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Abstract

In this paper, I investigate whether variables beyond the first three principal components

of bond yields can improve the prediction of excess bond returns. By using a bootstrap

procedure and considering recent data, I robustly test the incremental predictive power of

predictors proposed in earlier literature as well as predictors obtained from a large macroeco-

nomic data set using factor extraction methods, including self-constructed machine-learning

methods, both in-sample and out-of-sample. I find that the incremental forecasting power

of the predictors proposed by the revisited studies is much weaker than originally suggested.

The in-sample predictive power beyond the three yield principal components of the predictor

factors resulting from most novel methods is significant. When winsorization is applied, I

find that the in-and-out-of-sample incremental predictive power of the predictor factors of

one method is consistently significant in all considered sample periods.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

The macro-finance literature presents mixed results concerning the hypothesis that all in-

formation relevant for predicting future bond returns is spanned by the yield curve. This “span-

ning hypothesis” is a central issue in macro-finance (Gürkaynak & Wright, 2012) and has been

actively tested over the past years. If the hypothesis holds, predicting future bond returns and

estimating bond risk premia would be enormously simplified. Reliable estimates for these risk

premia are of great interest to policy-makers, practitioners, and researchers, due to their import-

ant implications for monetary policy, investment strategies, and finance theory. Furthermore,

since the spanning hypothesis is implied by most macro-finance models, the practical relevance

of these models is also implicitly tested when the spanning hypothesis is empirically tested.

In this paper, I investigate whether macroeconomic information can improve bond return

forecasts conditional on the first three principal components (PCs) of bond yields. I thus im-

plicitly test a specific version of the spanning hypothesis in which the first three yield PCs are

assumed to summarize the information in the yield curve. This assumption seems reasonable

as the first three PCs of the bond yields capture almost all the cross-sectional variation in

the yields (Litterman & Scheinkman, 1991). I consider both specific macroeconomic variables

and factors extracted from a large macroeconomic data set as potential additional predictors

for bond returns beyond the three yield PCs. For the extraction of the factors, I use several

methods, including self-constructed machine-learning methods. The in-and-out-of-sample incre-

mental predictive power for excess bond returns over the three yield PCs of the different (sets

of) additional predictors are evaluated.

Several influential papers provide evidence suggesting that the spanning hypothesis can be

rejected. Ludvigson and Ng (2009) show that PCs summarizing a large set of macroeconomic

variables are useful for forecasting bond returns, even when controlling for a factor that captures

the information in the yield curve. In addition, specific macroeconomic variables have been found

to have predictive power beyond the information spanned by the yield curve. In particular, these

macroeconomic variables are measures of the output gap (Cooper & Priestley, 2008), supply of

Treasury bonds (Greenwood & Vayanos, 2014), inflation and economic activity (Joslin, Priebsch

& Singleton, 2014), and trend inflation (Cieslak & Povala, 2015). These findings suggest that

there are macroeconomic variables that are not spanned by the yield curve but that are helpful

for predicting bond returns. Moreover, Cochrane and Piazzesi (2005) show that, even though the

fourth and fifth PCs of the bond yields capture only a very small fraction of the cross-sectional

variation in the yields, they are still relevant for forecasting bond returns.

However, the evidence in these papers comes from predictive regressions in which future
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excess bond returns are regressed on both yield curve factors, typically the three yield PCs,

and additional predictors. The spanning hypothesis is then rejected if the coefficients of the

additional predictors in the predictive regression are estimated to be (jointly) significant. Bauer

and Hamilton (2018) argue that these regressions have problematic small-sample features that

result in too small standard errors for the additional predictors when using conventional tests and

thus can lead to a spurious rejection of the spanning hypothesis. To address these issues, Bauer

and Hamilton (2018) propose a novel bootstrap procedure specifically designed to avoid this

“standard error bias” and thus to correctly test the spanning hypothesis. Using this bootstrap

method to estimate the predictive regressions, Bauer and Hamilton (2018) conclude that the

in-sample evidence on the rejection of the spanning hypothesis is much weaker than the six

influential papers cited above suggested. Moreover, when using new data to evaluate the true

out-of-sample forecasts resulting from a restricted model with only the three yield PCs and

an unrestricted model with both the three yield PCs and the additional predictors, they find

that according to the Diebold and Mariano (2002) test the unrestricted model never leads to

significantly better forecasts and mostly even leads to worse out-of-sample forecasts.

Ludvigson and Ng (2009) use the well-known principal component analysis (PCA) method

to obtain predictor factors from a large set of macroeconomic variables. However, a drawback

of using this method for forecasting is that it completely ignores the information in the target

variable. To overcome this weakness, D. Huang, Jiang, Li, Tong and Zhou (2022) propose

the scaled principal component analysis (sPCA) method, which improves the PCA method by

putting more weight on the variables with stronger predictive power for the target variable.

Applying both methods to macroeconomic data, they show that the sPCA method generally

performs better in terms of forecasting than the PCA method. D. Huang, Jiang, Li, Tong and

Zhou (2023) use both methods to forecast excess bond returns and find that the sPCA method

leads to better in-sample and out-of-sample results.

J. Z. Huang and Shi (2023) provide a potential resolution to the spanning controversy. They

propose a new two-step machine learning algorithm, called the Supervised Adaptive Group

LASSO (SAGLasso) method, to construct a new bond return predictor from a large data set that

contains 131 macroeconomic variables along with their six lagged values. They test the spanning

hypothesis in two ways. Firstly, they perform out-of-sample tests in which they examine whether

the return forecasting model containing both the three yield PCs and the SAGLasso factor as

predictors outperforms the restricted model which only contains the three yield PCs. In this

out-of-sample analysis, they use the out-of-sample R2 (Campbell & Thompson, 2008) and two

encompassing tests for nested models to evaluate the computed forecasts. Secondly, they use the
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framework of Joslin et al. (2014) for macro-finance term structure models to test the hypothesis.

From these test outcomes, they conclude that the predictive power of the constructed factor for

government bond returns is significant and robust to bond yields.

Based on the intuition of the sPCA method and the method used in J. Z. Huang and Shi

(2023) to obtain the SAGLasso factor, I construct various new machine-learning methods to

extract predictor factors from a large macroeconomic data set. The predictive power for bond

returns beyond the three yield PCs of these factors as well as the factors resulting from the

PCA, sPCA and some established machine-learning methods are evaluated both in-sample and

out-of-sample using the methodological framework of Bauer and Hamilton (2018). To reduce

the impact of extreme values, I also implement winsorization approaches in the factor extraction

procedures. In addition, I revisit the evidence in the studies of Ludvigson and Ng (2009), Joslin

et al. (2014), Cieslak and Povala (2015), and Cochrane and Piazzesi (2005) using the same data

and methodology as Bauer and Hamilton (2018).

After revisiting the evidence in the four published studies with more robust methods for

testing, I draw the same conclusions as Bauer and Hamilton (2018). Furthermore, I find that the

in-sample predictive power for excess bond returns beyond the three yield PCs of the predictor

factors resulting from most factor extraction methods is highly significant. When winsorization

is applied, the addition of the predictor factors resulting from most methods to a restricted

forecasting model with only the three yield PCs improves the out-of-sample forecasts for excess

bond returns. Even though the PCA method is outperformed by other methods in some cases,

its in-and-out-of-sample performance is the most consistent and produces predictor factors that

have significant predictive power for excess bond returns conditional on the three yield PCs.

I extend the studies of Ludvigson and Ng (2009) and Bauer and Hamilton (2018) by using

other methods in addition to the PCA method to extract potential bond return predictors from

a large macroeconomic data set, adding new and lagged data to the data set, and implement-

ing winsorization techniques to mitigate the influence of outliers in the data set. Furthermore,

I extend the research of Bauer and Hamilton (2018) by considering the problems related to

overlapping observations in the simulation study. I contribute to the existing literature by intro-

ducing new machine-learning methods which potentially have wide applications. Additionally,

I resolve the spanning controversy by providing convincing evidence that there are additional

predictors beyond the three yield PCs that have incremental predictive power for bond returns.

The remainder of this paper is structured as follows. Section 2 describes the data and

sample periods. Section 3 contains a detailed description of the methodology. The main results

are presented and analysed in Section 5. Ultimately, conclusions are drawn in Section 6.
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2 Data

The monthly data sets used to revisit the studies of Joslin et al. (2014), Cieslak and Povala

(2015), Cochrane and Piazzesi (2005), and Ludvigson and Ng (2009) are retrieved from the

website of Michael Bauer1. Henceforth these four papers are abbreviated as JPS, CPO, CP,

and LN respectively. The data sets are constructed by Bauer and Hamilton (2018) and contain

data on the variables listed in Table 1 over the sample period used in the original paper. Bauer

and Hamilton (2018) added data that was released after the publication of the original papers,

resulting in an extension of the original sample periods to December 2016. In the remainder of

this section, the data of the LN application and its extensions are described, as the focus of this

paper is on these applications. The description of the variables used in JPS, CPO and CP is

provided in Appendix A.

Table 1
The four papers that are revisited together with their variables and sample periods.

Paper Variables Original Sample
Joslin et al. (2014) Economic growth, inflation and bond yields 1985-2008
Cieslak and Povala (2015) Price level, one-month T-bill rate and bond yields 1971-2011
Cochrane and Piazzesi (2005) Bond prices 1964-2003
Ludvigson and Ng (2009) Bond prices and set of macroeconomic variables 1964-2007

From Table 1 it can be seen that Ludvigson and Ng (2009) use data on the bond prices of

pure discount U.S Treasury bonds with maturities ranging from one to five years. These data

are obtained from the Fama-Bliss data set from the Center for Research in Securities Prices

(CRSP). Furthermore, they use a large set of 132 macroeconomic variables of which the data

is provided by James Stock and Mark Watson. To ensure stationarity of the data, they apply

transformations to the raw data. Thereafter, they standardize the transformed data. In order

to extend the original sample period, Bauer and Hamilton (2018) use the data set from the

website Michael McCracken2. The data sets provided on this website mimic the coverage of the

Stock-Watson data sets and thus the information content in this data set is comparable to that

of the data set employed by Ludvigson and Ng (2009).

Following Bauer and Hamilton (2018), I focus on both the original sample periods listed

in Table 1 and the 1985-2016 sample in the empirical analysis for the four published papers.

For LN and the new applications, I also consider the sample period starting from January 1985

until December 2022. To that end, an extended version of the large macroeconomic data set

including monthly data up to December 2022 is retrieved from the website of Michael McCracken.

In addition, the Fama-Bliss data set containing the monthly bond prices up to December 2022

is obtained from the CRSP. The reason to conduct part of the empirical analysis based on post-

1https://www.michaeldbauer.com/publication/robust-bond-risk-premia/.
2https://research.stlouisfed.org/econ/mccracken/fred-databases/.
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1984 samples is that according to some papers the predictive power of macroeconomic variables

for excess bond returns is weaker in more recent sample periods, especially in post-1984 samples.

Additionally, monetary policy substantially changed in the early 1980s.

Table B.1 in Appendix B provides the list of the 128 variables included in the extended data

set together with their descriptions. Despite the data set includes slightly fewer variables than

that are considered by Ludvigson and Ng (2009), the large majority of the considered variables

are the same. Similar to Ludvigson and Ng (2009), the data is transformed and standardized.

The data transformations applied to each variable are also given in Table B.1. Furthermore,

the data are cleaned in the same way as is done by Bauer and Hamilton (2018). Specifically, all

variables with at least one missing observation in a certain sample period are excluded from the

data set used for the empirical analysis over that sample period. Due to missing observations

for the final months of 2016, some variables are removed from the data set employed by Bauer

and Hamilton (2018) in their empirical analysis for the sample period 1986-2016. To avoid the

duplication of these variables with potential predictive power for future excess bond returns, I

also use the extended data set to study the performance of LN over this sample period.

The variables in the balanced data set are categorized into the eight groups defined by

Ludvigson and Ng (2016): (1) output; (2) employment; (3) housing; (4) orders and inventories;

(5) money market; (6) bond and foreign exchange (FX) market; (7) price indices; and (8) stock

market. Table B.1 specifies to which of the eight groups each variable belongs. Even though I

refer to this data set as the large macroeconomic data set, it is important to notice that the data

set also contains financial variables, such as the variables categorized as stock market variables.

Ludvigson and Ng (2009) argue that these variables should be included in the data set because

fluctuations in the business cycle substantially co-move with financial and real macroeconomic

variables. The common movements are presumed to be driven by shocks affecting both the

aggregate economy and the financial markets. According to Ludvigson and Ng (2009), these

joint variations are probable to be one of the most prominent sources of fluctuations in cyclical

economic variables, such as bond risk premia, and therefore financial variables potentially contain

predictive power for excess bond returns.

J. Z. Huang and Shi (2023) argue that some macroeconomic variables have a delayed im-

pact on bond risk premia. For example, changes in the labour market and consumer prices

appear to require a long lag before their effect becomes evident in the bond market. Therefore,

following J. Z. Huang and Shi (2023), I also consider the data set that contains both the mac-

roeconomic variables and their six lagged values. However, unless explicitly stated otherwise,

the macroeconomic data set without lagged values is used in the empirical analysis.
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3 Methodology

3.1 Predictive regression

To test the spanning hypothesis and to forecast bond returns, I consider the following pre-

dictive regression:

yt+h = β′
1x1t + β′

2x2t + ut+h (1)

where yt+h is the average excess return from buying certain bonds in month t and holding it

h months, x1t is a vector containing a constant and the values of the first three PCs of bond

yields in month t, x2t is a vector containing the values of certain additional predictors in month

t, and ut+h is the forecast error. The exact specifications for yt+h, x1t and x2t used to revisit

and extend the LN application are given in the next two sections, while those to revisit JPS,

CPO and CP are given in Appendix C. The specific version of the spanning hypothesis that is

tested in this paper is given by

H0 : β2 = 0. (2)

If this null hypothesis is significantly rejected this would imply that there is statistical evidence

that the variables in x2t have predictive power for bond returns beyond the first three yield PCs.

3.2 Yield PCs and Average Excess Bond Returns

The price of a zero-coupon bond at time t that pays Cn in month t+ n is given by

P
(n)
t = Cne

−i
(n)
t ·n ⇔ i

(n)
t = − 1

n
log(P

(n)
t /Cn) (3)

where i
(n)
t is the continuously compounded monthly yield on the bond. Defining the log price of

the n-month zero-coupon bond in period t as p
(n)
t = log(P

(n)
t /Cn), it follows that i

(n)
t = − 1

np
(n)
t .

The three yield PCs in month t which are contained in x1t are now obtained as

(PC
(1)
t , PC

(2)
t , PC

(3)
t ) = W ′

J×3it (4)

where it = (i
(n1)
t , . . . , i

(nJ )
t )′ are the bond yields from which the PCs are extracted and WJ×3

is the matrix that contains as columns the first three normalized eigenvectors corresponding

to the variance matrix of it. In the LN application and its extensions, it holds that it =

(i
(12)
t , i

(24)
t , . . . , i

(60)
t )′. These bond yields are computed from the data on the bond prices of the

zero-coupon Treasury bonds with maturities from one to five years using Equation (3).

Using the above notation, the excess log return in period t + h from buying an n-month
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zero-coupon bond in period t and holding it h months is given by (Bauer & Hamilton, 2018)

rx
(n)
t+h = r

(n)
t+h − hi

(h)
t = (p

(n−h)
t+h − p

(n)
t )− hi

(h)
t = −(n− h)i

(n−h)
t+h + ni

(n)
t − hi

(h)
t (5)

where r
(n)
t+h is the log return from buying the n-month zero-coupon bond in period t and selling

it as an n− h month bond in period t+ h. Now, the unweighted average of annual excess bond

returns across bonds with maturities ranging from 2 to k years can be defined as

rx
(k)
t+12 =

1

k − 1

k∑
n=2

rx
(12n)
t+12 (6)

where k ≥ 2. In the LN application and its extensions, the dependent variable in the predictive

regression is the annual average excess bond return across bonds with maturities from two to

five years, such that in these applications it holds that yt+12 = rx
(5)
t+12.

However, using monthly data to estimate the predictive regression with annual returns as

the dependent variable (h = 12) results in an econometric problem. Concretely, the overlapping

returns result in E(utut+p ̸= 0) for p = 0, 1, ..., 11, and thus an MA(11) structure is induced for

the forecast errors. According to Bauer and Hamilton (2018) this has two important implica-

tions. Firstly, in combination with persistent predictors, it substantially increases the variance

of the ordinary least-squares (OLS) estimate for β2 across different samples. Secondly, it sub-

stantially diminishes the reliability of the goodness of fit measure R2, since including x2t in the

predictive regression can considerably increase the R2 even if it has no predictive power. In the

simulation study in Section 4, I illustrate these two implications.

As a standard attempt to correct for the correlation in the forecast errors, I use the Newey

and West (1987) standard errors with 18 lags to calculate the test statistics. However, Ang

and Bekaert (2006) showed that in case of overlapping returns the Newey-West standard errors

are unreliable for testing the significance of regression coefficients and this inference is even less

reliable as the persistence of the regressors increases. This is also demonstrated in the simulation

study. As an alternative, the reverse-regression approach of Wei and Wright (2011) is used to

calculate the standard errors in the CPO application. This approach uses the insight of Hodrick

(1992) that regressing non-overlapping one-period returns on the sum of the predictors over the

preceding h periods instead of regressing the h-period returns on the values of the predictors at

the beginning of the holding period mitigates the problems arising from overlapping returns.
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3.3 Factor Extraction Methods and their Predictor Factors

The large set of macroeconomic variables potentially contains variables with predictive power

for excess bond returns beyond the first three yield PCs. However, including all the variables as

additional predictors in the predictive regression would typically result in in-sample overfitting

and poor out-of-sample performance. To reduce the dimension of the data set and avoid the

curse of dimensionality, I use some well-known and self-constructed methods to extract one

or multiple factors from the large data set. In the remainder of this section, the considered

methods, to which I refer as factor extraction methods (FEM), are described. The input matrix

for all these methods contains the standardized variables of the large macroeconomic data set

over time and is denoted by

Z =


z
(1)
1 z

(2)
1 . . . z

(N)
1

z
(1)
2 z

(2)
2 . . . z

(N)
2

...
...

. . .
...

z
(1)
T z

(2)
T . . . z

(N)
T


where T and N denote respectively the number of monthly observations and the number of

variables in the data set.

3.3.1 PCA and sPCA Method

Following Ludvigson and Ng (2009), the first r PCs of the large macroeconomic data set are

computed by multiplying
√
T by the r eigenvectors corresponding to the largest r eigenvalues

arranged in decreasing order of the sample covariance matrix V PCA
zz = 1

N

∑N
i=1 z

(i)(z(i))′ with

z(i) = (z
(i)
1 , ..., z

(i)
T )′. These r eigenvectors are collected in the matrix ET×r and are computed

using singular value decomposition under the restriction that E′
T×rET×r = Ir where Ir denotes

the r × r identity matrix. To revisit LN, I follow Bauer and Hamilton (2018) and use the first

eight macro PCs obtained as

F = (f1, ..., f8) =
√
TET×8

as additional predictors in the predictive regression. In addition, based on D. Huang et al.

(2023), I consider the first six PCs as additional predictor factors and I use the fitted values

of the regression of the target variable rx
(5)
t+12 on the six PCs as an additional single predictor

factor. I refer to these predictor factors as the PCA factors.

Even though PCA is helpful in reducing the dimensionality of a large data set, it completely

disregards the target variable and therefore is not focussed on selecting factors that are most

valuable for forecasting this variable (D. Huang et al., 2022). Since this research is about testing

whether there are additional predictors beyond the first three yield PCs that have predictive
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power for excess bond returns, it is interesting to consider factor selection methods that take

the predictive power of the variables into account. To that end, D. Huang et al. (2022) propose

the sPCA method which can be decomposed in two steps. In the first step, each variable i

in the data set is scaled by γ̂i, where γ̂i is the estimated coefficient in the regression of the

target variable rx
(5)
t+12 on variable i. As such, more weight is put on the variables with stronger

predictive power for the target variable. In the second step, PCA is applied to the scaled

data set (γ̂1z
(1), . . . , γ̂Nz(N)). That is, the first r principal components of the matrix V sPCA

zz =

1
N

∑N
i=1 γ̂iz

(i)(γ̂iz
(i))′ are computed in the same way as in the procedure for the PCA method

described above. Again, either the first six extracted factors or the fitted values of the regression

of the target variable rx
(5)
t+12 on the six factors are used as additional predictors x2t in the

predictive regression.

3.3.2 Machine-Learning Methods

Based on the intuition of the sPCA method and the method used in J. Z. Huang and Shi

(2023) to obtain the SAGLasso factor, I construct several machine-learning methods to extract

factors from the large macroeconomic data set. In total, I consider 12 methods of which some

are existing methods and some are novel methods. The first method employs Lasso (Tibshirani,

1996) to extract a single predictor factor. In the other methods refined versions of this popular

regression shrinkage method are used to obtain potential predictors. In the remainder of this

section, Lasso and the considered refinements are discussed. The pseudocode in Appendix

E gives an overview of all the considered machine-learning methods and describes how these

methods are used to extract predictor factors from the large macroeconomic data set.

Lasso is a method that shrinks the coefficient estimates of a multivariate regression model

towards zero by regularizing these estimates. Due to the nature of its regularization, it tends

to set some coefficients exactly to zero (Tibshirani, 1996). As such, Lasso typically leads to

parsimonious models and can be used to reduce the dimensionality of the large macroeconomic

data set. Similar to the sPCA method it takes the target variable into account when selecting

variables. To obtain the Lasso estimate of the coefficients of the regression with rx
(5)
t+12 as

dependent variable and the macroeconomic variables as independent variables the following

minimization problem is solved:

min
β

T−12∑
t=1

(
rx

(5)
t+12 −

N∑
i=1

z
(i)
t βi

)2

+

N∑
i=1

λ|βi|

 (7)

where λ is the tuning parameter of the penalty term, which is determined using five-fold cross-
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validation (J. Z. Huang & Shi, 2023). The Lasso and OLS estimates if λ is zero.

