
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis - BSc² in Econometrics and Economics

Major Analytics and Operations Research in Logistics

The Effectiveness of an Artificial Bee Colony for solving the Team

Orienteering Problem with Hotel Selection

E.J. van der Bij (527535)

Supervisor: dr. T.A.B. Dollevoet

Second assessor: B.T.C. van Rossum

Date final version: 2nd July 2023

Abstract

In this paper, we study a team orienteering problem with hotel selection (TOPHS), which

is a multi-tour version of the orienteering problem with hotel selection (OPHS) by Divsalar,

Vansteenwegen and Cattrysse (2013). We introduce a MIP formulation, and describe a pro-

cedure to generate instances with known objective values from instances of the team ori-

enteering problem (TOP).

As this problem is NP-hard, we also propose three heuristics. The first heuristic, called

TSVNS, is a skewed variable neighborhood search, which has shown to be successful for

the OPHS. The second heuristic, TABC, is an adaption of an artificial bee colony (ABC)

optimization procedure originally designed for the TOP. The third heuristic, TAV, is also

based on ABC, but uses the neighborhoods from the TSVNS heuristic.

We find that the TSVNS is the most promising algorithm, providing the lowest average

gaps and a reasonable computation time. For larger instances, however, its execution time

increases substantially. The TAV demonstrates potential advantages for such larger instances,

as it has lower execution times than TSVNS but maintains an acceptable gap. The TABC

does not perform as well, both in terms of average gap and running time.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

In this research, we study a multi-tour version of the Orienteering Problem with Hotel Selection

(OPHS) by Divsalar et al. (2013). In the OPHS, the goal is to determine a tour, defined as a

set of D connected trips d, which maximizes the sum of scores Si of nodes i visited during those

trips. One trip starts in a hotel, then visits a number of nodes (Points of Interest, or POIs), and

then goes to another or the same hotel. The next trip should start from the hotel where the

previous trip ended at. Each trip’s length is constrained by a time limit Td. For a more detailed

explanation, we refer to Divsalar et al. (2013).

Throughout this thesis, we use the term trip to describe an itinerary that starts in one hotel

and ends in another, without visiting intermediate hotels. We use tour to describe an ordered set

of trips, that together form a solution to the problem. We use node and POI interchangeably,

and vertex refers to an element from the set of nodes and hotels.

To understand the relevance of the OPHS and its multi-tour variant, let’s consider an example.

Imagine a company which employs an agent who is tasked to recruit students from various

universities in a region. The agent has one week of time to visit different universities and conduct

recruitment activities. The goal of the company is to maximize the total recruitment benefit,

which is achieved by visiting universities with high recruitment potential. Thus, the agent’s

itinerary for this week should be optimized by choosing an optimal selection of universities and

hotels visited. This problem is an example of the OPHS by Divsalar et al. (2013), with D = 7

trips and scores Si determined by recruitment potential. The trip’s time limit is constrained by

the working hours of the agent, for example Td = 8 hours, ∀d ∈ {1, ..., 7}.
Now imagine a situation where the company employs not one, but m ∈ N agents to recruit

at universities. As visiting a certain university twice does not yield additional benefit to the

company compared to visiting the university only once, we add the constraint that the tours of

the agents should be disjoint in the POIs1. Then, the OPHS falls short, as it only considers the

optimization of one tour at a time and does not consider the interdependence between two tours.

In this example, we would benefit from optimizing multiple tours simultaneously, because the

simultaneous optimization takes the interdependence between the possible routes into account.

Notably, this cannot be achieved by simply increasing the number of days in a tour in an OPHS

by (m− 1)×D, because the start and end hotel of each tour should remain fixed, whereas in an

OPHS the intermediate hotels can be chosen freely.

This motivates the development of a multi-tour version of the OPHS, which to the best of

our knowledge has not been researched before. As this extension to the OPHS shows similarities

to how the Team Orienteering Problem (TOP) developed by Chao, Golden and Wasil (1996b) is

an extension to the Orienteering Problem (OP), we refer to it as the Team Orienteering Problem

with Hotel Selection (TOPHS). We formally introduce the TOPHS in Section 3.1 using a MIP

formulation.

Note that the OPHS is a special case of the TOPHS with m = 1, implying that the TOPHS

is a generalization. As a result of the TOPHS being more general, it is also more complex to

solve. Given that the OPHS is already NP-hard (Divsalar et al., 2013), the TOPHS is NP-hard

as well. As for larger instances exact computation times become obstructive, we also propose

1Note that they should be disjoint in the POIs, but the hotels visited may overlap.

1



three heuristics for the TOPHS. This is necessary, because in some applications, good solutions

need to be available in real-time.

The first heuristic is a multi-tour adaption of the Skewed Variable Neighborhood Search

(SVNS) for the OPHS by Divsalar et al. (2013), which we refer to as the TSVNS. As this

heuristic has proven to be effective for the OPHS, it is worth exploring for the TOPHS as well.

By slightly modifying neighborhoods used in this algorithm, it can be applied to the TOPHS.

The second heuristic and third heuristic are based on the Artificial Bee Colony (ABC) op-

timization procedure by Karaboga (2005). The reason for using an ABC-based approach is

three-fold. Firstly, the skewed variable neighborhood search (SVNS) method used in (Divsalar

et al., 2013) turned out to be strong, but its computation time increases substantially for lar-

ger instances (Divsalar, Vansteenwegen, Sörensen & Cattrysse, 2014). Secondly, ABC has been

successfully employed in a similar problem, namely the Team Orienteering Problem with Time

Windows (TOP-TW) by Cura (2014). Thirdly, it is interesting to see if it is applicable to this

extension to the OPHS, as it has not been used for any OPHS problem before. If it works here,

it might work for other versions of the OPHS problem as well.

As mentioned before, we implement two ABC-based heuristics. The first is an adaption of

the ABC-heuristic for the TOP-TW proposed by Cura (2014). It randomly generates a solution

and tries to improve the objective value by iteratively moving or exchanging random vertices.

We adapt it slightly to make it applicable to the TOPHS, and refer to it as TABC.

The second ABC-based heuristic is a mixture of the ABC-heuristic of Cura (2014) and the

SVNS approach by Divsalar et al. (2013). We still use the idea of an ABC-based heuristic, but

also apply the neighborhoods as used in the SVNS-approach. We call this method the TAV

heuristic.

An overview of the proposed heuristics is provided in Table 1. The heuristics are explained

in more detail in Section 3.

Table 1: Overview of the proposed heuristics and the literature on which it is based.

Heuristic 1 2 3

Name: TSVNS TABC TAV

Mainly based on: Divsalar et al. (2013) Cura (2014) Karaboga (2005)

As the TOPHS is a new problem, there exist no instances with known optimal values yet.

Part of this research is therefore also dedicated to constructing such instances from existing

instances of the TOP (Chao et al., 1996b). The procedure to do so is discussed in greater detail

in Section 3.5.

The contribution of this research can thus be summarized as follows:
• The TOPHS is motivated and modelled as multi-tour extension to the OPHS.

• A set of benchmark instances of the TOPHS is generated from existing instances of the

TOP.

• The SVNS heuristic is further developed to be used for the TOPHS.

• