems only outperform almost all λ with CV methods

in terms of percentage correct zero. Taking into account that the percentage correct zero has

more value than the percentage correct non-zero and correct spillovers, the static value of the

penalty parameter might still be a better fit for Lasso models. Nevertheless it should be taken

into account that the overall best performing model from 100 years of data is the model which

uses Lasso weights with CV for λ.

For Elastic-Net and 21 years of data, the Frobenius norm is generally lower for the methods

that use the static λ. Also the MSE is generally lower for the static value of λ, with the exception

of Ridge weights Elastic-Net weights. For the percentages correct non-zero, correct spillovers

and correct not a certain value of the penalty parameter clearly outperforms the other. Most

values are quite close with only a minimal difference between the two penalty parameters.

Generally, the differences between the methods are small, except for using equal weights and the

HAC weights. Therefore, for Elastic-Net there is no clearly best-performing penalty parameter.

9Only 50 simulations are used for 100 years of data because the estimation of the model takes longer when
using 100 years instead of 21 years. In order to keep the estimation time feasible less simulations are used for 100
years of data.

10The corresponding standard deviations can be found in Table 9 in Section D in the Appendix.
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Table 4: The mean of the performance measures using 50 simulations over 100 years of data
Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 23.18 62.74% 55.63% 99.98% 145.80
Var(x) static 25.02 61.80% 54.50% 99.53% 172.34
HAC static 23.44 62.78% 55.67% 99.91% 147.59
Lasso static 21.53 66.68% 60.32% 99.98% 138.41
Ridge static 36.22 98.58% 98.30% 89.51% 283.40
EW CV 15.28 99.92% 99.91% 89.63% 57.42
Var(x) CV 17.34 99.93% 99.92% 88.12% 70.92
HAC CV 16.13 99.94% 99.93% 89.18% 62.24
Lasso CV 6.01 99.14% 98.98% 99.86% 19.66
Ridge CV 14.41 97.26% 96.74% 95.49% 52.75

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 9.44 96.13% 95.40% 99.20% 36.50
Var(x) static 11.77 95.97% 95.20% 97.98% 46.72
HAC static 10.05 96.47% 95.80% 98.87% 38.26
Enet static 8.23 97.69% 97.25% 99.20% 29.75
Ridge static 288.37 98.85% 98.63% 82.01% 549,144.11
EW CV 17.94 99.91% 99.89% 85.31% 71.76
Var(x) CV 20.44 99.92% 99.90% 83.85% 92.99
HAC CV 19.08 99.92% 99.91% 84.82% 82.40
Enet CV 6.45 99.11% 98.94% 99.77% 20.86
Ridge CV 15.06 97.26% 96.74% 94.77% 55.36

Notes: This table shows the mean of the performance measures of the methods considered for 50 simulations
over 100 years of data of 263 companies. The x-variables are i.i.d. generated variables. F-norm refers to the
Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given a non-zero
value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %
zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods,
static implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.

However, there seems to be a slight preference for the static λ, because when it outperforms the

λ computed with CV, it mostly does it quite clearly.

Increasing the time period to 100 years does not give clearer results for Elastic-Net. For

the Elastic-Net and Ridge weights, the λ computed with CV seems to be a better fit in terms

of almost all performance measures. For the other three weights the static value of λ performs

better for all performance measures except the percentages correct spillovers and correct non-

zero. Generally, the static approach for λ seems to be slightly preferred, especially when we

take into consideration that more value is given to the performance measure percentage correct

zero. However, it should be taken into account that the Elastic-Net model with CV for λ and

weights based on Elastic-Net seems to have the best performance overall.

All in all, the static method used in the paper of Manresa (2016) seems to generally

perform best for most methods. However, for some specifications of the weights computing λ

with CV actually outperforms all of the other methods, and thus this method should not be
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forgotten.

4.2.3 Comparison between the weights

Next, we compare the different weights that are used in this paper. If we inspect a time period of

21 years for the Lasso methods, the Lasso weights seem to mostly outperform all other methods

in terms of Frobenius norm, percentage correct zero and MSE. The only method that performs

better, using the static λ, is the equally weighted model, however this method performs poorly

when using CV to compute λ. Using the weights of Ridge and the weights of the sample variance

of x perform poorly for both values of λ. The HAC weights of Manresa (2016) do not perform

very well, but also not exceptionally bad. Currently not many methods outperform the method

without weights, but that could be due to the small value of T .

Looking at a larger time horizon of 100 years, the results do not change a lot. The Lasso

weights outperform the other weights even more clearly now, for all performance measures except

the percentage correct non-zero and correct spillovers. For the static value of λ the equally

weighted model and the model with HAC weights now almost have the same performance and

both perform quite well. Also noteworthy is that Ridge with λ computed with CV also performs

suddenly quite well.

For the Elastic-Net methods and a time period of 21 years, the model with Elastic-Net

weights outperforms all other weights for all performance measures except the percentage correct

non-zero and correct spillovers. The performance of the equally weighted model is comparable

to that of the Elastic-Net weights when using the static λ. However, it performs poorly when

using the λ computed with CV. The Ridge weights seem to have perform the worst, followed

by the weights based on the sample variance of x and the HAC weights. The underwhelming

performance of the methods that incorporate weights, except for Elastic-Net weights, could once

again be because of the low value of T .

Increasing the time period to 100 years, the results remain the same. The Elastic-Net

weights still outperform all other models for all performance measures except the percentage

correct non-zero and correct spillovers. For the static value of λ the equally weighted model and

the model with HAC weights have become closer, with their performance slightly worse than

the Elastic-Net weights.

4.2.4 Comparison between Lasso and Elastic-Net

The next step is to compare the Lasso methods with the Elastic-Net methods. For 21 years of

data, the Lasso methods outperform the Elastic-Net models in terms of Frobenius norm, MSE

and the percentage correct zero. The Elastic-Net models only perform better than Lasso for the

percentage correct non-zero and correct spillovers. Thus, Elastic-Net can detect more spillovers

compared to Lasso, but by doing so it also detects “false” spillovers, where it sets values not

equal to zero while in actuality they are zero. As the percentage of correct spillovers for Elastic-

Net is not large enough to mitigate the effect of the decrease in the percentage correct spillovers,

the Lasso methods outperform the Elastic-Net models for 21 years of data.

For 100 years of data, Lasso no longer seems to clearly outperform Elastic-Net. For the

static value of λ most of the Elastic-Net methods now outperform the Lasso methods for all
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performance measures except the percentage correct zero. The static Lasso methods have a

higher percentage correct zero, however for the equally weighted method and the Elastic-Net

weights the higher percentage correct spillovers for Elastic-Net is high enough to mitigate the

effect of a lower percentage correct zero. Therefore for the static value of λ Elastic-Net seems

to be the best method. However, if CV is used to compute λ the Lasso methods outperform the

Elastic-Net methods for all performance measures.

The fact that the Elastic-Net methods do not consistently outperform the Lasso methods

could be because up until now all x-variables are i.i.d. generated. Therefore the variables up

until now did not contain multicollinearity, and Elastic-Net is mainly expected to outperform

Lasso when there is multicollinearity in a model. In real life scenarios it is also more likely that

variables are correlated, as events could happen that affect multiple companies in the same way.

Therefore also two different scenarios with correlation between the x-variables are considered.

The first scenario generates random values of x with correlation 0.5 between companies if the

two companies have spillover effects and correlation 0.1 between companies if the two companies

do not have spillover effects. When companies experience spillovers, it is probable that there is

a stronger correlation between them. If there are no spillover effects between two companies,

these companies are likely less related and may only respond similarly to significant changes in

the economy. As a result, their correlation should be lower. In the second scenario, random

values of x are generated with a correlation of 0.5 across all companies. Although less realistic in

real life, it is interesting to observe whether the models can still perform well as the correlation

increases.

Table 12 and Table 14 in Appendix Section D show the mean of the performance measures

of the models where the x-variable is estimated with correlation of scenario one for 21 and 100

years of data respectively. For 21 years of data Elastic-Net only outperforms Lasso if Elastic-Net

weights are used, and if equal weights are used with the static value of λ. Interestingly, Lasso

does not seem to perform worse with this correlation structure, and still mostly outperforms

Elastic-Net. For 100 years of data Lasso outperforms the Elastic-Net methods, except for Elastic-

Net weights with CV for λ. Once again both Lasso and Elastic-Net methods perform better

when these correlations are used, even though surprisingly Lasso still outperforms Elastic-Net.

Next we observe Table 16 and Table 18 in Appendix Section D, which show the mean of

the performance measures of the models where the x-variable is estimated with a correlation of

0.5 between all companies for 21 and 100 years of data respectively. In this case most models

actually perform worse compared to not including correlations. Furthermore, in almost all cases

Lasso outperforms Elastic-Net with this correlation structure, the only exception is Elastic-

Net weights with CV for λ. For 100 years of data actually many models perform better with

correlations compared to no correlations, especially the models with a static λ. However, the

Lasso models mostly still outperform the Elastic-Net models.

It is quite surprising that Elastic-Net does not seem to clearly outperform the Lasso

methods when correlations are introduced, as that is what one would expect based on theory

(Zou & Hastie, 2005). However, up until now only α = 0.5 is considered. It is possible that the

current value of α may not be appropriate, and other values of α might result in Elastic-Net

performing better than Lasso in the presence of correlations. Further research could potentially
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find a better value of α.

Now that all models are compared for different values of T , we choose the three best

performing Lasso and the three best performing Elastic-Net models. For Lasso the methods

Lasso static and Lasso CV and for Elastic-Net the methods Enet static and Enet CV are chosen

because in all simulations they consistently showed to be one of the best estimators for γ̂P .

Furthermore, for both Elastic-Net as well as Lasso the method HAC static is chosen. This

method is chosen as the paper of Manresa (2016) specifically applied it to the Double Pooled

estimator, and thus we expect it to perform quite well. Furthermore, this method has done

quite well when the value of T increased, showing that asymptotically this method provides

good estimates.

4.3 The double pooled estimator

For the double pooled estimator equation (1) is used where yit is generated with control variables.

Once again the estimation is done with 263 companies. First general observations are discussed,

followed by a comparison of the different models. Finally, the Lasso and Elastic-Net models will

be compared against one another.

Table 5: The mean of 100 simulations of the performance measures of the Double Pooled methods
over 21 years of data

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 55.49 19.17% 3.69% 99.27% 628 0.39 0.19
HAC sc static 55.48 19.18% 3.70% 99.27% 629 0.39 0.19
Lasso static 43.86 20.03% 4.73% 99.79% 195 0.27 0.13
Lasso CV 63.14 31.78% 18.73% 97.90% 2,947 0.80 0.38

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 3,438.04 29.81% 16.38% 96.29% 475,115,200 0.90 0.43
HAC sc static 3,438.04 29.81% 16.38% 96.29% 475,115,200 0.90 0.43
Enet static 59.96 34.28% 21.70% 97.01% 523 0.87 0.42
Enet CV 126.78 33.39% 20.64% 97.01% 7,760 0.87 0.41

Notes: This table shows the mean of 100 simulations of the performance measures of the methods considered
over 21 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm represents the
Frobenius norm and %non-zero represents the percentage of variables γij which are correctly given a non-zero
value. %spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero.

%zero gives the percentage of variables γij which are correctly set to zero. θ̂ references to the estimated value
of θ, while θ0 references to the actual value of θ. For the abbreviations of the methods, static implies that the λ
of equation (6) is used, while CV implies that λ is calculated with cross-validation. HAC implies that equation
(8) are used for the weights and θ0 is not used to estimate the final weights. HAC sc implies that equation (8)
are used for the weights and θ0 is used to estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1

are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.

4.3.1 General observations

Table 5 shows the results of the Double Pooled method using 21 years of data11. Similar to

the Pooled method the percentage correct spillovers is quite small, below 22% for all methods.

11The standard deviation of this table can be found in Table 20 in Appendix Section D.
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Furthermore, the estimates of the θ are quite inaccurate, especially for the Elastic-Net methods.

If we take into account that θ1 ∼ N (1, 0.5) and θ2 ∼ N (0.5, 0.2), then the mistake in calculating

θ is indeed quite big. A possible explanation for the big calculating mistake in Elastic-Net

could be that Elastic-Net might set too many values of λij ̸= 0, thus implying that xj and

wi are related when they are not in reality, which then leads to a miscalculated value of θ.

Additionally, we also observe that the HAC static model and the HAC scaling static model have

almost equal performance. This is a good sign as that implies that using the estimated error

without using the actual parameters of the original model can provide just as good estimations

as estimating the errors with the actual parameters. So even when the difference between the

actual and estimated parameter is quite large it does not seem to seriously alter the performance

of the estimated weight matrix.

When we re-estimate the models using a time horizon of 100 years the results in Table

6 are obtained12. Once again all the performance metrics improve when using a larger time

horizon. The two HAC methods are still approximately equal, thus even for larger time periods

the inaccuracy in estimating the θ does not seem to lead in very different estimates for the

weights ϕij .

Table 6: The mean of 50 simulations of the performance measures of the Double Pooled methods
over 100 years of data

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 23.78 62.24% 55.12% 99.90% 158.29 0.10 0.06
HAC sc static 23.78 62.24% 55.12% 99.90% 158.22 0.10 0.06
Lasso static 21.81 66.17% 59.78% 99.98% 146.86 0.09 0.05
Lasso CV 6.18 99.04% 98.86% 99.85% 20.55 0.12 0.07

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 10.32 96.35% 95.66% 98.82% 40.24 0.19 0.11
HAC sc static 10.32 96.35% 95.66% 98.82% 40.24 0.19 0.11
Enet static 8.51 97.53% 97.06% 99.17% 31.43 0.17 0.10
Enet CV 6.69 98.99% 98.80% 99.76% 21.75 0.14 0.08

Notes: This table shows the mean of 50 simulations of the performance measures of the methods considered
over 100 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm represents the
Frobenius norm and %non-zero represents the percentage of variables γij which are correctly given a non-zero
value. %spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero.

%zero gives the percentage of variables γij which are correctly set to zero. θ̂ references to the estimated value
of θ, while θ0 references to the actual value of θ. For the abbreviations of the methods, static implies that the λ
of equation (6) is used, while CV implies that λ is calculated with cross-validation. HAC implies that equation
(8) are used for the weights and θ0 is not used to estimate the final weights. HAC sc implies that equation (8)
are used for the weights and θ0 is used to estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1

are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.

4.3.2 Comparison between the different models

Next the different methods are compared. For 21 years of data and for the Lasso methods,

the Lasso static method outperforms the other three methods for all performance measures

12The standard deviation of this table can be found in Table 21 in Appendix Section D.
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except the percentage correct non-zero and correct spillovers. Lasso with CV has the highest

percentage of correct non-zero and correct spillovers, however this comes at the cost of a much

lower percentage of correct zero. Lasso with CV performs worst overall, and also estimates the

value of θ quite poorly. A possible explanation could be that because CV is used for λ, the

estimates of λij could be very inaccurate leading to a bad estimation of θ. All in all, the Lasso

static method clearly outperforms all other methods.

For 100 years of data, Lasso static no longer seems to perform best. In this case the

Lasso method with CV outperforms all other methods in terms of all performance measures

except the percentage correct zero and the accuracy of θ. The other three methods have a

higher percentage correct zero, but that difference is minimal compared to the huge increase

in the percentage correct spillovers that the Lasso weighted model with CV for λ achieves.

Furthermore, the three other models give better estimates for the values of θ, but again this

difference is minimal. Lasso static is now the second best performing model, as Lasso with CV

is in this case the best model.

For Elastic-Net and 21 years of data the Elastic-Net static method outperforms the other

methods for almost all performance measures. Only Elastic-Net with CV for λ can estimate

θ2 slightly more accurate compared to Elastic-Net with a static penalty parameter. The HAC

weights with a static λ truly underperform and give the worst estimates for all performance

measures. Thus, using Elastic-Net weights with a static λ seems to perform best for a small

sample size.

For 100 years of data, once again the static Elastic-Net model no longer performs best but

rather the Elastic-Net model that uses CV for computing λ outperforms all other models for all

performance measures. This method outperforms all other methods for all of the performance

measures. Hence, this is clearly the best method for Elastic-Net. Furthermore, the static method

which uses HAC weights have the worst performance. Using Lasso and Elastic-Net weights give

the best performance and if the time period is small a static value of λ should be used, while

for a larger time horizon λ should be computed with CV.

4.3.3 Comparison between Lasso and Elastic-Net

Comparing the Elastic-Net and Lasso methods for 21 years of data, the Lasso methods seem

to outperform the Elastic-Net methods in terms of almost all performance measures. Elastic-

Net only outperforms the Lasso methods in terms of percentage correct non-zero and percentage

spillovers, but this higher percentage does not mitigate the much lower percentage of correct

zero. Thus, Lasso clearly outperforms Elastic-Net. For 100 years of data the comparison is more

complicated. For the three static methods, Elastic-Net outperforms Lasso for most performance

measures, except the percentage correct zero and accuracy of θ. Thus, for a static value of λ

Elastic-Net seems to be preferred. For the method that uses CV, Lasso seems to outperform

Elastic-Net in all performance measures. This is also the best performing model, and thus overall

Lasso seems to provide the best estimates for the spillover effects.

Up until now the x-variables were i.i.d. and thus had a minimal amount of correlation

between variables. However, one would expect Elastic-Net to outperform Lasso when correla-

tions between the x-variables are introduced and therefore the same scenarios of correlations as
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discussed in section 4.2 will be applied here.

For the scenario where there is a correlation of 0.5 between spillover companies and 0.1

otherwise, Table 22 and Table 24 in the Appendix Section D are generated with 21 and 100

years of data respectively. For 21 years of data, the two HAC methods estimated using Lasso,

outperform the two HAC Elastic-Net models. However, the two models that use Elastic-Net

weights seem to have a slightly better performance compared to the two models that have Lasso

weights. However, it should be noted that this difference is minimal. For 100 years of data

Elastic-Net only outperforms Lasso if Elastic-Net weights are used and λ is computed with CV.

However, the best performing model is a Lasso model with HAC weights and a static λ. Thus,

even when this type of correlations are introduced Elastic-Net does not (consistently) outperform

Lasso.

For the scenario with equal correlations of 0.5 between all companies Table 28 and Table

30 in the Appendix Section D are generated with 21 and 100 years of data respectively. In this

case for 21 years almost all Lasso methods outperforms almost all the Elastic-Net models, except

that Elastic-Net with CV for λ performs slightly better for some performance measures. For

100 years of data the static methods perform better when using Lasso instead of Elastic-Net.

However, the Elastic-Net model with CV slightly outperforms the Lasso model with CV for

most performance measures. However, this difference is so small that we can conclude that with

this type of correlations Elastic-Net does still not outperform Lasso.

Thus similar to before and against common expectations, Lasso seems to perform better

than Elastic-Net when there are correlations between the variables and this effect persists for

different values of T . However, once again one should bear in mind that only α = 0.5 is used.

Hence, attempting different values of α might enhance the performance of Elastic-Net compared

to Lasso.

Finally, there does not seem to be one best performing model which consistently outper-

forms all other models. However, based on the small sample size in the actual data one could

expect that the Lasso static or the Lasso CV method will have the best performance. However, if

one attempts different values of α for Elastic-Net, it could possibly be that the static Elastic-Net

approach outperforms (most) of the other methods.

5 Real life application

The models discussed in section 3 will be applied on company data. The main assumption here

is that the estimation structure follows a Cobb Douglas production function:

Yit = LθL
it C

θC
it Kβi

it SKitAit, (15)

where Y is a measure for output, in this case sales. L is a measure for labor, measured by

the number of employees of a company. C is physical or tangible capital, measured by the net

stock of property, plant, and equipment. K is knowledge capital, measured by capital stock of

R&D at time t − 1. SK is a measure for knowledge spillovers, and A represents technological

progress. Similar to before subscript i represents a company and subscript t represents the time

period. The parameters θL, θC , and βi are elasticities, and thus represents the sensitivity of the
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output Y to one of the inputs, L, C, and K. θL = εYi
Li

represents firm i’s output elasticity to

labor, while θC = εYi
Ci

represents firm i’s output elasticity to capital. βi = εYi
Ki

is then firm i’s

output elasticity to its own knowledge capital. For the spillover effects SKit, a specification is

used where other firm’s knowledge capital generates spillovers for another company, such that

the production function in equation (15) becomes:

Yit = LθL
it C

θC
it Kβi

it

∏
j ̸=i

K
γij
jt Ait. (16)

Within this equation γij = εYi
Kj

represents firm i’s output elasticity to the knowledge capital

of firm j. Note that within this equation the technological progress Ait has both a subscript i

and a subscript t. This implies that the technological progress factor has both a time-invariant

component which captures a firm-specific shock across firms as well as a time-varying component

which captures time shocks to productivity. Furthermore, A also includes a time and firm-specific

idiosyncratic component, which will be reflected in the error term. For the sake of simplicity,

the time-varying aspect of A will be disregarded in this paper due to the relatively short time

period. Therefore, Ait will be simplified to Ai. Finally, in order to estimate this model the log

is taken such that instead of a multiplication of the different production inputs, the production

inputs become additive:

yit = αi + βikit +
∑
j ̸=i

γijkjt + θLlit + θCcit + uit, (17)

where the lower-case letters denote the log of the capital letters in equation (16). Note that αi

is the time-invariant firm-specific component of technological progress and is unknown thus it

should be estimated and uit is the time and firm-specific idiosyncratic component.

It is interesting to compare model (17) with model (1) described in section 3. In this

case the variable xit in equation (1) are replaced by kit, the R&D stock of company i. Also

equation (17) contains two control variables wd
it, which are lit, the labor of the company, and

cit, the capital stock of the company. Thus, θ consists of two values which should be estimated,

namely θ̂C and θ̂L. Next, we estimate the models and compare the performance followed by an

economical interpretation of the obtained results.

5.1 The results

Applying the model to the data two different structures are applied. Firstly, the Pooled Lasso

and Elastic-Net approach are used, thus the approach without control variables. This is done

in order to determine whether a more complicated approach is truly necessary and is able to

improve the MSE of the different models. Also the Double Pooled method is applied using

equation (17). The results of these models can be found in Table 7.

