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Abstract

This research examines the Pooled Lasso and Post Pooled Lasso estimation method pro-

posed by Manresa (2016) for estimating interaction effects in the context of R&D spillovers

between firms in the United States. The study utilizes an NBER matched Compustat-

USPTO data set to obtain the results. Simulations are conducted to determine the circum-

stances under which the aforementioned methods yield the most accurate estimations and

identify any limitations they may have. The paper addresses how the results can be inter-

preted, taking into account the limitations in the performance of the methods. Additionally,

a Chow test is performed on a randomly selected subset of 10 firms to investigate whether

the structural break in 1993 as suggested by Brown et al. (2009) is also observable within

this specific data set. The Chow test demonstrates the presence of a structural break within

the subset of firms, indicating a significant change in the magnitude of the interaction effects

when comparing the period before 1993 with the period thereafter.

1 Introduction

Competition among firms has intensified as a result of a rapidly developing economy. To maintain

a good competitive position, it is important for companies to have a unique strategy that sets

them apart from others. If they fail to do so, they risk losing their market share as other

companies take their place. Research and Development (R&D) has become a key method for

enterprises to obtain the core competitiveness (Cao et al., 2022). Investing in R&D can lead to

various benefits for a firm, such as the reduction of production costs, improvement of product

quality, expansion of market share, and ultimately enhancing its overall market competitiveness.

Due to for example the flow of human resources and information exchange between different

firms, R&D spillovers arise. Spillover effects arise when for example firms use the know-how

of another firm without the researching firm being able to control or influence the degree of

this unintended knowledge transfer (Wölfl, 1998). Spillover effects are relevant not only among

firms, but also in other contexts such as education, criminology, consumption, and productivity

(De Giorgi & Pellizzari, 2014). One of the ways we observe spillover effects in education is

when knowledge acquired in one subject contributes to improved understanding or performance

in another subject. In addition to the unconscious spreading of knowledge, spillover effects

also include the diffusion of strategies and different kinds of behavior. Research of Nilsson et al.

(2017) for example has shown that environmental behavior is affected by the influence of spillover

effects. In recent years, there has been increasing attention to the problem of competition and

cooperation in R&D investments (Cao et al., 2022).

There is quite some literature on methods to estimate the magnitude of spillover effects

between different firms. Most studies base their estimates on proxies for the structure of inter-

action and not on a data-driven estimate of the actual structure. Misleading results may arise as

a consequence of this. In this research we treat the structure of interactions as unobserved and

choose to estimate both the structure of interactions and the magnitude of the spillover effects.

In order to do so we use a specific least absolute shrinkage and selection operator (Lasso) called

the Pooled Lasso estimator to estimate the structure and the Post Pooled Lasso estimator to

estimate the magnitude of the effects.

The main goal of this research is to find an answer to the following main research question:
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‘How can the network of spillover effects between different firms be estimated?’ To get a clear

understanding of how well the method performs in different settings, we begin by conducting

several simulations. This approach aims to answer the first sub question: ‘In what circumstances

does the method provide the most accurate estimates?’ The second sub question is: ‘What are

the spillover effects among different firms in the United States between 1980 and 2001?’ To

answer this question, we utilize an NBER marched Compustat-USPTO data set, containing

information on sales and R&D investments of firms in the US during the period from 1980 to

2001. Lastly, the final sub question investigates whether the data set mentioned above indicates

a structural break occurring in 1993, as suggested by Brown et al. (2009). In answering this sub

question, we also examine the validity of the assumption made by Manresa (2016), which states

that spillover effects are stable over time. To address this question, a Chow test is employed.

The simulations show that the sequential application of Pooled Lasso and Post Pooled Lasso

generally leads to accurate estimates. In cases where the number of time periods is smaller than

the number of firms, Pooled Lasso tends to provide better estimations compared to when Post

Pooled Lasso is subsequently applied. When estimating the spillover effects between US firms

using the described data set, we observe that spillover effects occur with varying magnitudes.

Focusing on the first 8 companies in the sample, we find that high-tech firms in particular have

large spillover effects on other firms. Additionally, the Chow test applied to a randomly selected

sample of firms suggests the presence of a structural break in 1993. However, since the test was

performed on a small portion of the sample, further research is necessary to determine if this

conclusion holds true for the entire data set.

The remainder of this paper is structured in the following way. Section 2 contains a literature

review providing more information onR&D expenditures, spillovers, and their changes over time.

Additionally, some general information is provided about panel data and Lasso estimation. In

Section 3, the data set used in this study is described, along with the implemented data cleaning

procedures. Section 4 provides a detailed explanation of the models and methods employed to

address the research questions. The results are presented in Section 5, showcasing the findings

obtained from the analysis. Finally, Section 6 concludes the paper by summarizing the main

outcomes and discussing some limitations of this research.

2 Theory

2.1 Literature review

Research and Development (R&D) is a term to describe the process by which a company works

to generate new knowledge that it might use to create new technology, products, services or

systems. Companies in different sectors and industries conduct R&D. A time series analysis

done by Consult et al. (2008) investigates the relationship betweenGDP andR&D. The research

states that R&D intensities are temporarily influenced by the levels of GDP growth.

Lucking et al. (2019) study whether R&D spillovers have declined in the 21st century. They

analyse panel data on US firms over the last three decades and find out that the magnitude of

R&D spillovers remains as large in the second decade of the 21st century as it was in the mid

1980s. They do observe a temporary increase in positive R&D spillovers during the period of
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the digital technology boom in 1995-2004.

Figure 1: The solid line plots the sum of R&D for all publicly traded companies with coverage in
Compustat (financial firms and utilities are excluded) over time. The dashed line plots the sum of R&D
for firms in all industries except the seven high-tech industries with SIC codes 283, 357, 366, 367, 382,
384, and 737 (Brown et al., 2009).

