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Abstract

This study contributes to the growing body of research on identifying spillovers

with panel data. Previous literature has proposed methodology to identify indi-

viduals generating spillovers and their strength using panel data on outcomes and

characteristics. This paper employs simulation to assess the performance of these

methods, in addition to an empirical application thereof. This involves using the

Post Pooled Lasso and the Double Pooled Lasso estimators, proposed by Manresa

(2016), to evaluate European nationwide spillovers in the Research and Develop-

ment sector. The data used is retrieved from Eurostat, the statistical office of the

European Union. The performance of these estimators is first evaluated by simula-

tion, with changes in sample size and with different weights in the Lasso regression.

This part is to evaluate the robustness of these methods on differently sized data. In

the empirical application, we find that R&D spillovers have a more complex struc-

ture across the European countries than is previously assumed. Furthermore, the

Double Pooled Lasso estimator without using weights by iteration is optimal for low

dimensional simulated panel data without apparent heteroskedasticity. Overall, this

paper aims to provide a deeper understanding in previously proposed methodology

on the identification of spillovers, and their applicability to a different context.

1 Introduction

Research and Development (R&D) activities play a crucial role in driving innovation and

economic growth. In the process of conducting R&D, firms often generate knowledge

and technological advancements that can spill over to other companies and contribute

to their productivity and performance. These spillover effects have been widely recog-

nized and studied in the field of economics. Understanding the nature and magnitude of

R&D spillovers is essential for policymakers and firms seeking to enhance their innovation

strategies and competitiveness.

In the seminal paper by Manresa (2016), she introduces an advanced methodology to

estimate the structure and magnitude of R&D spillovers between American companies.

By employing a regression analysis of total sales against R&D expenditures of other firms,

Manresa (2016) investigates the influence of R&D activities of one company on the sales

performance of others. This study takes a different direction and investigates international

R&D spillovers in Europe.

While previous studies have examined R&D spillovers thoroughly already, they often

rely on trade characteristics or non-trade related factors to estimate the effects. In re-

cent studies, for instance those conducted by Moretti (2019) and Bianco (2012), foreign

spillovers are aggregated, leaving the specific structure of spillovers unknown. In the con-

text of international R&D spillovers, little research has focused on recovering the structure

of interactions between countries. Therefore, there is a gap in knowledge regarding the
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structure of R&D spillovers between European countries and how it affects their economic

outcomes. This gap motivates the central research question of this paper: ‘How does the

structure of R&D spillovers between European countries affect their economic outcomes? ‘

In this paper, we focus on investigating the impact of different weights used in the

Post Pooled Lasso and Double Pooled Lasso estimators proposed by Manresa (2016).

These estimators provide methods to estimate social interactions (spillovers) using panel

data. We perform these estimations on simulated data to enable comparison between

the simulated and estimated values. For the simulation, we take the empirical data from

Bloom, Schankerman and van Reenen (2013) as a starting point to generate simulated

data that closely resembles the real-world application used in Manresa (2016). For the

empirical application, we use data from Eurostat (2023) that covers a span of 22 years

and includes 22 countries.

The methodology employed in this study involves the regression analysis of panel data

to examine spillover effects. The output of each unit is regressed on its own characteristics

as well as the characteristics of other units. We use the Post Pooled Lasso estimator, which

involves a two-stage procedure of variable selection using Lasso regression followed by

parameter estimation using ordinary least squares regression. Additionally, the Double

Pooled Lasso estimator is presented for the case where auxiliary control variables are

included. In this estimator, the Frisch-Waugh procedure is used to estimate the effects

of control variables, after which the spillover effects are estimated through another Post

Pooled Lasso regression. The empirical application in this paper focuses on examining the

relationship between R&D expenditure and GDP using a modified version of the Cobb-

Douglas production function. We estimate a model that regresses the logarithm of GDP

on lagged R&D expenditure, as well as the spillover effects of lagged R&D expenditure

from other countries. The model incorporates control variables for labor and capital

stock, and we employ the Double Pooled Lasso estimator for estimation. To determine

the optimal regularization parameter, we utilize Leave-One-Out Cross Validation.

Our analysis reveals insights into the structure of knowledge diffusion across countries

and the impact of different weight choices on estimating R&D spillovers. The key results

indicate that the Double Pooled Lasso estimator yields more accurate parameter estim-

ates by considering control variables. Furthermore, our study opens avenues for further

research into the structure of spillovers, as the results show that the R&D spillovers have a

more complex structure than spillovers from geographical proximity or from technological

distance.

This paper proceeds as follows. In Section 2, a overview of previous literature is

given. The data used in this study is described in Section 3. In Section 4, the different

modelling techniques are described in detail and the function of these models is explained.

In Section 5, the results and possible implications of these results are discussed. We

conclude and propose ideas for further research in Section 6.
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2 Theory

2.1 Panel data regression

Panel data is a type of data that is collected by observing particular variables over a period

of time at a regular frequency, capturing multiple observations per individual. Panel data

is derived from a (usually small) number of observations over time on a (usually large)

number of cross-sectional units like individuals, households, firms, or governments. The

analysis of this datatype, panel regression, includes a range of statistical methods to

analyze data that involves observations on the same individuals or units over multiple

time periods. This analysis is also known as pooled time series analysis or longitudinal

data analysis. There are various applications of panel regression in economics, including

labor economics, health economics, development economics, and finance. In this paper,

we look at international nationwide Research and Development (R&D) spillovers in the

European market.

In econometric analysis, researchers often grapple with the challenge of selecting rel-

evant variables while simultaneously controlling for model complexity and potential mul-

ticollinearity issues. Traditional linear regression models may yield suboptimal results in

such scenarios Belloni, Chen, Chernozhukov and Hansen (2012), leading to biased estim-

ates and limited predictive power. To address these concerns, a regularization technique

called Lasso regression can be used to enhance the performance of a model.

2.2 Lasso regression

Lasso, short for Least Absolute Shrinkage and Selection Operator, was originally proposed

by Tibshirani (1996) as an extension of the linear regression framework. It aims to

simultaneously estimate the coefficients of the explanatory variables and perform variable

selection by imposing a penalty on the absolute values of the coefficients. This penalty

term shrinks certain coefficients to zero, effectively removing irrelevant variables from the

model.

At the core of Lasso regression is the penalty term, which plays a vital role in both

controlling model complexity and performing variable selection. In its most simple form,

the penalty term is mathematically defined as the sum of the absolute values of the

regression coefficients multiplied by a tuning parameter, denoted by λ. By introducing

this penalty term, Lasso regression encourages sparse coefficient estimates by shrinking

certain coefficients towards zero, effectively excluding irrelevant variables from the model.