As Table 7 shows, the MSE is for almost all methods lower when switching from the Pooled

estimation approach toward the Double Pooled approach. Only for the static λ and the Elastic-

Net weights this is not the case, but this method performs poorly in the real life application

and thus not too much value should be taken from this. That the MSE decreases when using

the Double Pooled estimator is a strong indicator of the fact that including control variables is
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Table 7: The MSE and other measures of the different models applied to the data
Panel A: Lasso methods

Method MSE % non-zero θ̂L θ̂C
Pooled HAC static 28,771.24 1.13% 0 0
Pooled Lasso static 0.08 0.38% 0 0
Pooled Lasso CV 1,614.58 2.05% 0 0
Double Pooled HAC static 8,858.45 0.73% 0.68 0.45
Double Pooled Lasso static 0.06 0.38% 1.11 0.65
Double Pooled Lasso CV 864.80 2.00% 0.43 0.15

Panel B: Elastic-Net methods

Method MSE % non-zero θ̂L θ̂C
Pooled HAC static 32,469.47 2.35% 0 0
Pooled Elastic-Net static 5,711,590,496.72 0.69% 0 0
Pooled Elastic-Net CV 2,296.42 2.65% 0 0
Double Pooled HAC static 10,960.29 1.68% 0.45 0.27
Double Pooled Elastic-Net static 753,046,025,756.13 7.60% 3,155.95 0.05
Double Pooled Elastic-Net CV 1,147.77 2.54% 0.46 0.16

Notes: This table shows different measures of the methods considered of the model applied to the data. This
entire table is based on in-sample estimation with α = 0.5 for Elastic-Net. % non-zero represents the percentage
of parameters γij which are given a non-zero value. θ̂L is the estimated value of θL and θ̂C is the estimated
value of θC . Pooled implies the model is estimated without the control variables, θ = 0, while Double Pooled
implies the model is estimated with control variables. Static implies that the λ of equation (6) is used, while
CV implies that λ is calculated with cross-validation. HAC implies that equation (8) is used for the weights.
Lasso implies that ϕij = (γ̂(lasso)ij)

−1 is used for weights and for Elastic-Net the weights ϕij = (γ̂(enet)ij)
−1

are used.

necessary to make models more accurate. Thus, it seems that the Double Pooled approach does

not over-complicate the model, but rather improves the model.

Another observation that is quite peculiar is that the Lasso static model obtains a much

lower MSE compared to all other models. It even obtains a lower MSE than in the simulation,

which is really strange as in that case we know that the model to be estimated follows the right

model structure. The reason for the low MSE can be explained by the percentage of non-zero

values. The Lasso static model sets all values γij = 0 if i ̸= j, it thus estimates no spillover

effects. Remember that the Post Pooled estimator always selects the variables xii and thus

γii ̸= 0. If there are no estimated spillover effects, there are also no “false” spillovers and the

estimator can set each value of γii in such a way that the MSE is very small. Another possible

explanation for the low MSE could be that there are simply no spillover effects between the

companies considered in this dataset. If that were to be the case then it is of course quite logical

that the model that estimates no spillover effects obtains a low MSE.

The MSE of the other methods is still quite sizable. A model with a high MSE is an

issue because such a model cannot accurately predict the dependent variable yit and thus the

estimates are not very accurate. Thus, since the model is not predicting the variable y very well,

this could mean that the estimates for γ̂Pij are also not reliable, which is something to bear in

mind when drawing conclusions from the data. A likely explanation for this result is that the

time horizon which is available for estimation, 21 years, is simply not large enough for obtaining

an accurate estimation. This also can be seen in section 4, where indeed for 21 years of data

the Double Pooled estimator has quite a sizable MSE even when the right model structure is
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applied.

However, even though the fact that there is not enough data available for a reliable estim-

ator there might be also other factors present which inflate the MSE. Comparing these values

of MSE with those in section 4, the MSE in this table is a lot larger compared to the MSE in

section 4. Therefore another possible explanation for the high MSE could be that even though

two control variables are included, there might be even more control variables which were not

included. Thus, there might be omitted variable bias within this model.

Another factor which might be the cause of the high MSE could be the fact that there

is only a common effect θ for the control variables, which is the same for all companies over

all time periods. It seems quite unlikely that this assumption holds. For more labor-intensive

industries, labor has likely a larger effect on the sales of a company compared to capital-intensive

industries. The same sort of reasoning can also be applied to capital.

Table 7 also shows that for both the Pooled as well as the Double Pooled method, the

MSE of Lasso is lower than that of Elastic-Net. This implies that the estimates obtained by

Lasso can predict the y-variable more accurately compared to the estimates from Elastic-Net.

Furthermore, Elastic-Net selects more spillovers than Lasso, as the percentage of non-zero values

is higher for all of the Elastic-Net models. However, given that the MSE of Elastic-Net is higher

than that of Lasso this implies that Elastic-Net likely select more “false” spillovers, thus values

for γij that should actually equal zero, compared to accurate spillovers.

The values of θL and θC differs quite a lot between different methods, which make it hard

to determine which value is the most accurate. The values of θC and θL are all positive and thus

it seems that there is a positive relationship between labor and sales and capital and sales. This

is not unexpected, as companies with more capital and more employees are generally bigger and

thus should also produce more sales. Furthermore, θ̂L > θ̂C for all methods and that thus implies

that εYi
Li

> εYi
Ci

for these companies. Thus gaining more employees will lead to a larger increase

in sales compared to gaining more capital. However it should be taken into account that for 21

years of data the estimates of θ can be quite inaccurate as was seen in Section 4. Nevertheless,

because the same pattern is seen across different methods there is some explanatory power.

Thus, based on the results in Table 7 it seems like the Double Pooled Lasso method

outperforms the Double Pooled Elastic-Net method for all methods. However, it should be

taken into account that these values are all calculated with α = 0.5 and different values of α

might perform better. Therefore we re-estimate the three Elastic-Net models for different values

of α, from 0.1 to 1 with an interval of 0.1. The results of the static HAC method can be found in

Table 32 in Appendix Section D. Here we find lower values for the MSE compared to Lasso for

α = 0.6 and α = 0.7. However, the MSE is only slightly smaller and unlikely to be significant.

For the Elastic-Net model which uses CV for computing λ Table 33 can be found in Appendix

Section D. In this case Lasso has the lowest MSE for all values of α. We observe that in this

case the MSE decreases as α becomes lower, implying that Lasso is truly the best method when

using CV for computing λ. The static Elastic-Net model with Elastic-Net weights can be found

in Table 34 in Appendix Section D. Here α = 0.7 gives a lower MSE compared to Lasso, but this

is only because it estimates the value for θ slightly different and not because it estimates more

spillover effects. Therefore the Lasso models seem to be preferred, as it is a simpler alternative
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to Elastic-Net and delivers comparable or even better performance.

5.2 Interpreting spillover effects

It would be beneficial to have a clear understanding of the industries and companies that

generate spillover effects, as this could also perhaps help the government assign subsidies to

companies who generate the most spillover effects in times of economical difficulties. Further-

more, it is interesting to see if the findings in this paper are in accordance with other literature.

Therefore, we will interpret the spillover effect and the private effect of R&D spillovers on the

sales of a company. However, based on what was seen in the simulation in section 4 and the

high MSE in Table 7 the estimation might not be very precise. It is very well possible that of

the non-zero values there are a lot of “falsely” estimated spillover effect, parameters that should

actually be zero but are not set to zero. The number of correct spillovers could even potentially

be smaller than the false spillover effects. Thus, the interpretation of the spillovers should be

taken with caution, as they could be quite inaccurate.

We interpret only the spillovers estimated with the Double Pooled estimator, as they

provide the best predictions overall. Furthermore, we use α = 0.5 for Elastic-Net for interpreting

spillovers. First we focus on interpreting the private effect of R&D investment on the sales of a

company. For the Lasso static method we find that the average private effect of a company’s own

R&D stock on sales is -0.18. This would thus imply that investing in R&D stock would actually

lead to less sales, which is counter-intuitive. Because if a higher R&D stock leads to lower sales,

it makes no sense for a company to invest in R&D. This also contradicts earlier research of,

among others, Jefferson et al. (2006), who find that R&D expenditure leads to higher sales.

However, it should be taken into account that this results might not be completely accurate.

Furthermore, for the Lasso static method the estimated values of θL and θC are much larger

compared to the other methods. Thus it could be that in the Lasso static method these values

are overestimated, and then OLS will set the spillovers to a much smaller value, and apparently

even negative in order to minimize the squared residuals.

For Lasso with λ computed with CV the average private effect is -0.01 and for Elastic-Net

with CV for λ the average private effect is -0.02. Even though the magnitude of the private

effect has decreased, it is still negative which is not in accordance with other literature. So

even when the value θ has been reduced in more than half, the private effect of R&D stock

on sales remains negative. However, both Lasso and Elastic-Net get a positive value, 0.05 and

0.11 respectively, for the average private effect when the static λ is used together with HAC

weights. The model with Elastic-Net weights and a static λ also gets a positive value of 1410.23

for the average private effect, but this number is so large that it is not realistic. Thus, three

methods provide positive estimates for the private effect, albeit one is quite unrealistic, and

three methods provide negative estimated for the private effect. This makes it difficult to make

a final conclusion on the private effect of R&D investment on sales. The positive private effect

seems more likely based on economic theory, because companies should only invest in R&D if

they can profit off it, and on earlier literature. However, no final conclusion can be made about

the direction of the private effect of R&D investment.

Next we try to interpret the spillovers to see whether a certain pattern can be found and
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whether different methods find similar companies who produce/receive spillovers. To this end

we focus on all of the models except Lasso static and Elastic-Net static. We do not focus on

Lasso static, because in this model there are no spillovers, that is γij = 0, ∀i ̸= j. Elastic-Net

static is also not focused on as it produces such bad estimates which are highly unlikely and thus

interpreting spillovers of this model seems to be pointless. We start with interpreting companies

who produce spillovers. To that end we only focus on companies that produce more than 30

spillovers and are present in at least two of the four methods13. Most of the spillovers that

were estimated were negative, that is that if a companies invests in R&D the sales of another

company declines. Only three companies provided on average positive estimates for the spillover

effects. Two of these companies were large companies, with values of sales, R&D investment,

labor and capital above the mean. It should be noted though that for one of these companies the

HAC weights with Elastic-Net provided positive spillovers, while the HAC weights with Lasso

provided negative spillovers and the latter effect was stronger. However, this would be in line

with earlier research that large companies provide spillover effects (Coe & Helpman, 1995). For

all companies that have negative spillovers the values of sales, R&D stock, labor and capital

were mostly below the mean. Thus small companies seem to provide negative spillovers.

Next we focus on companies that receive spillovers. Generally spillovers seem to be equally

divided and not many companies receive more than 10 spillovers. Hence we focus on companies

that receive at least 10 spillover effects and these companies must be found in at least two

methods14. The two companies who receive positive spillovers are relatively small in terms

of labor, sales, capital and R&D stock. This is in line with literature which states that small

companies receive the most spillover effects (Coe & Helpman, 1995). The company that received

a negative spillover effect had a relatively high sales and high R&D stock, but a low value of

capital and labor.