The report of Brown et al. (2009) describes in detail how R&D-expenditures developed

between 1980 and 2004. Figure 1 plots the R&D investment in billions of 2000 dollars for all

publicly traded firms listed in Compustat from 1980 to 2004. The dotted line is the level of R&D

for all firms excluding seven high-tech firms. Splitting the group of firms in these two subgroups

gives some interesting information on the share of high-tech firms on the development of R&D

expenditures. We will describe shortly three things that can be concluded from looking at the

results of Brown et al. (2009) in Figure 1. Firstly, economywide R&D starts accelerating in

1994 and ends around 2000. Secondly, the share of high-tech firms in R&D grew significantly in

the period 1980-2004. In the last years of this time period, 2000-2004, approximately two-thirds

of the total R&D-expenditure was attributed to high-tech firms. Thirdly, the cycle in R&D

between 1994 and 2004 is almost all due to the seven high-tech industries.

In her research, Manresa (2016) uses the same data as in this paper and assumes that the

spillover effects remain stable over the period 1980-2001. The findings of Lucking et al. (2019)

and Brown et al. (2009) collectively support the plausibility of a structural break occurring

around 1993. Consequently, we conduct a Chow test in this paper to examine and test Manresa’s

assumption.

2.2 Panel data

Panel data, also known as longitudinal data, refers to a type of data that observes multiple

variables over a specific period of time at regular intervals. It involves tracking the same group

of individuals or companies throughout this time period. This type of data allows for the exam-

ination of both stability and changes over time. Time series data represents a one-dimensional

case of panel data, where data is collected for a single variable. Another type of data is cross-
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sectional data, which is collected at a single point in time. In this paper, we are dealing with

panel data as we have data for a group of firms in the US, spanning the time period from 1980

to 2001.

2.3 Lasso estimation

As previously described in Section 1, we treat the structure of interactions as unobserved.

Therefore, our starting point is to include interaction effects between all possible companies

as potential components in our model. Nonetheless, including all the interaction effects in the

model increases the likelihood of overfitting. An overfitted model contains an excessive number of

variables given the data. Applying a standard regression method such as Ordinary Least Squares

(OLS) to such a large set of explanatory variables (in this case all N × N possible interaction

effects) could lead to an overestimation of how well the model performs. This phenomenon

is called optimism bias (Ranstam & Cook, 2018). Lasso is a shrinkage and variable selection

method that can be used to deal with the issue of overfitting in models by only selecting the most

informative explanatory variables. Its objective is to strike a balance between accurately fitting

the data (minimizing estimation errors) and preventing overfitting. This is achieved by adding

a penalty term, λ, on the model parameters, which shrinks part of the regression coefficients

towards zero. The Lasso estimator in its general form can be described as follows:

β̂Lasso = min
β̃

 n∑
i=1

(yi −
p∑

j=1

xij β̃j)
2 + λ

p∑
j=1

| β̃j |

 . (1)

In this formula n represents the number of individuals and p the number of parameters. The

minimization process consists of two components. Firstly, there is the minimization of the sum

of squared residuals, which represents the deviations between the estimated values generated

by the regression model and the actual observations. Secondly, there is the inclusion of the

absolute values of the regression coefficients, also referred to as the L1-norm. By minimizing

the absolute values of the regression coefficients, the objective is to reduce their magnitudes as

much as possible. One advantage of Lasso is that the L1-norm has the ability to selectively

shrink certain regression coefficients precisely to zero. The degree of shrinkage depends on the

penalty parameter λ. Variables with a coefficient of zero after shrinkage are excluded from the

model. However, one of the limitations of Lasso is that it is sensitive to multicollinearity because

it only randomly selects one variable of a set of highly correlated variables and ignores the rest

of the highly correlated variables (Ogutu et al., 2012). Furthermore, the fact that Lasso shrinks

the number of parameters also leads to another potential problem, namely shrinkage bias. This

shrinkage bias will be further explained in Section 4 and is the reason why in this research a Post

Pooled Lasso estimation is conducted after the Pooled Lasso estimation. Conducting simulations

contributes to gaining insights into the circumstances in which this estimation method yields

the most accurate estimates.
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3 Data

We perform this research using an NBER matched Compustat-USPTO firm data set. This

panel data set provides information on firm-level accounting data such as sales, employment

and capital of firms in the United States over the period 1980-2001.

In our sample we include only those observations for which the values of the following vari-

ables are known: code, year, SIC3, sales and xrd. The variable SIC3 refers to the Standard

Industrial Classification (SIC) system. This is a coding scheme used to classify industries and

businesses based on their economic activities. Access to variable SIC3 is desired as this offers in-

formation on the characteristics of various firms. Subsequently, once the results are obtained, an

analysis can be conducted to examine how companies with specific characteristics relate to each

other. The variable code provides an identification code for each individual firm and is primarily

used to differentiate between different companies, even if they may fall under the same SIC3.

The variable year represents the specific year associated with each data point. Given that we

are conducting a panel data analysis, it is crucial to have knowledge of the corresponding time

for all observations. In the regression analysis, the explanatory variable is represented by the

variable xrd, which corresponds to the total expenditure in R&D in US-dollars. Conversely, the

dependent variable is denoted by sales and represents the total sales of a firm in US-dollars.

The full data set shows a different number of observations for each variable. Because sales

serves as dependent variable and has the fewest number of observations, we begin by removing

all observations that do not have a value for sales. The observations we remove turn out to be

the same observations that have missing values for the other variables. In other words, after

excluding the observations without a value for sales, we have obtained a sample in which every

observation contains values for all five variables mentioned above. Finally, we divide this sample

into two sub samples to be able to conduct the Chow test: one containing all observations from

1980 till 1993, and another containing all observations from 1994 till 2001. Table 1 shows for

every step in the process of data cleaning the corresponding number of observations per variable.

Step Description Number of observations per variable

code year sic3 sales xrd

0. Full data set 18209 18209 14084 13799 18209

1. Remove all observations with missing values for sales and obtain sample 0 13799 13799 13799 13799 13799

2. Include only observations from 1980-1993 and obtain (sub)sample 1 5145 5145 5145 5145 5145

3. Include only observations from 1994-2001 and obtain (sub)sample 2 8654 8654 8654 8654 8654

Table 1: Steps to clean the data of missing values and make subsamples

Table 2 shows the number of observations over time. It can be seen that the number of obser-

vations remains relatively stable over time with an upward trend until 1993 and a subsequent

downward trend after 1993.