The predictive information contained in the macroeconomic variables selected by Lasso pos-

sibly overlaps with the information in the yield curve. To minimize this information overlap,

J. Z. Huang and Shi (2023) include the first three yield PCs in their variable selection method,

but do not penalize the corresponding coefficients. Similarly, I include the three yield PCs in

the first term of minimization problem (7), but do not include their coefficients in the penalty

term of this minimization problem. The adjusted minimization problem corresponding to this

first refinement of Lasso, referred to as Controlled Lasso (CLasso), is specified by

min
β

T−12∑
t=1

(
rx

(5)
t+12 −

3∑
k=1

PC
(k)
t β1k −

N∑
i=1

z
(i)
t β2i

)2

+

N∑
i=1

λ|β2i|

 (8)

where PC
(k)
t is the value of kth yield PC in month t.

Zou (2006) points out that Lasso coefficient estimates can be biased. To solve this disad-

vantage of Lasso, he proposes to use Adaptive Lasso (ALasso) in which λ is replaced with λi in

the minimization problem corresponding to Lasso and as a result the coefficients are penalized

separately. Zou (2006) recommends to use OLS to determine λi. To avoid potential multicol-

linearity issues, I follow J. Z. Huang and Shi (2023) and use a ridge regression rather than OLS

to obtain λi. In particular, I use the following specification for λi:

λi =
λ

|β̂ridge
i |γ

(9)

where β̂rigde
i is the coefficient estimate for variable i of the ridge regression (Hoerl & Kennard,

1970) of rx
(5)
t+12 on the macroeconomic variables. In J. Z. Huang and Shi (2023), γ and λ are

jointly determined using cross-validation. I deviate from this approach by setting γ equal to one

and using five-fold cross-validation only to compute λ. My approach is more efficient but may

be less optimal.

Inspired by the sPCA method, I also apply PCA to the macroeconomic variables scaled

by their (refined) Lasso coefficient estimates and use the resulting PCs as additional predictor

factors x2t. In case Lasso is applied in the first step, this method is referred to as Factor

Lasso (FLasso) and is implemented as follows. Firstly, the coefficients of the regression of

rx
(5)
t+12 on the macroeconomic variables are estimated using Lasso yielding β̂. Secondly, PCA as

described in Section 3.3.1 is applied to the scaled macroeconomic data set (β̂1z
(1), . . . , β̂Nz(N)).

Furthermore, based on the successful SAGLasso algorithm employed by J. Z. Huang and Shi

(2023), I construct two comparable yet distinctive two-step methods to extract predictor factors.
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These methods, referred to as GCALasso1 and GCALasso2, are described in Appendix D.

In the empirical analysis, I consider the following 12 machine-learning methods: Lasso,

ALasso, CLasso, FLasso, CALasso, FALasso, FCLasso, FCALasso, GCALasso1, GCALasso2,

FGCALasso1, and FGCALasso1. In each method, one or multiple approaches described above

are combined and used to construct predictor factors x2t from the large macroeconomic data set.

As specified in the pseudocode in Appendix E, the Lasso, ALasso, CLasso, CALasso, GCALasso1

and GCALasso2 methods only produce a single predictor factor. The other machine-learning

methods employ PCA at the end of their procedure and thus also produce either six individual

predictor factors or a single predictor factor.

3.4 Winsorization Procedures

Figure 1 plots the sum of absolute values of the standardized macroeconomic variables in the

large macroeconomic data set over the 1964-2007 sample and the 1985-2022 sample. From this

figure, I identify several sudden large spikes. The peaks in the mid-1970s and early 1980s can be

related to the recessions resulting from the oil shocks in 1973 and 1979. The extreme values in

the last months of 2001 are caused by the September 11 attacks. The aberrant observations in

2008 and 2009 occurred during the Great Recession. Finally, the large spike at the beginning of

2020 corresponds to the start of the COVID-19 pandemic. This peak is so large that it dwarfs

the other spikes.

To reduce the impact of the extreme values in the data set, outlier winsorizing techniques can

be used. In contrast to traditional approaches, such techniques do not simply exclude outliers but

mitigate the effect of outliers by adjusting their magnitude. Winsorizing techniques are especially

valuable in scenarios where extreme values have a disproportionate effect on the results. In

the empirical analysis, I consider two outlier winsorizing procedures. In both procedures 90%

winsorization is applied, meaning that the 5% smallest values and the 5% largest values of a

time series are replaced by the 5th and 95th percentile respectively. The first approach is based

on Bottmer, Croux and Wilms (2022) and pre-processes the data by winsorizing the outliers of

both the target variable and the macroeconomic variables before applying the factor extraction

methods to the data. In the second procedure, the factor extraction methods are applied to the

original data and the resulting predictor factors are winsorized afterwards. In the remainder of

this paper, I refer to the first approach as input winsorization and to the second one as output

winsorization. If one of these two winsorization methods is used in the empirical analysis, it is

explicitly stated. However, in the default case no winsorization is applied.
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(a) 1964-2007 (b) 1985-2022

Figure 1
The sum of the absolute values of the standardized macroeconomic variables contained in the extended large
macroeconomic data set over the period from January 1964 to December 2007 (on the left) and the period from January
1985 to December 2022 (on the right).

3.5 Econometric problems

In addition to the econometric problem arising from the overlapping returns, Bauer and

Hamilton (2018) argue that the predictive regression has a number of other econometric prob-

lems. Firstly, because the yield curve PCs in x1t contain almost all information in the cur-

rent yield curve, x1t is necessarily correlated with ut and thus x1t is not strictly exogenous

(E(x′1tut) = 0). Furthermore, the first-order autocorrelation of the predictors is typically close

to one, meaning that they are typically highly persistent. Bauer and Hamilton (2018) show that

in small samples this leads to a downward bias in the standard errors of conventional tests and

thus to size distortions. Moreover, they show that these size distortions are even larger when

the considered predictors are trending over the sample. As a result, the spanning hypothesis is

rejected too often. I further investigate the sources and effects of the standard error bias in the

simulation study in Section 4.

To correctly determine the standard errors of β2 in the predictive regression and to robustly

test the spanning hypothesis, I use the bootstrap test and the corresponding code of Bauer and

Hamilton (2018). In addition, bootstrapping under both the null hypothesis and the alternative

hypothesis is used to assess the robustness of the conventional and bootstrap tests. Finally, the

bias correction proposed by Kilian (1998) is implemented in the bootstrap procedure for the

JPS and CPO applications, because x2t is very persistent in these applications leading to a bias

in the simple bootstrap. I refer to this adjusted bootstrap as the “bias-corrected bootstrap”. In

Appendix F the bootstrap procedures are described in detail.
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3.6 Out-of-sample forecasting

In addition to performing in-sample tests of the spanning hypothesis, the out-of-sample

forecasting performance of each considered model is evaluated. Following most related literature,

expanding window estimation is used in the out-of-sample analysis. Bauer and Hamilton (2018)

also estimate the parameters of the predictive regression model recursively using expanding

windows, but they do not recursively estimate the yield PCs and the PCs extracted from a

large macroeconomic data set. Instead, they estimate these PCs only once over the full sample,

including the out-of-sample period, and use these PCs to construct out-of-sample forecasts. As a

result, the out-of-sample results obtained by (Bauer & Hamilton, 2018) suffer from a look-ahead

bias. To correct for this bias, I estimate the yield PCs and the additional predictor factors as

well as the parameters recursively using data only through month t to calculate the 12-month

ahead forecast for month t+ 12.

For the four studies to be revisited, the corresponding original sample as listed in Table 1 is

used as the initial estimation window. In the case of the other applications, the initial estimation

window starts in January 1964 and ends in December 2007. The mean-squared-errors of the

resulting forecasts from both the restricted model under the null hypothesis (β2 = 0) and the

unrestricted model (β2 ̸=0) are compared by means of the modified Diebold and Mariano (2002)

test proposed by Harvey, Leybourne and Newbold (1997). This modified test accounts for the

presence of overlapping observations and the resulting autocorrelation in the prediction errors.

4 Simulation study

To understand the sources and effects of the econometric problems underlying the testing of

the spanning hypothesis in small samples, I run several Monte Carlo simulation experiments.

Firstly, I replicate the simulation exercise of Bauer and Hamilton (2018) which examines the

effects of the presence of endogeneity, persistent regressors and trending regressors in the pre-

dictive regression, but ignores the presence of overlapping observations. The procedure and

results for this simulation exercise are described in Appendix G.1. From the analysis, it can

be concluded that the presence of endogeneity, persistent regressors and trending regressors in

the predictive regression leads to a standard error bias in the conventional tests. The standard

error bias in β̂2 causes size distortions which increase in the persistence of the regressors, the

correlation between x1t and ut, and the trend in x2t. Furthermore, it follows that the bootstrap

test is relatively robust to these small-sample econometric problems and does not lead to large

size distortions. The details of this analysis are given in the Appendix.
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In addition, I extend the simulation study of Bauer and Hamilton (2018) by imposing a

MA(11) structure on the error terms of the dependent variable of the predictive regression.

As a result, the simulation study matches more closely the empirical setting with overlapping

observations that is encountered in Bauer and Hamilton (2018) and other studies investigating

the spanning hypothesis. The procedure and results of this simulation exercise are described in

the next subsection.

4.1 Overlapping observations

To quantify the magnitude of the effect of overlapping observations, I use the following DGP

to generate simulation data:

xit = µi + ρixi,t−1 + ϵit i = 1, 2 t = 1, ..., T + 12 (10)

yt = ϵyt = v3t +
1

2

t−1∑
s=t−h+1

v3s t = 12, ..., T + 12 (11)

where x10 = x20 = 0, ϵ1t = δv3t+
√
1− δ2v1t, ϵ2t = v2t, and vit

iid∼ N(0, 1) for i ∈ {1, 2, 3}. Con-

sequently, an MA(11) structure is imposed on the error terms ϵyt . Ns=10, 000 samples of length

T =100 are generated and used to examine the small sample properties of the predictive regres-

sion yt+12 = β0+β1x1t+β2x2t+ut+12 with t= 1, ..., 100. In this setting, Newey-West standard

errors with 18 lags are used instead of OLS standard errors. In each simulation experiment,

the correlation between x1t and ϵyt+12, the coefficient and standard error bias of β̂1 and β̂2, the

standard deviation of β̂2, the size of the test of H0 : β2 = 0 for the conventional t-test and

bootstrap test, and the average and standard deviation of the difference in R2 of the predictive

regressions under the alternative hypothesis (R2
2) and the null hypothesis (R2

1) are computed.

The formulas and procedures used to compute these statistics are given in Section G.2.

The results for this simulation exercise are shown in Table 2. Comparing these results to

the results obtained in the simulation exercise without overlapping observations leads to the

following conclusions. In general, in the presence of overlapping observations, the patterns

described in detail in Appendix G.1 are the same. In particular, the size distortions in the

presence of overlapping observations also increase in ρi, δ and µ2. However, in this case, the

negative correlations between x1t and the error term of the simulated dependent variable are

larger leading to larger biases in in the standard errors of β̂2. For that reason, the size distortions

of the conventional test are even larger and it can be concluded that the Newey-West standard

errors are not able to overcome the problems emerging from overlapping returns in small samples.
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Table 2
Simulation results for the basic setting without overlapping returns. In this simulation, 10,000 simulation samples of length
T = 100 are generated according to the data-generating process (DGP) specified in Equations (10) and (11) for different
values of δ, ρi and µi, i = 1, 2. In each simulation sample, the predictive regression yt+12 = β0 + β1x1t + β2x2t + ut+12

is estimated. The statistics corresponding to the 10,000 regression results are reported in the table. The table reports the
correlation between x1t and ϵyt+12, the coefficient and standard error bias of β̂1 and β̂2, the standard deviation of β̂2, the
size of the test of H0 : β2 = 0 for the conventional t-test and bootstrap test, and the average and standard deviation of
the difference in R2 of the predictive regressions under the alternative hypothesis (R2

2) and the null hypothesis (R2
1) are

computed. The formulas and procedures used to compute these statistics are given in Appendix G.2.

Corr. Coefficient Bias SE bias (%) Std. Size R2
2 −R2

1

ρ1 ρ2 δ (x1t, ϵ
y
t+12) β1 β2 β1 β2 β2 Simulated Bootstrap Mean Std.

µ1 = µ2 = 0
0.99 0.99 0.0 0.002 0.001 0.004 -43.9 -43.8 0.196 0.298 0.054 0.07 0.09
0.00 0.00 1.0 -0.044 -0.059 0.001 -21.5 -19.0 0.187 0.118 0.048 0.01 0.01
0.99 0.00 1.0 -0.308 -0.201 0.003 -43.2 -20.9 0.173 0.126 0.051 0.01 0.01
0.99 0.80 1.0 -0.310 -0.205 -0.000 -45.5 -37.1 0.257 0.242 0.059 0.04 0.06
0.90 0.90 1.0 -0.188 -0.202 -0.001 -39.5 -42.5 0.265 0.298 0.071 0.07 0.09
0.99 0.99 0.8 -0.311 -0.235 0.000 -46.7 -50.3 0.214 0.369 0.076 0.09 0.11
0.99 0.99 1.0 -0.388 -0.292 0.003 -49.8 -54.4 0.225 0.424 0.107 0.10 0.12
µ1 = 0, µ2 = 1
0.99 0.99 0.0 -0.000 0.002 0.000 -44.5 -48.0 0.042 0.326 0.053 0.09 0.11
0.00 0.00 1.0 -0.044 -0.059 0.001 -21.9 -18.7 0.188 0.117 0.051 0.01 0.01
0.99 0.00 1.0 -0.312 -0.203 0.002 -43.3 -20.1 0.171 0.120 0.051 0.01 0.01
0.99 0.80 1.0 -0.307 -0.205 0.002 -45.7 -36.6 0.243 0.236 0.054 0.04 0.06
0.90 0.90 1.0 -0.187 -0.210 0.001 -40.2 -45.1 0.206 0.326 0.064 0.08 0.09
0.99 0.99 0.8 -0.308 -0.305 0.001 -43.7 -62.4 0.056 0.478 0.100 0.14 0.14
0.99 0.99 1.0 -0.388 -0.379 0.000 -44.3 -67.3 0.063 0.571 0.134 0.18 0.16
µ1 = 1, µ2 = 0
0.99 0.99 0.0 -0.003 -0.001 0.001 -46.7 -44.6 0.215 0.306 0.058 0.07 0.09
0.00 0.00 1.0 -0.045 -0.062 -0.000 -21.6 -18.1 0.186 0.117 0.048 0.01 0.01
0.99 0.00 1.0 -0.053 -0.006 -0.001 -42.0 -19.9 0.178 0.125 0.051 0.01 0.01
0.99 0.80 1.0 -0.055 -0.006 -0.006 -45.0 -36.7 0.259 0.236 0.054 0.04 0.06
0.90 0.90 1.0 -0.142 -0.116 -0.000 -40.5 -41.5 0.255 0.285 0.063 0.07 0.08
0.99 0.99 0.8 -0.052 -0.009 0.000 -48.5 -44.5 0.214 0.307 0.056 0.07 0.09
0.99 0.99 1.0 -0.059 -0.011 0.003 -48.2 -45.8 0.219 0.314 0.054 0.07 0.09
µ1 = 1, µ2 = 1
0.99 0.99 0.0 0.001 0.000 -0.000 -44.5 -44.5 0.153 0.300 0.046 0.07 0.09
0.00 0.00 1.0 -0.046 -0.062 0.001 -22.3 -19.1 0.189 0.123 0.054 0.01 0.01
0.99 0.00 1.0 -0.054 -0.006 -0.001 -42.1 -20.6 0.177 0.125 0.052 0.01 0.01
0.99 0.80 1.0 -0.054 -0.006 0.019 -45.4 -36.2 0.249 0.237 0.056 0.04 0.06
0.90 0.90 1.0 -0.145 -0.149 0.065 -41.8 -42.6 0.211 0.315 0.069 0.07 0.09
0.99 0.99 0.8 -0.055 -0.154 0.149 -44.7 -44.6 0.143 0.505 0.102 0.13 0.13
0.99 0.99 1.0 -0.063 -0.193 0.187 -46.2 -45.7 0.139 0.620 0.138 0.16 0.14

Additionally, the sampling variability of β̂2 across the simulated samples is substantially

increased in this case. For example, the standard deviation of the OLS estimates for β̂2 is about

four times larger if µi = 0, ρi = 0, and δ = 1. This can also be seen when comparing Figure

2 with Figure G.1. The figures are similar but the scale of the axes differ and it follows that

the distributions of β̂1 and β̂2 are wider in the presence of overlapping observations. Finally,

both the average and standard deviation of R2
2−R2

1 are increased, meaning that the reliability

of this measure is considerably reduced when the error terms in the regression are serially

correlated. These conclusions are in line with the theoretical results derived in Bauer and

Hamilton (2018). Nevertheless, the size distortions of the bootstrap test are also limited in

the presence of overlapping observations. The bootstrap test is somewhat oversized if both

regressors are persistent, but in this situation the bias-corrected bootstrap can be employed to

alleviate the problem relating to the estimation of persistent processes.
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(a) β1 (b) β2

Figure 2
Simulation distibution of β̂1 (on the left) and β̂2 (on the right) for three different scenarios. In this simulation, 10,000
simulation samples of length T = 100 are generated according to the data-generating process (DGP) specified in Equations
(10) and (11) with ρ1 = ρ2 = 0.99 and for different values of δ, µ1 and µ2. In each simulation sample, the predictive

regression yt+12 = β0 + β1x1t + β2x2t + ut+12 is estimated and the resulting β̂1 and β̂2 are included in the density plots.

5 Empirical results

In this section, the in-and-of-of-sample predictive ability for excess bond returns beyond the

three yield PCs of the proposed additional predictors is empirically evaluated. I focus on the LN

application and the factor extraction methods that consistently perform best either in-sample or

out-of-sample and present their results in this section. The results of the other factor extraction

methods are reported in the Appendix. In this way, space can be conserved for more extensive

and clear interpretations of the results. The in-sample analysis is described in Section 5.1. To

revisit the evidence provided by Ludvigson and Ng (2009), I follow Bauer and Hamilton (2018)

and use the first eight PCs of the large macroeconomic data set as the additional predictors in

x2t. For the other factor extraction methods, I follow D. Huang et al. (2023) and only consider

the single predictor factor resulting from each method as the additional predictor x2t in the

in-sample analysis. The rationales behind the latter decision are provided when discussing the

in-sample results corresponding to the LN application. In the out-of-sample analysis described

in Section 5.2, I take into consideration both the single predictor factor and the individual factors

resulting from the methods as additional predictors x2t in the predictive regressions.

To assess the magnitude of the econometric problems in the above-mentioned applications

as well as in the JPS, CPO and CP applications, some preliminary analysis is conducted in

Appendix H. The analysis illustrates that the econometric problems are more severe in some

applications than in others. Additionally, it substantiates the decision to employ the bias-
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correction in the bootstrap for JPS and CPO, while omitting it from the bootstrap for the other

applications. Ultimately, it shows that the values of the parameters used in the simulation study

provide a realistic depiction of those that may be encountered in real-world scenarios. For the

details, I refer to the Appendix.

The in-and-out-of-sample empirical analyses for JPS, CPO and CP are conducted in Ap-

pendix I. In the examination of the evidence provided by these published studies, I closely follow

Bauer and Hamilton (2018). From the in-sample analysis, it follows that the size distortions

of the conventional tests are large, especially for JPS and CPO, indicating that these tests are

unreliable for inference in the predictive regressions. The bootstrap test proposed by Bauer

and Hamilton (2018) is robust to the small-sample econometric problems and using this test to

perform inference leads to weaker evidence against the spanning hypothesis than is suggested in

the revisited papers and often even leads to insignificant results. Considering recent data even

further weakens the evidence. The predictive power for excess bond returns of the additional

predictors x2t proposed by these three studies is thus far from convincing. The out-of-sample

results corroborate this conclusion. In particular, adding the additional predictors x2t to a

forecasting model with only the three yield PCs leads to significantly higher prediction errors.

5.1 In-sample Analysis

5.1.1 LN application

The in-sample coefficient estimates and statistics of the eight macro PCs as additional pre-

dictors x2t in the predictive regressions estimated over the samples 1964-2007 and 1985-2022

are given in the first panel of Table 3. These results are used to formally test the spanning

hypothesis. According to the conventional p-values, five macro PCs are significant at 10% level

and three of them are significant at 5% level in the original LN sample. The evidence is weaker

when applying the simple bootstrap test. In this case, three PCs are significant at 10% level

and only one factor at 5% level. The joint significance of the eight macro PCs is tested using the

Wald test. The Wald p-values corresponding to both the conventional test and the bootstrap

test indicate that the eight macro PCs jointly are highly significant in the original LN sample,

but again the evidence is somewhat weaker when using the bootstrap test. The bootstrap test

thus results in less compelling evidence against the spanning hypothesis than is suggested by

Ludvigson and Ng (2009), but the evidence is still statistically sufficient to support the claim

that at least some macro PCs are helpful in predicting excess bond returns in this sample.

Table 4 reports the adjusted R2 for the restricted regression model with only x1t as predictors

and the unrestricted regression model with both x1t and x2t as predictors in the actual data
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Table 3
The in-sample coefficients and statistics of the additional predictors x2t in the predictive regressions corresponding to LN
and the other relevant factor extraction methods (FEM) estimated over the samples 1964-2007 and 1985-2022. In each

regression, the dependent variable is rx
(5)
t+12 and x1t consists of a constant and the first three yield curve PCs. For LN, x2t

contains the first eight PCs extracted from a large macroeconomic data set. The eight macro PCs provided by Ludvigson and
Ng (2009) are utilized in the regression for the original sample period, while the eight macro PCs extracted from the extended
macroeconomic data set are used for the later sample period. In the case of the other factor extraction methods, x2t is
the single predictor factor extracted from the extended macroeconomic data set for both sample periods. No winsorization
is applied when extracting the additional predictors. Under Wald the table reports the statistics corresponding to the
test of joint significance of the eight macro PCs in the case of LN. The conventional statistics and p-values are computed
using Newey-West standard errors with 18 lags. The simple bootstrap procedure is employed in all the applications. The
conventional size and power are estimated using Equation (26) and (29) respectively. The bootstrap 5% critical values
(c.v.’s) and p-values are computed using Equation (25) and (24) respectively. The size and power of the bootstrap test are
approximated using Equations (27) and (30). The p-values that are lower than 5% are highlighted in bold.