All in all the fact that there were more negative spillovers compared to positive spillovers

is in contrast with conclusions found in Bloom et al. (2013). However, the fact that the positive

spillovers seemed to come from larger companies is in line with earlier research (Coe & Helpman,

1995). Furthermore, the private effect of the spillovers was for most methods negative, which

was also unexpected and not in accordance with earlier research (Jefferson et al., 2006) However,

one should bear in mind that the spillover effect that were estimated are likely quite unreliable,

because of the small sample size.

6 Conclusion

The main interest in this paper is to find a model which provides the best estimates for meas-

uring R&D spillovers. To answer this question this paper considered a total of 20 models, of

which 10 used Elastic-Net and 10 used Lasso methods. The Elastic-Net and Lasso models were

calculated with five different types of weights and two different types of penalty parameters. The

simulation and the results section in the real life application showed that the Elastic-Net models

do no consistently outperform the Lasso methods. Thus, using a more complicated Elastic-Net

13There are in total eight companies with CUSIP code 413875, 827079, 806857, 281347, 30710, 949765, 755111,
and 858586.

14There are in total three companies with CUSIP code 127055, 63934E, and 253651.
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approach does not seem to be beneficial for the performance. Additionally, there is no simple

best method for estimating the spillovers. Generally, the method which uses Lasso or Elastic-Net

for estimating the weights outperform the other methods. Furthermore, using a static value of

λ or a λ computed with CV also differs in performance depending on the time horizon and the

correlation between variables. Generally, for shorter time horizons, using a static λ might be

beneficial, while for larger sample sizes CV is mostly preferred. Therefore it might be a good

idea to experiment with simulation depending on the sample size, correlations, and time horizon

which method will give the best performance in that specific case.

This research builds on the paper of Manresa (2016) as it uses the method proposed in

this paper to estimate the spillover effects. However, this paper considers more expressions for

the weights and the penalty parameter compared to the paper of Manresa (2016) and it also

applies all these different expressions on Elastic-Net, instead of only Lasso. Furthermore, this

paper provides a large scale simulation study which shows when certain methods work well and

when certain methods seem to fail. This paper provides some experimental evidence for the

models that were proposed in the paper of Manresa (2016). However, this paper simplifies the

model which is applied to the data, as it does not consider time effects which were considered

in the paper of Manresa (2016).

This paper has some limitations which could be addressed in further research. As men-

tioned before when applying the model to the data the time effects were ignored in the model,

while they might have been present. Therefore further research could focus on finding an appro-

priate expression for the time effects and put it in the model. Additionally, because the number

of years available to estimate the coefficients is quite small, the estimates are not very reliable as

demonstrated in section 4. Therefore, the estimated spillovers that are interpreted in this paper,

are likely to be inaccurate. Further research should apply this model to a dataset with either a

larger time period or with fewer companies. Then they could also interpret the spillovers that

were calculated as they become more accurate as the sample size increases.

Another limitation might be that there are some missing control variables in the production

function or that the expression for the control variables is not well-defined. Currently, the model

includes only labor and capital as control variables. However, in reality there are most likely

more control variables which influence sales. Further research could focus on finding more

control variables. Furthermore, the expression for the control variables might not be completely

accurate. In reality it is quite unlikely that the labor or capital of a company influences all

companies in the exact same magnitude. Hence, further research could try to estimate the

variable θ for each company separately in order to have a closer resemblance with real life

circumstances.

Another limitation is that Elastic-Net is mostly estimated throughout this paper with an

α = 0.5. However, Elastic-Net might perform a lot better with different values of α. Hence,

further research could try to find the optimal value of α in different models with a different DGP.

Finally, the last limitation is that the DGP with correlations in x is rather simplistic and unlikely

to be found in real life. Only two simple choices were given for generating x with correlations,

while in reality the structure of correlations for a variable is likely more complicated. Therefore,

future research could focus on different correlation structures.
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Appendix A Data cleaning process

Some companies and observations have been removed. Firstly, all observations before the year

1980 and after the year 2001 are removed. Furthermore, observations are removed with missing

information in employment, sales, capital stock, and R&D stock. Next, also the companies

are removed who have a value of zero for R&D stock for more than 10 years. This is done

because if there is not enough variability within the x-variables over a 21-year time period it

becomes almost impossible to accurately estimate the model. Therefore removing companies

who remain at a zero R&D stock over time will improve the model. Lastly, as for some companies

some observations are missing in some years, there might be some issues with missing data for

estimating the model. To avoid this issue, any company that does not have complete data for

all years is excluded from the dataset. Finally, the final dataset contains 5,786 observations of

263 companies for 22 years of data. However, it should be noted that because in the final model

R&D stock is lagged, only 21 years of R&D stock is used and 21 years of the other variables is

used. The summary statistics of the adapted dataset can be found in Table 1. Note that this

adapted data set contains 22 years of data.

Appendix B The iterative strategy of Belloni et al. (2012)

As mentioned in section 3.1.2 the weights ϕ2
ij are calculated using HAC type estimator proposed

in Newey and West (1986). However, the error term ̂̃uit is not defined from the data and

therefore the iterative strategy from Belloni et al. (2012) is used. In this method, the model is
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first estimated using the weights:

ϕ2(0)

ij =
1

T

T∑
t=1

x̃2jtỹ
2
it +

1

T

T∑
t=2

x̃jtx̃jt−1ỹitỹit−1. (18)

Next, using the obtained weights from equation (18), the Pooled Lasso estimator gives estimates

for Γ̂ and these estimates are used to calculate the residuals: ̂̃uit = ŷit −
∑N

j=1 γ̂
(0)
ij x̃jt. These

residuals can then be plugged into equation (8) to obtain the new weights which can be used

to re-estimate the parameter Γ̂. This procedure can be iterated to obtain the best estimates for

Γ̂. In the application in this paper this procedure is iterated until no element in the matrix Γ̂

changes with more than 0.001.

Appendix C The Double Pooled Estimator weights

For equation (10) the weights are calculated using the iterative strategy described in appendix

B. However, because there are some different parameters the formula’s for the weights also

change. In this case the initial weights are calculated using the formula:

ϕ2(0)

ij =
1

T

T∑
t=1

x̃2jtw̃
d2
it +

1

T

T∑
t=2

x̃jtx̃jt−1w̃
d
itw̃

d
it−1.

The error terms in the iterative strategy are calculated as ̂̃edit = ŵd
it −

∑N
j=1 λ̂

d(0)
ij x̃jt. Finally,

once the error term is obtained the weights are calculated using the formula

ϕd
ij
2
= ϕd

j
2
=

1

N

N∑
i=1

(
1

T

T∑
t=1

x̃2jt ˆ̃e
d
it
2
+

1

T

T∑
t=1

x̃jtx̃jt−1
ˆ̃edit ˆ̃e

d
it−1

)
.

For equation (11) the weights are once again estimated using the iterative strategy de-

scribed in Appendix B. In this case the initial weights are calculated using formula (18). The

error terms are then obtained by the formula: ̂̃υit = ŷit −
∑N

j=1 ν̂
(0)
ij x̃jt. Finally, after the first

iteration, the weights are then calculated using the formula

ϕ2
ij = ϕj

2 =
1

N

N∑
i=1

(
1

T

T∑
t=1

x̃2jt̂̃υ2it + 1

T

T∑
t=1

x̃jtx̃jt−1
̂̃υit̂̃υit−1

)
.

Finally for equation (13) the iterative strategy in Appendix B is used with the initial weights

defined as

ϕ2(0)

ij =
1

T

T∑
t=1

x̃2jt(ỹit−θ̂w̃it+(θ̂−θ0)w̃it)
2+

1

T

T∑
t=2

x̃jtx̃jt−1(ỹit−θ̂w̃it+(θ̂−θ0)w̃it)(ỹit−1−θ̂w̃it−1+(θ̂−θ0)w̃it−1)

=
1

T

T∑
t=1

x̃2jt(ỹit − θ0w̃it)
2 +

1

T

T∑
t=2

x̃jtx̃jt−1(ỹit − θ0w̃it)(ỹit−1 − θ0w̃it−1).

Note that for this equation you need the true value of θ, θ0, which is only available if one has
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performed a simulation where this value is known beforehand. But in case this model is applied

to the data the original θ0 is unknown and then the initial weights become simply:

ϕ2(0)

ij =
1

T

T∑
t=1

x̃2jt(ỹit − θ̂w̃it)
2 +

1

T

T∑
t=2

x̃jtx̃jt−1(ỹit − θ̂w̃it)(ỹit−1 − θ̂w̃it−1).

The error terms are then obtained after Pooled Lasso (Elastic-Net) using the formula: ̂̃uit =

ŷit − θ̂w̃it −
∑N

j=1 γ̂
(0)
ij x̃jt. Finally, new weights can be calculated using the formula:

ϕ2
ij = ϕj

2 =
1

N

N∑
i=1

(
1

T

T∑
t=1

x̃2jt(̂̃uit + (θ̂ − θ0)w̃it)
2 +

1

T

T∑
t=2

x̃jtx̃jt−1(̂̃uit + (θ̂ − θ0)w̃it)(̂̃uit−1 + (θ̂ − θ0)w̃it−1)

)
.

Once again, in the data θ0 is undefined and then the weights will be simplified to

ϕ2
ij = ϕj

2 =
1

N

N∑
i=1

(
1

T

T∑
t=1

x̃2jt̂̃u2it + 1

T

T∑
t=2

x̃jtx̃jt−1
̂̃uit̂̃uit−1

)
.

Appendix D Tables & Figures
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Table 8: The standard deviation of 100 simulations of the performance measures of the models
considered for 21 years of data

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 1.27 1.01% 1.10% 0.04% 47.50
Var(x) static 6.30 1.02% 1.03% 0.20% 719.96
HAC static 3.67 0.95% 1.00% 0.09% 344.89
Lasso static 1.28 1.01% 1.10% 0.03% 47.01
Ridge static 333.36 2.03% 2.26% 0.09% 660,763.10
EW CV 634.68 2.24% 2.47% 0.18% 895,499.40
Var(x) CV 2,738.55 1.64% 1.78% 0.29% 6,201,708.00
HAC CV 476.15 1.89% 2.09% 0.20% 135,143.80
Lasso CV 6.30 1.92% 2.09% 0.11% 113.10
Ridge CV 2,062.05 2.02% 2.21% 0.12% 450,589.20

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 107.76 2.02% 2.30% 0.10% 27,835.73
Var(x) static 1,406.40 1.53% 1.66% 0.15% 1,349,977.00
HAC static 784.09 1.83% 2.06% 0.10% 660,683.10
Enet static 107.77 2.02% 2.30% 0.10% 27,835.84
Ridge static 116,435.37 2.09% 2.31% 0.06% 2,200,229,000.00
EW CV 4,772.95 1.97% 2.14% 0.16% 12,655,310.00
Var(x) CV 9,304.73 1.53% 1.69% 0.35% 203,749,200.00
HAC CV 7,866.34 1.83% 2.02% 0.20% 86,041,530.00
Enet CV 95.75 1.88% 2.07% 0.12% 2,621.86
Ridge CV 13,987.26 2.08% 2.28% 0.09% 525,959,600.00