Year 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991

Frequency 505 529 547 567 583 598 623 632 646 665 677 687
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Year 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 Total

Frequency 695 700 699 697 688 680 666 643 577 495 13799

Table 2: Distribution over time

Now, we will restructure the data set to create a coherent panel data set. The variable code

serves as a means to group data points belonging to the same firm. We construct a matrix X

that contains all values of xrd, structured so that each row corresponds to an individual firm

and each column represents a different year. This results in an N × T matrix with N=725

and T=22 (1980-2001). Similarly, we create the matrix Y for the dependent variable sales. As

Table 2 demonstrates, the number of observations varies across years because not every firm

has data for each year from 1980 to 2001. Since one of our research questions aims to examine

the constancy of spillover effects throughout the period of 1980-2001, we choose to include only

those firms in our sample that possess values for all these years. Consequently, this leads to a

sample of 348 firms.

Finally, there are also companies that have a value of zero for both xrd and sales across all

years. This suggests that either the data for these companies was inadequately recorded or the

companies no longer exist or are inactive. To ensure the reliability of our findings, we decide

to exclude those firms from our sample. As a result, the final sample comprises 274 firms. It

should be noted that companies with one or more zero values across all 22 years will still be

included in the sample as long as not all values equal zero. Table 3 summarizes the described

steps in a structured way. The 274 firms in the final sample represent 94 different SIC3 codes.

Traditionally R&D-intensive industries, such as the Pharmaceutical Industry, the Electronic

Industry and the Industrial Machinery industry are strongly represented in our sample. Some

summary statistics on the sample can be found in Table 4.

Step Description
Number of different

firms in sample

1. Restructure data set based on firm codes 725

2. Remove firms with at least one missing observation in time period 1980-2001 384

3. Remove firms where for the whole time period all xrd-values equal zero 274

Table 3: Steps to transform the data into a structured and complete panel data set

Mean Standard Deviation Minimum Maximum N

x (R&D-expenditure in US-dollars) 162.4806 603.4154 0 8900 274

y (sales in US-dollars) 3977.94 12703.06 5 180557 274

Table 4: Summary statistics

4 Methodology

We use the following linear panel data model of spillover effects:

yit = αi + βixit +
∑
j ̸=i

γijxjt + ϵit. (2)
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This equation shows that the sales of firm i at time t, yit, can be affected by its own R&D-

expenditures at time t, xit, but also by the R&D-expenditures of other firms in the economy at

time t, x1t, ..., xNt. Note that i = 1, ..., N and t = 1, ..., T . The estimate αi is an firm-specific

intercept, βi is an firm-specific slope and γij is a pair-specific parameters showing the effect of

the characteristic of firm j on the outcome of firm i. All these γij-values form together the

matrix Γ with dimension N ×N , where the diagonal elements are βi (also denoted as γii). The

interpretation of this γii is the effect of firm i’s own R&D-expenditure on the sales of that certain

firm i. The error term of firm i at time t is denoted by ϵit.

The micro-panel data we use consist of many more firms (N = 274) than periods of observa-

tion (T = 22). In this setting where N >> T , the data set becomes high-dimensional and this

leads to certain consequences. The matrix of interaction effects to be estimated is of dimension

N ×N , implying N2 elements. Similarly, the explanatory variable X contains T different values

for each firm, resulting in a dimension of N × T . Given the large N in comparison to T , this

situation leads to the problem of unidentifiability. To address the issue of unidentifiability, we

assume sparse structures of interactions which leads to dimensionality reduction. In other words,

we focus only on interaction structures where the number of connections for each individual is

small. The number of sources of spillovers γij ̸= 0 is called si and has to be small relative to T

in order to make our model perform well. This so-called sparsity assumption can be formally

written as follows:

∑
j ̸=i

1{γij ̸= 0} = si << T for all i. (3)

By making this assumption, we aim to reduce the dimensionality of the problem to be able

to identify relevant spillover effects. We use Lasso to find these relevant effects, which will be

further discussed in Section 4.1.

In the remainder of this paper, we choose to consider xit and yit in deviations from their

means over time x̄i and ȳi. Consequently, the model presented in Equation (2) undergoes the

following transformation:

(yit − ȳi) = (αi − αi) + βi(xit − x̄i) +
∑
j ̸=i

γij(xjt − x̄j) + (ϵit − ϵ̄i). (4)

ỹit = βix̃it +
∑
j ̸=i

γij x̃jt + uit. (5)

Equations (4) and (5) illustrate the omission of the intercept term αi as this effect is constant

for a particular individual i, the representation of deviations from the mean using a tilde, and

the construction of uit.

The goal of our research is to estimate βi and γij consistently. To obtain these estimates we

follow two steps, described in further detail below. Broadly speaking, we first perform a Pooled

Lasso regression on the whole sample to estimate which interactions are non-zero and therefore

are selected by the method. Our second step then is to perform a Post Pooled Lasso regression

on the selected regressors to estimate the magnitude of the effects.
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4.1 Pooled Lasso estimator

For every i = 1, ..., N we perform the following Pooled Lasso estimation:

γ̂i ∈ argmin
γi1,...,γiN

1

T

T∑
i=1

ỹit −
N∑
j=1

γij x̃jt

2

+
λ

T

N∑
j=1

| γij | ϕij . (6)

Equation (6) consists of two parts. The first part is the sum of squared errors and the

second part is a penalization, involving a weighted sum of the absolute value of all spillover

effects which is called the L1-norm. This method has two main advantages. Firstly, it produces

sparse estimates by penalizing the absolute values of spillover effects. This leads to a relatively

large number of spillover effects being set to zero. The fact that the method sets spillover effects

to zero enables it to work effectively under the sparsity assumption of Equation (3). Secondly,

using Pooled Lasso is computationally feasible due to the existence of efficient algorithms for

solving the optimization problem described in Equation (6). The values of ỹit, x̃jt and T in

Equation 6 are given by the data. For λ and ϕij we will perform some more calculations to find

suitable values.