Stat. 5% c.v. p-value Size Power

Coefficient Conv. Bootstrap Conv. Bootstrap Conv. Bootstrap Conv. Bootstrap
LN
1964-2007
f1 0.742 1.855 2.458 0.064 0.136 0.115 0.048 0.625 0.459
f2 0.147 0.380 2.498 0.704 0.746 0.120 0.048 0.143 0.063
f3 0.072 0.608 2.246 0.544 0.584 0.092 0.050 0.125 0.084
f4 -0.528 -1.912 2.544 0.056 0.135 0.128 0.053 0.590 0.420
f5 -0.321 -1.307 2.493 0.192 0.289 0.117 0.048 0.328 0.203
f6 0.576 2.221 2.645 0.027 0.094 0.137 0.048 0.538 0.366
f7 0.401 2.361 2.493 0.019 0.061 0.118 0.055 0.637 0.516
f8 0.551 3.036 2.322 0.003 0.012 0.099 0.049 0.849 0.791
Wald 42.073 29.077 0.000 0.009 0.322 0.054 0.998 0.962
1985-2022
f1 -0.448 -2.847 2.520 0.005 0.028 0.125 0.055 0.876 0.795
f2 -0.501 -2.860 2.859 0.004 0.050 0.168 0.047 0.745 0.530
f3 -1.145 -3.028 3.136 0.003 0.058 0.195 0.056 0.813 0.601
f4 0.279 1.254 2.552 0.210 0.316 0.121 0.055 0.350 0.203
f5 0.086 0.812 2.451 0.417 0.513 0.108 0.054 0.177 0.103
f6 0.155 0.458 2.672 0.647 0.728 0.139 0.057 0.185 0.073
f7 0.033 0.141 2.475 0.888 0.915 0.112 0.052 0.126 0.054
f8 -0.042 -0.267 2.323 0.790 0.819 0.096 0.052 0.122 0.080
Wald 29.067 34.834 0.000 0.091 0.408 0.056 0.941 0.645
FEM
1964-2007
PCA 0.675 2.984 2.516 0.003 0.023 0.118 0.055 0.901 0.827
sPCA 0.705 3.130 2.700 0.002 0.026 0.142 0.049 0.891 0.774
FLasso 0.635 2.746 2.418 0.006 0.028 0.108 0.052 0.904 0.840
GCALasso1 4.072 10.679 2.444 0.000 0.000 0.108 0.049 1.000 1.000
GCALasso2 4.043 9.789 2.463 0.000 0.000 0.121 0.045 1.000 1.000
1985-2022
PCA 1.171 2.818 2.652 0.005 0.040 0.132 0.052 0.913 0.807
sPCA 0.909 3.462 2.344 0.001 0.005 0.101 0.057 0.998 0.993
FLasso 0.790 3.407 2.362 0.001 0.003 0.096 0.051 0.999 0.995
GCALasso1 3.121 8.417 2.795 0.000 0.000 0.151 0.055 1.000 1.000
GCALasso2 3.114 7.781 2.867 0.000 0.000 0.163 0.056 1.000 1.000

sets as well as its mean and 95%-quantiles in the bootstrap samples generated under the null

hypothesis that x2t has no predictive power. Furthermore, the table reports the results for the

increase in the adjusted R2 when adding x2t to the restricted model. The results for LN indicate

that the adjusted R2 increases from 0.25 to 0.35 in the original sample when including the eight

macro PCs in the restricted forecasting model. Even though this increase of 10 percentage points

seems quite large, it falls within the 95% bootstrap interval and thus is not significant at 5%

level. The increase in the adjusted R2 is thus not implausible under the null hypothesis and

this casts some doubt on the additional predictive ability of the eight macro PCs in the original

sample.
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From Table 3 it also follows that in this application the conventional tests are oversized,

meaning that their true size is above the nominal size of 5%. The size distortions of the con-

ventional t-tests are relatively small. In the original sample, the true sizes of these t-tests range

between 9.2% and 13.7%. The estimate of the true size of the conventional Wald test is sub-

stantially larger and is equal to 32.2% in the original sample. According to Bauer and Hamilton

(2018) the larger size distortion in the case of the conventional Wald test is due to the fact

that the Wald test compounds the econometric problems related to each of the eight individual

conventional t-tests. On the contrary, the sizes corresponding to the bootstrap tests are all close

to 5%. The results for the 1985-2022 sample are similar and lead to the same conclusions.

The table also reports the estimates for the power of the conventional and bootstrap tests. In

the procedure to calculate these estimates, bootstrap samples are generated under the alternative

hypothesis by adding β̂2x̃2τ to ỹτ+h, where β̂2 is the estimated coefficient of β2 in the predictive

regression using the actual data, x̃2τ are the bootstrapped additional predictors and ỹτ+h is the

dependent variable bootstrapped under the null hypothesis. As such, the bootstrap samples are

generated under the assumption that the additional predictors x2t predict the target variable

yt+h with the magnitude that follows from the actual data. The power is now estimated as the

fraction of bootstrap samples in which the null hypothesis is rejected. If this fraction is low, this

does not mean that the test lacks power, but it is an indication that the additional predictors

x2t do not have significant predictive power for excess bond returns beyond the three yield PCs.

The detailed procedure to calculate the power is described in Appendix F.2.

From the table, it can be seen that the estimates for the power of the conventional test

are always larger than those of the bootstrap test. Even in case the coefficient estimates are

statistically insignificant, the estimate for the power is relatively large for the conventional

test. For example, the eight macro PCs jointly are not significant at 5% level according to the

bootstrap test in the 1985-2022 sample, but adding them to the bootstrapped dependent variable

still leads to a rejection of the null hypothesis in 94% of the bootstrap samples when using the

conventional test compared to 65% when using the bootstrap test. This is another indication

that the conventional test is less strict in terms of rejecting the spanning hypothesis and that

evidence against the spanning hypothesis resulting from these tests should be interpreted with

caution. Together with the results regarding the size of the tests and in line with Appendix

I, it can be concluded that the conventional tests are unreliable for inference about bond risk

premia. Conversely, the bootstrap procedure proposed by Bauer and Hamilton (2018) provides

a robust alternative to test the spanning hypothesis.

Similar to the other applications discussed in Appendix I, the evidence against the spanning
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Table 4
In-sample adjusted R2 for the restricted regression model with only x1t (R2

1), the adjusted R2 for the unrestricted regression
model including both x1t and x2t (R2

2), and the difference in adjusted R2 (R2
2−R2

1) corresponding to the LN application and
the relevant other factor extraction methods estimated over the samples 1964-2007 and 1985-2022. In each regression model,

the dependent variable is rx
(5)
t+12 and x1t consists of a constant and the first three yield curve PCs. For LN, x2t contains

the first eight PCs extracted from a large macroeconomic data set. The eight macro PCs provided by Ludvigson and Ng
(2009) are utilized in the regression for the original sample period, while the eight macro PCs extracted from the extended
macroeconomic data set are used for the later sample period. In the case of the other factor extraction methods, x2t is
the single predictor factor extracted from the extended macroeconomic data set for both sample periods. No winsorization
is applied when extracting the additional predictors. The left half of the table provides the results for the earlier sample
periods and the right half of the table provides the results for the later sample periods. For each application, the first row
reports the adjusted R2 statistic in the corresponding actual data set; the second and third rows report respectively the
mean and 95%-quantiles of the statistics in the 5,000 bootstrap replications under H0.

R2
1 R2

2 R2
1 −R2

2 R2
1 R2

2 R2
1 −R2

2

Earlier sample, 1964-2007 Later sample, 1985-2022
LN Data 0.25 0.35 0.10 0.16 0.26 0.10

Bootstrap 0.21 0.24 0.03 0.32 0.35 0.04
(0.05, 0.38) (0.08, 0.42) (-0.00, 0.11) (0.12, 0.52) (0.15, 0.55) (-0.00, 0.12)

PCA Data 0.25 0.32 0.07 0.16 0.22 0.06
Bootstrap 0.20 0.21 0.01 0.32 0.33 0.01

(0.05, 0.39) (0.06, 0.40) (-0.00, 0.05) (0.12, 0.53) (0.13, 0.53) (-0.00, 0.05)
sPCA Data 0.25 0.32 0.07 0.16 0.23 0.07

Bootstrap 0.20 0.22 0.01 0.32 0.32 0.00
(0.05, 0.39) (0.06, 0.41) (-0.00, 0.07) (0.12, 0.52) (0.12, 0.53) (-0.00, 0.02)

FLasso Data 0.25 0.29 0.04 0.16 0.23 0.07
Bootstrap 0.20 0.21 0.01 0.32 0.32 0.00

(0.05, 0.39) (0.06, 0.40) (-0.00, 0.04) (0.12, 0.53) (0.12, 0.53) (-0.00, 0.02)
GCALasso1 Data 0.25 0.56 0.30 0.16 0.54 0.38

Bootstrap 0.20 0.21 0.01 0.32 0.33 0.01
(0.06, 0.39) (0.06, 0.39) (-0.00, 0.05) (0.12, 0.52) (0.13, 0.53) (-0.00, 0.08)

GCALasso2 Data 0.25 0.57 0.31 0.16 0.50 0.34
Bootstrap 0.20 0.21 0.01 0.32 0.33 0.02

(0.05, 0.39) (0.06, 0.40) (-0.00, 0.05) (0.12, 0.53) (0.14, 0.54) (-0.00, 0.08)

hypothesis is weaker in the post-1985 samples. The right part of Table 4 shows the results

regarding the adjusted R2 for the regressions in the 1985-2022 sample. The unreported results

for the 1985-2016 sample are similar. For both samples, it holds that the increase in the adjusted

R2 resulting from adding the eight macro PCs as additional predictors x2t to the restricted

regression model is not significant at 5% level. The in-sample coefficient estimates and statistics

of the eight macro PCs in the predictive regression estimated over the sample 1985-2016 are

reported in Table J.1 in the Appendix. According to the bootstrap Wald test the eight macro

PCs are far from being jointly significant. In addition, only one macro PC is significant at 10%

level and none at 5% level. Compared to the 1985-2016 sample, the weakening of the evidence

against the spanning hypothesis is less pronounced in the 1985-2022 sample. As is shown in

Table 3, the bootstrap Wald p-value in this sample is equal to 9.1% such that the eight macro

PCs are jointly significant at 10%. Furthermore, three PCs are individually significant at 10%

level according to the bootstrap test in this sample.

Moreover, the individual macro PCs that are significant at 10% level according to the boot-

strap test are different in the post-1985 samples. The last three macro PCs are significant in the

1964-2007 sample, while the first three macro PCs are significant in the 1985-2022 sample. There

are two possible explanations for this. The first potential explanation is that the interpretations
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of the last three macro PCs in the earlier sample are similar to the interpretations of the first

three macro PCs in the later sample. This would suggest that the macroeconomic information

that contains additional predictive power beyond the three yield PCs is stable over time, even

though this predictive power is somewhat weaker in the later sample. The other potential ex-

planation is that the macroeconomic information that contains additional predictive power for

excess bond returns has changed over time. In any case, the joint and individual predictive

power of the eight macro PCs is sample-specific and this corroborates the conclusion of Duffee

(2013) that the results in Ludvigson and Ng (2009) lack stability across different samples.

One disadvantage of using PCs as predictors is their potential lack of economic interpretab-

ility. As such, it can be hard to link the predictive power of the macro PCs to specific macroeco-

nomic concepts. On top of that, the interpretation of a certain PC may be different for distinct

sample periods. Ludvigson and Ng (2009) argue that the predictive power of the first macro

PC in their sample can be mapped to real activity, because the factor is highly correlated with

measures of economic activity, such as industrial production. However, Duffee (2013) shows

that only a small portion of the predictive power in the eight macro PCs can be attributed to

measures of real activity and that the other macro PCs are harder to interpret.

To avoid the difficulties related to interpreting eight macro PCs separately and quantifying

the predictive power of each macro PC in the different sample periods, I follow D. Huang et

al. (2023) and focus in the in-sample analysis for the other factor extraction methods on the

additional predictive power of the single predictor factor. Importantly, considering the single

predictor factors instead of the multiple individual factors as additional predictors x2t in the

predictive regression simplifies interpretation without yielding worse out-of-sample performance,

as in Section 5.2 it will be shown that the out-of-sample performance is generally very similar

in both cases. An additional advantage of this approach is that the formal in-sample testing of

the spanning hypothesis in this case boils down to testing the significance of only one coefficient

in the predictive regression. As such, there is no need for a Wald test for the joint significance

of multiple coefficients which has the drawback that it compounds the econometric problems

associated with each of the individual coefficient estimates.

5.1.2 Other Relevant Factor Extraction Methods

In this section, I assess whether the single predictor factors resulting from the factor extrac-

tion methods described in Section 3.3 have in-sample predictive power for bond returns above

the three yield curve PCs. In the analysis, I focus on results for the most interesting methods,

namely the PCA, sPCA, FLasso, GCALasso1 and GCALasso2 methods. The second panel of
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Table 3 reports the coefficient estimates and statistics of the single predictor factor resulting

from each of the five methods as the additional predictor x2t in the predictive regressions for the

sample periods 1964-2007 and 1985-2022. It follows that the true sizes of the conventional test

are larger than 5%, but the size distortions are modest compared to other applications. The

true sizes of the bootstrap test are approximately equal to 5% and thus the bootstrap test is

also a more robust test for the spanning hypothesis in these applications.

All the single predictor factors listed in the table are significant at 5% level in both the

earlier and the later sample, even according to the bootstrap test. Especially the GCALasso1

and GCALasso2 factors are strongly significant with bootstrap p-values lower than 0.1%. Table

4 shows that the inclusion of the single predictor factor resulting from the PCA, GCALasso1

and GCALasso2 methods in the restricted forecasting model leads to significant increases in

the adjusted R2. The improvement in the adjusted R2 due to adding either the GCALasso1 or

GCALasso2 factor is about 30 percentage points in the earlier sample and 35 percentage points

in the later sample. Since the improvements fall far outside the corresponding 95% bootstrap

intervals, it is implausible that the increases in the adjusted R2 are entirely spurious. Adding

the single predictor factor of the sPCA and FLasso methods to the restricted forecasting model

also leads to significant results in the later sample, but not in the earlier sample.

The above-mentioned results are obtained without the use of winsorization. I have also

applied input and output winsorization in the process of extracting factors. Even though the

results are slightly better for some methods, it generally leads to the same conclusions and there-

fore these results are untabulated for brevity. Overall, it can be concluded that winsorization

does not help (much) to improve the in-sample fit of the predictive regressions.

Following J. Z. Huang and Shi (2023), I also extract predictor factors from the large data set

that contains the macroeconomic variables and their six lagged values. Table J.2 in the Appendix

reports the coefficient estimates and statistics for these single predictor factors. The table also in-

cludes the results for the factor extraction methods other than PCA, sPCA, FLasso, GCALasso1

and GCALasso2. The table shows that, except for the FGCALasso1 and FGCALasso2 factors,

the single predictor factors are significant at 5% according to both the conventional test and the

bootstrap test in all cases.

Table J.3 in the Appendix reports the results regarding the adjusted R2 for the five relevant

methods in case the six lagged values of each macroeconomic variable are added to the data set.

The table shows that adding lagged values only consistently improves the results in both samples

for the GCALasso2 method. For this method, the adjusted R2 increases from 25% to 72% in

the earlier sample and from 16% to 74% in the later sample. The tremendous improvement in
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(a) Restricted model with only the three yield PCs (b) Model with the three PCs and GCALasso2 factor

Figure 3

In-sample fitted values for rx
(5)
t+12 resulting from the restricted model with only the three yield curve PCs as predictors (on

the left) and the unrestricted model with the three yield curve PCs and the GCALasso2 factor as predictors (on the right)
along with the actual excess bond returns over the 1985-2022 sample. The GCALasso2 factor is extracted from the large
macroeconomic data set that also includes the six lagged values of the macroeconomic variables. The adjusted R2 for the
restricted regression model is equal to 0.16 and the adjusted R2 for the unrestricted regression model is equal to 0.74.

the in-sample fit in the later sample is also illustrated by Figure 3. This figure plots the fitted

values for the excess bond returns resulting from the restricted and unrestricted model along

with the actual values over the 1985-2022 sample. It can be seen that fitted values corresponding

to the model including the GCALasso2 factor match the actual returns much more closely than

the fitted values from the restricted model. A similar conclusion can be drawn from Figure J.1

which includes the plots over the 1964-2007 sample.

5.1.3 Economic Interpretation

Similar to Ludvigson and Ng (2009), I establish the economic interpretation of the predictor

factors by looking at the R2 of a regression of the factor on each macroeconomic variable con-

tained in the large data set. In addition, I also regress the factor on all macroeconomic variables

belonging to each of the eight groups specified in Table B.1 and deduce economic interpretations

from the resulting R2. I focus on the interpretation of the GCALasso2 factor extracted from

the large macroeconomic data set including lagged values, as it is demonstrated that this factor

has the largest in-sample predictive power for bond returns beyond the three yield PCs in both

the earlier and later samples.

Figure 4 contains two bar plots, each displaying the R2 statistics of the regressions of the

GCALasso2 factor on the macroeconomic variables in each group. The first bar plot shows the

results for the 1964-2007 sample, while the second shows the results for the 1985-2022 sample.
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The figure shows that the explanatory power for the GCALasso2 factor of groups 2, 5, 6 and

7 is quite stable across the two samples. In both samples, the R2 corresponding to group 6 is

large and is equal to about 80%. Since group 6 consists of bond and FX variables, one may be

concerned that the GCALasso2 factor is spanned by the yield curve. However, in Section 5.1.2 it

is already shown that the GCALasso2 factor has significant in-sample predictive power beyond

the three yield PCs. Apart from that, I also examine the validity of this concern using the

informal test proposed by Duffee (2013). In particular, Duffee (2013) argues that if a variable

is spanned by the yield curve a regression of this variable on the yield curve factors should

produce serially uncorrelated fitted residuals. However, regressing the GCALasso2 factor on the

three yield PCs leads to residuals with first-order autocorrelations equal to 0.66 in the earlier

sample and 0.73 in the later sample. The autocorrelations are highly significant in both samples

according to the Breusch-Godfrey test. This also suggests that the GCALasso2 factor is not

spanned by the yield curve.

(a) 1964-2007 (b) 1985-2022

Figure 4
R2 of the regressions of the in-sample GCALasso2 predictor factor on the macroeconomic variables in each of the eight
groups estimated over the 1964-2007 sample (on the left) and the 1985-2022 sample (on the right). The eight groups are
(1) output; (2) employment; (3) housing; (4) orders and inventories; (5) money market; (6) bond and foreign exchange
(FX) market; (7) price indices; and (8) stock market. Table B.1 specifies which macroeconomic variables are included in
each group. The GCALasso2 factor is constructed from the large data set containing the macroeconomic variables and
their six lagged values.

The explanatory power of groups 1, 3, 4 and 8 is less stable across the two samples. Strik-

ingly, the R2 corresponding to the third group, which represents the housing factors, increases

from about 19% in the 1964-2007 sample to 84% in the 1985-2022 sample. Together with the

sixth group, the R2 in the later sample is even 97%. This does not necessarily imply that the

GCALasso2 factor in this sample mainly consists of variables from groups 3 and 6, as it could

also contain variables of other groups (e.g., groups 1 and 2) that are correlated with variables
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in groups 3 and 6. Nevertheless, the variables from these groups are able to explain almost

all variation in the GCALasso2 factor and this means that those variables jointly contain the

predictive power that is present in the GCALasso2 factor.

The explanatory dominance of the housing factors in the later sample is also clearly visible

in Figure J.3 in the Appendix, which plots the R2 statistics for the regression of the GCALasso2

factor on each macroeconomic variable as bar charts. The figure shows that the R2 corresponding

to 7 out of 10 housing factors is above 40%, whereas in the other groups none of the variables

is able to individually explain such a large part of the variation in the GCALasso2 factor.

Moreover, the explanatory power of the large majority of variables is even lower than 5%.

This is an interesting finding as the housing factors have been largely overlooked in the term

structure literature (J. Z. Huang & Shi, 2023). Other groups have received much more attention.

For example, employment and inflation variables, which are contained in groups 2 and 7, are

commonly incorporated in macro-finance term structure models and are well motivated by for

instance the equilibrium term structure model of Wachter (2006). A possible explanation for

how the housing factors can be linked to bond risk premia is given by Piazzesi, Schneider and

Tuzel (2007). They consider a consumption-based asset pricing model and show that the equity

risk premium is driven by the expenditure share on housing.

5.2 Out-of-Sample Analysis

In the out-of-sample analysis, the forecasts resulting from the restricted model with only the

three yield PCs are compared with the forecasts generated by the unrestricted model that also

contains the additional predictors x2t. As mentioned before, both the individual factors and the

single predictor factor resulting from the factor extraction methods are considered as additional

predictors x2t. In the LN application, the single predictor factor is defined as the fitted value

of the regression of rx
(5)
t+12 on the eight macro PCs. The out-of-sample results corresponding to

LN and the other relevant factor extraction methods for the different winsorization regimes are

given in Table 5.