Notes: This table shows the standard deviation of the performance measures of the methods considered for 100
simulations over 21 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm
refers to the Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given
a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be
non-zero. % zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations
of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is calculated with
cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation
(7) is used for the weights, and HAC implies that equation (8) are used for the weights. Lasso implies that
ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are used and for Enet the

weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 9: The standard deviation of 50 simulations of the performance measures of the models
considered for 100 years of data

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 1.15 2.72% 3.17% 0.01% 21.10
Var(x) static 1.19 2.48% 2.88% 0.15% 33.60
HAC static 1.16 2.67% 3.10% 0.03% 23.41
Lasso static 1.17 2.55% 2.96% 0.01% 20.73
Ridge static 45.55 0.38% 0.45% 0.43% 736.52
EW CV 0.33 0.07% 0.08% 0.44% 6.47
Var(x) CV 0.59 0.06% 0.07% 0.52% 8.96
HAC CV 0.42 0.06% 0.07% 0.43% 7.14
Lasso CV 0.27 0.27% 0.32% 0.02% 2.32
Ridge CV 0.70 0.66% 0.78% 0.23% 8.71

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.93 1.02% 1.20% 0.10% 7.64
Var(x) static 1.12 1.13% 1.33% 0.23% 11.00
HAC static 0.91 0.95% 1.12% 0.11% 8.47
Enet static 0.72 0.69% 0.81% 0.10% 5.67
Ridge static 1,462.72 0.33% 0.39% 0.40% 3,859,044.00
EW CV 1.14 0.08% 0.10% 0.48% 8.78
Var(x) CV 2.88 0.07% 0.08% 0.48% 28.15
HAC CV 2.12 0.06% 0.07% 0.46% 25.82
Enet CV 0.30 0.28% 0.33% 0.03% 2.21
Ridge CV 0.71 0.66% 0.78% 0.25% 8.71

Notes: This table shows the standard deviation of the performance measures of the methods considered for 50
simulations over 100 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm
refers to the Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given
a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be
non-zero. % zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations
of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is calculated with
cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation
(7) is used for the weights, and HAC implies that equation (8) are used for the weights. Lasso implies that
ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are used and for Enet the

weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 10: The mean of the performance measures using 50 simulations over 200 years of data
Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 9.60 91.51% 89.90% 100.00% 46.73
Var(x) static 9.12 92.46% 91.03% 99.77% 42.55
HAC static 8.70 92.55% 91.14% 99.98% 40.20
Lasso static 7.73 94.21% 93.11% 100.00% 35.06
Ridge static 19.44 99.95% 99.94% 86.33% 114.75
EW CV 10.78 100.00% 99.99% 91.32% 35.33
Var(x) CV 11.75 100.00% 99.99% 90.12% 37.64
HAC CV 11.25 100.00% 100.00% 90.97% 36.13
Lasso CV 3.28 99.72% 99.66% 99.99% 14.58
Ridge CV 6.03 99.38% 99.26% 98.92% 19.75

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 3.80 99.75% 99.70% 99.84% 15.23
Var(x) static 5.35 99.86% 99.83% 99.08% 17.35
HAC static 4.31 99.86% 99.83% 99.68% 15.69
Enet static 3.69 99.86% 99.84% 99.84% 14.88
Ridge static 38.92 99.95% 99.94% 74.91% 2,625.22
EW CV 12.24 100.00% 99.99% 87.11% 41.80
Var(x) CV 13.19 100.00% 100.00% 85.81% 45.21
HAC CV 12.67 100.00% 100.00% 86.75% 42.67
Enet CV 3.29 99.75% 99.70% 99.99% 14.56
Ridge CV 6.22 99.37% 99.25% 98.73% 20.27

Notes: This table shows the mean of 50 simulations of the performance measures of the methods considered
for 200 years of data of 263 companies. The x-variables are i.i.d. generated variables. F-norm represents the
Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given a non-zero
value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %
zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods,
static implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.
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Table 11: The standard deviation of the performance measures using 50 simulations over 200
years of data

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.95 1.42% 1.69% 0.00% 10.85
Var(x) static 0.84 1.18% 1.41% 0.09% 7.88
HAC static 0.92 1.34% 1.59% 0.01% 8.62
Lasso static 0.71 0.91% 1.08% 0.00% 7.97
Ridge static 10.72 0.06% 0.07% 0.74% 176.84
EW CV 0.19 0.02% 0.02% 0.38% 3.72
Var(x) CV 0.33 0.02% 0.02% 0.40% 3.99
HAC CV 0.24 0.01% 0.02% 0.39% 3.71
Lasso CV 0.14 0.13% 0.16% 0.00% 1.88
Ridge CV 0.33 0.26% 0.31% 0.10% 2.57

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.18 0.13% 0.15% 0.03% 2.07
Var(x) static 0.43 0.10% 0.12% 0.21% 2.35
HAC static 0.24 0.10% 0.12% 0.06% 1.99
Enet static 0.13 0.08% 0.10% 0.03% 1.99
Ridge static 85.16 0.08% 0.10% 0.78% 16,675.79
EW CV 0.18 0.02% 0.02% 0.38% 3.97
Var(x) CV 0.33 0.01% 0.02% 0.45% 4.40
HAC CV 0.24 0.01% 0.01% 0.39% 4.18
Enet CV 0.14 0.13% 0.15% 0.01% 1.90
Ridge CV 0.34 0.26% 0.31% 0.11% 2.83

Notes: This table shows the standard deviation of 50 simulations of the performance measures of the methods
considered for 200 years of data of 263 companies. The x-variables are i.i.d. generated variables. F-norm
represents the Frobenius norm and % non-zero represents the percentage of variables γij which are correctly
given a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to
be non-zero. % zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations
of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is calculated with
cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation
(7) is used for the weights, and HAC implies that equation (8) are used for the weights. Lasso implies that
ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are used and for Enet the

weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 12: The mean of 100 simulations of the performance measures of the models considered
for 21 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 30.88 67.43% 61.23% 99.94% 349.74
Var(x) static 74.02 47.07% 36.97% 97.98% 5,823.09
HAC static 46.92 59.37% 51.62% 99.33% 1,638.75
Lasso static 30.88 67.43% 61.23% 99.94% 349.74
Ridge static 164.39 93.15% 91.85% 97.03% 23,601.58
EW CV 221.45 92.41% 90.97% 96.40% 90,841.12
Var(x) CV 510.67 60.34% 52.78% 95.49% 321,283.93
HAC CV 456.24 83.41% 80.25% 95.78% 239,099.53
Lasso CV 29.89 76.96% 72.57% 99.48% 204.39
Ridge CV 58.06 93.76% 92.58% 97.57% 6,669.21

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 25.50 93.67% 92.47% 98.98% 124.74
Var(x) static 1,355.08 68.51% 62.50% 96.00% 528,806.70
HAC static 110.41 89.61% 87.63% 97.80% 3,796.93
Enet static 25.50 93.67% 92.47% 98.98% 124.75
Ridge static 542.22 93.49% 92.25% 95.54% 179,262.20
EW CV 1,997.05 91.84% 90.29% 95.16% 2,295,043.00
Var(x) CV 5,021.30 66.91% 60.61% 94.51% 45,332,950.00
HAC CV 8,456.08 85.44% 82.67% 94.70% 112,743,600.00
Enet CV 27.79 83.69% 80.59% 99.30% 164.41
Ridge CV 191.69 95.58% 94.73% 97.01% 113,293.50

Notes: This table shows the mean of the performance measures of the methods considered for 100 simulations
over 21 years of data for 263 companies. The x-variables are correlated, where the correlation is 0.5 between
companies with spillovers and 0.1 between companies without spillovers. F-norm refers to the Frobenius norm
and % non-zero represents the percentage of variables γij which are correctly given a non-zero value. %
spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. % zero gives
the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods, static
implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.
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Table 13: The standard deviation of 100 simulations of the performance measures of the models
considered for 21 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 1.50 2.58% 3.06% 0.02% 78.65
Var(x) static 11.39 2.89% 3.45% 0.29% 2,894.58
HAC static 5.07 2.74% 3.26% 0.15% 807.73
Lasso static 1.50 2.58% 3.06% 0.02% 78.65
Ridge static 504.01 1.31% 1.54% 0.09% 169,461.10
EW CV 924.15 1.30% 1.53% 0.13% 850,457.50
Var(x) CV 1,023.78 5.13% 6.07% 0.18% 2,057,395.00
HAC CV 1,081.16 5.69% 6.75% 0.14% 1,376,621.00
Lasso CV 1.42 1.72% 1.96% 0.05% 57.73
Ridge CV 250.14 1.22% 1.44% 0.14% 64,224.15

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 4.57 1.42% 1.68% 0.14% 36.53
Var(x) static 4,007.79 3.78% 4.49% 0.30% 1,849,943.00
HAC static 223.55 2.14% 2.53% 0.22% 14,492.22
Enet static 4.57 1.42% 1.68% 0.14% 36.55
Ridge static 828.18 1.19% 1.40% 0.07% 956,687.90
EW CV 5,384.32 1.27% 1.50% 0.10% 9,160,996.00
Var(x) CV 13,923.85 4.48% 5.30% 0.17% 283,733,600.00
HAC CV 48,061.14 3.92% 4.65% 0.11% 765,468,100.00
Enet CV 1.28 1.47% 1.69% 0.07% 42.43
Ridge CV 1,012.00 1.02% 1.20% 0.15% 1,096,810.00

Notes: This table shows the standard deviation of the performance measures of the methods considered for
100 simulations over 21 years of data for 263 companies. The x-variables are correlated, where the correlation
is 0.5 between companies with spillovers and 0.1 between companies without spillovers. F-norm refers to the
Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given a non-zero
value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %
zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods,
static implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.
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Table 14: The mean of 50 simulations of the performance measures of the models considered for
100 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 6.12 99.44% 99.33% 100.00% 16.84
Var(x) static 7.52 98.88% 98.67% 99.70% 39.39
HAC static 6.00 99.68% 99.62% 99.99% 17.13
Lasso static 6.12 99.44% 99.33% 100.00% 16.84
Ridge static 148.09 99.87% 99.85% 91.29% 15,135.72
EW CV 11.43 99.99% 99.99% 96.20% 31.23
Var(x) CV 13.73 100.00% 99.99% 95.00% 41.87
HAC CV 12.38 100.00% 100.00% 95.88% 35.64
Lasso CV 6.94 98.04% 97.67% 100.00% 19.34
Ridge CV 7.17 100.00% 100.00% 99.66% 18.88

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 6.22 99.99% 99.99% 99.91% 16.82
Var(x) static 8.35 100.00% 100.00% 99.11% 49.37
HAC static 7.05 100.00% 100.00% 99.74% 27.85
Enet static 6.22 99.99% 99.99% 99.91% 16.82
Ridge static 252.67 99.79% 99.74% 84.18% 43,428.86
EW CV 12.38 100.00% 100.00% 94.75% 33.65
Var(x) CV 14.69 100.00% 100.00% 93.51% 45.33
HAC CV 13.37 100.00% 100.00% 94.37% 38.16
Enet CV 6.49 98.75% 98.51% 99.99% 18.01
Ridge CV 7.29 100.00% 100.00% 99.61% 19.20