4.1.1 Determination of λ

In order to find a suitable value for λ we use the following formula, as suggested by Belloni et

al. (2012):

λ = c× (2×
√
TΦ−1(1− v/2N)). (7)

Φ denotes the standardized Gaussian cumulative distribution function. For parameter c we

choose the constant 1.2 in line with the choice Manresa (2016) made in her paper. Parameter v

is a pre-specified level of error, which we set equal to 0.05.

4.1.2 Determination of ϕij

Determining a suitable value for ϕij involves a series of steps. We use the iterative strategy

proposed by Belloni et al. (2012), which works as follows. Initially, ϕ2
ij
(0) is computed using the

formula:

ϕ2
ij
(0) =

1

T

T∑
t=1

x̃2jtỹ
2
it +

1

T

T∑
t=2

x̃jtx̃jt−1ỹitỹit−1. (8)

The value of ϕ
(0)
ij is then obtained by taking the square root of ϕ2

ij
(0). Subsequently, a Pooled

Lasso estimation is performed individually for each i using Equation (6), with ϕij = ϕ
(0)
ij .

After doing this for every i = 1, ..., N separately, we have obtained all values of γ
(0)
ij . These

γ
(0)
ij values are subsequently employed to estimate ũit by employing the following expression:

̂̃uit = yit −
N∑
j=1

γ̂
(0)
ij x̃jt. (9)
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The values of ̂̃uit obtained from this process serve as the initial point for calculating the

subsequent ϕij using the following formula:

ϕ2
ij = ϕ2

j =
1

N

N∑
i=1

(
1

T

T∑
t=1

x̃2jtũ
2
it +

1

T

T∑
t=2

x̃jtũjt−1
̂̃uit̂̃uit−1). (10)

Note that this is a natural estimator if (ũi1 ... ũiT ) are independent and identically distributed

(i.i.d.). While there is no certainty because ũit is unobserved, we make the assumption that they

are i.i.d. and therefore choose to use the estimator of Equation (10).

After taking the square root of ϕ2
ij , this ϕij is used as input for the subsequent Pooled Lasso

estimation. New values of γ̂ij are obtained, which are then utilized to calculate ̂̃uit according to

Equation (9) once again. This iterative process continues until a new iteration no longer yields

substantially different values for ϕij . The final ϕij obtained is utilized in the Pooled Lasso, where

the corresponding γij values ultimately determine the selection or exclusion of specific elements.

4.2 Post Pooled Lasso estimator

In this research, we use the Pooled Lasso estimator to identify the interactions between variables.

However, there is a potential issue with this method called shrinkage bias.

Shrinkage bias can happen because of the way Pooled Lasso works. It shrinks some coef-

ficients towards zero, which can lead to biased estimates for some variables. This bias occurs

because Pooled Lasso has a preference for zero values, causing a downward bias. The strength of

this bias depends on how much shrinking is applied, which is controlled by parameter λ. When

the parameter is larger, more shrinking occurs, and the bias can be more pronounced.

To address this bias, we use an extra step called Post Pooled Lasso estimation. This technique

helps correct the bias introduced by Pooled Lasso and improves the accuracy of the estimated

values. Essentially, it refines the results obtained from Pooled Lasso to get a better understand-

ing of the true relationships between variables. The Post Pooled Lasso estimator recovers the

structure of spillover sources that were selected by the Pooled Lasso and simultaneously corrects

for shrinkage bias. The Post Pooled Lasso estimator is defined as follows:

Γ̂P = argmin
(γi1,...,γiN ):γij=0 if j /∈T̂i

1

NT

N∑
i=1

T∑
t=1

(ỹit −
N∑
j=1

γij x̃jt)
2. (11)

The set T̂i comprises all regressors selected by Pooled Lasso. All γij ’s that are not part of

the set T̂i are set equal to zero beforehand. Solving the minimization of the sum of squared

errors according to Equation (11) results in the estimator of matrix Γ which from now on we

will call Γ̂P consisting of elements γ̂Pij .

4.3 Performance measures

After performing the calculations as described above, it is important to evaluate the performance

of our model. With the simulated data, it is possible to compare the estimated matrix with

the actual matrix. By comparing these findings, we can evaluate the model’s performance and

examine the effects of different input through various simulations. This provides an answer to
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one of our research questions, demonstrating how well the model performs and how different

input influences its performance.

To test the accuracy of our estimation, we employ a few different performance measures.

First of all, we use the commonly known Mean Squared Error (MSE), calculated as follows:

MSE =
1

NT

N∑
i=1

T∑
t=1

(yit − ŷPit )
2. (12)

Note that ŷPit represents the predicted value of yit based on the estimated values of αi and

γij . The error term ϵit has an expected value of zero since it is drawn from a standard normal

distribution with a mean of zero and therefore disappears in the calculation of ŷPit . From Equation

(2) it follows that the expected value of yit can be calculated using the following formula:

ŷPit = α̂i + β̂ixit +
∑
j ̸=i

γ̂ijxjt. (13)

The individual specific intercept αi is estimated as follows:

α̂i = ȳi − x̄Ti γ̂
P
i . (14)

The intuition behind this estimator is that it attributes the part of ȳi that cannot be explained

by x̄Ti γ̂
P
i to the intercept αi. The assumption of the error term ϵit being normally distributed

with an expected value of zero is crucial in this context.