Firstly, I focus on the case in which no winsorization is applied. These results are reported

in the first panel of the table. The results for LN are ambiguous. When adding either the eight

macro PCs or the single predictor factor to the restricted model, the out-of-sample MSE improves

by about 20% in the 2008-2016 sample, but it deteriorates in the 2008-2022 sample. In no case

the change is statistically significant. Plot (d) in Figure K.1 in the Appendix demonstrates that

the out-of-sample results for the 2008-2022 sample period are heavily impacted by outliers. In

particular, extreme values for the macro PCs at the start of the COVID-19 pandemic in 2020
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Table 5
Out-of-sample predictive power for rx

(5)
t+12 of a restricted model with the three yield PCs and an unrestricted model with

additional predictors x2t corresponding to the LN application and the other relevant factor extraction methods in different
scenarios. The results are shown for the scenarios in which no winsorization, input winsorization or output winsorization
is applied. The additional predictors x2t for the LN application are either the eight macro PCs or a single predictor factor

which is the fitted value of the regression of rx
(5)
t+12 on the eight macro PCs. The additional predictors x2t for the PCA,

sPCA and FLasso methods are either the six factors or the single predictor factor resulting from these methods. Since the
GCALasso1 and GCALasso2 methods only produce a single predictor factor, the additional predictor x2t for these methods
is the factor resulting from each of these two methods. The in-sample period starts in January 1964 and ends in December
2007. The out-of-sample period starts one month later than the end of the in-sample period and ends in either December
2016 or December 2022. To generate the out-of-sample forecasts, expanding window estimation is used. Under MSE ratio
and p-value the table reports respectively the mean-squared errors for the unrestricted model relative to the mean-squared
errors for the restricted model and the p-values of the Diebold-Mariano test for equal prediction accuracy of the two models.
The p-values that are lower than 5% are highlighted in bold.

Individual Factors Single Joint Factor

End: 2016 End: 2022 End: 2016 End: 2022

MSE ratio p-value MSE ratio p-value MSE ratio p-value MSE ratio p-value
No winsorization
LN 0.778 0.279 1.844 0.437 0.814 0.416 1.259 0.602
PCA 0.753 0.171 1.098 0.786 0.776 0.231 1.431 0.526
sPCA 0.821 0.389 1.444 0.486 0.809 0.664 1.047 0.891
FLasso 0.861 0.620 1.250 0.562 0.894 0.742 1.329 0.489
GCALasso1 1.333 0.167 1.909 0.166
GCALasso2 1.442 0.225 2.021 0.194
Input winsorization
LN 0.612 0.106 0.675 0.052 0.640 0.152 0.661 0.050
PCA 0.584 0.054 0.656 0.024 0.617 0.062 0.647 0.018
sPCA 0.701 0.083 0.733 0.058 0.523 0.113 0.618 0.061
FLasso 0.466 0.109 0.600 0.061 0.579 0.124 0.690 0.073
GCALasso1 1.256 0.188 1.108 0.521
GCALasso2 1.364 0.169 1.168 0.386
Output winsorization
LN 0.612 0.106 0.675 0.052 0.640 0.152 0.661 0.050
PCA 0.560 0.073 0.643 0.030 0.572 0.051 0.673 0.037
sPCA 0.577 0.069 0.671 0.041 0.438 0.130 0.609 0.086
FLasso 0.527 0.059 0.652 0.037 0.527 0.039 0.702 0.058
GCALasso1 1.152 0.521 1.173 0.303
GCALasso2 1.145 0.581 1.103 0.546

cause the unrestricted model to generate some extreme 12-months ahead forecasts for 2021.

The out-of-sample results for PCA, sPCA and FLasso are similar to those for LN. Adding

either the six individual factors or the single predictor factor resulting from these methods to the

restricted forecasting model improves the out-of-sample MSE in the 2008-2016 sample, but leads

to a deterioration in the 2008-2022 sample. Including the GCALasso1 or GCALasso2 factor in

the restricted model results in higher prediction errors in both samples.

Like in the LN application, results are severely affected by outliers. Therefore, it is sensible to

use the winsorization methods in order to reduce the impact of these extreme values. The out-of-

sample results for the scenarios in which either input or output winsorization is applied are given

in the second and third panels respectively. It can be seen that the out-of-sample performance of

all methods improves substantially, especially in the 2008-2022 sample. This is also illustrated

in Figure 5 which plots the forecasts resulting from the restricted and unrestricted model with

the single predictor factor extracted using the PCA method both in case no winsorization and

in case output winsorization is applied.

For both winsorization methods, the reduction in the MSE as a result of adding either the six
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(a) No winsorization (b) Output winsorization

Figure 5

Out-of-sample forecasts for rx
(5)
t+12 resulting from the restricted forecast model with only the three yield curve PCs as

predictors and the unrestricted model with the three yield curve PCs and the single predictor factor extracted using the
PCA method in case no winsorization is applied (on the left) and in case output winsorization is applied (on the right).
Expanding window estimation is used to construct the forecasts. The training windows start in January 1964. The
out-of-sample period starts in January 2008 and ends in December 2022.

individual factors or the single predicor factor resulting from the PCA method to the restricted

model is significant at 10% level in the 2008-2016 sample and even at 5% in the 2008-2022

sample. The improvements in MSE are quite similar for the sPCA and FLasso methods but

are significant at 10% in the 2008-2022 sample only. Winsorization also helps to improve the

out-of-sample performance of the forecasting model including the GCALasso1 or GCALasso2

factor in addition to the three yield PCs. Nevertheless, the performance of this model remains

inferior to the restricted forecasting model.

Table K.1 in the Appendix also documents the out-of-sample results corresponding to all

the other methods and for the scenarios in which the factors are extracted from the large

macroeconomic data that includes the lagged values. Overall, results are similar regardless of

whether input winsorization or output winsorization is applied and whether the individual factors

or the single predictor factors are used as additional predictors x2t. Furthermore, most methods

produce predictor factors that are able to considerably improve the restricted forecasting model.

However, the improvements are often not significant at 10%. The PCA method leads to the

most robust and consistent results. In case winsorization is applied, the factors resulting from

this method improve the MSE by at least 38% in the 1964-2007 sample and 32% in the 1985-

2022 sample. Moreover, all these MSE improvements are significant at 10% level. A number of

methods lead to better results in certain scenarios and sample periods, but none of the methods

consistently outperforms the PCA method. Adding lagged values is beneficial for some methods,
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including the GCALasso2 method, but it does not change conclusions. It is interesting to note

that despite achieving the best in-sample results, the GCALasso2 method leads to the worst

out-of-sample results, even in scenarios with winsorization and lagged macroeconomic variables.

A potential explanation for this is given in the next section.

5.2.1 Economic Interpretation

Similar to the in-sample analysis, I also interpret the most relevant out-of-sample single

predictor factors economically. I focus on the interpretation of the factor resulting from the

PCA method, as the out-of-sample predictive power of this factor is consistently significant.

Furthermore, I interpret the GCALasso2 factor that is extracted from the large macroeconomic

data set with lagged values. This factor is interesting as it has the largest in-sample but also

the smallest out-of-sample predictive power for excess bond returns beyond the three yield PCs

compared to the factors of the other methods. Output winsorization is applied to both factors.

Similar results are obtained in the case of input winsorization.

The R2 statistics for the regression of these factors on the macroeconomic variables in each

of the eight groups estimated over the 1985-2022 sample are depicted in Figure 6. Interestingly,

the pattern of the bar plot for the out-of-sample PCA factor is comparable to the bar plot for the

in-sample GCALasso2 factor shown in Figure 4. The housing group has the largest explanatory

power for the PCA factor, followed by the bond and FX group, and then the employment group.

The groups explain respectively 83%, 76% and 57% of the variation in the PCA factor. Jointly,

these groups are able to explain almost all variation in the PCA factor. From Figure K.2, which

displays the R2 statistics corresponding to the individual macroeconomic variables, it can also

be seen that the housing factors are the most prominent factors in terms of explanatory power.

The out-of-sample bar plot for the GCALasso2 factor is quite similar to its in-sample plot

for the 1964-2007 sample. Since in Section 5.1.3 it has been shown that the composition of

the in-sample GCALasso2 factor is quite different in the 1964-2007 sample compared to the

1985-2022 sample, this is an indication that the out-of-sample factor is heavily impacted by the

inclusion of the data from 1964 through 1984 in the training windows. However, the change

in the composition of the in-sample GCALasso2 factor also implies that the predictive ability

of certain macroeconomic variables possibly changed over time. The information in the 1964-

1984 sample may not be relevant anymore for forecasting bond returns for the 2008-2022 sample.

Including the potentially outdated data in the training windows may influence the out-of-sample

GCALasso2 factor such that it is less responsive to changes in the data and less useful for the

prediction of excess bond returns.
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(a) PCA factor (b) GCALasso2 factor

Figure 6
R2 of the regressions of the out-of-sample PCA single predictor factor (on the left) and the GCALasso2 predictor factor
(on the right) on the macroeconomic variables in each of the eight groups. The out-of-sample period is The eight groups
are (1) output; (2) employment; (3) housing; (4) orders and inventories; (5) money market; (6) bond and foreign exchange
(FX) market; (7) price indices; and (8) stock market. Table B.1 specifies which macroeconomic variables are included in
each group. The predictor factors are obtained using expanding window estimation with training windows starting in
January 1964 and output winsorization is recursively applied to the resulting factors. The regressions are estimated using
data from January 2007 to December 2021. The factors constructed for this sample are namely used to produce

out-of-sample forecasts for rx
(5)
t+12 for the 2008-2022 period. The PCA factor is extracted from the large macroeconomic

data set without lagged values, whereas the GCALasso2 factor is obtained from the large data set with lagged values.

5.2.2 Robustness Checks

I also investigate the robustness of the out-of-sample results for the most relevant methods

with respect to the number of predictor factors and the winsorization thresholds. The out-of-

sample results for different numbers of factors and winsorization thresholds are given in Table

K.2 and K.3 respectively. These results are analysed in detail in Appendix K.4. Overall, it

can be concluded that the results are robust to alternative numbers of predictor factors and

winsorization thresholds.

6 Conclusion

Based on the simulation study and empirical analysis, I confirm the finding of Bauer and

Hamilton (2018) that conventional tests are unreliable for inference about the spanning hy-

pothesis as they suffer from serious small-sample econometric problems. The bootstrap test

proposed by Bauer and Hamilton (2018) is robust to these problems and using this test to re-

visit the evidence of four widely cited studies leads to weaker evidence against the spanning

hypothesis than suggested in these studies. Moreover, adding new data and evaluating the out-

of-sample predictive power for excess bond returns beyond the three yield principal components
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of the proposed additional variables leads to evidence that is even far from convincing. These

findings are in line with Bauer and Hamilton (2018) and reinforce the spanning controversy in

macro-finance literature.

However, after extending the study of Ludvigson and Ng (2009) by using alternative methods

to extract predictor factors from a large set of macroeconomic variables and using winsoriza-

tion methods to reduce the impact of extreme values, I resolve this spanning controversy. The

in-sample predictive power above the three yield PCs of the single predictor factor resulting

from these alternative methods, including 12 machine-learning methods, is evaluated over an

earlier and a later sample period. With a few exceptions, the results for all methods are highly

significant according to the bootstrap test in both samples and even in scenarios without win-

sorization. I find that the GCALasso2 factor that is extracted from the macroeconomic data

set with lagged values has the strongest in-sample additional predictive power for excess bond

returns. Adding it to the restricted regression model with only the three yield PCs leads to

a tremendous increase in the adjusted R2 and this increase is highly significant. Due to ex-

treme values in the large macroeconomic data set, winsorization is crucial for obtaining good

out-of-sample forecasts when using factors extracted from this data set as predictors. In case

winsorization is applied, I find that the performance of the PCA method is the most consistent

and robust. It produces predictor factors with significant predictive power beyond the first three

yield curve principal components both in-sample and out-of-sample and across different sample

periods. Despite the good in-sample performance, the GCALasso1 and GCALasso2 methods

display the poorest out-of-sample performance among all methods.

Another interesting finding is that in the recent samples the housing variables play a promin-

ent role in both the best-performing in-sample and out-of-sample predictor factors. In fact, the

explanatory power of the variables in the housing group is larger than 80% for both predictor

factors and is the largest compared to the explanatory power of the other groups. It seems that

at least part of the incremental predictive power for excess bond returns over the yield PCs in

the post-1985 samples can be attributed to these variables. However, this implication is not

formally tested and the precise amount of incremental predictive power in these variables is not

quantified. This would be an interesting avenue for future research. Furthermore, it would be

interesting to construct real-time implementable trading strategies using the best-performing

factor extraction methods and investigate whether these can generate significant economic gains

for investors.
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Appendix A Variables used in JPS, CPO and CP

Table 1 shows that the variables used in the research of Joslin et al. (2014) are economic

growth, measured by the 3-month moving average Chicago Fed National Activity Index, infla-

tion, defined as the 1-year inflation predicted by the Blue Chip Financial Forecasts, and bond

yields, constructed by Anh Le (Le & Singleton, 2013) using the Fama-Bliss selection criteria.

Similar to Ludvigson and Ng (2009), Cochrane and Piazzesi (2005) use data on the bond prices

of pure discount U.S Treasury bonds with maturities ranging from one to five years. These

data are obtained from the Fama-Bliss dataset from the Center for Research in Securities Prices

(CRSP). To replicate and extend the paper of Cieslak and Povala (2015), Bauer and Hamilton

(2018) use the Consumer Price Index, retrieved from the FRED database, the 1-month T-bill

rate, obtained from the CRSP, and the zero-coupon yields with maturities ranging from one to

fifteen years, constructed by Gürkaynak, Sack and Wright (2007). For more details on the con-

struction of the variables, I refer to Bauer and Hamilton (2018) and the corresponding revisited

paper.
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Appendix B Description of Large Macroeconomic Data Set

Table B.1
Data description of the extended large macroeconomic data set. The series number, the short name, and the full name of
each variable are specified in the first, second and third columns respectively. The fourth column indicates to which of the
eight groups each variable belongs: (1) output; (2) employment; (3) housing; (4) orders and inventories; (5) money market;
(6) bond and foreign exchange (FX) market; (7) price indices; and (8) stock market. The last column indicates which
transformation is applied to each variable: (1) no transformation; (2) first difference; (3) second difference; (4) logarithm;
(5) first difference of logarithm; and (6) second difference of logarithm.

ID Short name Description Group Transformation
1 PI Real Personal Income 1 5
2 PI less transfers Real personal income ex transfer receipts 1 5
3 Real Consumption Real personal consumption expenditures 4 5
4 M&T sales Real Manu. and Trade Industries Sales 4 5
5 Retail sales Retail and Food Services Sales 4 5
6 IP: total IP Index 1 5
7 IP: products IP: Final Products and Nonindustrial Supplies 1 5
8 IP: final prod IP: Final Products (Market Group) 1 5
9 IP: cons gds IP: Consumer Goods 1 5
10 IP: cons dble IP: Durable Consumer Goods 1 5
11 IP: cons nondble IP: Nondurable Consumer Goods 1 5
12 IP: bus eqpt IP: Business Equipment 1 5
13 IP: matls IP: Materials 1 5
14 IP: dble matls IP: Durable Materials 1 5
15 IP: nondble matls IP: Nondurable Materials 1 5
16 IP: mfg IP: Manufacturing (SIC) 1 5
17 IP: res util IP: Residential Utilities 1 5
18 IP: fuels IP: Fuels 1 5
20 Cap util Capacity Utilization: Manufacturing 1 2
21 Help wanted indx Help-Wanted Index for United States 2 2
22 Help wanted/une Ratio of Help Wanted/No. Unemployed 2 2
23 Emp CPS total Civilian Labor Force 2 5
24 Emp CPS nonag Civilian Employment 2 5
25 U: all Civilian Unemployment Rate 2 2
26 U: mean duration Average Duration of Unemployment (Weeks) 2 2
27 U < 5 wks Civilians Unemployed - Less Than 5 Weeks 2 5
28 U 5-14 wks Civilians Unemployed for 5-14 Weeks 2 5
29 U 15+ wks Civilians Unemployed - 15 Weeks & Over 2 5
30 U 15-26 wks Civilians Unemployed for 15-26 Weeks 2 5
31 U 27+ wks Civilians Unemployed for 27 Weeks and Over 2 5
32 UI claims Initial Claims 2 5
33 Emp: total All Employees: Total nonfarm 2 5
34 Emp: gds prod All Employees: Goods-Producing Industries 2 5
35 Emp: mining All Employees: Mining and Logging: Mining 2 5
36 Emp: const All Employees: Construction 2 5
37 Emp: mfg All Employees: Manufacturing 2 5
38 Emp: dble gds All Employees: Durable goods 2 5
39 Emp: nondbles All Employees: Nondurable goods 2 5
40 Emp: services All Employees: Service-Providing Industries 2 5
41 Emp: TTU All Employees: Trade, Transportation & Utilities 2 5
42 Emp: wholesale All Employees: Wholesale Trade 2 5
43 Emp: retail All Employees: Retail Trade 2 5
44 Emp: FIRE All Employees: Financial Activities 2 5
45 Emp: Govt All Employees: Government 2 5
46 Avg hrs Avg Weekly Hours : Goods-Producing 2 1
47 Overtime: mfg Avg Weekly Overtime Hours : Manufacturing 2 2
48 Avg hrs: mfg Avg Weekly Hours : Manufacturing 2 1
50 Starts: nonfarm Housing Starts: Total New Privately Owned 3 4
51 Starts: NE Housing Starts, Northeast 3 4
52 Starts: MW Housing Starts, Midwest 3 4
53 Starts: South Housing Starts, South 3 4
54 Starts: West Housing Starts, West 3 4
55 BP: total New Private Housing Permits (SAAR) 3 4
56 BP: NE New Private Housing Permits, Northeast (SAAR) 3 4
57 BP: MW New Private Housing Permits, Midwest (SAAR) 3 4
58 BP: South New Private Housing Permits, South (SAAR) 3 4
59 BP: West New Private Housing Permits, West (SAAR) 3 4
64 Orders: cons gds New Orders for Consumer Goods 4 5
65 Orders: dble gds New Orders for Durable Goods 4 5

Continued on next page
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ID Short name Description Group Transformation
66 Orders: cap gds New Orders for Nondefense Capital Goods 4 5
67 Unf orders: dble Unfilled Orders for Durable Goods 4 5
68 M&T invent Total Business Inventories 4 5
69 M&T invent/sales Total Business: Inventories to Sales Ratio 4 2
70 M1 M1 Money Stock 5 6
71 M2 M2 Money Stock 5 6
72 M2 (real) Real M2 Money Stock 5 5
73 MB Monetary Base 5 6
74 Reserves tot Total Reserves of Depository Institutions 5 6
75 Reserves nonbor Reserves Of Depository Institutions 5 7
76 C&I loan plus Commercial and Industrial Loans 5 6
77 DC&I loans Real Estate Loans at All Commercial Banks 5 6
78 Cons credit Total Nonrevolving Credit 5 6
79 Inst cred/PI Nonrevolving consumer credit to Personal Income 5 2
80 S&P 500 S&P’s Common Stock Price Index: Composite 8 5
81 S&P: indust S&P’s Common Stock Price Index: Industrials 8 5
82 S&P div yield S&P’s Composite Common Stock: Dividend Yield 8 2
83 S&P PE ratio S&P’s Composite Common Stock: Price-Earnings Ratio 8 5
84 Fed Funds Effective Federal Funds Rate 6 2
85 Comm paper 3-Month AA Financial Commercial Paper Rate 6 2
86 3 mo T-bill 3-Month Treasury Bill: 6 2
87 6 mo T-bill 6-Month Treasury Bill: 6 2
88 1 yr T-bond 1-Year Treasury Rate 6 2
89 5 yr T-bond 5-Year Treasury Rate 6 2
90 10 yr T-bond 10-Year Treasury Rate 6 2
91 Aaa bond Moody’s Seasoned Aaa Corporate Bond Yield 6 2
92 Baa bond Moody’s Seasoned Baa Corporate Bond Yield 6 2
93 CP-FF spread 3-Month Commercial Paper Minus FEDFUNDS 6 1
94 3 mo-FF spread 3-Month Treasury C Minus FEDFUNDS 6 1
95 6 mo-FF spread 6-Month Treasury C Minus FEDFUNDS 6 1
96 1 yr-FF spread 1-Year Treasury C Minus FEDFUNDS 6 1
97 5 yr-FF spread 5-Year Treasury C Minus FEDFUNDS 6 1
98 10 yr-FF spread 10-Year Treasury C Minus FEDFUNDS 6 1
99 Aaa-FF spread Moody’s Aaa Corporate Bond Minus FEDFUNDS 6 1
100 Baa-FF spread Moody’s Baa Corporate Bond Minus FEDFUNDS 6 1
101 Ex rate: avg Trade Weighted U.S. Dollar Index 6 5
102 Ex rate: Switz Switzerland / U.S. Foreign Exchange Rate 6 5
103 Ex rate: Japan Japan / U.S. Foreign Exchange Rate 6 5
104 Ex rate: UK U.S. / U.K. Foreign Exchange Rate 6 5
105 EX rate: Canada Canada / U.S. Foreign Exchange Rate 6 5
106 PPI: fin gds PPI: Finished Goods 7 6
107 PPI: cons gds PPI: Finished Consumer Goods 7 6
108 PPI: int matls PPI: Intermediate Materials 7 6
109 PPI: crude matls PPI: Crude Materials 7 6
110 Spot market price Crude Oil, spliced WTI and Cushing 7 6
111 PPI: nonferrous PPI: Metals and metal products: 7 6
113 CPI-U: all CPI : All Items 7 6
114 CPI-U: apparel CPI : Apparel 7 6
115 CPI-U: transp CPI : Transportation 7 6
116 CPI-U: medical CPI : Medical Care 7 6
117 CPI-U: comm. CPI : Commodities 7 6
118 CPI-U: dbles CPI : Durables 7 6
119 CPI-U: services CPI : Services 7 6
120 CPI-U: ex food CPI : All Items Less Food 7 6
121 CPI-U: ex shelter CPI : All items less shelter 7 6
122 CPI-U: ex med CPI : All items less medical care 7 6
123 PCE defl Personal Cons. Expend.: Chain Index 7 6
124 PCE defl: dlbes Personal Cons. Exp: Durable goods 7 6
125 PCE defl: nondble Personal Cons. Exp: Nondurable goods 7 6
126 PCE defl: service Personal Cons. Exp: Services 7 6
127 AHE: goods Avg Hourly Earnings : Goods-Producing 2 6
128 AHE: const Avg Hourly Earnings : Construction 2 6
129 AHE: mfg Avg Hourly Earnings : Manufacturing 2 6
130 Consumer expect Consumer Sentiment Index 4 2
132 N.A. Consumer Motor Vehicle Loans Outstanding 5 6
133 N.A. Total Consumer Loans and Leases Outstanding 5 6
134 N.A. Securities in Bank Credit at All Commercial Banks 5 6
135 VIX 8 1
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Appendix C Variables in Predictive Regressions for JPS, CPO

and CP

The variables used in the predictive regressions to revisit JPS, CPO, and CP are described

in this section. For these applications, I use the same variables and data as Bauer and Hamilton

(2018) employ to revisit these studies. Since the target variable yt+h, the bond yields it used to

extract the first three PCs for x1t, and the additional predictors x2t differ across these applica-

tions, an overview of the variables used in each application is provided in Table C.1.