Notes: This table shows the mean of 50 simulations of the performance measures of the methods considered
over 100 years of data for 263 companies. The x-variables are correlated, where the correlation is 0.5 between
companies with spillovers and 0.1 between companies without spillovers. F-norm refers to the Frobenius norm
and % non-zero represents the percentage of variables γij which are correctly given a non-zero value. %
spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. % zero gives
the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods, static
implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.
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Table 15: The standard deviation of 50 simulations of the performance measures of the models
considered for 100 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.29 0.24% 0.29% 0.00% 1.92
Var(x) static 0.67 0.33% 0.39% 0.17% 13.07
HAC static 0.24 0.13% 0.15% 0.01% 2.46
Lasso static 0.29 0.24% 0.29% 0.00% 1.92
Ridge static 381.57 0.17% 0.21% 0.36% 49,230.78
EW CV 0.22 0.02% 0.02% 0.23% 3.01
Var(x) CV 0.78 0.02% 0.02% 0.34% 5.73
HAC CV 0.49 0.01% 0.01% 0.24% 3.82
Lasso CV 0.37 0.38% 0.45% 0.00% 2.59
Ridge CV 0.23 0.01% 0.02% 0.03% 2.03

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.22 0.02% 0.02% 0.02% 1.80
Var(x) static 0.74 0.02% 0.02% 0.28% 14.08
HAC static 0.42 0.00% 0.00% 0.08% 7.36
Enet static 0.22 0.02% 0.02% 0.02% 1.80
Ridge static 513.94 0.22% 0.27% 0.34% 161,495.80
EW CV 0.24 0.01% 0.01% 0.25% 3.88
Var(x) CV 0.79 0.01% 0.01% 0.39% 6.77
HAC CV 0.45 0.01% 0.01% 0.29% 5.05
Enet CV 0.35 0.30% 0.36% 0.00% 2.27
Ridge CV 0.23 0.01% 0.01% 0.03% 2.12

Notes: This table shows the standard deviation of 50 simulations of the performance measures of the methods
considered over 100 years of data for 263 companies. The x-variables are correlated, where the correlation
is 0.5 between companies with spillovers and 0.1 between companies without spillovers. F-norm refers to the
Frobenius norm and % non-zero represents the percentage of variables γij which are correctly given a non-zero
value. % spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %
zero gives the percentage of variables γij which are correctly set to zero. For the abbreviations of the methods,
static implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. EW
means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies that equation (7) is used for the weights,
and HAC implies that equation (8) are used for the weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used
for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)

−1 are used and for Enet the weights ϕij = (γ̂(enet)ij)
−1

are used.
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Table 16: The mean of 100 simulations of the performance measures of the models considered
for 21 years of data with equal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 55.17 30.72% 17.41% 97.63% 1,568.95
Var(x) static 86.68 22.07% 7.10% 96.80% 31,923.74
HAC static 87.21 23.54% 8.85% 96.84% 25,794.61
Lasso static 55.17 30.71% 17.41% 97.63% 1,569.10
Ridge static 953.45 37.87% 25.94% 95.04% 3,941,073.94
EW CV 1,109.02 47.56% 37.50% 94.25% 590,896.93
Var(x) CV 517.10 30.28% 16.90% 94.42% 139,442.39
HAC CV 1,209.28 34.28% 21.66% 94.16% 1,365,209.96
Lasso CV 54.43 35.22% 22.78% 98.00% 728.66
Ridge CV 328.62 42.34% 31.27% 94.80% 48,876.55

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 11,377.82 41.94% 30.80% 93.71% 346,007,900.00
Var(x) static 1,903.64 28.50% 14.77% 94.42% 1,949,251.00
HAC static 21,793.30 32.48% 19.51% 93.93% 5,845,696,000.00
Enet static 12,520.03 41.95% 30.81% 93.71% 352,364,700.00
Ridge static 2,015.40 40.42% 28.98% 93.72% 2,081,421.00
EW CV 3,823.18 44.84% 34.25% 93.40% 6,643,204.00
Var(x) CV 4,421.20 32.50% 19.54% 93.49% 22,761,340.00
HAC CV 20,228.89 36.16% 23.91% 93.32% 105,491,600.00
Enet CV 54.36 38.09% 26.20% 97.22% 632.09
Ridge CV 3,032.76 43.74% 32.94% 94.03% 15,303,070.00

Notes: This table shows the mean of 100 simulations of the performance measures of the methods considered
over 21 years of data for 263 companies. The x-variables are correlated, where the correlation is 0.5 between
all companies. F-norm refers to the Frobenius norm and % non-zero represents the percentage of variables γij
which are correctly given a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j which are
correctly estimated to be non-zero. % zero gives the percentage of variables γij which are correctly set to zero.
For the abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies that
λ is calculated with cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies
that equation (7) is used for the weights, and HAC implies that equation (8) are used for the weights. Lasso
implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are used and

for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 17: The standard deviation of 100 simulations of the performance measures of the models
considered for 21 years of data with equal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 1.89 2.28% 2.60% 0.34% 293.78
Var(x) static 15.69 1.11% 1.26% 0.27% 36,680.43
HAC static 14.50 1.33% 1.55% 0.36% 29,434.80
Lasso static 1.89 2.28% 2.60% 0.34% 293.79
Ridge static 5,737.52 2.02% 2.25% 0.09% 37,453,270.00
EW CV 3,377.50 2.36% 2.60% 0.10% 3,205,108.00
Var(x) CV 905.92 2.42% 2.80% 0.37% 584,003.60
HAC CV 3,068.59 3.00% 3.43% 0.22% 8,077,505.00
Lasso CV 1.95 1.94% 2.05% 0.14% 181.16
Ridge CV 523.96 2.14% 2.37% 0.11% 252,864.80

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 64,195.14 2.23% 2.46% 0.28% 3,278,305,000.00
Var(x) static 3,730.03 1.60% 1.86% 0.31% 7,610,477.00
HAC static 156,089.10 2.02% 2.29% 0.30% 58,108,140,000.00
Enet static 64,689.68 2.23% 2.45% 0.28% 3,278,186,000.00
Ridge static 5,081.53 2.09% 2.32% 0.08% 8,817,070.00
EW CV 6,546.15 2.38% 2.63% 0.06% 43,251,310.00
Var(x) CV 10,557.79 2.31% 2.64% 0.26% 143,000,300.00
HAC CV 122,798.70 2.87% 3.25% 0.09% 646,857,000.00
Enet CV 1.64 1.97% 2.16% 0.12% 143.38
Ridge CV 9,522.36 2.31% 2.57% 0.10% 123,449,200.00

Notes: This table shows the standard deviation of 100 simulations of the performance measures of the methods
considered over 21 years of data for 263 companies. The x-variables are correlated, where the correlation is
0.5 between all companies. F-norm refers to the Frobenius norm and % non-zero represents the percentage of
variables γij which are correctly given a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j
which are correctly estimated to be non-zero. % zero gives the percentage of variables γij which are correctly set
to zero. For the abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies
that λ is calculated with cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x)
implies that equation (7) is used for the weights, and HAC implies that equation (8) are used for the weights.
Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are

used and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 18: The mean of 50 simulations of the performance measures of the models considered for
100 years of data with equal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 13.04 98.23% 97.89% 96.70% 47.10
Var(x) static 25.25 79.33% 75.40% 94.68% 570.20
HAC static 17.94 92.10% 90.60% 95.22% 183.68
Lasso static 13.04 98.23% 97.89% 96.70% 47.09
Ridge static 68.27 96.49% 95.83% 91.53% 708.45
EW CV 17.63 99.81% 99.77% 91.20% 54.17
Var(x) CV 18.87 99.65% 99.58% 91.29% 109.49
HAC CV 18.58 99.81% 99.78% 91.01% 61.55
Lasso CV 9.49 95.11% 94.18% 99.95% 27.34
Ridge CV 14.47 98.16% 97.81% 96.33% 51.09

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 15.11 99.40% 99.29% 90.73% 70.00
Var(x) static 18.18 96.62% 95.98% 91.24% 240.09
HAC static 16.65 99.08% 98.90% 90.82% 199.45
Enet static 15.11 99.40% 99.28% 90.74% 69.97
Ridge static 227.54 97.27% 96.75% 85.10% 65,831.57
EW CV 20.25 99.79% 99.75% 88.63% 63.39
Var(x) CV 20.49 99.61% 99.54% 89.33% 129.19
HAC CV 21.02 99.80% 99.76% 88.59% 74.06
Enet CV 9.40 95.68% 94.86% 99.92% 26.46
Ridge CV 14.76 98.15% 97.80% 95.55% 51.08

Notes: This table shows the mean of 50 simulations of the performance measures of the methods considered
over 100 years of data for 263 companies. The x-variables are correlated, where the correlation is 0.5 between
all companies. F-norm refers to the Frobenius norm and % non-zero represents the percentage of variables γij
which are correctly given a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j which are
correctly estimated to be non-zero. % zero gives the percentage of variables γij which are correctly set to zero.
For the abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies that
λ is calculated with cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x) implies
that equation (7) is used for the weights, and HAC implies that equation (8) are used for the weights. Lasso
implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are used and

for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 19: The standard deviation of 50 simulations of the performance measures of the models
considered for 100 years of data with equal correlations

Panel A: Lasso methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.48 0.69% 0.83% 0.33% 7.81
Var(x) static 2.17 3.56% 4.27% 0.42% 251.40
HAC static 1.91 2.89% 3.43% 0.49% 47.19
Lasso static 0.48 0.69% 0.83% 0.33% 7.80
Ridge static 76.46 0.77% 0.90% 0.40% 1,277.38
EW CV 0.44 0.12% 0.15% 0.27% 7.77
Var(x) CV 1.05 0.19% 0.22% 0.41% 30.08
HAC CV 0.57 0.11% 0.13% 0.24% 9.17
Lasso CV 0.58 0.76% 0.88% 0.02% 4.07
Ridge CV 0.52 0.45% 0.53% 0.21% 7.61

Panel B: Elastic-Net methods

Method F-norm % non-zero % spillovers % zero MSE

EW static 0.45 0.26% 0.31% 0.40% 14.43
Var(x) static 0.85 0.93% 1.10% 0.43% 74.77
HAC static 0.61 0.41% 0.49% 0.41% 76.49
Enet static 0.45 0.26% 0.31% 0.40% 14.43
Ridge static 530.27 0.69% 0.81% 0.46% 433,087.90
EW CV 0.47 0.12% 0.14% 0.31% 9.27
Var(x) CV 1.22 0.23% 0.28% 0.49% 39.27
HAC CV 0.68 0.13% 0.16% 0.35% 12.70
Enet CV 0.54 0.67% 0.78% 0.03% 3.81
Ridge CV 0.51 0.45% 0.54% 0.22% 7.53