Another way to gain insight into the accuracy of an estimator is simply by examining the

degree to which the estimates deviate from the true values. Since we want to compare matrices

Γ with different dimensions in this paper, we choose to take the sum of the squared deviations

and divide them by N . This way, we calculate the mean of the squared deviations, which we

will abbreviate as MSD. In this paper, MSD1 is used to represent the deviation of the Pooled

Lasso Estimator Γ̂, while MSD2 represents the deviation of the Post Pooled Lasso Estimator

Γ̂P . The formulas for these two statistics are as follows:

MSD1 =
1

N

N∑
i=1

N∑
j=1

(γij − γ̂ij)
2. (15)

MSD2 =
1

N

N∑
i=1

N∑
j=1

(γij − γ̂Pij )
2. (16)

Finally, it is of interest to see whether the Pooled Lasso estimator correctly sets coefficients to

zero. To gain insight into this, we utilize the following measure:

Percentage correctly estimated zeros =
#γ̂Pij estimated to zero correctly

#γij equal to zero
. (17)

When investigating the data set as described in Section 3, the true values of γij are not known.

Therefore, for evaluating those estimates, we rely solely on the MSE according to Equation

(12). For the simulations on the other hand, the true values of γij known and to analyse these
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estimates we also use the other performance measures.

4.4 Chow test

The Chow test is a statistical test that is used to test whether the coefficients estimated over

one group of the data equal the coefficients estimated over another group. It is commonly used

in time series analysis to test for the presence of a structural break, for example by Clark (2007)

when testing a possible difference in market valuation of technology stocks before and after the

crash. In our research, we use the Chow test to determine whether there are differences in

interaction effects between companies during the period of 1980-1993 and 1994-2001. In order

to do so we split up our sample in two subsamples. Let t run from 1 to 22, where t = 1

corresponds to the year 1980 and t = 22 to the year 2001. The first sub sample contains all

data from period 1980-1993 and we denote the indices of this sample t = {1, ..., t1} where t1

denotes 14, corresponding to the year 1993. The second subset contains all data from period

1994-2001 which indexes we denote as t = {t1 + 1, ..., T} where T denotes 22, corresponding to

the year 2001. First, the Pooled Lasso estimator, as described in Equation 6, is applied to the

entire sample. The γij ’s that are set to zero based on this estimation are also kept at zero in

the subsequent regressions. We will execute the following regressions:

ỹit =
N∑
j=1

γij x̃jt + uit for all t = {1, ..., T}. (18)

ỹit =
N∑
j=1

γ1ij x̃jt + uit for all t = {1, ..., t1}. (19)

ỹit =
N∑
j=1

γ2ij x̃jt + uit for all t = {t1 + 1, ..., T}. (20)

If there is no structural break, all these regressions will lead to approximately the same

estimates. To determine the presence of a structural break, it is therefore necessary to examine

whether the estimates γ1ij correspond to γ2ij . In case of a structural break, these coefficients will

significantly differ from each other. So, the Chow test actually tests the following hypotheses:

H0 : γ1ij = γ2ij for all i and j.

H1 : otherwise.

H0 denotes the case of structural stability. If H0 is rejected, we can therefore conclude there

is no stability between the two selected time periods. To test whether the coefficients are jointly

significant different from each other we use the following F -test in which N1 denotes the number

of observations of the first time period, N2 the number of observations in the second time period

and K the number of regressors.

F =
(SSR0 − SSR1 − SSR2)/K

(SSR1 + SSR2)/N1 +N2 − 2K
. (21)
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The values for the Sum of Squared Residuals (SSR) can be computed using the following

formula:

SSR =
N∑
i=1

T∑
t=1

(yit − ŷPit )
2. (22)

Note that SSR0 denotes the sum of squared residuals of the whole data set (sample 0), SSR1

the sum of squared residuals of the first group where t = {1 ... t1} (sample 1) and SSR2 the

sum of squared residuals of the second group where i = {t1 + 1 ... T} (sample 2).

The test statistic following from Equation (21) follows an F (K,N1 +N2 − 2K) distribution.

In this paper we choose to use a significance level of α = 0.05. Learning from Pandey & Bright

(2008) on the intuition behind degrees of freedom, it can be stated that degrees of freedom must

always be positive. This leads to the following restriction:

N1 +N2 > 2K. (23)

The number of regressors, K, is in the case of this research the number of selected parameters

by the Pooled Lasso estimation and can be at most N2. The total number of observations,

N1 + N2 is N × T . Knowing T to be much smaller than N a problem may arise. To avoid

potential issues in the restriction on degrees of freedom, we choose to perform a Chow test on a

small subset of all firms N . We choose to zoom in on 10 randomly selected firms, half of which

belong to the high-tech industry and the other half do not. Section 5.3 will further elaborate on

this choice.

5 Results

We use R version 4.0.5 to obtain the results described in this section. The codes used in

Subsections 5.1, 5.2 and 5.3 are explained in Appendix A.1, A.2 and A.3 respectively.

5.1 Results simulated data

In order to evaluate the performance of the previously described model, we initially apply the

model to a simulated data set. The data set is simulated in a simple way. First, we choose

a value for N and T and simulate data for the variable x in the form of an N × T matrix.

We fill this matrix with random numbers and vary the distribution from which we draw these

numbers. Then, we generate a matrix Γ with dimensionsN×N , where we manually assign values

at certain positions. A vector of length N is being constructed, which consists of individual-

specific intercepts denoted as αi. Finally, we simulate the data for variable y, again in the form

of a matrix with dimensions N ×T , by multiplying Γ with X and adding for all i the individual-

specific intercept αi and the standard normally distributed error term ϵit. Per individual i

we subtract the mean from the corresponding rows xi and yi to obtain x̃i and ỹi, which we

subsequently use in our model. Finally, the model’s performance is assessed by comparing the

matrix of actual γ-values to the values estimated by the method as described in Section 4.3.

We choose to describe a specific case in detail to illustrate the performance of our model.

In this case, N equals 5 and T equals 15. Table 5 shows the manually constructed matrix
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Γ. This Γ is constructed in such a way that every column contains approximately two zeros.