In essence, the penalty term acts as a trade-off between the goodness of fit and the

complexity of the model.

The distinctive characteristic of Lasso regression lies in its ability to induce sparsity in

the estimated coefficient vector, resulting in a more parsimonious model. This property is
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particularly valuable when dealing with high-dimensional datasets, where the number of

potential predictors exceeds the number of observations. This makes it useful for analysis

of panel data on spillovers, as the number of spillover parameters grows quadratically

with the number of individuals, as seen in Manresa (2016). By encouraging sparsity,

Lasso regression facilitates variable selection, providing us with a subset of important

variables that have a substantial impact on the dependent variable.

One of the key advantages of Lasso regression is its capacity to handle multicollinear-

ity issues, which arise when predictor variables are highly correlated with each other. In

traditional regression models, multicollinearity can lead to unstable and unreliable coef-

ficient estimates. However, the penalty term effectively encourages the selection of one

variable over another, mitigating the adverse effects of multicollinearity, as shown in the

simulation study by Altelbany (2021).

Moreover, the Lasso’s penalty term can be tuned using cross-validation techniques, al-

lowing us to strike a balance between model complexity and predictive accuracy. Chetverikov

(2016) has demonstrated that in high-dimensional data, the use of cross-validation to se-

lect the appropriate penalty term is justified. In this paper, we use Lasso within a panel

data framework. The panel data is estimated with the Pooled Lasso estimator (Manresa,

2016). Further details on the Pooled Lasso estimator are elaborated in Section 4.

2.3 R&D Spillovers

The research of Manresa (2016) includes an advanced method to retrieve estimates of

R&D spillovers. Her research does not only estimate the structure of spillover effects

that flows between companies, but also the amount of the spillovers that arise with the

estimated network structure. Assuming that R&D expenditures enhance the total sales

of firms, Manresa (2016) conducts a regression analysis of the total sales of a company

against the R&D expenditure of all other companies in the sample. This approach enables

the investigation of whether a company’s sales are influenced by the R&D activities of

other companies, and by what margins.

In this paper, we focus on the European market at national level. Other studies in this

area include those conducted by Lumenga-Neso, Olarreaga and Schiff (2005) and León-

Ledesma (2000). However, these studies assume the R&D spillovers either rely on trade

characteristics like exports, or on other non-trade related characteristics. More recent

studies on this subject, for instance by Moretti (2019) and Bianco (2012), also do not

identify the structure of spillovers. These studies aggregate the foreign spillovers, leaving

the structure of spillovers unknown. Within the research on international R&D spillovers,

little to no studies have used methodology to recover the structure of interactions between

countries, as is similarly done by Manresa (2016). From this gap in research, the following

research question arises: ‘How does the structure of R&D spillovers between European
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countries affect their economic outcomes? ‘

Moreover, this research aims to investigate the effect of the penalty term and weights

used in the Post Pooled Lasso and Double Pooled Lasso estimators on the estimation of

R&D spillovers across European countries. The Post Pooled Lasso and Double Pooled

Lasso estimators are methods proposed by Manresa (2016), which are used to estimate

social interactions (spillovers) in panel data. In her study, she focuses on the application

of this methodology to R&D spillovers between American firms. This study takes a

different direction and estimates R&D spillovers on a nation-wide scale in Europe. Using

nationwide data has a significant advantage over studying data on specific firms due to

the availability of data. This is mainly because firms might not be as willing to disclose

data due to the competitive market, as opposed to governments that often have freely

available statistics.

By varying the penalty term and the weights used in the Post Pooled Lasso and

Double Pooled Lasso estimators and examining their impact on simulated data of R&D

spillovers, the study aims to determine what choice in penalty term and weights leads

to the most accurate estimates. This provides insights into how both these estimators

can be best applied in estimating R&D spillovers in the nationwide European market and

may have implications for future research in this area. This leads to the following three

sub-questions in the paragraphs below.

Sub Question 1: What is the structure of R&D spillovers between European countries?

This question builds on the research from Lumenga-Neso et al. (2005), Moretti (2019)

and Bianco (2012), by investigating the effect of international R&D spillovers between

European countries. The previously mentioned studies focus on the total effect of all

foreign R&D spillovers. This study zooms in on this subject and focuses on identifying

the structure of spillovers between the European countries, to recognize patterns in the

spillovers.

Within the framework of R&D spillovers, we employ two different models on panel

data regression. The first model involves the estimation of spillover parameters exclusively,

without the inclusion of explanatory control variables in the regression. Although this

method is easier to perform, it can be subject to omitted variable bias (Belloni (2009),

as potentially useful control variables are left out of the regression. As a second model,

we include a set of control variables that affect all individuals in addition to the spillover

variables. This is done to address the potential omitted variable bias that may arise in

the first model specification. The specifications of both these models are elaborated on

in Section 4.

Sub Question 2: How does the choice of different weights in the Lasso regression impact

the performance of Post Pooled Lasso and Double Pooled Lasso estimators? The relevance
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of this question is to examine the effect when employing different weights on the penalty

term of the Lasso estimator. By investigating whether distinct weights on the penalty

term of the estimators improve the percentage of correctly selected variables, we aim to

identify the optimal choice of weights that leads to the most accurate estimates. We

test the different weight choices on simulated data, to enable comparison between the

estimated values and the simulated values.

Sub Question 3: How does the choice of the penalty factor in the Lasso regression affect

the performance of the Double Pooled Lasso estimator? In the empirical application of

the study by Manresa (2016), the penalty factor is calculated with a fixed formula, where

only the sample size of the data is used, without using the characteristics of the data used.

This formula follows the methodology used by Belloni et al. (2012), where the formula

is derived from statistical properties that hold under certain assumptions. However, the

choice of the penalty factor in the Lasso regression can also be estimated on the data via

cross validation, to adapt the penalty factor to the data used. Therefore, in the empirical

application, we compare using cross-validation with using the fixed formula for lambda

from Belloni et al. (2012) and Manresa (2016).

2.4 Cross-validation

Cross-validation is a powerful technique used to determine the optimal value for the

penalty factor in Lasso Regression (Chetverikov, 2016). It helps strike a balance between

model complexity and predictive accuracy by estimating how well the model generalizes

to unseen data. The process of cross-validation involves splitting the available data into

multiple subsets. One subset, also fold, is held out as a validation set, while the remaining

folds are used to train the Lasso Regression model. The model is then evaluated on the

validation set, using a performance metric such as the mean squared error, that we use

in our cross-validation.

This procedure is repeated for each fold in a process known as k-fold cross-validation.