Table C.1
The dependent variable (yt+h), the bond yields (it) from which the first three PCs are extracted to construct x1t, the
additional predictors (x2t), the autocorrelation correction (AC) method, and the bootstrap method that are used in this
paper to revisit the evidence of JPS, CPO and CP. The dependent variable is specified according to Equation (6) or (12).
The additional predictors are described in the text. The autocorrelation method is either the approach in which the Newey-
West (NW) standard errors with 18 lags are used or the reverse-regression (RR) approach of Wei and Wright (2011). Both
the simple and the bias-corrected bootstrap methods are described in Appendix F.

Application yt+12 it x2t AC method Bootstrap method

JPS rx
(10)
t+12 (i

(6)
t , i

(12)
t , i

(24)
t , i

(36)
t , ..., i

(120)
t )′ (GROt, INFt) NW Bias-corrected bootstrap

CPO wrx
(15)
t+12 (i

(1)
t , i

(12)
t , i

(24)
t , i

(36)
t , ..., i

(180)
t )′ τt RR Bias-corrected bootstrap

CP rx
(5)
t+12 (i

(12)
t , i

(24)
t , i

(36)
t , i

(48)
t , i

(60)
t )′ (PC

(4)
t , PC

(5)
t ) NW Simple bootstrap

As described in Section A, the zero-coupon yields used in the JPS application are constructed

by Anh Le and the bond yields used in the CP application are obtained from Gürkaynak et al.

(2007). Similar to the LN application, the bond yields for the CP application are computed

from the data on the bond prices of the zero-coupon Treasury bonds with maturities from one

to five years using Equation (3). For the CPO application, the weighted average of excess bond

returns is used instead of the unweighted average. The weighted average of annual excess bond

returns across bonds with maturities ranging from 2 to k years is defined as

wrx
(k)
t+12 =

1

k − 1

k∑
n=2

1

n
rx

(12n)
t+12 (12)

where k ≥ 2.

Table C.1 also indicates which additional predictors x2t are used in each application. The

additional predictors used in the predictive regression to revisit each of the four earlier mentioned

studies correspond to those used by Bauer and Hamilton (2018). From the table, it can be seen

that in the case of the JPS application x2t consists of the measure of economic growth (GRO) and

inflation (INF) as specified in Section A. For CPO x2t is set equal to the exponentially weighted

moving average (EWMA) of the year-over-year inflation in month t, which is a measure of trend
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inflation and is defined as

τt = (1− λ)
t∑

j=0

λjπt−j (13)

where πt is the year-over-year inflation in the CPI in month t and λ = 0.987. This value for λ

leads to the strongest results in Cieslak and Povala (2015). To revisit CP, x2t is equalized to the

vector containing the fourth and fifth PCs of yields on bonds with maturities of one through

five years. The values of these PCs in month t are denoted by PC
(4)
t and PC

(5)
t .
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Appendix D GCALasso1 and GCALasso2 Method

In the first step of the GCALasso1 and GCALasso2 methods, Controlled Adaptive Lasso

(CALasso) is applied to the variables in each of the eight groups specified in Section 2 separately.

The corresponding minimization problem for group j is formulated as

min
β(j)

T−12∑
t=1

rx
(5)
t+12 −

3∑
k=1

PC
(k)
t β

(j)
1k −

Nj∑
i=1

z
(i)
t,jβ

(j)
2i

2

+

Nj∑
i=1

λ

|β̂ridge
i,j,1 |

|β(j)
2i |

 (14)

where z
(i)
t,j is the ith variable in group j, Nj is the number of variables in group j, β̂ridge

i,j,1 is the

estimated coefficient for variable i in group j of the first-stage ridge regression of rx
(5)
t+12 on the

macroeconomic variables in group j, and λ is determined using five-fold cross-validation. The

set of macroeconomic variables in group j that do not have a zero coefficient in the first step is

denoted by Ẑj , j = 1, . . . , 8.

In the second step, all groups are considered together and a variant of the group Lasso

proposed by Yuan and Lin (2006) is applied to the macroeconomic variables selected in the

first step. In this variant, the tuning parameter is the same within the groups but differs

across groups. Specifically, the minimization problem that is solved in this method, termed the

GCALasso1 method, is given by

min
β

T−12∑
t=1

rx
(5)
t+12 −

3∑
k=1

PC
(k)
t β

(j)
1k −

8∑
j=1

N̂j∑
i=1

ẑ
(i)
t,jβ

(j)
2i

2

+
8∑

j=1

N̂j∑
i=1

λ(j)|β(j)
2i |

 (15)

where ẑ
(i)
t,j denotes the ith macroeconomic variable in group j that survives the first stage, N̂j

denote the number of selected variables in group j, and λ(j) is defined as

λ(j) =
λ√∑N̂j

i=1

(
β̂ridge
i,j,2

)2 (16)

where β̂ridge
i,j,2 is the estimated coefficient for variable i in group j of the second-stage ridge regres-

sion of rx
(5)
t+12 on the all macroeconomic variables that survive the first stage and λ is obtained

from five-fold cross-validation. Additionally, I also consider the variant, termed GCALasso2,

in which the tuning parameter also varies within the groups. To this end, λ(j) in minimization

problem (15) is replaced by λ
(j)
i defined as

λ
(j)
i =

λ

β̂ridge
i,j,2

. (17)
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Appendix E Pseudocode for Machine-Learning Methods

Algorithm 1 Pseudocode to construct predictors using the machine-learning methods

Input Data: rx(5), Z
Input Binary State Variables: Control, Adaptive,Group, Factor ∈ {true, false},

Option ∈ {1, 2}

if Group = false then
if Adaptive = false then

if Control = false then
Solve minimization problem (7) yielding β̂Lasso

if Factor = false then
Lasso: Use

∑N
i=1 β̂

Lasso
i z(i) as a single additional predictor

else
FLasso: Apply PCA as described in Section 3.3.1 to the scaled variables
(β̂Lasso

1 z(1), . . . , β̂Lasso
N z(N)) and use either the six resulting principal components or the

single predictor factor as additional predictor(s)
end if

else
Solve minimization problem (8) yielding β̂CLasso

if Factor = false then
CLasso: Use

∑N
i=1 β̂

CLasso
2i z(i) as a single additional predictor

else
FCLasso: Apply PCA as described in Section 3.3.1 to the scaled variables
(β̂CLasso

21 z(1), . . . , β̂CLasso
2N z(N)) and use either the six resulting principal components or

the components or the single predictor factor as additional predictor(s)
end if

end if
else

if Control = false then
Solve minimization problem (7) where λ is replaced by λi defined in Equation (9) with

γ = 1 yielding β̂ALasso

if Factor = false then
ALasso: Use

∑N
i=1 β̂

ALasso
i z(i) as a single additional predictor

else
FALasso: Apply PCA as described in Section 3.3.1 to the scaled variables
(β̂ALasso

1 z(1), . . . , β̂ALasso
N z(N)) and use either the six resulting principal components or

the single predictor factor as additional predictor(s)
end if

else
Solve minimization problem (8) where λ is replaced by λi defined in Equation (9) with

γ = 1 yielding β̂CALasso

if Factor = false then
CALasso: Use

∑N
i=1 β̂

CALasso
i z(i) as a single additional predictor

else
FCALasso: Apply PCA as described in Section 3.3.1 to the scaled variables
(β̂CALasso

1 z(1), . . . , β̂CALasso
N z(N)) and use either the six resulting principal components

or the single predictor factor as additional predictor(s)
end if

end if
end if

end if
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if Group = true then
if Adaptive = true then

if Control = True then
Solve minimization problem (14) for j = 1, . . . , 8 yielding Ẑ(1), . . . , Ẑ(8)

if Option = 1 then
Use Ẑ(1), . . . , Ẑ(8)to solve minimization problem (15) yielding β̂GCALasso1

if Factor = false then

GCALasso1: Use
∑8

j=1

∑N̂j

i=1 β̂
GCALasso1
i,j ẑ

(i)
j as a single predictor

else
FGCALasso1: Apply PCA as described in Section 3.3.1 to the scaled variables

(β̂GCALasso1
1,1 z

(1)
1 , . . . , β̂GCALasso1

N̂8,8
z
(N̂8)
8 ) and use either the six resulting principal

components or the single predictor factor as additional predictor(s)
end if

else
Use Ẑ(1), . . . , Ẑ(8)to solve minimization problem (15) with λ(j) replaced by λ

(j)
i as

specified in Equation (17) yielding β̂GCALasso2

if Factor = false then

GCALasso2: Use
∑8

j=1

∑N̂j

i=1 β̂
GCALasso2
i,j ẑ

(i)
j as a single predictor

else
FGCALasso2: Apply PCA as described in Section 3.3.1 to the scaled variables

(β̂GCALasso2
1,1 z

(1)
1 , . . . , β̂GCALasso2

N̂8,8
z
(N̂8)
8 ) and use either the six resulting principal

components or the single predictor factor as additional predictor(s)
end if

end if
end if

end if
end if
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Appendix F Bootstrap Procedures

F.1 Bootstrap under the Null Hypothesis

The procedure proposed by Bauer and Hamilton (2018) to robustly test H0 : β2 = 0 in the

predictive regression and to compute the size of conventional tests is a parametric bootstrap

method that generates data under H0. The procedure can be divided into six steps which

are described below. In the first step, the first l = 3 normalized eigenvectors (w1, ..., wl) and

principal components (PC
(1)
t , ..., PC

(l)
t ) corresponding to the variance matrix of the J observed

bond yields it = (i
(n1)
t , .., i

(nJ )
t )′ are computed. The bond yields can be written in terms of the

eigenvectors, principal components and an error term:

it = WJ×lx1t + vt t = 1, ..., T (18)

where WJ×l = (w1, ..., wl), W ′
J×lWJ×l = Il, Il is the l-dimensional identity matrix, x1t =

(PC
(1)
t , ..., PC

(l)
t )′, vt = (v

(n1)
t , ..., v

(nJ )
t )′, and T is equal to the length of the original sample. It

follows that the fitted yields are given by ît = WJ×lx1t. Secondly, a VAR(1) model is estimated

for both x1t and x2t using OLS:

xit = âi0 + Âixi,t−1 + eit i = 1, 2 and t = 1, ..., T (19)

Thirdly, Nb = 5, 000 artificial samples of length T are generated. In each bootstrap sample,

the bootstrap predictors are constructed as

x̃iτ = âi0 + Âix̃i,τ−1 + ẽiτ i = 1, 2 and τ = 1, ..., T + 12 (20)

where x̃i0 = xi0 and (ẽ1τ , ẽ2τ ) are randomly drawn with replacement from the joint distribution

of (e1t, e2t). The bootstrap yields are constructed in such a way that only the factors in x̃1τ

have predictive power and the variance structure of the bootstrap yields is similar to that of the

observed yields:

ĩτ = W
J×l

x̃1τ + ṽτ τ = 1, ..., T + 12 (21)

where ṽτ
iid∼N(0, σ2

vIJ ) and σ2
v = 1

T ·J
∑T

t=1

∑J
j=1

(
v
(nj)
t

)2
. The bootstrap target variable is then

generated under the null hypothesis using the bootstrap yields. If the unweighted average excess

return across bonds with maturities ranging from 2 to k years is used as the dependent variable
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in the application, then the bootstrap dependent variable is constructed as

ỹH0
τ+12 =

1

k − 1

k∑
n=2

r̃x
(12n)
τ+12 =

1

k

k∑
n=2

(
−(12n− 12)̃i

(12n−12)
τ+12 + 12nĩ(12n)τ − 12̃i(12)τ

)
. (22)

Similar to Equation (12), the bootstrap bond excess returns r̃x
(12n)
τ+12 are divided by the number

of years to maturity n before being averaged if the weighted average is used as the dependent

variable in the application. Fourthly, the predictive regression is estimated in each of the Nb

bootstrap samples:

ỹH0
τ+12 = β0 + β1x̃1τ + β2x̃2τ + uτ+12 τ = 1, ..., T (23)

Fifthly, the Nb bootstrap samples generated under the null hypothesis are used to test the

spanning hypothesis. To this end, the bootstrap p-value and critical value corresponding to a

conventional t-test or Wald test for the significance of the coefficients in β2 are computed. The

bootstrap p-value is calculated by

p̃ =
1

Nb

Nb∑
j=1

1{|t̃(j)|>|t|} (24)

where the indicator function 1{x} is equal to 1 if x is true and 0 otherwise, t denotes the

conventional test statistic in the actual data, and t̃(j) denotes the conventional test statistic in

the bootstrap sample j. The bootstrap 5% critical value is given by

c̃v = |t̃|(Nb(1−α)) 0 ≤ α ≤ 1 (25)

where α = 0.05 and |t̃|(j) denote the order statistic of |t̃(j)|, that is, |t̃|(1) ≤ |t̃|(2) ≤ ... ≤ |t̃|(Nb).

Finally, the bootstrap estimate of the size of the conventional test is computed by

s̃ =
1

Nb

Nb∑
j=1

1|t̃(j)|>cv5%
(26)

where cv5% is the conventional 5% critical value of the test. In the case of a t-test, cv5% is

the 5% critical value corresponding to a Student-t distribution with T −K degrees of freedom,

where K is the total number of parameters that are estimated in the predictive regression. In

the case of a Wald test, cv5% is the 5% critical value corresponding to a chi-squared distribution

with K2 degrees of freedom, where K2 is the number of predictors in x2t.
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F.2 Size and Power of Bootstrap Test

In order to calculate the size of the bootstrap test, additional Nb artificial samples are

generated from the original Nb bootstrap samples. Specifically, for each bootstrap sample, steps

2-4 described in Section F.1 are repeated using the bootstrapped data instead of the actual data

and Nb = 1 instead of Nb = 5, 000. The resulting conventional test statistic in the new artificial

sample j is denoted by t∗j . The size of the bootstrap test is then approximated by

sb =
1

Nb

Nb∑
j=1

1{|t̃(j)|>|t∗|(Nb(1−α))} 0 ≤ α ≤ 1 (27)

where α = 0.05 and |t∗|(j) denote the order statistic of |t∗j |, that is, |t∗|(1) ≤ |t∗|(2) ≤ ... ≤ |t∗|(Nb).

To compute the power of the bootstrap test, predictive regression (23) is re-estimated in each

bootstrap sample using a bootstrap dependent variable that is constructed under the alternative

hypothesis:

ỹHa
τ+12 = ỹH0

τ+12 + β̂2x̃2τ . (28)

where β̂2 is the estimated coefficient of β2 in the predictive regression using the actual data.

The resulting test statistic of a t-test or Wald test for the significance of the coefficients in β2

in bootstrap sample j is denoted by t̃
(j)
Ha

. The power of the conventional test and the bootstrap

test are now estimated by respectively

powerc =
1

Nb

Nb∑
j=1

1|t̃(j)Ha
|>cv5%

(29)

powerb =
1

Nb

Nb∑
j=1

1{|t̃(j)Ha
|>|t∗|(Nb(1−α))}

0 ≤ α ≤ 1 (30)

where α = 0.05, and 1{x} and cv5% are defined similarly as in Section F.1.

F.3 Bias-Corrected Bootstrap

In small samples, the autocorrelation of very persistent time series is typically underestimated

by OLS (Pope, 1990). As a result, the estimated VAR(1) models in (19) are typically less

persistent compared to the true data-generating process. To correct for this bias, the bias-

correction method of Kilian (1998) with a bootstrap size of 5,000 is used instead of OLS to

estimate these VAR(1) models for x1t and x2t.
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Appendix G Simulation Study

G.1 Simulation Study without Overlapping Observations

In the basic setting without overlapping observations, I simulate Ns = 10, 000 samples of

size T = 100, estimate the predictive regression yt+1 = β0+β1x1t+β2x2t+ut+1 with t = 1, ..., T

in each simulated sample, and study the small-sample properties of the regression coefficients

and the test of H0 : β2 = 0. Similar to Bauer and Hamilton (2018), the samples are simulated

according to the following data-generating process (DGP):

xit = µi + ρixi,t−1 + ϵit i = 1, 2 t = 1, ..., T + 1 (31)

yt = ϵyt t = 2, ..., T + 1 (32)

where x10 = x20 = 0, ϵ1t = δv3t +
√
1− δ2v1t, ϵ2t = v2t, ϵyt = v3t, and vit

iid∼ N(0, 1) for

i ∈ {1, 2, 3}. Hence, in the DGP it holds that β0 = β1 = β2 = 0 and E(ϵ1tϵ
y
t ) = E(ϵ1tv3t) =

δ. Simulation experiments are conducted for different values µ1, µ2, ρ1, ρ2, and δ. In each

simulation experiment, the correlation between x1t and ϵyt+1, the coefficient and standard error

bias of β̂1 and β̂2, the standard deviation of β̂2, the size of the test of H0 : β2 = 0 for the

conventional OLS t-test and bootstrap test, and the average and standard deviation of the

difference in R2 of the predictive regressions under the alternative hypothesis (R2
2) and the null

hypothesis (R2
1) are computed. The formulas and procedures used to compute these statistics

are given in Section G.2.

G.1.1 No trends

First, I focus on the case in which x1t and x2t do not exhibit a trend. Following Bauer and

Hamilton (2018), I use two specifications for xit in this case, namely the AR(1) specification (31)

with µi = 0 and the the local-to-unity specification proposed by Phillips (1988) and Cavanagh,

Elliott and Stock (1995). The local-to-unity specification is used to investigate the effect of the

sample length on size distortions and is given by

xit =

(
1 +

T (ρi − 1)

Ta

)
xi,t−1 + ϵit i = 1, 2 (33)

where T is the finite sample length and Ta is the asymptotic sample length. The local-to-unity

asymptotic distribution is obtained by letting Ta → ∞ and is used to approximate the finite

sample distribution of the t-statistic for β̂2. The reason to use the local-to-unity asymptotic

distribution is that its small-sample approximations are substantially better than those corres-
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ponding to the conventional first-order asymptotic distribution in the case of near-integrated

processes (Chan, 1988). In accordance with Bauer and Hamilton (2018), I use Ta = 1, 000

because according to Stock (1991) the local-to-unity approximations are accurate even for mod-

erate sample lengths. Bauer and Hamilton (2018) derived that under the null hypothesis the

t-statistic for β̂2 according to the local-to-unity asymptotic distribution is given by

ta ≃ δZ1 +
√
1− δ2Z0 (34)

where Z0 and Z1 are defined and derived in Bauer and Hamilton (2018) .

Table G.1
Simulation results for the basic setting without overlapping returns. In this simulation, 10,000 simulation samples of length
T = 100 are generated according to the data-generating process (DGP) specified in Equations (31) and (32) for different
values of δ, ρi and µi, i = 1, 2. In each simulation sample, the predictive regression yt+1 = β0 + β1x1t + β2x2t + ut+1 is
estimated. The statistics corresponding to the 10,000 regression results are reported in the table. The table reports the
correlation between x1t and ϵyt+1, the coefficient and standard error bias of β̂1 and β̂2, the standard deviation of β̂2, the
size of the test of H0 : β2 = 0 for the conventional OLS t-test and bootstrap test, and the average and standard deviation
of the difference in R2 of the predictive regressions under the alternative hypothesis (R2

2) and the null hypothesis (R2
1) are

computed. The formulas and procedures used to compute these statistics are given in Appendix G.2.

Corr. Coefficient Bias SE bias (%) Std. Size R2
2 −R2

1

ρ1 ρ2 δ (x1t, ϵ
y
t+1) β1 β2 β1 β2 β2 Sim. Asym. Boot. Mean Std.