The values for x are drawn from a continuous uniform distribution between 10 and 15, and the

individual-specific intercepts αi are drawn from a continuous uniform distribution between 3

and 5. The values of Y are calculated by multiplying the matrix Γ with X and for all i adding

the individual-specific intercept αi and the standard normally distributed error term ϵit.
100 0 5 0 0
0 100 0 5 0
5 5 100 5 5
0 5 0 100 5
5 0 5 0 100


Table 5: Simulation example Γ-matrix

When this data has been simulated, the method described in Section 4 is applied step by

step. This results in the Pooled Lasso estimator shown in Table 6. A value of zero in the matrix

means that the parameter was not selected by the Pooled Lasso estimator. Then, Post Pooled

Lasso is applied to the variables selected by the Pooled Lasso, resulting in matrix Γ̂P shown in

Table 7. 
99.27 0 3.80 0 0
0 98.61 0 3.30 0

1.90 1.40 98.95 3.04 2.34
0 2.98 0 99.01 2.74

3.77 0 4.67 0 98.83


Table 6: Simulation example Pooled Lasso estimator Γ̂ 1


100.13 0 4.82 0 0

0 99.89 0 5.01 0
4.74 4.84 99.94 5.22 5.04
0 5.06 0 100.32 4.88

4.86 0 5.40 0 100.21


Table 7: Simulation example Post Pooled Lasso estimator Γ̂P

It can be observed that the Pooled Lasso estimator selects the correct elements, resulting in

a percentage of correctly estimated zeros of 100%. Additionally, as expected, the estimates of

the Post Pooled Lasso are closer to the true values of Γ compared to the estimates of the Pooled

Lasso. This is confirmed by the values of MSD1 equaling 2.182 and MSD2 equaling 0.022,

calculated using Equations (15) and (16) respectively. We choose not to mention the values of the

MSE because the estimator α̂i turns out to not accurately estimate the values αi. This can be

seen in Table 8, showing the simulated values αi versus the estimated values α̂i for the simulation

example discussed. Section 6 will further elaborate on this issue. The inaccurate estimates of

α̂i introduce noise in the MSE, because ŷPit is calculated using α̂i according to Equation 13.

Therefore, we only report the values of the MSD, which provide a reliable indication of how

accurately the estimator estimates the values of Γ.

1It took three iterations to obtain the weights ϕij for the Pooled Lasso estimation
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i=1 i=2 i=3 i=4 i=5

Simulated value αi 4.24 3.63 3.23 4.07 3.92

Estimated value α̂i 9.20 3.15 -8.59 3.41 -0.55

Table 8: Performance of estimator for αi

We conduct several simulations to observe the model’s performance in different cases. We

systematically vary the number of individuals (N), the time period (T ) and the number of γij ’s

set to zero per individual. We report for all these simulations the values of MSD1, MSD2,

and the percentage of correctly estimated zeros. Table 9 illustrates how these performance

measures respond to changes in the data simulation approach. The values in that table are

constructed by taking the average over two values obtained by running two times a simulation

with corresponding N , T and number of γij ’s set to zero. To ensure fair comparisons between

different cases, we change only one component at a time. The procedure to simulate values

for xit, αi and ϵit remains consistent with the description provided above. Although the sizes

and number of zeros in the Γ-matrices varies, the construction method remains the same, with

diagonal elements set to 100 and off-diagonal elements set to zero or 50.

Case N T #γij’s set

to zero per firm

MSD1 MSD2 Percentage

correctly estimated

zeros

1a 5 5 2 29.3007 26.8103 75%

1b 5 10 2 3.0426 0.0639 95%

1c 5 15 2 3.0971 0.7763 100%

1d 5 150 2 0.1108 0.0019 100%

1e 5 1500 2 0.0119 0.0003 100%

2a 50 5 20 176.5257 219.5798 93.6%

2b 50 10 20 29.7305 96.3712 86.9%

2c 50 15 20 21.7750 120.2689 91.9%

2d 50 150 20 0.3370 0.0025 97.5%

2e 50 1500 20 0.0208 0.0002 98.8%

3a 50 5 30 96.9685 103.8848 93.9%

3b 50 10 30 16.6473 49.5308 93.6%

3c 50 15 30 13.0413 14.7780 82.6%

3d 50 150 30 0.2223 0.0031 98.1%

3e 50 1500 30 0.0137 0.0001 100%

Table 9: Performance of different simulations

There are several insights to be gained from the results of Table 9. Firstly, there is a clear
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trend showing that the percentage of correctly estimated zeros increases as T (time period)

increases. This trend holds true for cases 1, 2, and 3. A similar trend can be observed in the

magnitudes of both MSD1 and MSD2: as T increases, these values decrease, indicating that

the estimated values of Γ are closer to the true values. When comparing case 2 and case 3, it can

be seen that a relatively higher number of zeros leads to lower values of both MSD1 and MSD2.

In terms of the percentage of correctly estimated estimates, no clear trend is apparent. However,

it can be observed that a relatively higher number of zeros at larger values of T (T=150 and

T=1500) results in a higher percentage of correctly estimated zeros.

To assess the relationship between the Pooled Lasso estimates (Γ̂) and the Post Pooled

Lasso estimates (Γ̂P ), it is interesting to compare MSD1 with MSD2. MSD1 represents the

performance of Γ̂, while MSD2 represents the performance of Γ̂P . In most cases, MSD2 is

lower than MSD1, indicating that the additional step of Post Pooled Lasso estimation leads to

improved estimates. The simulations where this is not the case have the characteristic that T

is smaller than N . Based on these simulations, it can be concluded that the Post Pooled Lasso

regression appears to be a meaningful additional step, particularly in cases where T > N .

5.2 Results empirical analysis

The same method used for the simulation is now applied to the data set described in Section 3.

For the interpretation of the results, it is important to keep in mind the model of this research,

namely Equation (2), repeated below:

yit = αi + βixit +
∑
j ̸=i

γijxjt + ϵit. (24)

In this equation, αi, βi(=γii) and γij have to be estimated. Pooled Lasso estimation and

Post Pooled Lasso estimation are performed on the entire data set consisting of 274 firms. The

value of the MSE, calculated using Equation (12) equals 9.15298 × 1014. To maintain clarity,

we choose to zoom in on the interaction effects between the first 8 companies to illustrate how

the results can be interpreted. Table 10 shows the description of the industries to which these

firms belong (Cognism, 2021).