Notes: This table shows the standard deviation of 50 simulations of the performance measures of the methods
considered over 100 years of data for 263 companies. The x-variables are correlated, where the correlation is
0.5 between all companies. F-norm refers to the Frobenius norm and % non-zero represents the percentage of
variables γij which are correctly given a non-zero value. % spillovers gives the percentage of variables γij , i ̸= j
which are correctly estimated to be non-zero. % zero gives the percentage of variables γij which are correctly set
to zero. For the abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies
that λ is calculated with cross-validation. EW means that weights ϕij = 1 is used ∀(i, j) ∈ 1, ..., N . Var(x)
implies that equation (7) is used for the weights, and HAC implies that equation (8) are used for the weights.
Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights, for Ridge the weights ϕij = (γ̂(ridge)ij)
−1 are

used and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 20: The standard deviation of 100 simulations of the performance measures of the Double
Pooled methods for 21 years of data

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 4.91 0.78% 0.89% 0.13% 368 0.20 0.09
HAC sc static 4.91 0.79% 0.89% 0.13% 366 0.20 0.09
Lasso static 1.35 0.95% 1.09% 0.04% 55 0.14 0.07
Lasso CV 105.58 1.82% 2.01% 0.11% 25,525 0.36 0.16

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 33,206.28 1.76% 2.02% 0.15% 4,751,095,000 0.42 0.17
HAC sc static 33,206.28 1.76% 2.02% 0.15% 4,751,095,000 0.42 0.17
Enet static 22.68 1.91% 2.19% 0.15% 521 0.41 0.17
Enet CV 279.05 1.83% 2.05% 0.14% 36,721 0.39 0.16

Notes: This table shows the standard deviation of 100 simulations of the performance measures of the methods
considered over 21 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm
represents the Frobenius norm and %non-zero represents the percentage of variables γij which are correctly
given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated

to be non-zero. %zero gives the percentage of variables γij which are correctly set to zero. θ̂ references to the
estimated value of θ, while θ0 references to the actual value of θ. For the abbreviations of the methods, static
implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. HAC
implies that equation (8) are used for the weights and θ0 is not used to estimate the final weights. HAC sc
implies that equation (8) are used for the weights and θ0 is used to estimate the final weights. Lasso implies
that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.

Table 21: The standard deviation of 50 simulations of the performance measures of the Double
Pooled methods over 100 years of data

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 1.27 2.59% 3.05% 0.04% 28.12 0.05 0.03
HAC sc static 1.27 2.59% 3.05% 0.04% 28.15 0.05 0.03
Lasso static 1.12 2.35% 2.77% 0.01% 22.26 0.04 0.02
Lasso CV 0.36 0.26% 0.31% 0.03% 2.55 0.07 0.04

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 1.03 0.95% 1.12% 0.14% 9.30 0.10 0.06
HAC sc static 1.03 0.95% 1.12% 0.14% 9.30 0.10 0.06
Enet static 0.80 0.72% 0.85% 0.09% 7.20 0.10 0.06
Enet CV 0.38 0.27% 0.32% 0.04% 2.76 0.08 0.05

Notes: This table shows the standard deviation of 50 simulations of the performance measures of the methods
considered over 100 years of data for 263 companies. The x-variables are i.i.d. generated variables. F-norm
represents the Frobenius norm and %non-zero represents the percentage of variables γij which are correctly
given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated

to be non-zero. %zero gives the percentage of variables γij which are correctly set to zero. θ̂ references to the
estimated value of θ, while θ0 references to the actual value of θ. For the abbreviations of the methods, static
implies that the λ of equation (6) is used, while CV implies that λ is calculated with cross-validation. HAC
implies that equation (8) are used for the weights and θ0 is not used to estimate the final weights. HAC sc
implies that equation (8) are used for the weights and θ0 is used to estimate the final weights. Lasso implies
that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 22: The mean of 100 simulations of the performance measures of the Double Pooled
methods for 21 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 47.91 58.90% 51.10% 99.30% 1,871 0.51 0.22
HAC sc static 47.93 58.90% 51.10% 99.30% 1,877 0.51 0.22
Lasso static 31.30 67.42% 61.23% 99.93% 357 0.38 0.16
Lasso CV 32.97 74.00% 69.07% 99.34% 242 0.76 0.34

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 131.44 88.41% 86.21% 97.64% 13,973 0.83 0.37
HAC sc static 131.44 88.41% 86.21% 97.64% 13,973 0.83 0.37
Enet static 28.78 92.95% 91.61% 98.83% 153 0.71 0.31
Enet CV 31.25 81.04% 77.45% 99.11% 199 0.80 0.35

Notes: This table shows the mean of 100 simulations of the performance measures of the methods considered
over 21 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5 with companies
with spillovers, and a correlation of 0.1 for companies without spillovers. F-norm represents the Frobenius norm
and %non-zero represents the percentage of variables γij which are correctly given a non-zero value. %spillovers
gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %zero gives the

percentage of variables γij which are correctly set to zero. θ̂ references to the estimated value of θ, while θ0

references to the actual value of θ. For the abbreviations of the methods, static implies that the λ of equation
(6) is used, while CV implies that λ is calculated with cross-validation. HAC implies that equation (8) are used
for the weights and θ0 is not used to estimate the final weights. HAC sc implies that equation (8) are used for
the weights and θ0 is used to estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for
weights and for Enet the weights ϕij = (γ̂(enet)ij)

−1 are used.

Table 23: The standard deviations of the performance measures of the Double Pooled methods
using 100 simulations for 21 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 6.11 2.75% 3.25% 0.17% 1,236 0.25 0.10
HAC sc static 6.12 2.74% 3.25% 0.17% 1,235 0.25 0.10
Enet static 1.64 2.70% 3.23% 0.03% 75 0.18 0.07
Enet CV 2.24 2.32% 2.69% 0.11% 61 0.38 0.14

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 244.71 2.29% 2.72% 0.24% 60,352 0.42 0.15
HAC sc static 244.71 2.29% 2.72% 0.24% 60,352 0.42 0.15
Lasso static 3.51 1.67% 1.99% 0.18% 42 0.38 0.13
Lasso CV 2.44 2.12% 2.48% 0.16% 50 0.41 0.14

Notes: This table shows the standard deviation of 100 simulations of the performance measures of the methods
considered over 21 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5
with companies with spillovers, and a correlation of 0.1 for companies without spillovers. F-norm represents the
Frobenius norm and %non-zero represents the percentage of variables γij which are correctly given a non-zero
value. %spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero.

%zero gives the percentage of variables γij which are correctly set to zero. θ̂ references to the estimated value
of θ, while θ0 references to the actual value of θ. For the abbreviations of the methods, static implies that the λ
of equation (6) is used, while CV implies that λ is calculated with cross-validation. HAC implies that equation
(8) are used for the weights and θ0 is not used to estimate the final weights. HAC sc implies that equation (8)
are used for the weights and θ0 is used to estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1

are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.
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Table 24: The mean of 50 simulations of the performance measures of the Double Pooled methods
over 100 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 6.03 99.67% 99.61% 99.99% 17.51 0.06 0.03
HAC sc static 6.03 99.67% 99.61% 99.99% 17.52 0.06 0.03
Lasso static 6.12 99.45% 99.34% 100.00% 17.47 0.06 0.03
Lasso CV 7.00 97.95% 97.56% 100.00% 19.80 0.07 0.03

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 7.19 100.00% 99.99% 99.72% 29.52 0.16 0.07
HAC sc static 7.19 100.00% 99.99% 99.72% 29.52 0.16 0.07
Enet static 6.34 99.98% 99.98% 99.90% 17.59 0.15 0.07
Enet CV 6.51 98.72% 98.47% 99.99% 18.47 0.07 0.03

Notes: This table shows the mean of 50 simulations of the performance measures of the methods considered over
100 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5 with companies
with spillovers, and a correlation of 0.1 for companies without spillovers. F-norm represents the Frobenius norm
and %non-zero represents the percentage of variables γij which are correctly given a non-zero value. %spillovers
gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero. %zero gives the

percentage of variables γij which are correctly set to zero. θ̂ references to the estimated value of θ, while θ0

references to the actual value of θ. For the abbreviations of the methods, static implies that the λ of equation
(6) is used, while CV implies that λ is calculated with cross-validation. HAC implies that equation (8) are used
for the weights and θ0 is not used to estimate the final weights. HAC sc implies that equation (8) are used for
the weights and θ0 is used to estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for
weights and for Enet the weights ϕij = (γ̂(enet)ij)

−1 are used.

Table 25: The standard deviation of 50 simulations of the performance measures of the Double
Pooled methods over 100 years of data with unequal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 0.26 0.15% 0.18% 0.01% 1.83 0.03 0.01
HAC sc static 0.26 0.15% 0.18% 0.01% 1.84 0.03 0.01
Lasso static 0.29 0.25% 0.29% 0.00% 2.03 0.03 0.01
Lasso CV 0.37 0.37% 0.44% 0.00% 2.34 0.04 0.02

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 0.39 0.02% 0.02% 0.08% 7.65 0.10 0.04
HAC sc static 0.39 0.02% 0.02% 0.08% 7.65 0.10 0.04
Enet static 0.26 0.04% 0.05% 0.03% 1.79 0.11 0.05
Enet CV 0.33 0.33% 0.39% 0.00% 2.12 0.04 0.02

Notes: This table shows the standard deviation of 50 simulations of the performance measures of the methods
considered over 100 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5
with companies with spillovers, and a correlation of 0.1 for companies without spillovers. F-norm represents the
Frobenius norm and %non-zero represents the percentage of variables γij which are correctly given a non-zero
value. %spillovers gives the percentage of variables γij , i ̸= j which are correctly estimated to be non-zero.

%zero gives the percentage of variables γij which are correctly set to zero. θ̂ references to the estimated value
of θ, while θ0 references to the actual value of θ. For the abbreviations of the methods, static implies that the λ
of equation (6) is used, while CV implies that λ is calculated with cross-validation. HAC implies that equation
(8) are used for the weights and θ0 is not used to estimate the final weights. HAC sc implies that equation (8)
are used for the weights and θ0 is used to estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1

are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are used.

49



Table 26: The mean of 100 simulations of the performance measures of the Double Pooled
methods for 21 years of data with equal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 85.66 23.76% 9.18% 96.92% 21,531 0.66 0.37
HAC sc static 88.08 23.77% 9.19% 96.91% 21,596 0.66 0.37
Lasso static 56.14 30.23% 16.88% 97.71% 1,476 0.65 0.37
Lasso CV 56.45 33.78% 21.12% 97.85% 662 0.84 0.47

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 3,186.07 32.47% 19.56% 94.00% 3,640,095 0.90 0.50
HAC sc static 3,186.07 32.47% 19.56% 94.00% 3,640,095 0.90 0.50
Enet static 18,429.89 41.21% 29.97% 93.81% 1,137,144,000 0.91 0.51
Enet CV 56.25 36.55% 24.42% 97.10% 583 0.87 0.49

Notes: This table shows the mean of 100 simulations of the performance measures of the methods considered
over 21 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5 between all
companies. F-norm represents the Frobenius norm and %non-zero represents the percentage of variables γij
which are correctly given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j which are
correctly estimated to be non-zero. %zero gives the percentage of variables γij which are correctly set to zero.

θ̂ references to the estimated value of θ, while θ0 references to the actual value of θ. For the abbreviations
of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is calculated with
cross-validation. HAC implies that equation (8) are used for the weights and θ0 is not used to estimate the final
weights. HAC sc implies that equation (8) are used for the weights and θ0 is used to estimate the final weights.
Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are

used.