For example, in 5-fold cross-validation, the data is divided into five equal parts, and

the Lasso Regression model is trained and evaluated five times, with each fold serving

as the validation set once. By repeating the cross-validation process for different values

of the penalty factor, a range of mean squared errors is obtained. The penalty factor

that yields the lowest average error across all folds is considered the optimal choice.

Chetverikov (2016) found that using k-fold cross-validation is known to perform well in

high-dimensional data, particularly when the amount of predictors is substantially larger

than the number of time periods.
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2.5 Cobb-Douglas framework

The Cobb-Douglas production function (Cobb & Douglas, 1928) is a widely used eco-

nomic model that describes the relationship between inputs and output in the production

process. The Cobb-Douglas production function has been employed to analyze various

sectors of the economy, including national economies on a macroeconomic scale. It is a

valuable tool in our analysis on the R&D spillovers, as it allows for the quantification of

the impact of knowledge diffusion and technological advancements on economic output, as

seen in Doi (2004). By incorporating R&D spillovers as an input, the production function

enables researchers to assess the magnitude and significance of these spillovers on pro-

ductivity and economic growth. This analysis provides insights for policymakers on the

benefits of international R&D collaborations and knowledge-sharing initiatives, guiding

the design of policies to foster innovation and enhance economic performance. On this

nationwide scale, the Cobb-Douglas production function can be applied to measure the

Gross Domestic Product (GDP) of a country. In Section 4.4, we provide a more detailed

explanation of the Cobb-Douglas framework that is used.

3 Data

The data section is split up in two subsections. First, we discuss the origin of the data used

in the simulation. Afterwards, the data used in the empirical application on European

nation-wide R&D spillovers is presented in Section 3.2.

3.1 Simulation data

In the simulation, we use empirical data as a starting point to generate simulated data, to

closely reflect the real-world application. The Research and Development case presented

by Manresa (2016) employs data derived from Bloom et al. (2013). Descriptive statistics of

the variables from Bloom et al. (2013) serve as the foundation for accurately generating

the variables used in the simulation. Further details on the exact simulation of these

variables can be found in Section 4.3.

3.2 Data on European R&D spillovers

For the empirical application on European nation-wide R&D spillovers, we retrieved data

from Eurostat, the statistical office of the European Union. The database from Eurostat

(2023) can be accessed through their website. From this database, data from 1995 until

2017 is retrieved to create a sample of 22 years. This database consists of 40 countries,

most of which are in the European area.
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However, upon examining the sample, we discovered that approximately 30% of the

data points were missing. To improve the accuracy of the regression analysis, we decided

to reduce the sample size to include only countries with more complete data. To achieve

this, we established a criterion that no two consecutive data points could be missing.

This effectively eliminated all countries with gaps of two or more years in their data

from the sample. This left 22 European countries in the sample, with only 1.78% of all

data missing. These data points, say dt, are approximated by taking the average of the

predeceasing value, dt−1, and the succeeding value, dt+1, also known as data imputation.

In total, four variables are extracted from the Eurostat database. The total amount of

money spent on Research and Development by a country is measured using the Gross Do-

mestic Expenditure on R&D (GERD) at the national level. The gross domestic product

(GDP) of each country is used as measure for the total output in sales within the borders.

The total employment of a country between the ages of 15 and 74 is taken as a measure

of labor. Lastly, the physical capital of a country is measured with the consumption of

fixed capital, as Blades and Meyer zu Schlochtern (1998) have shown that the consump-

tion of fixed capital is the best candidate for international comparisons of total factor

productivity. Some descriptive statistics can be seen in Table A1 in the Appendix.

4 Methodology

In Section 4.1 below, we describe the theoretical model to give a detailed overview on

the regression of panel data. In Section 4.2, the estimation techniques are reported. As

these techniques are mathematically complex, their origin and working are elaborated on

extensively. In Section 4.3 and 4.4, the simulation and empirical application are discussed

respectively.

4.1 Spillover Effects Model

In this section, the regression model of spillover effects with panel data is represented by

the following equation:

yit = αi + βixit +
∑
j ̸=i

γijxjt + w′
itθ + uit, (1)

where yit is the output of unit i during time t. This regression includes an individual-

specific intercept, denoted by αi. The dependent variable is regressed on both its own

characteristics, xit, as well as that of other individuals, xjt. So, evidently, the βi is the

effect that its own characteristics has on the output of that specific individual. The γij is

the spillover effect of unit j on unit i. For simplicity, βi can also be seen as γii. The wit

consists of the auxiliary explanatory variables, apart from the variables that generate the
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potential spillover effects between units. So, the effects of each auxiliary variable through

θ are uniform across all individuals. The uit represent the shocks of the regression that

are uncorrelated with the explanatory variables. The spillover effects, γij, are represented

in the Γ-matrix.

4.2 Estimation techniques

This paper follows two different estimation procedures. First, we discuss the mathematics

behind the Post Pooled Lasso estimator, where the model (1) is simplified to the case

where θ = 0. Afterwards, the Double Pooled Lasso estimator is explained in Section 4.2.2,

in the case that θ ̸= 0.

4.2.1 Post Pooled Lasso

The Post Pooled Lasso estimator is contructed through a two-stage procedure. In the first

step the significant variables are selected by a Pooled Lasso estimator, after which the

parameters itself are estimated with Pooled OLS in step two. Manresa (2016) chose to

use this Post estimation, as Belloni (2009) has shown that performing OLS after variable

selection by Lasso regression can have the advantage of a smaller bias. On top of that,

under certain assumptions, the Post Pooled Lasso estimator performs at least as well as

using only Lasso, in terms of the rate of convergence. This gives the Post Pooled Lasso

estimator a combination of the properties from Pooled Lasso and Pooled OLS. First,

consider the minimisation function of the Pooled Lasso estimator:

Γ̂ ∈ argmin
Γ

1

NT

N∑
i=1

T∑
t=1

(
ỹit −

N∑
j=1

γijx̃jt

)2

+
λ

NT

N∑
i=1

N∑
j=1

ϕij |γij| , (2)

where Γ̂ represents the estimator of the spillover effects matrix. Here, the minimisation

function is similar to that of OLS regression, as it minimises the sum of squared residuals.

However, each parameter is penalised by the second part of (2), including penalty term λ.

The ϕij resembles the pair-specific weights that is investigated to affect the performance of

the Lasso estimator. These weights are multiplied with the absolute value of the spillover

effects, γij, similar to the L1 norm in a normal Lasso regression (Tibshirani (1996)). Note

that the dependent variable, ỹit, and the explanatory variables, x̃jt, are marked with a

tilde. This implies that these variables are demeaned with respect to the mean of each

individual, so ỹit = yit− 1
T

∑T
t=1 yit and x̃it = xit− 1

T

∑T
t=1 xit respectively. This is referred

to as a within transformation, where the individual intercept is removed in a similar way

to the fixed effects estimator.

The rows of the Pooled Lasso estimator in (2) represent the estimated coefficients for

each individual. We compute the rows of this matrix independently by performing a Lasso

regression on each unit individually. This effectively selects the right regressors, say T̂i,
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for each individual. However, there still remains some shrinkage bias, as mentioned by

Manresa (2016). To get rid of this bias, we perform Pooled OLS on the selected regressors

by the Pooled Lasso estimation. See below the minimisation function of the Pooled OLS

estimator with selected regressors, also Post Pooled Lasso estimator:

Γ̂P = argmin
(γi1,...,γiN ):γij=0, if j /∈T̂i

1

NT

N∑
i=1

T∑
t=1

(
ỹit −

N∑
j=1

γijx̃jt

)2

, (3)

where j /∈ T̂i denotes that all regressors which are not chosen in the Pooled Lasso

regression are set to zero. Consequently, the Post Pooled Lasso estimator only includes

the regressors selected by the Pooled Lasso regression from the first step. Apart from

that, this minimisation function is similar to plain Pooled OLS. The statistical properties

of performing OLS after selecting regressors with Lasso are shown in Belloni (2009). Even

if the Lasso fails to select exactly all relevant regressors, the performance of Post OLS

regression beats single Lasso regression in terms of bias (Belloni, 2009). Although the Post

OLS regression improves the shrinkage bias compared to using only Lasso regression, it

does potentially result in an increased variance.

4.2.2 Double Pooled Lasso

In the case that θ ̸= 0, Manresa (2016) proposes the Double Pooled Lasso estimator. The

following methodology includes auxiliary explanatory variables, also control variables,

additional to the explanatory variables related to spillover. The first step of this method

is similar to the technique used in Chamberlain (1992) to obtain orthogonal projections of

both the output variable and the control variables on the spillover variables. This step is

done by regression with the Post Pooled Lasso estimator. Afterwards, we use the Frisch-

Waugh procedure to obtain an estimate for the control variables parameter. Once the

effect of the control variables is estimated, we first subtract this effect from the dependent

variable, to isolate the effect of the spillover variables. The last step is to regress the

output (without the effect of the control variables) on the spillover variables by means of

Post Pooled Lasso regression.

As stated above, the estimation of θ consists of two steps. First, both the dependent

variable and the control variables are all separately regressed on x1t, ..., xNt, similar to

Chamberlain (1992). These regressions are done with the Post Pooled Lasso estimator.

This captures the effects of all {xit}’s on both the dependent variable, as well as on each

of the control variables. There are D control variables in total. For each of these control

variables, w1
it, ..., w

D
it , we have the following regression:

wd
it = ηdi +

N∑
j=1

λd
ijxjt + edit, (4)

10



where wd
it represents the d’th control variable, ηdi is the individual-specific intercept

and the λd
ij stands for the effect of xit on the d’th control variable. The edit represents

the shocks of the regression, uncorrelated with the explanatory variables. Similarly, the

regression for yit is:

yit = µi +
N∑
j=1

νijxjt + vit, (5)

where yit represents the output, µi is the individual-specific intercept and the νij

stands for the effect of xit on the output, without the presence of control variables. The

vit represents the shocks of the regression, uncorrelated with the explanatory variables.

The residuals of (4) and (5) are used to obtain an estimate of the effect of the control

variables, θ̂. Using the Frisch-Waugh-Lovell theorem (Lovell, 1963), we regress the de-

meaned residuals of (5), ṽit, on the demeaned residuals of (4), ẽdit. This regression is done

by Pooled OLS, where ṽit is calculated by ỹit − ν̂ix̃t, and ẽdit is calculated by w̃it − λ̂ix̃t.

Finally, the structure of interactions (including the respective magnitude of the spillover

effects) is estimated by another Post Pooled Lasso regression. In this final regression, the

dependent variable without the effect of the control variables (ỹit − θ̂w̃it) is regressed on

all {xit}’s. All Post Pooled Lasso regressions used in the Double Pooled Lasso estimator

are calculated with the weights discussed in Section 4.2.3 below.

4.2.3 Choice of weights

A logical choice to allocate the weights, ϕij, would be to use Heteroskedasticity and Auto-

correlation Consistent (HAC) weights in Lasso regression on panel data. This would

account for the presence of heteroskedasticity and autocorrelation in the data, as shown

by the recent study of Babii, Ball, Ghysels and Striaukas (2021). The use of HAC weights

in Lasso regression on panel data could be important as it helps to improve the efficiency

of the estimator, by reducing the bias of the standard errors. In panel data, this can be

useful as panel data often has presence of heteroskedasticity and autocorrelation. These

characteristics can lead to biased standard errors. To mitigate this issue, it is recom-

mended to allocate weights similar to the approach proposed by Babii et al. (2021). In

this paper, we investigate if this approach is also feasible for small samples or short time

frames. Therefore, we consider using these weights compared to no weight allocation at

all, to show whether these weights can also be applied to small samples.

4.3 Simulation

This section outlines the methodology used to simulate data closely resembling the real-

ity of American firms, based on the data used in Bloom et al. (2013). The simulation

process involves four variables from the Cobb-Douglas production function: measure of
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output, labor, capital stock, and knowledge capital. Specifically, the output is measured

in total sales of a company, the number of employees represents the labor variable, the net

book value of property, plant, and equipment corresponds to the capital stock, and R&D

expenditure represents the knowledge capital. The following steps are taken to simulate

these four variables:

Initial Simulation Value: To begin the simulation, the minimum and maximum values

from the descriptive statistics of the real data provided by Bloom are considered. The

first value of each variable is randomly selected from a uniform distribution within the

range of the minimum and maximum values. This step ensures that the simulated data

starts within a similar range as the real data.

Time Period Variation: In each subsequent time period, variations are introduced

to the simulated data to reflect the changing nature of the variables over time. For this

purpose, a value from a normal distribution is added to each variable. The added value

has a mean of 0 and a standard deviation equal to one-fifth of the starting value of the

respective variable. This approach maintains the variables within a small range while

allowing them to differ in each time period, thus emulating the dynamic nature of the

real data.