SIC Description

283 Medicinal Chemicals Botanical Products

367 Electronic Components Accessories

737 Services-Computer Programming

366 Telephone Telegraph Apparatus

357 Compputer Office Equipment

382 Laboratory Apparatus Furniture

Table 10: SIC-codes and description of industries of first 8 firms

Table 11 shows the estimated spillover effects Γ̂P between these 8 firms, and Table 12 the

estimated firm-specific intercepts α̂i. The interpretation of this last table is the amount of sales

in case of no expenditures in R&D for both the firm itself and all other firms. As mentioned
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earlier, the performance of this estimator is debatable and Section 6 will further elaborate on

this. Note that although the remaining 266 rows and columns of Table 11 are not displayed,

they are still included in the estimation process and contribute to the obtained estimates and

MSE-value.

The first row of Table 11 represents a firm with SIC-code 283 and it can be seen that the

R&D-expenditures of a firm with SIC-code 366 influence the sales of that particular firm. One

should be cautious about saying that a one-unit increase in the R&D-expenditures of firm 366

results in a 16.80685 unit increase in sales for firm 283 due to the highly probable presence of

omitted variable bias. This will be further discussed in Section 6. The firm with SIC code 367

is an example of a firm whose sales are influenced both positively and negatively by the R&D

expenditures of other firms. Instead of looking at the firms that influence a particular firm, we

can also examine the influence that a specific firm has on other firms. For instance, it can be

observed that the R&D-expenditures of the firm with SIC code 737 have a positive effect on

the sales of its own firm and the firms with SIC codes 367, 366, and 357. When considering the

descriptions of these firms in Table 10 this is not completely unexpected. The development in

Services-Computer Programming has a significant influence because many companies utilize it

(indirectly). This finding aligns with the statements of Lucking et al. (2019) and Brown et al.

(2009), as described in Section 2.

283 367 737 366 366 357 382 382

283 0 0 0 16.80685 0 0 0 0

367 4798.264 4.197076 19.79334 -1737.55 -7816.67 0 778.0774 -339.28

737 0 0 35.07492 -71.9285 0 0 0 0

366 0 0 4.328975 0 0 0 0 0

366 0 0 0 0 0 0 0 0

357 -1.19354 0 4.622841 0 0 0 0 0

382 0 0 0 0 0 0 10.20882 -0.18035

382 0 0 0 0 0 0 0 0

Table 11: First 8 rows of estimated Γ̂P -matrix

SIC of firm 283 367 737 366 366 357 382 382

α̂i -2847.28 24336660 129.40 -810.26 151.57 968.14 -2663.33 3791.10

Table 12: Estimated firm-specific intercepts α̂i

5.3 Chow test

As explained in Section 4, the possibilities to perform a Chow test are limited. To gain a good

understanding of a possible literature-suggested structural break in 1993, we would need to

perform a Chow test on the entire sample. However, due to Restriction 23 , this is not possible.

Because literature suggests that the change after 1993 is mainly due to the contribution of the

high-tech industries, we choose to zoom in on 10 randomly selected firms, half of which belong
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to the high-tech industry and the other half do not. To determine which firms fall under the

high-tech industry, we use Brown et al. (2009) stating that firms with SIC codes 283, 357, 366,

367, 382, 384 and 737 belong to the high-tech industry. In this way, we investigate whether there

is a structural change in the magnitude of the interaction effects when comparing the period

before 1993 with the period after, on the scale of these 10 companies. Table 13 presents the

firms selected using this approach. Alongside the SIC codes, industry descriptions from Cognism

(2021) are included, and the final column indicates whether the firm belongs to the high-tech

industry or not.

SIC Description
High-tech

industry?

211 Cigarettes

267 Converted Paper & Paperboard Prods

280 Chemicals And Allied Products

331 Steel Works

357 Computer & Office Equipment Yes

366 Telephone & Telegraph Apparatus Yes

367 Electronic Components & Accessories Yes

384 Surgical & Medical Instruments & Apparatus Yes

737 Service-Computer Programming Yes

Table 13: SIC-codes and description of industries of selected firms

In this test N1 = N × T1 = 10× 14 = 140, the total number of observations in time period

1980-1993 and N2 = N × T2 = 10 × 8 = 80, the total number of observations in time period

1994-2001. The value of K equals 76, the total number of regressors, in this case the number

of non-zero values in the Pooled Lasso Estimator. Therefore the test statistic of this test will

follow an F (76, 68) distribution. The critical value is 0.678 on a significance level of α=0.05.

The calculated SSR-values, obtained using (22), are as follows:

• SSR0 = 169119825

• SSR1 = 22610080

• SSR2 = 806.71

Plugging in these values in Equation (21) results in an F -statistic of 5.797514 which is greater

than the critical value of 0.678. The p-value equals 2.395 × 10−12, indicating strong evidence

to reject the null-hypothesis of stability in magnitude of interaction effects between these 10

firms. In conclusion, it can be stated that the Chow test demonstrates a structural break in

the magnitude of interaction effects for the 10 selected companies when comparing the period

before 1993 with the period after.
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6 Conclusion

This paper examines how a network of spillover effects between different firms can be estimated.

The study utilizes the Pooled Lasso estimator and the Post Pooled Lasso estimator to obtain

estimates of these effects. It investigates how these estimators work, their advantages and

disadvantages, and the circumstances under which they lead to accurate estimates. Based on

the simulation results, it can be concluded that the approach of sequentially applying Pooled

Lasso and Post Pooled Lasso yields accurate estimates primarily when T > N . In cases where

T < N , it is observed that the Pooled Lasso estimates generally outperform the Post Pooled

Lasso estimates. This casts a critical perspective on the results obtained in Section 5.2, as the

utilized data set has an N of 274 and a T of 22. The simulation has also clearly indicated

that the employed estimator for αi, as depicted in Equation (14), does not perform very well.

Although this study did not have the opportunity to delve deeper into this issue, it would be

a valuable subject of future research to further investigate the performance of this estimator

α̂i. All of these factors together contribute to a possible explanation for the high MSE-value

(9.15298× 1014) of the estimation of the whole sample.