µ1 = 0, µ2 = 0
0.99 0.99 0.0 -0.001 -0.000 -0.001 -5.5 -5.5 0.041 0.049 0.047 0.047 0.01 0.01
0.00 0.00 1.0 -0.012 -0.012 -0.002 1.9 -1.5 0.103 0.052 0.049 0.048 0.01 0.01
0.99 0.00 1.0 -0.107 -0.042 -0.001 -18.8 -0.9 0.102 0.050 0.053 0.047 0.01 0.01
0.99 0.80 1.0 -0.107 -0.045 0.001 -20.8 -8.1 0.073 0.066 0.068 0.061 0.01 0.02
0.90 0.90 1.0 -0.062 -0.052 -0.000 -14.3 -15.3 0.063 0.086 0.090 0.058 0.01 0.02
0.99 0.99 0.8 -0.108 -0.055 -0.001 -21.5 -22.9 0.050 0.109 0.113 0.068 0.01 0.02
0.99 0.99 1.0 -0.134 -0.068 0.001 -27.7 -29.4 0.054 0.149 0.149 0.080 0.02 0.02
µ1 = 0, µ2 = 1
0.99 0.99 0.0 -0.001 -0.001 0.000 -4.6 -5.9 0.008 0.052 0.050 0.01 0.01
0.00 0.00 1.0 -0.009 -0.009 0.000 2.0 -1.1 0.103 0.050 0.050 0.01 0.01
0.99 0.00 1.0 -0.108 -0.043 0.000 -18.9 0.4 0.101 0.048 0.049 0.01 0.01
0.99 0.80 1.0 -0.108 -0.046 -0.000 -20.7 -8.9 0.068 0.071 0.056 0.01 0.02
0.90 0.90 1.0 -0.061 -0.052 -0.000 -13.5 -16.6 0.047 0.090 0.054 0.01 0.02
0.99 0.99 0.8 -0.108 -0.070 0.000 -17.7 -41.7 0.012 0.180 0.077 0.02 0.02
0.99 0.99 1.0 -0.132 -0.087 -0.000 -23.7 -50.5 0.015 0.267 0.080 0.03 0.03
µ1 = 1, µ2 = 0
0.99 0.99 0.0 -0.001 0.000 0.001 -4.3 -4.5 0.046 0.052 0.048 0.01 0.01
0.00 0.00 1.0 -0.011 -0.011 -0.001 0.9 -0.2 0.102 0.051 0.045 0.01 0.01
0.99 0.00 1.0 -0.019 -0.001 0.001 -3.0 0.6 0.101 0.048 0.048 0.01 0.01
0.99 0.80 1.0 -0.018 -0.001 0.001 -2.5 -1.3 0.069 0.049 0.052 0.01 0.01
0.90 0.90 1.0 -0.047 -0.029 0.001 -10.3 -10.6 0.060 0.072 0.058 0.01 0.02
0.99 0.99 0.8 -0.018 -0.002 -0.001 -6.4 -5.9 0.046 0.049 0.047 0.01 0.01
0.99 0.99 1.0 -0.024 -0.003 0.000 -9.2 -7.1 0.047 0.056 0.048 0.01 0.01
µ1 = 1, µ2 = 1
0.99 0.99 0.0 -0.002 -0.000 0.000 -3.5 -3.3 0.032 0.048 0.047 0.01 0.01
0.00 0.00 1.0 -0.010 -0.010 0.001 -0.1 -1.8 0.103 0.055 0.056 0.01 0.01
0.99 0.00 1.0 -0.020 -0.001 0.001 -1.6 -1.5 0.103 0.054 0.052 0.01 0.01
0.99 0.80 1.0 -0.020 -0.001 0.004 -2.4 -1.1 0.065 0.050 0.050 0.01 0.01
0.90 0.90 1.0 -0.049 -0.038 0.017 -12.3 -12.5 0.050 0.082 0.051 0.01 0.02
0.99 0.99 0.8 -0.019 -0.035 0.035 -12.0 -11.7 0.035 0.162 0.053 0.02 0.02
0.99 0.99 1.0 -0.023 -0.045 0.043 -17.0 -15.8 0.036 0.238 0.058 0.03 0.03

I also simulate Ns = 10, 000 samples of size Ta based on specification (33) and estimate the

corresponding asymptotic t-statistic given in Equation (34) using Rieman sums to approximate

the integrals in Z0 and Z1. The simulation estimate of the size for the conventional t-test

according to the local-to-unity asymptotic distribution is computed using Equation (35) where
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t(q) is replaced by t
(q)
a , which is the value for ta in qth simulated sample.

In the top panel of Table G.1 the simulation results in case of no trends are given for different

values of ρi and δ. From these results, it follows that the true size of the t-test of β2 = 0 according

to the small-sample simulations is very close to the nominal size of 5% if x1t and x2t are either

not autocorrelated (ρi = 0) or strictly exogenous (δ = 0). Even in case x1t is highly persistent

(ρ1 = 0.99), the true size is still equal to 5% if x2t is not serially correlated (ρ2 = 0). However,

if ρi ̸= 0 and δ ̸= 0 the true size is larger than 5% and increases in ρi and δ. For instance, the

true size equals approximately 15% if ρi = 0.99 and δ = 1, which means that in this case H0 is

rejected at a frequency that is about three times larger than it should be.

(a) β̂1 (b) β̂2

Figure G.1
Simulation distibution of β̂1 (on the left) and β̂2 (on the right) for three different scenarios. In this simulation, 10,000
simulation samples of length T = 100 are generated according to the data-generating process (DGP) specified in Equations
(31) and (32) with ρ1 = ρ2 = 0.99 and for different values of δ, µ1 and µ2. In each simulation sample, the predictive

regression yt+1 = β0 + β1x1t + β2x2t + ut+1 is estimated and the resulting β̂1 and β̂2 are included in the density plots.

A similar narrative holds for the coefficient bias in β̂1. If the regressors are either not

autocorrelated or strictly exogenous, then there is no bias in β̂1. Otherwise, β̂1 is biased and the

bias increases in ρi and δ. In contrast, β̂2 remains unbiased. This is also illustrated by Figure

G.1 which plots the simulation distribution of β̂1 and β̂2 in case of µi = 0 and δ = 1 for both

ρi = 0 and ρi = 0.99. The figure shows that both β̂1 and β̂2 are unbiased if ρi = 0, whereas only

β̂2 is unbiased if ρi = 0.99. Therefore, size distortions in the test of β2 = 0 are not caused by

the Stambaugh (1999) coefficient bias, and there must be a different source for these distortions.

Panel A in Table G.1 shows that the standard error bias in β̂2 has a similar pattern as the size

distortions: it is small if either ρi or δ is equal to zero, and it increases in ρi and δ. For example,

if ρi = 0.99 and δ = 1 the average bias in the simulation is equal to about -30%, meaning that

the estimates of the OLS standard errors are on average 30% lower than the standard deviation

47



of the Ns estimated coefficients in the simulation experiment. Thus, the size distortions are

caused by a downward bias in the standard errors and not by a coefficient bias.

The size distortions are decreased when using the bootstrap test. The size of the bootstrap

test is namely quite close to or slightly above 5% in all scenarios. In the worst-case scenario with

ρi = 0.99 and δ = 0, the size of the bootstrap test equals 8.0% compared to a true size according

to the small-sample simulations of 14.9%. In this case, the regressors are very persistent and the

bias-corrected bootstrap method is useful. In fact, using the bias-correction procedure of Kilian

(1998) with only 25 bootstrap replications for each sample can already reduce the bootstrap test

size to 6.2% in this scenario.

The first panel of Table G.1 shows that the estimates of the size according to the local-

to-unity distribution are very similar to the small-sample simulations. Following Bauer and

Hamilton (2018), the true size of the t-test according to the local-to-unity distribution is plotted

for sample lengths from 50 to 1000. The results for δ = 1 and three different values of ρ = ρ1 = ρ2

are given in Figure G.2. If ρ = 1, the true size stays constant at around 17% and is not impacted

by the sample length. In contrast, if ρ ≤ 0 the true size decreases towards 5% when the sample

length increases and this convergence is faster for smaller values of ρ. Hence, the size distortions

decrease with sample size if the regressors do not possess a unit root.

Figure G.2
Simulation estimate of the size of the conventional t-test of H0 : β2 = 0 corresponding to the local-to-unity asymptotic
distribution in the basic setting without overlapping returns for different sample sizes. To calculate this estimate, 100,000
simulation samples of length T = 100 are generated according to the data-generating process (DGP) specified in Equations
(33) and (32) with δ = 1, ci = T (ρi − 1) and ρ = ρ1 = ρ2. The nominal size is equal to 5%.
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G.1.2 Trends

In this section, the small sample effects of trends in the regressors on the size distortions are

explored. If µi ̸= 0 and ρi ≤ 1, xit is a stationary AR(1) process with the tendency to revert

to its unconditional mean equal to µi/(1 − ρi). Since the process is initialized at xi0 = 0 in

the simulations, a trend is induced in the small samples. For example, if µi = 1 and ρi = 0.99

the unconditional mean is equal to 100 and the process tends to rise from 0 to 100. In such a

setting, xit is dominated by a deterministic time trend.

The second panel in Table G.1 shows that the Stambaugh bias in β̂1 and the standard

error bias in β̂2 are exacerbated if µ1 = 0 and µ2 = 1. The larger standard error bias in β̂2

leads to larger size distortions compared to the case in which µ2 = 0. In fact, the true size

according to the small-sample simulations nearly doubles from 14.9% to 26.7% when ρi = 0.99

and δ = 1. In contrast, the size of the bootstrap test seems to be unaffected by the trend in

x2t. Again, the bias-corrected bootstrap is able to decrease the size distortion in the presence

of persistent regressors: its size is equal to 5.6% compared to 8.0% for the simple bootstrap test

when ρi = 0.99 and δ = 1. Since the correlation between x1t and ϵyt+1 is not affected by the

trend in x2t, the larger size distortions in the conventional test can only be explained by the

presence of the trend in x2t.

In contrast, the size distortions nearly disappear if only x1t exhibits a trend. In this case, the

correlation between x1t and ϵyt+1 is relatively close to zero (see Panel C), because the random

error term in the AR(1) process of x1t is dominated a the time trend if ρ1 is close to one. As

a result, the issue of no strict exogeneity underlying the predictive regression is less severe.

However, conclusions change if x2t is also trending. Bauer and Hamilton (2018) show that the

distribution of β̂1 is the same as the distribution of negative β̂2 if µ1 = µ2 = 1. This is illustrated

in Figure G.1. Moreover, this is shown by the mirror images of the coefficient biases and the

roughly equal standard error biases in β̂1 and β̂2 across all cases in Panel D of Table G.1.

From this panel, it also follows that a trend in both x1t and x2t leads to size distortions that

are approximately equal to the size distortions reported in Panel B, even though the standard

error bias in β̂2 is substantially lower. The similar size distortions can be explained by the

fact that in this case there is not only a bias in the standard errors of β̂2 but also a bias in

the coefficient β̂2 itself. This is in accordance with Bauer and Hamilton (2018), who show

that including two trending regressors in the predictive regression leads to spurious results and

distorts the conventional inference. Ultimately, it can be concluded from the last two panels

that the bootstrap test is fairly reliable when x1t exhibits a trend, as all estimates of its size fall

within the range of 4.5% and 6.0%.
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G.2 Statistics for Simulation Study

The estimated coefficient bias is computed as 1
Ns

∑Ns
q=1(β̂

(q)
i −βi) where β̂

(q)
i is the estimated

coefficient for βi in the predictive regression in the qth simulated sample. The standard error

bias is estimated by 1
Ns

∑Ns
q=1

(
se

(q)
i

σ̂(β̂i)

)
−1 where se

(q)
i is the estimated conventional OLS standard

error of β̂
(q)
i and σ̂(β̂i) is the standard deviation of the coefficient estimates for βi across the Ns

simulated samples. Similar to the bootstrap estimate of the size of a test specified in Equation

(26), the simulation estimate of the size for the conventional OLS t-test of H0 : β2 = 0 is given

by:

ŝ =
1

Ns

Ns∑
q=1

1|t(q)|>t(1−α
2
, T−3) (35)

where t(q) is the conventional OLS t-statistic in qth simulated sample, and t(1 − α/2, T − 3)

is the critical value corresponding to a Student-t distribution with T − 3 degrees of freedom

and significance level α. Finally, to calculate the size of the bootstrap test in the simulation

experiments, a modified version of the procedure described in Section F.2 is used. In this

adjusted procedure, described in the next subsection, h is set equal to one in the setting of no

overlapping returns and equal to twelve in the setting of overlapping returns.

G.2.1 Procedure to Calculate the Size of the Bootstrap Test in the Simulation

Experiments

In order to calculate the size of the bootstrap test in the simulation study, additional Ns

artificial samples are generated from the original Ns simulated samples generated under the null

hypothesis. Specifically, the following steps are conducted for each simulated sample j. First,

the following models for x1t, x2t and yt are fitted using OLS:

xit = µ̂i + ρ̂ixi,t−1 + eit i = 1, 2 t = 1, ..., T

yt+h = β̂0 + β̂1x1t + ût+h t = 1, ..., T

Second, the estimated parameters are used to generate one new artificial sample of length T :

x̃iτ = µ̂i + ρ̂ix̃i,τ−1 + ẽi,τ i = 1, 2 τ = 1, ..., T

ỹτ+h =


ρ̂1x̃1τ + ũτ+1 if h = 1

x̃1τ +
1
2

∑τ−1
s=τ−h+1 ũs + ũτ+h if h ≥ 2

τ = 1, ..., T
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where x̃i0 = 0, (ẽ1,τ , ẽ2,τ , ũτ ) are randomly drawn with replacement from the joint distribution

of ((e1,t, e2,t, ût). As a result, the contemporaneous correlation between the residuals in the

simulated data is maintained. Third, the predictive regression on this new artificial sample

ỹτ+h = β0 + β1x̃1τ + β2x̃2τ + uτ+h with τ = 1, ..., T is estimated and the t-statistic t∗q corres-

ponding to a conventional test for the significance of parameter β2 is computed. The t-statistic

is computed using OLS standard errors if h = 1 and using Newey-West standard errors if h ≥ 2.

After repeating the procedure described above for j = 1, ..., Ns, the size of the bootstrap test

in the simulation study can be estimated by

sb =
1

Ns

Ns∑
q=1

1{|t(q)|>|t∗q |(Ns(1−α))} 0 ≤ α ≤ 1 (36)

where α = 0.05, t(q) is the conventional t-statistic in qth simulated sample, and |t∗|(j) denote

the order statistic of |t∗j |, that is, |t∗|(1) ≤ |t∗|(2) ≤ ... ≤ |t∗|(Ns).
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Appendix H Preliminary Empirical Analysis

Table H.1 reports some preliminary statistics for the four published studies and the most

relevant factor extraction methods and indicates for each application over which sample period

the statistics are computed. Firstly, the first-order autocorrelations of x1t and x2t are computed.

These statistics are presented in the second and third columns of the table. The first and

second yield curve PCs are very persistent in all applications with first-order autocorrelations

of around 0.98 and 0.95 respectively. The persistence of the additional predictors varies across

applications. In the case of JPS and CPO, the additional predictors are also very persistent

with autocorrelations of 0.986 and 0.998 for respectively INF and τ . This substantiates the

decision to apply the bias-corrected bootstrap approach in these applications. In the case of

CP, the persistence is substantially lower with first-order autocorrelations of 0.425 and 0.227

for the fourth and fifth yield PC respectively. For the other applications, the persistence of the

additional predictors is also lower compared to JPS and CPO, but it is still considerable.

Table H.1
First-order autocorrelations of the independent variables in the predictive regression, the average of the 11 estimated
coefficients corresponding to a MA(11) model for the fitted residuals of the predictive regression, and the number of
observations for different applications over their earlier samples. The statistics are computed using the original data of the
published studies for the first four applications and using the new extended large macroeconomic data set for the other
applications. If x2t contains more than two variables, which is indicated with the asterisk ∗, the two autocorrelations with
the largest values in absolute terms are reported.

First-order Autocorrelations MA(11) coefficients

(PC
(1)
t , PC

(2)
t , PC

(3)
t ) x2t Average #obs.

Original Sample
JPS (0.974, 0.976, 0.815) (0.91, 0.986) 0.625 276
CPO (0.987, 0.944, 0.773) (0.998) 0.457 470
CP (0.98, 0.94, 0.592) (0.425, 0.227) 0.401 468
LN (0.984, 0.944, 0.600) (0.766, 0.748)* 0.493 516
1964-2007
PCA (0.984, 0.943, 0.574) (0.816) 0.570 516
sPCA (0.984, 0.943, 0.574) (0.92) 0.625 516
FLasso (0.984, 0.943, 0.574) (0.774) 0.582 516
GCALasso1 (0.984, 0.943, 0.574) (0.833) 0.295 516
GCALasso2 (0.984, 0.943, 0.574) (0.846) 0.285 516

As argued in Section 3.5 there are endogeneity issues in all applications, as the yield curve

PCs violate the strict exogeneity condition by construction. Additionally, using annual over-

lapping average excess bond return as dependent variable in the predictive regression leads

to another econometric problem. This is illustrated in the fourth column of Table H.1 which

provides the average of the 11 coefficient estimates of the MA(11) model for the residuals result-

ing from the predictive regression. In accordance with theory, the average value is non-zero in

all applications indicating that the error terms are indeed correlated. Furthermore, given that

the average value of this column is around 0.5, this demonstrates that the choice to generate the

residuals ϵyt according to a MA(11) model with coefficient values equal to 0.5 in the simulations

with overlapping observations is reasonable. Lastly, the fifth column gives the number of obser-
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vations in the considered samples and shows that especially the original sample corresponding

to JPS is relatively small.

Due to the presence of strong trends in the CPO application, I pay special attention to this

application. Figure 13 plots both the yield on a 10-year zero-coupon bond and the measure of

trend inflation used in CPO. It shows that the time series exhibit an upward trend until the early

1980s and a downward trend thereafter. Fitting an AR(1) model for the trend inflation over

the 1985-2016 sample results in ρ̂2 = 0.99 and µ̂2/σ̂2 = 1.8. The drift relative to the standard

deviation of the error term is thus stronger than the value µ2/σ2 = 1 used in the simulation

study. Moreover, the value of the trend inflation in January 1985 is about 5 times larger than

µ̂2/(1−ρ̂2) which implies that the downward drift over 1985-2013 is approximately 4 times larger

in this application than in the simulation study. Therefore, the size distortions are expected to

be relatively large in the CPO application, as the simulation study demonstrated that even in

case of a weaker trend, the size distortions are already substantial.

Figure H.1
10-year bond yield along with the inflation trend as specified by Equation 13
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Appendix I Empirical Analysis for JPS, CPO and CP

I.1 In-Sample Analysis

The in-sample coefficients and statistics according to both the conventional test and boot-

strap test of the additional predictors x2t in the predictive regression corresponding to JPS, CPO

and CP are given in Table I.1. These results are used to formally test the spanning hypothesis.

Some results may slightly differ from the results obtained by Bauer and Hamilton (2018) since

the random seeds used as input for the bootstrap procedures are not always the same.

Table I.1
The in-sample coefficients and statistics of the additional predictors x2t in the predictive regressions corresponding to JPS,
CPO and CP estimated over the original sample and the 1985-2016 sample. The variables used in the predictive regression
for each application are given in Table C.1. The data sets provided by Bauer and Hamilton (2018) are used to estimate the
regressions. Under Wald it reports the statistics corresponding to the test of joint significance of these additional predictors
in case the number of additional predictors in an application is larger than one. The conventional statistics and p-values
are computed using Newey-West standard errors with 18 lags, except for CPO. In CPO, the reverse-regression approach
of Wei and Wright (2011) is used to compute the standard errors. The bias-corrected bootstrap is used in JPS and CPO,
while the simple bootstrap is employed in CP. The conventional size and power are estimated using Equation (26) and (29)
respectively. The bootstrap 5% critical values (c.v.’s) and p-values are computed using Equation (25) and (24). The size
and power of the bootstrap test are approximated using Equations (27) and (30).

Test Stat. 5% c.v. p-value Size Power

Coefficient Conv. Boot. Conv. Boot. Conv. Boot. Conv. Boot.
JPS
1985-2008 GRO -2.200 -2.475 3.263 0.014 0.123 0.217 0.061 0.446 0.201

INF -6.052 -4.265 4.161 0.000 0.045 0.318 0.070 0.979 0.887
Wald 25.152 25.364 0.000 0.052 0.411 0.066 0.986 0.875

1985-2016 GRO -0.429 -0.537 3.137 0.592 0.714 0.196 0.062 0.221 0.066
INF -2.420 -1.798 3.729 0.073 0.327 0.278 0.067 0.786 0.515
Wald 3.350 21.460 0.187 0.555 0.361 0.069 0.820 0.479

CPO
1971-2011 τ -0.962 -6.329 3.572 0.000 0.000 0.423 0.078 0.998 0.979
1985-2016 τ -0.607 -3.708 3.640 0.000 0.043 0.405 0.088 0.988 0.909
CP

1964-2003 PC(4) -16.128 -5.626 2.214 0.000 0.000 0.086 0.049 0.996 0.989

PC(5) -2.038 -0.748 2.194 0.455 0.511 0.081 0.047 0.147 0.104
Wald 31.919 7.920 0.000 0.000 0.103 0.048 0.993 0.983

1985-2016 PC(4) -9.585 -1.460 2.397 0.145 0.221 0.106 0.045 0.484 0.317

PC(5) -9.360 -1.263 2.379 0.207 0.299 0.104 0.047 0.418 0.286
Wald 4.180 9.592 0.124 0.258 0.142 0.047 0.608 0.391

From the top panel of this table, it follows that according to the conventional tests the

additional predictors x2t in JPS are both individually and jointly significant over the 1985-2008

sample. Notably, the p-value of the Wald test, which tests for joint significance of the additional

predictors, is lower than 0.1%. However, as indicated in Section 3.5 and illustrated in Appendix

H, some econometric problems distort the size of these conventional tests. To determine the

magnitude of these size distortions and to robustly test the spanning hypothesis within this

application, the bias-corrected bootstrap is utilized. The bootstrap results expose that the true

sizes of the conventional tests using the Newey-West standard errors with 18 lags are equal to

22-41% instead of the nominal size of 5%. In contrast, the estimated sizes of the bootstrap tests

are slightly above 5%. Furthermore, the bootstrap tests result in much weaker evidence against

the spanning hypothesis than the conventional tests. Namely, the bootstrap p-values indicate
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that the estimated coefficient on GRO lacks significance, even at 10% level, and the coefficient

on INF exhibits marginal significance at 5% level. Furthermore, the p-value corresponding to

the bootstrap Wald test is slightly above 5%. Bauer and Hamilton (2018) also consider the

simple bootstrap in their analysis for JPS. The results for the simple bootstrap are similar to

those for the bias-corrected bootstrap.