Spillover Effects Matrix: Next, a spillover effects matrix is generated to capture the

interactions between companies, mirroring the sparse structure outlined in the paper by

Manresa (2016). To simulate this sparse structure, each company is assigned to one of

12 SIC codes at random, where companies receive spillover effects from all companies in

their own industry (SIC code). In this way, each firm receives R&D spillover effects from

only a limited amount of other firms. The effect of a company’s own R&D is simulated

using a normal distribution with a mean of 100 and a standard deviation of 25. On the

other hand, the few spillover values originating from other companies are generated using

a normal distribution with a mean of 10 and a standard deviation of 2.5. This distinction

accounts for the fact that a company’s own R&D expenditure typically has a greater effect

on sales than those from other companies.

Sales Variable Generation: The sales variable is generated using three components:

a firm-specific intercept, spillover effects multiplied by the R&D expenditures of the re-

spective companies, and control variables multiplied by a randomly generated vector, θ.

The values in θ are drawn from a uniform distribution ranging from 0 to 10. This ap-

proach incorporates various factors influencing sales and allows for random variations in

the impact of the control variables.
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By following this methodology, we aim to closely simulate data that resembles real data

on American firms, based on the data provided by Bloom et al. (2013). The simulation

process incorporates realistic variations in the variables over time, sparse spillover effects,

and the influence of firm-specific and control variables on the sales variable.

4.4 Empirical Application

Consider the following formula for the nationwide Cobb-Douglas production function:

Yit = Ait ·
(
CθC

it · LθL
it ·Kβi

it · SKit

)
, (6)

where the Yit represents the GDP of a country. The subscripts i and t denote a

specific country and time period, respectively. The capital stock is represented by Cit,

which encompasses the physical assets and infrastructure available for production. The

labor input is denoted as Lit and represents the quantity of the workforce in the country.

Knowledge capital is captured by the variableKit, which signifies the level of technological

knowledge and expertise embedded in the production process. The knowledge spillovers,

SKit, reflect the effects of knowledge diffusion from all other countries combined. These

variables are essential determinants of a country’s economic growth and productivity, and

their interactions are modeled using the Cobb-Douglas production function above.

The exponents in the Cobb-Douglas production function represent the output elasti-

cities of the respective inputs, indicating the responsiveness of output (GDP) to changes

in each input. The spillover effects, SKit, are calculated as the product of all knowledge

capitals of other countries:

SKit =
∏
j ̸=i

K
γij
jt , (7)

where the γij represents the knowledge spillover from country j to country i. So, the

element γij can be seen as the i’th country’s output elasticity of the knowledge capital

from country j. The logarithmic form of the Cobb-Douglas production function, can be

expressed as follows:

log(Yit) = log(Ait) + θC log(Cit) + θL log(Lit) + βi log(Kit) + log(SKit), (8)

where each variable from (6) is put in logarithmic form. Taking the logarithm of the

Cobb-Douglas production function allows us to transform the multiplicative relationship

into an additive relationship, which simplifies interpretation and enables the econometric

analysis discussed in Section 4.2.

For the empirical application in this paper we take the different elements from the pre-

viously mentioned model above, to the data mentioned in Section 3.2. Take the following

formula, this time with variables applied to the R&D framework:
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log(GDP )it = αi + βilog(GERD)i(t−1) + log

(∑
j ̸=i

γijGERDj(t−1)

)
+ w′

itθ + uit, (9)

where GDPit is the GDP of country i during time t. The logarithm of the dependent

variable (GDP) is regressed on the lagged logarithm of both its own Gross Domestic

Expenditure on R&D, GERDi(t−1), as well as that of other countries, GERDj(t−1). So,

evidently, the βi is the effect that its own GERD has on the GDP of the country. The γij

is the R&D spillover effect of country j on country i. For simplicity, βi can also be seen

as γii. The wit consists of the following two control variables: Labor and Capital stock.

The uit remain the shocks of the regression that are uncorrelated with the explanatory

variables.

The GERD has been lagged by one time period, as the knowledge at time t can be

proxied by the R&D expenditure at time t− 1, similar to Manresa (2016). This is due to

the dynamic relationship between R&D investment and knowledge that follows from the

research done by Blundell, Griffith and van Reenen (1995). We estimate 9 by using the

Double Pooled Lasso estimator.

We compare results from the fixed formula used in Belloni, Chernozhukov and Hansen

(2014) and Manresa (2016) to using cross validation for the determination of lambda.

The fixed formula is given by:

λ = c2 ·
√
TΦ−1

(
1− ν/

(
2N2

))
= 1.2 · 2 ·

√
22Φ−1

(
0.05/

(
2222

))
, (10)

where we pick c to be slightly above 1, and the pre-specified error ν is set to 0.05.

The Φ represents the standardized Gaussian cumulative distribution. The derivation of

this formula is cumbersome and the statistical background is explained in Belloni et al.

(2012).

As the sample is rather small with only 22 time periods (see Section 3.2), using k-fold

cross validation might not be optimal, according to Park (2010). The more suitable option

that we use is Leave-One-Out Cross-Validation (LOOCV), as Park (2010) shows that it

is more effective than k-fold, when dealing with limited data points. LOOCV operates by

iteratively excluding one observation from the data, training the Lasso Regression model

on the remaining data, and then evaluating the model’s performance by predicting the

omitted observation. This process is repeated for each observation in the data, resulting in

a comprehensive assessment of the model’s predictive accuracy. In our case, with a sample

of only 22 observations, LOOCV can offer notable benefits as it maximises the training

set size in each iteration. Therefore, it can reduce bias and yield a closer approximation

of the model’s generalization error.
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4.4.1 Performance measures

For the empirical application, we analyse the effects of R&D on GDP, as well as the

structure of interactions between countries. For the analysis on the effects of R&D on

GDP, we calculate two performance measures: the elasticity of aggregate output with

respect to the knowledge of country j (εYKj
), and the elasticity of aggregate output with

respect to the knowledge of all countries (εYK). These performance measures allow us to

quantify the impact of R&D on GDP at both the national and the aggregate level. The

elasticity of aggregate output with respect to the knowledge of country j is calculated as:

εYKj
=

N∑
i=1

γij
Yi

Y
, (11)

where εYKj
is calculated by summing the product of the estimated spillover effects and

the output of country i, divided by total output. This performance measure represents

the change in aggregate output associated with a one-unit change in the knowledge of

country j. The second performance measure on elasticity, εYK , is calculated as:

εYK =
N∑
i=1

εYKi
, (12)

where all the individual elasticities are summed up to represent the elasticity of ag-

gregate output with respect to the knowledge of all countries. This performance measure

represents the change in aggregate output associated with a one-unit change in the know-

ledge of all countries.