Table 27: The standard deviation of 100 simulations of the performance measures of the Double
Pooled methods for 21 years of data with equal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 8.64 1.48% 1.73% 0.42% 9,878 0.31 0.13
HAC sc static 24.63 1.48% 1.74% 0.42% 10,001 0.31 0.13
Lasso static 1.88 2.55% 2.96% 0.41% 271 0.31 0.13
Lasso CV 2.11 2.24% 2.41% 0.18% 154 0.38 0.17

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 7,440.64 1.91% 2.16% 0.34% 16,521,610 0.41 0.18
HAC sc static 7,440.64 1.91% 2.16% 0.34% 16,521,610 0.41 0.18
Enet static 90,196.77 2.24% 2.48% 0.35% 10,507,590,000 0.42 0.18
Enet CV 1.89 2.39% 2.63% 0.17% 121 0.40 0.17

Notes: This table shows the standard deviation of 100 simulations of the performance measures of the methods
considered over 21 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5
between all companies. F-norm represents the Frobenius norm and %non-zero represents the percentage of
variables γij which are correctly given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j
which are correctly estimated to be non-zero. %zero gives the percentage of variables γij which are correctly

set to zero. θ̂ references to the estimated value of θ, while θ0 references to the actual value of θ. For the
abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is
calculated with cross-validation. HAC implies that equation (8) are used for the weights and θ0 is not used
to estimate the final weights. HAC sc implies that equation (8) are used for the weights and θ0 is used to
estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights
ϕij = (γ̂(enet)ij)

−1 are used.
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Table 28: The mean of 100 simulations of the performance measures of the Double Pooled
methods for 21 years of data with equal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 85.66 23.76% 9.18% 96.92% 21,531 0.66 0.37
HAC sc static 88.08 23.77% 9.19% 96.91% 21,596 0.66 0.37
Lasso static 56.14 30.23% 16.88% 97.71% 1,476 0.65 0.37
Lasso CV 56.45 33.78% 21.12% 97.85% 662 0.84 0.47

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 3,186.07 32.47% 19.56% 94.00% 3,640,095 0.90 0.50
HAC sc static 3,186.07 32.47% 19.56% 94.00% 3,640,095 0.90 0.50
Enet static 18,429.89 41.21% 29.97% 93.81% 1,137,144,000 0.91 0.51
Enet CV 56.25 36.55% 24.42% 97.10% 583 0.87 0.49

Notes: This table shows the mean of 100 simulations of the performance measures of the methods considered
over 21 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5 between all
companies. F-norm represents the Frobenius norm and %non-zero represents the percentage of variables γij
which are correctly given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j which are
correctly estimated to be non-zero. %zero gives the percentage of variables γij which are correctly set to zero.

θ̂ references to the estimated value of θ, while θ0 references to the actual value of θ. For the abbreviations
of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is calculated with
cross-validation. HAC implies that equation (8) are used for the weights and θ0 is not used to estimate the final
weights. HAC sc implies that equation (8) are used for the weights and θ0 is used to estimate the final weights.
Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are

used.

Table 29: The standard deviation of 100 simulations of the performance measures of the Double
Pooled methods for 21 years of data with equal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 8.64 1.48% 1.73% 0.42% 9,878 0.31 0.13
HAC sc static 24.63 1.48% 1.74% 0.42% 10,001 0.31 0.13
Lasso static 1.88 2.55% 2.96% 0.41% 271 0.31 0.13
Lasso CV 2.11 2.24% 2.41% 0.18% 154 0.38 0.17

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 7,440.64 1.91% 2.16% 0.34% 16,521,610 0.41 0.18
HAC sc static 7,440.64 1.91% 2.16% 0.34% 16,521,610 0.41 0.18
Enet static 90,196.77 2.24% 2.48% 0.35% 10,507,590,000 0.42 0.18
Enet CV 1.89 2.39% 2.63% 0.17% 121 0.40 0.17

Notes: This table shows the standard deviation of 100 simulations of the performance measures of the methods
considered over 21 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5
between all companies. F-norm represents the Frobenius norm and %non-zero represents the percentage of
variables γij which are correctly given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j
which are correctly estimated to be non-zero. %zero gives the percentage of variables γij which are correctly

set to zero. θ̂ references to the estimated value of θ, while θ0 references to the actual value of θ. For the
abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is
calculated with cross-validation. HAC implies that equation (8) are used for the weights and θ0 is not used
to estimate the final weights. HAC sc implies that equation (8) are used for the weights and θ0 is used to
estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights
ϕij = (γ̂(enet)ij)

−1 are used.
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Table 30: The mean of 50 simulations of the performance measures of the Double Pooled methods
over 100 years of data with equal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 18.28 91.65% 90.04% 95.29% 201.65 0.22 0.12
HAC sc static 18.30 91.60% 89.99% 95.29% 201.75 0.22 0.12
Lasso static 13.20 98.04% 97.66% 96.76% 47.66 0.21 0.11
Lasso CV 9.49 95.13% 94.20% 99.95% 27.13 0.10 0.05

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 17.00 98.96% 98.76% 90.96% 228.05 0.26 0.14
HAC sc static 17.00 98.96% 98.76% 90.96% 228.05 0.26 0.14
Enet static 15.31 99.30% 99.17% 90.88% 70.50 0.25 0.13
Enet CV 9.43 95.64% 94.81% 99.91% 26.57 0.10 0.05

Notes: This table shows the mean of 50 simulations of the performance measures of the methods considered
over 100 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5 between all
companies. F-norm represents the Frobenius norm and %non-zero represents the percentage of variables γij
which are correctly given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j which are
correctly estimated to be non-zero. %zero gives the percentage of variables γij which are correctly set to zero.

θ̂ references to the estimated value of θ, while θ0 references to the actual value of θ. For the abbreviations
of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is calculated with
cross-validation. HAC implies that equation (8) are used for the weights and θ0 is not used to estimate the final
weights. HAC sc implies that equation (8) are used for the weights and θ0 is used to estimate the final weights.
Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights ϕij = (γ̂(enet)ij)
−1 are

used.

Table 31: The standard deviation of 50 simulations of the performance measures of the Double
Pooled methods over 100 years of data with equal correlations

Panel A: Lasso methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 1.85 2.70% 3.23% 0.43% 54.79 0.12 0.05
HAC sc static 1.86 2.71% 3.24% 0.43% 53.99 0.12 0.05
Lasso static 0.53 0.69% 0.82% 0.28% 7.70 0.12 0.05
Lasso CV 0.50 0.76% 0.91% 0.02% 3.30 0.06 0.03

Panel B: Elastic-Net methods

Method F-norm %non-zero %spillovers %zero MSE |θ01 − θ̂1| |θ02 − θ̂2|
HAC static 0.74 0.38% 0.45% 0.39% 89.54 0.14 0.06
HAC sc static 0.74 0.38% 0.45% 0.39% 89.54 0.14 0.06
Enet static 0.46 0.29% 0.35% 0.39% 11.20 0.14 0.06
Enet CV 0.47 0.64% 0.76% 0.02% 3.12 0.07 0.03

Notes: This table shows the standard deviation of 50 simulations of the performance measures of the methods
considered over 100 years of data for 263 companies. The x-variables are correlated with a correlation of 0.5
between all companies. F-norm represents the Frobenius norm and %non-zero represents the percentage of
variables γij which are correctly given a non-zero value. %spillovers gives the percentage of variables γij , i ̸= j
which are correctly estimated to be non-zero. %zero gives the percentage of variables γij which are correctly

set to zero. θ̂ references to the estimated value of θ, while θ0 references to the actual value of θ. For the
abbreviations of the methods, static implies that the λ of equation (6) is used, while CV implies that λ is
calculated with cross-validation. HAC implies that equation (8) are used for the weights and θ0 is not used
to estimate the final weights. HAC sc implies that equation (8) are used for the weights and θ0 is used to
estimate the final weights. Lasso implies that ϕij = (γ̂(lasso)ij)

−1 are used for weights and for Enet the weights
ϕij = (γ̂(enet)ij)

−1 are used.
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Table 32: The results of the Double Pooled Elastic-Net model with the weights and λ of Manresa
(2016) for different values of α

α MSE % non-zero θ̂L θ̂C
0.1 30,643,288,065.64 7.22% 0.08 0.12
0.2 6,228,329.16 5.36% 0.24 0.13
0.3 27,595.61 3.39% 0.33 0.21
0.4 18,204.80 2.27% 0.39 0.26
0.5 10,960.29 1.68% 0.45 0.27
0.6 8,840.34 1.31% 0.50 0.33
0.7 8,673.80 1.10% 0.53 0.35
0.8 9,387.61 0.92% 0.60 0.40
0.9 9,978.32 0.83% 0.64 0.41
1.0 8,858.45 0.73% 0.68 0.45

Notes: This table shows the MSE, the percentage of non-zero values within the matrix Γ, and the estimated
values of θL and θC for the Double Pooled Elastic-Net model with weights of equation (8) and λ according to
equation (6). It shows these results for different values of α and it should be noted that α = 1 is equal to the
Lasso estimator.

Table 33: The results of the Double Pooled Elastic-Net model with Elastic-Net weights and λ
computed with cross-validation

α MSE % non-zero θ̂L θ̂C
0.1 17,770.01 5.46% 0.30 0.07
0.2 1,859.01 3.83% 0.41 0.13
0.3 1,426.05 3.15% 0.45 0.15
0.4 1,262.61 2.80% 0.48 0.17
0.5 1,147.77 2.54% 0.46 0.16
0.6 1,148.06 2.36% 0.46 0.16
0.7 1,026.40 2.22% 0.46 0.16
0.8 1,007.20 2.12% 0.44 0.15
0.9 951.52 2.06% 0.44 0.15
1 864.80 2.00% 0.43 0.15

Notes: This table shows the MSE, the percentage of non-zero values within the matrix Γ, and the estimated
values of θL and θC for the Double Pooled Elastic-Net model with weights ϕij = (γ̂(enet)ij)

−1 and λ computed
with cross-validation. It shows these results for different values of α and it should be noted that α = 1 is equal
to the Lasso estimator.
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Table 34: The results of the Double Pooled Elastic-Net model with Elastic-Net weights and a
static λ

α MSE % non-zero θ̂L θ̂C
0.1 887,500.74 5.75% 0.05 0.05
0.2 641,638.02 2.94% 0.24 -0.07
0.3 1,546,167.99 1.65% 0.00 -0.01
0.4 351,091,236.78 2.46% 4.72 -0.08
0.5 753,046,025,756.13 7.60% 3155.95 0.05
0.6 229,693,958.62 5.58% -28.55 -7.47
0.7 0.05 0.38% 1.07 0.63
0.8 0.06 0.38% 1.11 0.65
0.9 0.06 0.38% 1.11 0.65
1 0.06 0.38% 1.11 0.65

Notes: This table shows the MSE, the percentage of non-zero values within the matrix Γ, and the estimated
values of θL and θC for the Double Pooled Elastic-Net model with weights ϕij = (γ̂(enet)ij)

−1 and λ calculated
with equation (6). It shows these results for different values of α and it should be noted that α = 1 is equal to
the Lasso estimator.
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