The assumption made by Manresa (2016) in her paper, stating that the spillover effects

are stable over time, is further investigated in this research. Due to the restrictions of the

Chow test we chose to perform the test on a randomly selected sample consisting of five high-

tech firms and five other firms. The Chow test shows with a p-value of 2.395 × 10−12 strong

evidence of a structural break in 1993. This finding aligns with what the literature suggests,

stating that the share of high-tech firms caused a structural break in R&D-spillovers in 1993.

However, it is crucial to interpret the conclusions of this Chow test with caution. It only

indicates evidence of a structural break in the magnitude of the spillover effects. The analysis

did not investigate whether there was a corresponding shift in the network’s structure in 1993.

Furthermore, the Chow test was limited to only ten companies, making it inappropriate to

generalize the findings to the entire sample. Nonetheless, these findings show that within the

subsample of 10 selected firms there was a structural break in magnitude of spillover effects and

therefore form an indication to further investigate whether this structural break is also present in

other settings. For example, it is interesting to conduct further research on potential changes in

the structure of the network and the role of different industries within it. Additionally, exploring

whether there are other potential breakpoints besides 1993 and investigating the underlying

economic changes associated with them would be useful avenues of study.

This research has some other limitations that need to be addressed. Firstly, it was not

possible to establish a comprehensive overview of the spillover effects among all firms included

in the data set. This limitation arose from the data cleaning process, where a decision was made

to remove all data associated with a company if any values were missing. Due to the lack of

a proper procedure to handle missing values, this approach was adopted. To enhance future

studies, it is recommended to employ interpolation techniques to estimate missing values. By

implementing such techniques, it would be possible to retain a larger number of firms in the

data set, thereby preserving valuable information for analysis purposes.

The simulation results were obtained by averaging data from two iterations. These iterations

yielded approximately similar outcomes, justifying the decision to limit the analysis to two
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iterations. However, Driels & Shin (2004) suggests that conducting a Monte Carlo simulation

with a significantly higher number of iterations could enhance the reliability and accuracy of the

results. This is also plausible in our context because in our simulation numbers are randomly

drawn from certain distributions. Therefore, there is a chance that the observed relationship

between the size ofN and T and the performance of the estimators is not a structural relationship

but a result of coincidence. Although the anticipated conclusions of a Monte Carlo simulation are

expected to align with the current findings, increasing the number of iterations in the simulation

would therefore still be a valuable addition for further research.

Another important limitation of this paper pertains to omitted variables. It is evident that a

firm’s sales are influenced by numerous factors beyond its own R&D expenditures and those of

its competitors. Therefore, we recommend further research that expands upon our methodology

by incorporating a Double Pooled Lasso estimation, which includes other potential explanatory

variables as part of the analysis. The steps involved in the Double Pooled Lasso estimation build

upon the Pooled Lasso estimation and Post Pooled Lasso estimation conducted in this study.

By expanding the model to incorporate multiple explanatory variables, the omitted variable bias

is significantly reduced, enabling more direct interpretation of the estimated coefficients.
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A Explanation programming code

In this section, a brief description is provided on how to use the code attached to this paper.

The names of the documents with code in R correspond to the names of subsections A.1, A.2

and A.3. Please note that in addition to the short descriptions below, the code also includes

detailed and extensive comments explaining each section of the code and what it accomplishes.

A.1 Code simulation

The first part of the code simulates the data. Note that there are some values assigned to N

and T , but this values can of course be varied when doing different simulations. In line 34-139

we apply Pooled Lasso estimation to obtain the estimator for Γ, which we call coefsmatfinal.

In line 141-148 we calculate the Post Pooled Lasso estimates and in the final lines 150-182 we

calculate the different measures of performance.

A.2 Code empirical analysis

In line 5 the data is loaded. On the place of C:/Users/noort/Documents/Rotterdam/Erasmus/Bachelor

3/Blok5/Data/cleanedData.csv insert the working directory where the file with data called

cleanedData.csv is saved to make the code work. The code consists of several parts. In the

first part (line 1-70) we construct the data in a structural way and delete some observations as

described in Section 3. In the second part (line 74-177) we apply Pooled Lasso estimation to

find the estimator for Γ, which in the code is called coefsmatfinal. The third part (line 179-

188) calculates the Post Pooled Lasso estimates and in the final lines 190-202 we execute some

calculations to obtain the value of the MSE.
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A.3 Code Chow test

The data can be loaded in the same way as described above. In the first part we randomly select

10 firms to perform the Chow test on and split these observations in two sub samples based on

the time period. In the second part (line 74-177) we again apply Pooled Lasso estimation to

find the estimator for Γ, which in the code is called coefsmatfinal. The third part applies the

Post Pooled Lasso estimation method three times: for the whole sample, for observations in the

first time period and for observations in the second time period. After doing this, line 231-268

take some steps needed to obtain the chow-statistic and p-value of the test.

To obtain the same selected firms as discussed in Section 5.3, use the following code instead

of lines 67-77 in the attached code for Chow test:

1 # Create empty matrices with dimensions 10xT

2 x_final <- matrix(NA, nrow = 10, ncol = T)

3 y_final <- matrix(NA, nrow = 10, ncol = T)

4 SIC_final <- matrix(NA, nrow = 10, ncol = T)

5

6 # Assign the selected rows to the matrices

7 x_final[1:5, ] <- x[c(213, 189, 51, 59, 233), 1:T]

8 y_final[1:5, ] <- y[c(213, 189, 51, 59, 233), 1:T]

9 SIC_final[1:5, ] <- SIC[c(213, 189, 51, 59, 233), 1:T]

10

11 x_final[6:10, ] <- x_hightech[c(45, 29, 59, 72, 9), 1:T]

12 y_final[6:10, ] <- y_hightech[c(45, 29, 59, 72, 9), 1:T]

13 SIC_final[6:10, ] <- SIC_filtered[c(45, 29, 59, 72, 9), 1:T]
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