For the analysis on the structure of interactions between countries, we use the estim-

ated spillover effects from the Double Pooled Lasso estimator, denoted by Γ̂. This matrix

contains the estimated coefficients for each independent variable in a LASSO regression

model fit separately for each individual. The estimated coefficients represent the change

in the dependent variable (log(GDP )it) associated with a one-unit change in the cor-

responding independent variable (log(GERD)i(t−1)), while holding all other independent

variables constant.

5 Results

5.1 Simulation results

For the simulation, we focus on the comparison between using no weights, to using the

weights discussed in Section 4.2.3. Tables 1 and 2 present the results of the Post Pooled

Lasso and Double Pooled Lasso estimations on simulated data. Both tables compare the

performance of two models: one that excludes weights and one that includes weights. The
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model performance is evaluated in terms of their ability to correctly estimate the zero and

non-zero elements of the simulated spillover matrix, as well as the mean absolute difference

between all estimated and simulated parameters.

Table 1: Results of the Post Pooled Lasso estimation on the simulated data.

Excluding weights Including weights
Zero β’s Non-zero β’s Difference Zero β’s Non-zero β’s Difference

N = 5,
T = 20

94.44% 100% 0.741 72.22% 85.71% 1.703

N = 5,
T = 100

94.44% 100% 0.498 88.89% 100% 0.598

N = 5,
T = 1000

100% 100% 0.307 100% 100% 0.307

N = 20,
T = 20

97.09% 78.57% 0.793 63.08% 66.07% 2.247

N = 20,
T = 100

100% 100% 0.293 92.15% 98.21% 0.375

N = 20,
T = 1000

100% 100% 0.268 100% 100% 0.268

N = 1000,
T = 20

98.49% 2.97% 1.358 98.13% 2.19% 10.12

Note: The zero and non-zero β columns represent the percentage of correctly estimated
β’s of the zero and non-zero elements of the simulated spillover matrix. The difference
column is the mean absolute difference between all estimated and simulated parameters.

When comparing the results from the Post- and Double Pooled Lasso estimations, we

can see that for all combinations of N and T , both models perform similarly. Their ability

to select the right regressors is almost equal in strength, as one can note that both these

models have similar percentages of correctly estimated zero and non-zero elements in Γ̂.

However, there is one main difference in performance between the Post- and Double Pooled

Lasso models. The mean absolute difference is in all cases lower for the Double Pooled

Lasso model. This is according to expectation, as the output variable is dependent on

the control variables by nature of simulation. This dependency on the control variables

gives the Post Pooled Lasso an omitted variable bias, as the control variables are not

accounted for and leave a bias to the parameters on spillovers, as discussed in Section 2.3.

On the other hand, the Double Pooled Lasso estimator does account for the dependency

on control variables, giving it more accurate parameters for the spillover matrix.

The results of the simulation analysis reveal an interesting finding regarding the per-

formance of the model that includes weights compared to the model without weights.

Surprisingly, the Lasso model without weights outperforms the model with weights in

terms of selecting the right regressors and on estimation accuracy.

One possible explanation for this outcome is that the simulated data used in the

analysis does not exhibit autocorrelation or heteroskedasticity. The HAC weights are
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Table 2: Results of the Double Pooled Lasso estimation on the simulated data.

Excluding weights Including weights
Zero β’s Non-zero β’s Difference Zero β’s Non-zero β’s Difference

N = 5,
T = 20

94.44% 100% 0.681 77.78% 85.71% 1.467

N = 5,
T = 100

94.44% 100% 0.465 94.44% 100% 0.392

N = 5,
T = 1000

100% 100% 0.300 100% 100% 0.300

N = 20,
T = 20

97.38% 76.79% 0.761 65.41% 64.29% 2.150

N = 20,
T = 100

100% 100% 0.284 91.57% 96.43% 0.407

N = 20,
T = 1000

100% 100% 0.265 100% 100% 0.265

N = 1000,
T = 20

98.49% 2.97% 1.358 98.13% 2.23% 8.979

Note: The zero and non-zero β columns represent the percentage of correctly estimated
β’s of the zero and non-zero elements of the simulated spillover matrix. The difference
column is the mean absolute difference between all estimated and simulated parameters.

specifically designed to address these issues by adjusting the standard errors of the estim-

ated coefficients to account for potential serial correlation and heteroskedasticity in the

data. However, in the absence of these characteristics, the application of these weights

may introduce unnecessary noise and bias into the estimation process.

Furthermore, the Lasso model is inherently designed to handle high-dimensional data

and perform variable selection by shrinking the coefficients of irrelevant variables to zero.

Introducing these weights may introduce additional complexity and potential distortions

to the variable selection process, leading to less accurate coefficient estimates and a reduc-

tion in the model’s predictive performance. It is worth noting that the superiority of the

Lasso model without weights over the model with HAC weights in this specific context

does not diminish the importance of accounting for autocorrelation and heteroskedasticity

in real-world applications. In empirical studies with actual data, these issues are preval-

ent and can significantly impact the reliability of coefficient estimates. In such cases, the

inclusion of weights is crucial for obtaining valid inference and accurate estimation results.

As each of the simulated companies gets allocated to one of 12 industries (see Sec-

tion 4.3), the models with a low N , are relatively more sparse than a model with a high

N . The results of the analysis indicate that when N is low, such as N = 5 or 20, the

Lasso model predicts the sparse spillovers relatively well. However, when N increases to

2000, representing a relatively dense model, the model performs poorly in predicting the

non-zero spillover parameters. This outcome can be attributed to the density of spillover

effects when N is high. In the case of a low number of companies per industry, the
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spillover effects among individuals are expected to be sparse, meaning that only a small

subset of individuals have significant spillover impacts on others. In such scenarios, the

Lasso model’s variable selection property effectively identifies and captures the relevant

spillover relationships, leading to accurate prediction of the non-zero spillover parameters.

However, with 2000 companies, the number of companies per industry increases substan-

tially, where the model faces a significant increase in relative amount of spillovers per firm.

With a larger number of significant variables to consider, the Lasso model encounters a

higher noise-to-signal ratio, making it challenging to accurately estimate all the non-zero

spillover parameters. This issue arises when the spillover effects are dense, or in this

case when substantial number of individuals have significant spillover impacts on others.

Another factor contributing to the poor prediction of non-zero spillover parameters in the

dense model is the potential limitation in the sample size.

5.2 Results of international R&D spillovers in Europe

For the estimation of the structure of interactions between the European countries, we

present two tables. Table A4 in the Appendix uses the fixed formula for the penalty

term, while Table 3 uses LOOCV to determine the penalty term. Tables 3 and A4 show

the estimated spillover matrix on the international R&D spillovers between European

countries. The values in the table represent the effect of R&D in one country on the GDP

of another country. A positive value indicates that an increase in R&D in one country

has a positive effect on the GDP of another country, while a negative value indicates a

negative effect.