The top panel of Table I.2 shows that the adjusted R2 increases from 19% to 38% in the

1985-2008 sample when including GRO and INF to the regression with the three yield PCs as

independent variables. Even though this increase of 19 percentage points is quite substantial,

it is below the upper bound of the bootstrap interval for R2
2 −R2

1 for both the simple and bias-

corrected bootstrap and therefore it does not provide significant evidence against the spanning

hypothesis at 5% level. The fact that even increases of 19 percentage points are not uncom-

mon under the null hypothesis also illustrates the large variability of the adjusted R2 in this

application. Looking at the 1985-2016 sample, it follows that the increase in the adjusted R2

when including x2t is far from being significant and considerably smaller than in the original

JPS sample. The weakening of the evidence against the spanning hypothesis in the later sample

is also visible in Table I.1. In this sample, neither the conventional tests nor the bootstrap tests

result in significant results at 5% level.

Table I.2
In-sample adjusted R2 for the restricted regression model with only x1t (R2

1), the adjusted R2 for the unrestricted regression
model including both x1t and x2t (R2

2), and the difference in adjusted R2 (R2
2 − R2

1) corresponding to JPS, CPO and CP
estimated over the original sample and the 1985-2016 sample. The variables used in the predictive regression for each
application are given in Table C.1. The data sets provided by Bauer and Hamilton (2018) are used to estimate the
regressions. The left half of the table provides the results for the earlier sample periods and the right half of the table
provides the results for the later sample periods. For each application, the first row reports the adjusted R2 statistic in the
corresponding actual data set; the second and third rows report respectively the mean and 95%-quantiles of the statistics
in the 5,000 bootstrap replications under H0.

R2
1 R2

2 R2
1 −R2

2 R2
1 R2

2 R2
1 −R2

2

JPS Original sample, 1985-2008 Later sample, 1985-2016
Data 0.19 0.38 0.19 0.17 0.21 0.04
Bootstrap 0.32 0.38 0.06 0.28 0.33 0.05

(0.10, 0.55) (0.15, 0.60) (-0.00, 0.20) (0.08, 0.49) (0.12, 0.53) (-0.00, 0.17)
BC bootstrap 0.36 0.42 0.06 0.29 0.34 0.05

(0.09, 0.64) (0.14, 0.67) (-0.00, 0.22) (0.06, 0.53) (0.11, 0.57) (-0.00, 0.20)
CPO Original sample, 1971-2007 Later sample, 1985-2016
Data 0.16 0.50 0.33 0.17 0.34 0.17
Bootstrap 0.18 0.25 0.07 0.28 0.34 0.06

(0.03, 0.39) (0.08, 0.44) (-0.00, 0.21) (0.06, 0.52) (0.12, 0.56) (-0.00, 0.23)
CP Original sample, 1964-2003 Later sample, 1985-2016
Data 0.26 0.35 0.09 0.15 0.18 0.03
BC Bootstrap 0.21 0.22 0.01 0.30 0.31 0.01

(0.06, 0.40) (0.06, 0.41) (0.00, 0.02) (0.09, 0.52) (0.11, 0.52) (0.00, 0.05)

Next, I discuss the in-sample results regarding CPO. In this application, the reverse-regression

(RR) delta method of Wei and Wright (2011) is employed to alleviate the econometric problem

related to overlapping returns. Furthermore, the bias-corrected bootstrap is utilized, because

in Appendix H it is established that x2t is very persistent in this application. From the second
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panel of Table I.1 it can be seen that τt is highly significant according to both the conventional

and bootstrap test in the 1971-2011 sample period. Even though the conclusions of the con-

ventional and bootstrap tests are the same, their properties differ substantially. The estimate

of the true size for the conventional test using the reverse regression approach is approximately

equal to 42% whereas the size of the bootstrap test is much closer to 5%.

Table I.3
The in-sample coefficients and statistics of the additional predictors x2t in the alternative predictive regressions correspond-
ing to CPO estimated over the original sample starting in January 1971 and ending in December 2011. In these predictive

regressions, the dependent variable is wrx
(
t+h15), x1t consist of a constant and the first three PCs of the yields with 1

month and 1 to 15 years maturity, and x2t = τt. The regressions are estimated using the data set employed by Bauer and
Hamilton (2018) to revisit the evidence of Cieslak and Povala (2015). Due to the high persistence of τ2, the bias-corrected
bootstrap is used. The table reports the coefficients and statistics for τ in different scenarios. The second column indicates
whether the bootstrap samples are initialized at the first values of the actual sample or the population means implied by
the coefficients of the VAR(1) model estimated from the full sample. Using the notation of Appendix F, it holds that in

the first case x̂i0 = xi0 and in the second case x̂i0 = âi0(IKi
− Âi)

−1 where Ki is the number of variables contained in xit.

The third column specifies the value for h. In case h = 1, wrx
(15)
t+1 is computed using the 1-month Treasury bill interest

rate and the approximation in−1,t+1 ≈ in,t+1. The fourth column indicates which standard errors are used: NW stands
for Newey-West standard errors with 18 lags, RR stands for Reverse-Regression standard errors, and Wh stands for White
standard errors. The conventional size and power are estimated using Equation (26) and (29) respectively. The bootstrap
5% critical values (c.v.’s) and p-values are computed using Equation (25) and (24). The size and power of the bootstrap
test are approximated using Equations (27) and (30).

Stat. 5% c.v. p-value (in %) Size (in %) Power (in %)

x̃i0 h AC Coef. Conv. Boot. Conv. Boot. Conv. Boot. Conv. Boot.
CPO
τ xi0 12 NW -0.962 -7.664 4.507 0.000 0.001 0.535 0.078 1.000 0.979
τ xi0 1 Wh -0.104 -4.063 3.090 0.000 0.002 0.330 0.086 0.327 0.084

τ âi0(IKi
− Âi)

−1 12 RR -0.962 -6.329 2.759 0.000 0.000 0.164 0.078 0.308 0.203

τ âi0(IKi
− Âi)

−1 1 Wh -0.104 -4.063 2.501 0.000 0.001 0.129 0.082 0.124 0.080

To investigate the sources of the enormous size distortion in the conventional test, I closely

follow Bauer and Hamilton (2018) and conduct some additional investigation. The results are

provided in Table I.3. Firstly, the magnitude of the problem related to overlapping returns

is examined. Using the Newey-West standard errors with 18 lags instead of the RR standard

errors leads to an even larger true size of about 54%. It thus follows that the problem related

to the overlapping returns can be mitigated by using RR standard errors. However, the RR

standard errors do not completely solve the issue, as in case of no overlapping returns the

estimate of the true size decreases to 33%. The latter result is obtained by setting h = 1

and computing yt+1 instead of yt+12 using the 1-month Treasury bill interest rate and the

approximation in−1,t+1 ≈ in,t+1. In this case, White standard errors are used in the t-test.

Secondly, the impact of the presence of trends in the predictors is assessed. Removing the

trends in the predictors by initializing the bootstrap samples at the population means according

to the VAR(1) model estimated over the complete sample results in a true size of 16.4%. In

the absence of both overlapping returns and trends, the estimate of the true size reduces even

further to 12.9%. These results show that the enormous size distortions are primarily due to

the presence of trends.

From Table I.1 it follows that in CPO the significance of x2t is also less strong in the 1985-
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2016 sample. In particular, the bootstrap p-value corresponding to the estimated coefficient on

τt is equal to 4.3% and is thus only marginally significant at 5% level. Furthermore, the second

panel of Table I.2 shows that the predictive power of τt beyond the three yield PCs is weaker in

the later sample. The increase in the adjusted R2 is namely smaller and becomes insignificant

in the later sample.

Moving forward, I delve into the analysis for CP. The third panel of Table I.1 shows that

the size distortions are relatively small in this application. This can be explained by the low

persistence of the fourth and fifth yield PCs. In the original sample, the fourth PC is highly

significant and the fifth PC is far from being significant according to both the conventional test

and the bootstrap test. Furthermore, the joint statistical significance of the fourth and fifth PCs

as measured by the Wald test is strong. However, all the significant results in this sample are

insignificant in the later sample. The third panel of Table I.2 also reveals that the additional

predictive power of the fourth and fifth yield PCs is only significant in the earlier sample.

I.2 Out-of-Sample Analysis

The out-of-sample results corresponding to JPS, CPO and CP are given in Table I.4. As

discussed in Section 3.6, Bauer and Hamilton (2018) use the three yield PCs that are estimated

over the full sample, including the out-of-sample period, to calculate out-of-sample forecasts.

This leads to a look-ahead bias. To correct for this look-ahead bias, I recursively estimate the

three yield PCs based on information that is available in month t to calculate the out-of-sample

forecast for the excess bond return in month t + 12. Consequently, the results in the table

slightly deviate from the out-of-sample results obtained by Bauer and Hamilton (2018). The

table shows that even though including the additional predictors x2t in the original in-sample

predictive regressions improves the mean squared error (MSE), it deteriorates the out-of-sample

MSE.. The deterioration of the prediction error is significant at 10% level according to the DM

test in the three applications and even strongly significant in the case of JPS and CPO.

Table I.4
In-sample and out-of-sample performance of the predictive regressions corresponding to JPS, CPO and CP. The variables
used in the predictive regression for each application are given in Table C.1. The in-sample period is the original sample
period that is employed in each study. The out-of-sample period starts one month later than the end of the in-sample
period and ends in December 2016. To generate the out-of-sample forecasts, expanding window estimation is used. The
table reports the start of the in-sample and out-of-sample period in each application. It also reports the adjusted R2 for
the restricted model with the three yield PCs as predictors (R2

1) and the adjusted R2 for the unrestricted model including
both the three yield PCs and the additional predictors (R2

2). Under MSE ratio and p-value the table reports respectively
the mean-squared errors for the unrestricted model relative to the mean-squared errors for the restricted model and the
p-values of the Diebold-Mariano test for equal prediction accuracy of the two models.

In-sample Out-of-sample

Start R2
1 R2

2 MSE ratio Start MSE ratio DM p-value
JPS 198501 0.189 0.380 0.758 200801 2.213 0.005
CPO 197111 0.165 0.495 0.603 201101 3.285 0.005
CP 196401 0.255 0.344 0.877 200301 1.218 0.095
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Appendix J Additional In-Sample Results

J.1 Additional Results for LN

Table J.1
The in-sample coefficients and statistics of the additional predictors x2t in the predictive regressions corresponding to

LN estimated estimated over the 1985-2016 sample. In each regression, the dependent variable is rx
(5)
t+12, x1t consists of a

constant and the first three yield curve PCs, and x2t contains the first eight PCs extracted from the extended macroeconomic
data set. Under Wald the table reports the statistics corresponding to the test of joint significance of the eight macro
PCs. The conventional statistics and p-values are computed using Newey-West standard errors with 18 lags. The simple
bootstrap procedure is employed. The conventional size and power are estimated using Equation (26) and (29) respectively.
The bootstrap 5% critical values (c.v.’s) and p-values are computed using Equation (25) and (24) respectively. The size
and power of the bootstrap test are approximated using Equations (27) and (30).

Stat. 5% c.v. p-value (in %) Size (in %) Power (in %)

Coef. Conv. Boot. Conv. Boot. Conv. Boot. Conv. Boot.
1985-2016

f1 0.955 2.528 3.047 0.012 0.094 0.182 0.056 0.842 0.641
f2 0.439 2.092 3.078 0.037 0.163 0.187 0.054 0.654 0.407
f3 -0.389 -1.035 3.259 0.301 0.491 0.203 0.056 0.392 0.161
f4 0.281 1.267 2.901 0.206 0.356 0.164 0.056 0.381 0.192
f5 -0.083 -0.320 2.899 0.749 0.813 0.165 0.053 0.195 0.066
f6 -0.164 -1.341 2.293 0.181 0.252 0.092 0.046 0.309 0.231
f7 -0.221 -0.742 2.810 0.458 0.586 0.153 0.051 0.308 0.141
f8 -0.303 -0.955 2.662 0.340 0.467 0.138 0.049 0.469 0.272

Wald 23.071 41.642 0.003 0.259 0.500 0.059 0.947 0.549
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J.2 Additional Results for Factor Extraction Methods

Table J.2
The in-sample coefficients and statistics of the additional predictors x2t in the predictive regressions corresponding to all

factor extraction applications estimated over the 1985-2016 sample. In each regression, the dependent variable is rx
(5)
t+12,

x1t consists of a constant and the first three yield curve PCs, and x2t is the single predictor factor extracted from the
extended large macroeconomic data set using the factor extraction methods. The conventional statistics and p-values are
computed using Newey-West standard errors with 18 lags. The simple bootstrap procedure is used. The conventional size
and power are estimated using Equation (26) and (29) respectively. The bootstrap 5% critical values (c.v.’s) and p-values
are computed using Equation (25) and (24) respectively. The size and power of the bootstrap test are approximated using
Equations (27) and (30).

Test Stat. 5% c.v. p-value Size

Coefficient Conv. Bootstrap Conv. Bootstrap Conv. Bootstrap
No lags
1964-2007 PCA 0.675 2.984 2.516 0.003 0.023 0.118 0.055

sPCA 0.705 3.130 2.700 0.002 0.026 0.142 0.049
FLasso 0.635 2.746 2.418 0.006 0.028 0.108 0.052
FALasso 0.846 5.806 2.627 0.000 0.000 0.133 0.053
FCLasso 0.912 4.973 2.301 0.000 0.000 0.098 0.041
FCALasso 0.782 3.915 2.625 0.000 0.004 0.136 0.053
FGCALasso1 0.864 4.716 2.569 0.000 0.001 0.124 0.054
FGCALasso2 0.822 4.194 2.483 0.000 0.002 0.111 0.058
Lasso 4.336 8.130 2.476 0.000 0.000 0.118 0.050
ALasso 4.205 9.879 2.451 0.000 0.000 0.111 0.046
CLasso 5.938 6.617 2.320 0.000 0.000 0.095 0.051
CALasso 4.402 9.087 2.452 0.000 0.000 0.108 0.052
GCALasso1 4.072 10.679 2.444 0.000 0.000 0.108 0.049
GCALasso2 4.043 9.789 2.463 0.000 0.000 0.121 0.045

1985-2022 PCA 1.171 2.818 2.652 0.005 0.040 0.132 0.052
sPCA 0.909 3.462 2.344 0.001 0.005 0.101 0.057
FLasso 0.790 3.407 2.362 0.001 0.003 0.096 0.051
FALasso 0.794 3.414 2.295 0.001 0.005 0.092 0.046
FCLasso 1.068 3.200 2.257 0.001 0.007 0.086 0.046
FCALasso 1.056 3.633 2.320 0.000 0.004 0.094 0.050
FGCALasso1 0.480 0.911 2.785 0.363 0.494 0.152 0.051
FGCALasso2 0.500 1.157 2.719 0.248 0.376 0.144 0.057
Lasso 4.212 5.137 2.394 0.000 0.000 0.103 0.050
ALasso 4.115 3.240 2.414 0.001 0.013 0.106 0.046
CLasso 8.648 3.735 2.900 0.000 0.017 0.176 0.055
CALasso 7.879 4.021 2.900 0.000 0.010 0.163 0.057
GCALasso1 3.121 8.417 2.795 0.000 0.000 0.151 0.055
GCALasso2 3.114 7.781 2.867 0.000 0.000 0.163 0.056

6 lags
1964-2007 PCA 0.723 2.981 2.953 0.003 0.048 0.187 0.056

sPCA 0.748 3.860 2.986 0.000 0.015 0.180 0.048
FLasso 0.833 5.590 2.497 0.000 0.000 0.126 0.044
FALasso 0.714 3.611 2.423 0.000 0.004 0.108 0.053
FCLasso 0.926 5.748 2.454 0.000 0.000 0.113 0.050
FCALasso 1.036 6.421 2.492 0.000 0.000 0.121 0.048
FGCALasso1 0.746 3.259 2.505 0.001 0.012 0.116 0.054
FGCALasso2 0.447 1.406 2.583 0.160 0.284 0.136 0.046
Lasso 4.900 5.109 2.713 0.000 0.001 0.151 0.058
ALasso 4.554 11.053 2.598 0.000 0.000 0.129 0.047
CLasso 6.631 6.927 2.578 0.000 0.000 0.128 0.052
CALasso 5.013 8.106 2.601 0.000 0.000 0.130 0.054
GCALasso1 4.274 13.360 2.597 0.000 0.000 0.124 0.056
GCALasso2 4.248 12.653 2.511 0.000 0.000 0.128 0.049

1985-2022 PCA 1.213 3.373 2.988 0.001 0.029 0.179 0.059
sPCA 0.891 3.436 3.144 0.001 0.031 0.204 0.062
FLasso 0.630 3.746 3.291 0.000 0.033 0.210 0.048
FALasso 0.853 3.631 2.550 0.000 0.007 0.126 0.048
FCLasso 1.300 2.984 2.666 0.003 0.028 0.136 0.049
FCALasso 1.063 4.199 2.416 0.000 0.001 0.109 0.052
FGCALasso1 0.827 3.008 2.545 0.003 0.022 0.123 0.056
FGCALasso2 0.680 2.826 2.677 0.005 0.038 0.132 0.054
Lasso 4.817 8.346 2.727 0.000 0.000 0.144 0.047
ALasso 3.980 8.033 2.662 0.000 0.000 0.140 0.046
CLasso 14.419 4.058 2.948 0.000 0.011 0.172 0.053
CALasso 14.184 4.541 2.719 0.000 0.002 0.147 0.049
GCALasso1 3.525 9.202 3.031 0.000 0.000 0.184 0.056
GCALasso2 3.069 15.338 3.115 0.000 0.000 0.202 0.060
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Table J.3
In-sample adjusted R2 for the restricted regression model with only x1t (R2

1), the adjusted R2 for the unrestricted regression
model including both x1t and x2t (R2

2), and the difference in adjusted R2 (R2
2 − R2

1) corresponding to the relevant factor
extraction applications estimated over the samples 1964-2007 and 1985-2022. In each regression model, the dependent

variable is rx
(5)
t+12, x1t consists of a constant and the first three yield curve PCs, and x2t is the single predictor factor

extracted from the extended macroeconomic data set with lagged values. No winsorization is applied when extracting the
additional predictors. The left half of the table provides the results for the earlier sample periods and the right half of the
table provides the results for the later sample periods. For each application, the first row reports the adjusted R2 statistic
in the corresponding actual data set; the second and third rows report respectively the mean and 95%-quantiles of the
statistics in the 5,000 bootstrap replications under H0.

R2
1 R2

2 R2
1 −R2

2 R2
1 R2

2 R2
1 −R2

2

FEM, 6 lags Earlier sample, 1964-2007 Later sample, 1985-2022
PCA Data 0.25 0.33 0.07 0.16 0.24 0.08

Bootstrap 0.20 0.22 0.02 0.32 0.33 0.01
(0.05, 0.39) (0.07, 0.41) (-0.00, 0.10) (0.12, 0.53) (0.13, 0.54) (-0.00, 0.07)

sPCA Data 0.25 0.34 0.08 0.16 0.23 0.07
Bootstrap 0.20 0.22 0.02 0.32 0.34 0.02

(0.05, 0.39) (0.07, 0.41) (-0.00, 0.11) (0.12, 0.52) (0.13, 0.54) (-0.00, 0.10)
FLasso Data 0.25 0.40 0.14 0.16 0.18 0.03

Bootstrap 0.20 0.22 0.01 0.32 0.33 0.01
(0.05, 0.39) (0.06, 0.40) (-0.00, 0.06) (0.12, 0.53) (0.13, 0.53) (-0.00, 0.06)

GCALasso1 Data 0.25 0.76 0.51 0.16 0.52 0.37
Bootstrap 0.20 0.22 0.01 0.32 0.34 0.02

(0.06, 0.39) (0.06, 0.40) (-0.00, 0.06) (0.12, 0.52) (0.14, 0.54) (-0.00, 0.10)
GCALasso2 Data 0.25 0.72 0.47 0.16 0.74 0.58

Bootstrap 0.20 0.22 0.01 0.32 0.34 0.02
(0.05, 0.39) (0.06, 0.40) (-0.00, 0.06) (0.12, 0.53) (0.14, 0.54) (-0.00, 0.10)
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J.3 Additional In-Sample Plot

(a) Restricted model with only the three yield PCs (b) Model with the three PCs and GCALasso2 factor

Figure J.1

In-sample forecasts for rx
(5)
t+12 resulting from the restricted forecast model with only the three yield curve PCs as

predictors (on the left) and the unrestricted model with the three yield curve PCs and the GCALasso2 factor as predictors
(on the right) along with the actual excess bond returns over the 1985-2022 sample. The GCALasso2 factor is extracted
from the large macroeconomic data set that also includes the six lagged values of the macroeconomic variables. The
adjusted R2 for the restricted regression model is equal to 0.25 and the adjusted R2 for the unrestricted regression model
is equal to 0.72.
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J.4 Economic Interpretation

J.4.1 GCALasso2 Factor and Individual Macroeconomic Variables, 1964-2007

Figure J.2
Marginal R2 statistics for the regressions of the in-sample GCALasso2 predictor factor on each variable in the large macroe-
conomic data set. The macroeconomic variables are given on the y-axis and are represented by their ID’s. The description
of each variable can be found in Table B.1 in Appendix B. The GCALasso2 factor is constructed for the period from January
1964 to December 2007 using the large macroeconomic data set with lagged values.
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J.4.2 GCALasso2 Factor and Individual Macroeconomic Variables, 1985-2022

Figure J.3
Marginal R2 statistics for the regressions of the in-sample GCALasso2 predictor factor on each variable in the large macroe-
conomic data set. The macroeconomic variables are given on the y-axis and are represented by their ID’s. The description
of each variable can be found in Table B.1 in Appendix B. The GCALasso2 factor is constructed for the period from January
1985 to December 2022 using the large macroeconomic data set with lagged values.