In Table A4 in the Appendix we see that there are estimated to be only five spillover

effects across countries. In Manresa (2016) it is shown that the fixed formula has useful

statistical properties for when T is large. However, combining this specific penalty term

with the HAC weights can lead to an underselection of spillover effects if T is small, for

further explanation on this see Manresa (2016). As the results show only five spillover

effects between all 22 countries, using the fixed formula for the penalty term might not be

useful for analysis on the structure of interactions of the R&D between these European

countries. Therefore, we use cross validation for the lambda, LOOCV in specific, to look

at the more noticeable spillover effects in Table 3.

Based on the data provided in Table 3, it appears that there are complex interactions

between the R&D of these countries. Some countries have strong positive spillover effects

on other countries, while others have negative effects. For example, an increase in R&D

in Austria (AT) has a positive effect on the GDP of Bulgaria (BG), Czech Republic (CZ),

and Poland (PL), while it has a negative effect on Italy (IT). Similarly, an increase in

R&D in Belgium (BE) has a positive effect on Hungary (HU), Poland (PL), Portugal

(PT), Sweden (SE), and Slovenia (SI), while it has a negative effect on Greece (EL).
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Table 3: The estimated spillover matrix on the international R&D spillovers using LOOCV
for the penalty term.

AT BE BG CZ DE DK EL ES FI FR HU IE IT LT NL PL PT RO SE SI SK UK

AT 0.48 0 1.5 1.3 0.2 0.37 0 0 0 0.19 0 0 -0.035 0 0 0.71 0 0 0 0.19 0 0

BE 0.0075 0.42 0 -0.23 0 0 -0.87 0 0 0 0.3 0 0 0 0 1.7 0.82 0 0.67 0.49 0 0

BG 0 0 0.086 0 0 0 0 0 0 0 0 0 0 0 0 -0.27 0.16 0 0 0 0 0

CZ 0 0 0 -0.29 0 0 0 0 0 0 0 0 0 0.35 0 0 -0.2 0 0 0 0.43 0

DE 0 0 -1.4 -1.3 0.45 0 0 -0.41 0 0 0 0 0 0 -0.18 0 -0.96 -1.7 0 0 0 -0.93

DK 0 0 0 0.2 0 -0.099 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.24

EL 0 0 0 0 0 0 0.18 0.16 0 0 0 -0.018 0 0 0.21 0 0 0 -0.45 -0.026 0 0

ES 0 0.3 0 0 0 0 0.52 0.53 0 0.16 0.41 0.052 0.2 0 0.1 0 0.4 0 0.41 0.51 0 0

FI 0 0 0.3 0 0 0.12 0 0 0.23 0 0 0 0 0.15 0.07 0.49 0.22 0.56 0 -0.12 0.62 0.17

FR 0 0 0 1.1 -0.4 0 0 0 0 -0.13 0 0 0 0 0 -1 0 0 -0.54 -0.58 0.68 -0.2

HU 0 0 0 0 0 0 0 0 0 0 0.29 0 0 0 0 0 0 0 0 0 0 0

IE 0 0 0 0 0 0 0 0 0 0 0 0.43 0 0 0 0 0 0 0 0 0 0

IT 0 0 0 0 0 0 0 0 0 0 0 0 0.072 0 0 0 0 0 0 0 0 0

LT 0 0 0 0.14 0 0 0 -0.049 0 0 0 0 0 0.14 0 0 0 0 0 0.078 0 0

NL 0 0.064 0 0 0.32 0.16 0 0.74 0.34 0.24 0.59 1.1 0 0.54 0.4 0 0.25 2.5 0.44 0 0.82 1.4

PL 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.26 0 -0.14 0 0 0 0 0 0

PT 0 -0.13 0 0 0 0 0 0 0.016 0 0 0 0 0.08 0 0 -0.033 0.13 0 0 0 0.09

RO 0 0 0 0 0 0 0 0 0.043 -0.014 0 0 0 0.072 0 0.15 0 0.47 0 0 0.28 -0.12

SE 0 0 0 0 -0.19 0 0.17 0 -0.091 -0.084 0 0 0 -0.11 0 -1.3 0.12 -1.1 -0.16 0 -0.86 0

SI 0 0 0 0 -0.01 0 0 -0.21 0 0 -0.41 -0.53 0 0 0 0 -0.3 0 0 -0.21 -0.37 0

SK 0 0.0058 0.1 0 0 0 0 0 0 0 -0.12 0 0 0 0 0 0 0 0 0 -0.04 0.065

UK 0 0 0 0 0 0 0.28 0 0.22 0.088 0.038 0.57 0.23 0.39 0 0.43 0 0.46 0.17 0 -0.12 0.33

Note: The countries are abbriviated by two-letter country codes defined by ISO 3166-1.
See Table A2 in the Appendix for their respective country names.

These results suggest that there are complex relationships between the R&D of these

countries and their GDPs, which can not be easily explained by geographical proximity

or by technological distance of these countries, as done in León-Ledesma (2000) and

Moretti (2019).

Table A3 shows the elasticities of aggregate output with respect to the knowledge

of country j, εYKj
. These values can be interpreted as follows: a positive value for εYKj

indicates that an increase in the knowledge of country j has a positive effect on aggregate

output, while a negative value indicates a negative effect.

Based on these results, we see that some countries have strong positive effects on

aggregate output, while others have negative effects. For example, an increase in the

knowledge of Austria (AT) has a positive effect on aggregate output, while an increase

in the knowledge of Belgium (BE) has a negative effect. Similarly, an increase in the

knowledge of all countries has a positive effect on the output of Austria (AT), while it has

a negative effect on the output of Belgium (BE). The elasticity of aggregate output with

respect to the knowledge of all countries, εYK , is estimated at approximately 0.01328. This

indicates that a 10% increase in the knowledge of all countries gives a 0.13% increase in

aggregate GDP.

6 Conclusion

This paper addresses the research gap in the study of R&D spillovers at the national

level in the European market. Our analysis is built upon previous studies that focus on

the total effect of foreign R&D spillovers, without distinguishing the specific structure

of interactions. By employing panel data regression analysis, we estimate the spillover
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parameters while also controlling for additional factors that affect all individuals.

The central research question of this study was to understand the structure of R&D

spillovers between European countries and determine the optimal choices for the pen-

alty term and the weights in estimating these spillovers. We addressed this question

by employing panel data regression models and conducting simulations to compare the

performance of different models and estimators.

The main findings of this study indicate that both the Post Pooled Lasso and Double

Pooled Lasso models perform similarly in terms of correctly selecting relevant variables.

However, the Double Pooled Lasso estimator, which incorporates control variables, yields

more accurate parameter estimates for the spillover matrix. This suggests that account-

ing for the dependency on control variables is crucial to reduce bias in estimating R&D

spillovers. These findings emphasizes the importance of tailoring the modeling approach

to the specific characteristics of the data and highlights the need to consider the appropri-

ateness of including additional weights and adjustments based on the nature of the data

and the research objectives.

In response to our research question, we can conclude that the structure of R&D

spillovers between European countries exhibits certain patterns and dynamics that do

not rely on trade or geographical proximity, which needs further research to identify what

does drive these spillovers. An interesting topic for further research in this area would be

to investigate what drives these complex patterns. Knowledge diffusion within the region

is influenced by various factors, and considering control variables in estimating spillovers

provides more accurate results.

Practically, these findings have implications for policymakers by identifying patterns

and mechanisms of knowledge diffusion, so policymakers can make informed decisions

to maximize the positive impacts of R&D spillovers on national economies. Theoretical

implications of this study lie in the advancement of knowledge regarding the estimation of

R&D spillovers and their structure. These findings can further improve existing theoretical

frameworks related to knowledge diffusion.

Future studies could expand the analysis to include additional countries or regions

beyond Europe to gain a broader perspective on R&D spillovers. Furthermore, it would

also be interesting to investigate how these interactions have changed over time and how

they are influenced by factors such as trade policies, economic integration, and techno-

logical developments. Additionally, an interesting topic is to validify the usage of HAC

weights where there is heavy heteroskedasticity or autocorrelation present in simulation.
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A Appendix

Table A1: Descriptive statistics of the four variables from Eurostat.

min max mean standard deviation
GDP 6602 3267160 532196 716771
GERD 32 99554 10050 16142
Capital 611 581352 85985 118433
Labor 887 44131 9890 10710

Note: The GDP , GERD and Capital variables are expressed in millions of euros and the
Labor variable in thousands of persons. All values are rounded to the nearest integer.

Table A2: List of the two-letter country codes of all countries used in Section 5, in ISO
3166-1 abbriviation.

Country Code Country Name
AT Austria
BE Belgium
BG Bulgaria
CZ Czech Republic
DE Germany
DK Denmark
EL Greece
ES Spain
FI Finland
FR France
HU Hungary
IE Ireland
IT Italy
LT Lithuania
NL Netherlands
PL Poland
PT Portugal
RO Romania
SE Sweden
SI Slovenia
SK Slovakia
UK United Kingdom
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Table A3: The elasticities of aggregate output with respect to the knowledge of country
j: εYKj

.

εYKj

AT 6.8e-03
BE -2.5e-04
BG 2.7e-05
CZ -8.1e-04
DE -1.6e-02
DK 1.9e-04
EL -3.5e-03
ES 2.2e-03
FI 3.1e-03
FR 2.0e-02
HU -1.5e-03
IE -7.1e-04
IT -4.1e-04
LT 2.8e-04
NL 3.7e-03
PL -1.2e-03
PT 5.2e-05
RO -5.6e-04
SE 7.5e-04
SI -8.7e-04
SK 9.5e-04
UK 1.2e-03

ALL 0.01328

Note: The countries are abbriviated by two-letter country codes defined by ISO 3166-1.
See Table A2 in the Appendix for their respective country names.

Table A4: The estimated spillover matrix on the international R&D spillovers using the
fixed formula for the penalty term.

AT BE BG CZ DE DK EL ES FI FR HU IE IT LT NL PL PT RO SE SI SK UK

AT 0.077 0 0 0 0 0 0 0 0 0 0 0 0 0.057 0 0 0 0 0 0 0 0

BE 0 0.054 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

BG 0 0 0.21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CZ 0 0 0 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DE 0 0 0 0 0.075 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.3 0

DK 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EL 0 0 0 0 0 0 0.028 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ES 0 0 0 0 0 0 0 0.0015 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FI 0 0 0 0 0 0 0 0 0.096 0 0 0 0 0 0 0 0 0 0 0 0 0

FR 0 0 0 0 0 0 0 0 0 0.064 0 0 0 0 0 0 0 0 0 0 0 0

HU 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0 0 0 0 0 0 0

IE 0 0 0 0 0 0 0 0 0 0 0 -0.019 0 0 0 0 0 0 0 0 0 0

IT 0 0 0 0 0 0 0 0 0 0 0 0 -0.025 0 0 0 0 0 0 0 0 0

LT 0 0 0 0 0 0 0 0 0 0 0 0 0 0.31 0 0 0 0 0 0 0 0

NL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0 0 0.93 0 0 0 0

PL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.33 0 0 0 0 0 0

PT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0 0 0

RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.28 0 0 0.26 0

SE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.11 0 0 0

SI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.16 0 0

SK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -0.26 0

UK 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14 0 0 0 0 0 0 0 0.1

Note: The countries are abbriviated by two-letter country codes defined by ISO 3166-1.
See Table A2 in the Appendix for their respective country names.
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B Programming code

B.1 Simulation code

For the simulation code, we define two functions for estimating spillover effects in a simu-

lated dataset. The first function, HAC weights, simulates the data and uses weights that

account for heteroskedasticity and autocorrelation to estimate the spillover effects. It gen-

erates a spillover effects matrix based on individuals randomly assigned to SIC codes and

assigns spillover effects between individuals based on their SIC code similarity. It then fits

a LASSO model iteratively for each individual using updated weights and calculates vari-

ous statistics to evaluate the estimation accuracy. The second function, no weights, also

simulates the data but estimates the spillover effects without using weights. It generates

the spillover effects matrix based on the same procedure as before and directly estimates

the effects using the LASSO model. The two functions are put to use for all the results

in Table 1 and 2.

B.2 European Data Application

In the coding for the empirical application, we prepare a dataframe by reading several

CSV files and performing data manipulation and cleaning operations. We select specific

columns from each dataframe, renames them, and joins them together based on common

columns. We filter the dataset to include only observations from 1995 to 2017 and fills

missing values with NA. Then we apply a custom function to remove countries that have

gaps of at least two consecutive NA values. We then replace NA values with approximate

values and adds logarithmic variants of the columns, and create lagged variables. We

define the same two functions as described in the simulation coding above, for fitting

LASSO models iteratively and calculating post-pooled LASSO estimates. The code then

iterates over the data and fits LASSO models for each individual ID, computes residuals,

and estimates coefficients using Frisch-Waugh-Lovell theorem. Finally, it calculates per-

formance measures such as the elasticity of aggregate output with respect to knowledge

and stores them in a dataframe.
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