63



Appendix K Additional Out-of-Sample Results

K.1 Out-of-Sample Plots for JPS, CPO, CP, LN

(a) JPS (b) CPO

(c) CP (d) LN

Figure K.1
Out-of-sample forecasts for average excess bond returns resulting from the restricted forecast model with only the three
yield curve PCs as predictors and forecasts of the unrestricted model with the three yield curve PCs and additional
predictors as proposed in JPS (a), CPO (b), CP (c), and LN (d). The data sets provided by Bauer and Hamilton (2018)
are used to estimate the models for JPS, CPO and CP. The extended data sets are used to estimate the models for LN.

The target variable also differs across the applications. It is equal to rx
(10)
t+12 for JPS, wrx

(15)
t+12 for CPO, and rx

(5)
t+12 for

CP and LN. Expanding window estimation is used to construct the forecasts. The initial training window is the original
sample used in each study. The out-of-sample period starts in the first month after the end of the initial training window
and ends in December 2016 for JPS, CPO and CP. For LN, the out-of-sample period ends in December 2022.
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K.2 Additional Results for the Factor Extraction Methods

Table K.1
Out-of-sample predictive power for rx

(5)
t+12 of a restricted model with the three yield curve PCs and an unrestricted model

with additional predictors corresponding to all the relevant factor extraction methods in different scenarios. The results are
shown for the scenarios in which no winsorization, input winsorization or output winsorization is applied. Furthermore, in
case winsorization is applied, the results are also shown for the scenarios in which the factors are extracted from the large
macroeconomic data set with lagged values. The additional predictors x2t for the PCA, sPCA, FLasso, FALasso, FCLasso,
FCALasso, FGCALasso1 and FGCALasso2 methods are either the six factors or the single predictor factor resulting from
these methods. Since the other methods only produce a single predictor factor, the additional predictor x2t for these
methods is the factor resulting from each of these two methods. The in-sample period starts in January 1964 and ends in
December 2007. The out-of-sample period starts one month later than the end of the in-sample period and ends in either
December 2016 or December 2022. To generate the out-of-sample forecasts, expanding window estimation is used. Under
MSE ratio and p-value the table reports respectively the mean-squared errors for the unrestricted model relative to the
mean-squared errors for the restricted model and the p-values of the Diebold-Mariano test for equal prediction accuracy of
the two models.

Individual Factors Single Joint Factor

End: 2016 End: 2022 End: 2016 End: 2022

MSE ratio p-value MSE ratio p-value MSE ratio p-value MSE ratio p-value
No winsorization and no lags
PCA 0.753 0.171 1.098 0.786 0.776 0.231 1.431 0.526
sPCA 0.821 0.389 1.444 0.486 0.809 0.664 1.047 0.891
FLasso 0.861 0.620 1.250 0.562 0.894 0.742 1.329 0.489
FALasso 0.710 0.453 1.056 0.868 0.783 0.555 1.118 0.719
FCLasso 0.740 0.408 1.295 0.587 0.846 0.712 1.461 0.476
FCALasso 0.768 0.462 1.675 0.421 0.889 0.717 1.474 0.441
FGCALasso1 0.865 0.567 1.572 0.432 0.824 0.327 1.467 0.468
FGCALasso2 0.788 0.547 1.652 0.459 0.915 0.749 1.519 0.421
Lasso 1.224 0.661 1.647 0.265
ALasso 1.151 0.767 1.506 0.261
CLasso 0.798 0.530 1.161 0.675
CALasso 1.164 0.579 1.596 0.299
GCALasso1 1.333 0.167 1.909 0.166
GCALasso2 1.442 0.225 2.021 0.194
Input winsorization and no lags
PCA 0.584 0.054 0.656 0.024 0.617 0.062 0.647 0.018
sPCA 0.701 0.083 0.733 0.058 0.523 0.113 0.618 0.061
FLasso 0.466 0.109 0.600 0.061 0.579 0.124 0.690 0.073
FALasso 0.491 0.138 0.627 0.085 0.630 0.151 0.724 0.079
FCLasso 0.518 0.145 0.675 0.143 0.521 0.108 0.645 0.076
FCALasso 0.547 0.112 0.685 0.103 0.596 0.129 0.695 0.081
FGCALasso1 0.666 0.133 0.736 0.100 0.644 0.111 0.734 0.090
FGCALasso2 0.641 0.078 0.744 0.107 0.629 0.106 0.689 0.043
Lasso 0.956 0.786 0.919 0.592
ALasso 0.859 0.533 0.900 0.564
CLasso 0.520 0.119 0.652 0.098
CALasso 0.854 0.375 0.879 0.422
GCALasso1 1.256 0.188 1.108 0.521
GCALasso2 1.364 0.169 1.168 0.386
Output winsorization and no lags
PCA 0.560 0.073 0.643 0.030 0.572 0.051 0.673 0.037
sPCA 0.577 0.069 0.671 0.041 0.438 0.130 0.609 0.086
FLasso 0.527 0.059 0.652 0.037 0.527 0.039 0.702 0.058
FALasso 0.495 0.183 0.641 0.118 0.676 0.390 0.840 0.465
FCLasso 0.519 0.158 0.681 0.153 0.475 0.128 0.654 0.109
FCALasso 0.540 0.190 0.747 0.283 0.591 0.135 0.758 0.178
FGCALasso1 0.595 0.134 0.716 0.112 0.714 0.173 0.809 0.167
FGCALasso2 0.517 0.128 0.712 0.200 0.619 0.085 0.759 0.103
Lasso 0.786 0.345 0.880 0.455
ALasso 0.834 0.650 0.974 0.909
CLasso 0.515 0.121 0.697 0.139
CALasso 0.812 0.316 0.842 0.294
GCALasso1 1.152 0.521 1.173 0.303
GCALasso2 1.145 0.581 1.103 0.546

Continued on next page
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Continued from previous page

Individual Factors Single Joint Factor

End: 2016 End: 2022 End: 2016 End: 2022

MSE ratio p-value MSE ratio p-value MSE ratio p-value MSE ratio p-value
Input winsorization and 6 lags
PCA 0.555 0.089 0.609 0.042 0.572 0.086 0.609 0.024
sPCA 0.753 0.132 0.748 0.039 0.566 0.192 0.620 0.074
FLasso 0.544 0.240 0.653 0.134 0.510 0.286 0.657 0.192
FALasso 0.638 0.176 0.722 0.107 0.625 0.105 0.746 0.080
FCLasso 0.742 0.583 0.783 0.428 0.615 0.303 0.677 0.144
FCALasso 0.690 0.271 0.736 0.149 0.521 0.212 0.625 0.101
FGCALasso1 0.682 0.367 0.767 0.291 0.559 0.267 0.643 0.131
FGCALasso2 0.645 0.332 0.732 0.233 0.459 0.211 0.584 0.104
Lasso 0.558 0.392 0.667 0.259
ALasso 0.967 0.951 0.920 0.806
CLasso 0.563 0.350 0.658 0.218
CALasso 1.150 0.738 1.012 0.967
GCALasso1 1.110 0.754 1.014 0.950
GCALasso2 0.927 0.858 0.876 0.614
Output winsorization and 6 lags
PCA 0.541 0.087 0.610 0.029 0.525 0.078 0.617 0.035
sPCA 0.597 0.118 0.711 0.080 0.453 0.253 0.601 0.160
FLasso 0.433 0.142 0.645 0.127 0.297 0.142 0.581 0.150
FALasso 0.581 0.093 0.745 0.106 0.573 0.121 0.752 0.151
FCLasso 0.538 0.262 0.661 0.168 0.496 0.217 0.655 0.151
FCALasso 0.523 0.195 0.661 0.133 0.488 0.158 0.643 0.102
FGCALasso1 0.738 0.221 0.775 0.123 0.664 0.102 0.717 0.031
FGCALasso2 0.825 0.455 0.923 0.604 0.682 0.144 0.778 0.089
Lasso 0.318 0.189 0.566 0.161
ALasso 0.588 0.304 0.772 0.347
CLasso 0.391 0.136 0.569 0.083
CALasso 0.404 0.155 0.593 0.106
GCALasso1 1.004 0.986 0.922 0.619
GCALasso2 1.021 0.957 0.973 0.906
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K.3 Economic Interpretation

K.3.1 PCA Factor and Individual Macroeconomic Variables, 2007-2021

Figure K.2
Marginal R2 statistics for the regressions of the out-of-sample PCA single predictor factor on each variable in the large
macroeconomic data set. The macroeconomic variables are given on the y-axis and are represented by their ID’s. The
description of each variable can be found in Table B.1 in Appendix B. The PCA factor is calculated for the period from
January 2007 to December 2021 using expanding window estimation. The training windows start in January 1964. Output
winsorization is applied recursively.
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K.3.2 GCALasso2 Factor and Individual Macroeconomic Variables, 2007-2021

Figure K.3
Marginal R2 statistics for the regressions of the out-of-sample GCALasso2 predictor factor on each variable in the large
macroeconomic data set. The macroeconomic variables are given on the y-axis and are represented by their ID’s. The
description of each variable can be found in Table B.1 in Appendix B. The GCALasso2 factor is extracted from the large
data set containing the macroeconomic variables and their six lagged values and is calculated for the period 2007-2021 using
expanding window estimation. The training windows start in January 1964. Output winsorization is applied recursively
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K.4 Robustness Checks

In this section, I investigate the sensitivity of the out-of-sample results with respect to the

number of predictor factors and the winsorization thresholds. In the sensitivity analysis, I focus

on the most relevant factor extraction methods, namely the PCA, sPCA, FLasso, GCALasso1

and GCALasso2 methods. Since adding lagged values to the large macroeconomic data set

generally leads to better results for the GCALasso1 and GCALasso2 methods, the predictor

factors corresponding to these methods are extracted from the data set with lagged values.

The predictor factors corresponding to the other three methods are extracted from the large

macroeconomic data set without lagged values. Furthermore, I ignore the case in which no

winsorization is applied, as it has been shown that winsorization helps to substantially improve

the out-of-sample results.

Following D. Huang et al. (2023), six factors are extracted with the methods involving PCA.

However, one may be concerned that the results are dependent on this particular choice. To

investigate this, I also generate the results for the cases in which four, five, seven or eight factors

are extracted instead of six. The corresponding results for the PCA, sPCA and FLasso methods

are given in Table K.2. In general, the performance of the methods is quite similar if alternative

numbers of factors are extracted. However, the evidence that the unrestricted forecasting model

outperforms the restricted one is slightly weaker when extracting seven or eight factors. For

the sPCA method, performance improves when the number of factors decreases. In the case

of four factors, the reduction in MSE is considerably larger for the sPCA method than for the

PCA method in all scenarios, but the reduction is not significant at 10% level in all scenarios

for the sPCA method while it is for the PCA method. The PCA method thus leads to the most

consistent results in terms of significance.

Following Bottmer et al. (2022), I applied 90% winsorization in the empirical analysis. To

test the robustness of the results with respect to this decision, I also consider 80%, 95% and

99% winsorization. The results for the PCA, sPCA, FLasso, GCALasso1 and GCALasso2

methods are given in Table K.3. The performance of the methods slightly improves when

the winsorization thresholds are smaller, but overall the performance is comparable across the

different winsorization intervals. With two exceptions in the case of 99% winsorization, the

PCA method leads to significant improvements at 10% level in all scenarios. Adding either the

GCALasso1 or GCALasso2 factor to the restricted forecasting model leads to worse forecasts in

all scenarios. Overall, it can be concluded that using the alternative winsorization thresholds

leads to similar conclusions.
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Table K.2
Out-of-sample predictive power for rx

(5)
t+12 of a restricted model with the three yield curve PCs and an unrestricted model

with both the three yield PCs and either multiple individual factors or the single predictor factor resulting from the relevant
factor extraction methods for different scenarios. The results are shown for the scenarios in which four, five, six, seven or
eight factors are extracted and either input winsorization or output winsorization is applied. The in-sample period starts in
January 1964 and ends in December 2007. The out-of-sample period starts one month later than the end of the in-sample
period and ends in either December 2016 or December 2022. To generate the out-of-sample forecasts, expanding window
estimation is used. Under MSE ratio and p-value the table reports respectively the mean-squared errors for the unrestricted
model relative to the mean-squared errors for the restricted model and the p-values of the Diebold-Mariano test for equal
prediction accuracy of the two models.

Individual Factors Single Joint Factor

End: 2016 End: 2022 End: 2016 End: 2022

MSE ratio p-value MSE ratio p-value MSE ratio p-value MSE ratio p-value
4 factors
Input winsorization
PCA 0.586 0.073 0.654 0.029 0.627 0.055 0.651 0.015
sPCA 0.502 0.087 0.596 0.035 0.535 0.100 0.589 0.031
FLasso 0.548 0.109 0.647 0.051 0.713 0.160 0.765 0.074
Output winsorization
PCA 0.546 0.067 0.621 0.022 0.559 0.046 0.645 0.020
sPCA 0.422 0.108 0.553 0.048 0.443 0.101 0.577 0.052
FLasso 0.568 0.066 0.692 0.043 0.640 0.114 0.802 0.200
5 factors
Input winsorization
PCA 0.580 0.057 0.656 0.025 0.625 0.064 0.654 0.018
sPCA 0.581 0.067 0.639 0.026 0.515 0.120 0.578 0.039
FLasso 0.508 0.116 0.654 0.075 0.611 0.116 0.742 0.097
Output winsorization
PCA 0.553 0.069 0.629 0.024 0.570 0.046 0.658 0.029
sPCA 0.576 0.075 0.681 0.043 0.415 0.110 0.586 0.069
FLasso 0.561 0.077 0.680 0.048 0.651 0.121 0.791 0.173
6 factors
Input winsorization
PCA 0.584 0.054 0.656 0.024 0.617 0.062 0.647 0.018
sPCA 0.701 0.083 0.733 0.058 0.523 0.113 0.618 0.061
FLasso 0.466 0.109 0.600 0.061 0.579 0.124 0.690 0.073
Input winsorization
PCA 0.560 0.073 0.643 0.030 0.572 0.051 0.673 0.037
sPCA 0.577 0.069 0.671 0.041 0.438 0.130 0.609 0.086
FLasso 0.527 0.059 0.652 0.037 0.527 0.039 0.702 0.058
7 factors
Input winsorization
PCA 0.636 0.104 0.688 0.050 0.651 0.154 0.669 0.051
sPCA 0.720 0.116 0.752 0.072 0.538 0.131 0.632 0.074
FLasso 0.532 0.116 0.660 0.089 0.648 0.170 0.758 0.150
Output winsorization
PCA 0.557 0.085 0.630 0.033 0.564 0.088 0.631 0.037
sPCA 0.562 0.072 0.664 0.038 0.416 0.142 0.585 0.086
FLasso 0.532 0.135 0.687 0.115 0.549 0.126 0.735 0.163
8 factors
Input winsorization
PCA 0.612 0.106 0.675 0.052 0.640 0.152 0.661 0.050
sPCA 0.763 0.162 0.772 0.058 0.536 0.136 0.624 0.061
FLasso 0.555 0.176 0.692 0.156 0.647 0.243 0.775 0.241
Output winsorization
PCA 0.555 0.085 0.624 0.036 0.567 0.093 0.655 0.051
sPCA 0.540 0.081 0.645 0.039 0.377 0.151 0.563 0.097
FLasso 0.517 0.134 0.693 0.135 0.504 0.139 0.753 0.259
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Table K.3
Out-of-sample predictive power for rx

(5)
t+12 of a restricted model with the three yield curve PCs and an unrestricted model

with additional predictors corresponding to the relevant factor extraction methods in different scenarios. The results are
shown for the scenarios in which 80%, 90%, 95% or 99% winsorization is applied. The additional predictors x2t for the
LN application are either the eight macro PCs or a single predictor factor which is the fitted value of the regression of

rx
(5)
t+12 on the eight macro PCs. The additional predictors x2t for the PCA, sPCA and FLasso methods are either the six

factors or the single predictor factor resulting from these methods. Since the GCALasso1 and GCALasso2 methods only
produce a single predictor factor, the additional predictor x2t for these methods is the factor resulting from each of these
two methods. The in-sample period starts in January 1964 and ends in December 2007. The out-of-sample period starts
one month later than the end of the in-sample period and ends in either December 2016 or December 2022. To generate the
out-of-sample forecasts, expanding window estimation is used. Under MSE ratio and p-value the table reports respectively
the mean-squared errors for the unrestricted model relative to the mean-squared errors for the restricted model and the
p-values of the Diebold-Mariano test for equal prediction accuracy of the two models. The p-values that are lower than 5%
are highlighted in bold.

Individual Factors Single Joint Factor

End: 2016 End: 2022 End: 2016 End: 2022

MSE ratio p-value MSE ratio p-value MSE ratio p-value MSE ratio p-value
80% winsorization
Input winsorization
PCA 0.576 0.083 0.655 0.038 0.647 0.088 0.666 0.027
sPCA 0.661 0.099 0.714 0.062 0.517 0.104 0.620 0.065
FLasso 0.549 0.141 0.653 0.083 0.604 0.131 0.715 0.092
GCALasso1 1.256 0.272 1.148 0.332
GCALasso2 1.222 0.320 1.120 0.408
Output winsorization
PCA 0.547 0.085 0.624 0.032 0.623 0.076 0.701 0.044
sPCA 0.549 0.064 0.641 0.034 0.472 0.172 0.636 0.120
FLasso 0.480 0.072 0.631 0.047 0.493 0.083 0.676 0.082
GCALasso1 1.067 0.681 1.116 0.381
GCALasso2 1.156 0.539 1.156 0.354
90% winsorization
Input winsorization
PCA 0.584 0.054 0.656 0.024 0.617 0.062 0.647 0.018
sPCA 0.701 0.083 0.733 0.058 0.523 0.113 0.618 0.061
FLasso 0.466 0.109 0.600 0.061 0.579 0.124 0.690 0.073
GCALasso1 1.256 0.188 1.108 0.521
GCALasso2 1.364 0.169 1.168 0.386
Output winsorization
PCA 0.560 0.073 0.643 0.030 0.572 0.051 0.673 0.037
sPCA 0.577 0.069 0.671 0.041 0.438 0.130 0.609 0.086
FLasso 0.527 0.059 0.652 0.037 0.527 0.039 0.702 0.058
GCALasso1 1.152 0.521 1.173 0.303
GCALasso2 1.145 0.581 1.103 0.546
95% winsorization
Input winsorization
PCA 0.607 0.049 0.677 0.023 0.629 0.057 0.660 0.016
sPCA 0.724 0.078 0.743 0.049 0.547 0.163 0.625 0.073
FLasso 0.626 0.070 0.746 0.068 0.699 0.154 0.782 0.107
GCALasso1 1.138 0.144 1.057 0.686
GCALasso2 1.236 0.212 1.133 0.416
Output winsorization
PCA 0.595 0.064 0.678 0.030 0.568 0.045 0.683 0.043
sPCA 0.620 0.081 0.706 0.051 0.464 0.134 0.627 0.089
FLasso 0.576 0.093 0.691 0.063 0.521 0.106 0.697 0.106
GCALasso1 1.128 0.501 1.121 0.361
GCALasso2 1.218 0.469 1.191 0.321
99% winsorization
Input winsorization
PCA 0.698 0.086 0.753 0.057 0.717 0.120 0.731 0.040
sPCA 0.815 0.300 0.813 0.154 0.704 0.434 0.720 0.221
FLasso 0.682 0.423 0.730 0.247 0.818 0.718 0.850 0.593
GCALasso1 1.219 0.300 1.073 0.676
GCALasso2 1.165 0.601 1.038 0.856
Output winsorization
PCA 0.693 0.072 0.749 0.041 0.696 0.089 0.786 0.138
sPCA 0.769 0.245 0.808 0.149 0.651 0.354 0.750 0.260
FLasso 0.779 0.469 0.825 0.350 0.715 0.362 0.821 0.336
GCALasso1 1.224 0.253 1.181 0.182
GCALasso2 1.367 0.267 1.296 0.163
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Appendix L Programmed Code

The ZIP file ‘Data&Codes.zip’ includes the following programs.

• cp.r - Generates the in-sample results for the CP application.

• cpo.r - Generates the in-sample results for the CPO application.

• cpo 1m.r - Generates additional in-sample results for the CPO application in the cases

without overlapping returns (using monthly returns).

• cpo figure.r - Generates the plot with the 10-yield and inflation trend over time for the

CPO application.

• economic interpretation.r - Generates bar plots and statistics used to interpret the in-and-

out-of-sample GCALasso2 factor and the out-of-sample PCA factor economically.

• fem is.r - Generates the basic in-sample results for the factor extraction methods (FEM).

• fem lags is.r - Generates the in-sample results for the factor extraction methods (FEM)

applied to the large macroeconomic data set with lagged values.

• fem oos.r - Generates the out-of-sample results for the LN application and the other factor

extraction methods (FEM).

• figure extreme values.r - Generates the plots that illustrate the extreme values in the large

macroeconomic data set.

• figure fit GCALasso2 is.r - Generates the plots that show the in-sample fit the restricted

model with only the three yield PCs and the unrestricted model with both the three yield

PCs and the GCALasso2 factor.

• jps.r - Generates in-sample results for the JPS application.

• ln.r - Generates in-sample results for the LN application.

• rev oos.r - Generates the out-of-sample results for the revisited studies.

• robustness numFactors fem oos.r - Generates the out-of-sample results for the scenario in

which the user-specified number of factors are extracted using the relevant factor extraction

methods (FEM).

• robustness winsorizationThresholds fem oos.r - Generates the out-of-sample results for the

relevant factor extraction methods (FEM) in the scenario in which winsorization is applied

with the user-specified winsorization thresholds.
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• sim.r - Generates the simulation results for the case without overlapping observations.

• sim overlapping returns.r - Generates the simulation results for the case without overlap-

ping observations.

• sim size T.r - Generates the simulation results that show the size distortions across differ-

ent sample sizes.

• R\robust fns.r - Contains additional functions that are used in the scripts listed above.

These functions are loaded when the scripts are run.

• R\var fns.r - Contains functions written by Bauer and Hamilton (2018) to estimate the

VAR models in the bootstrap procedure.
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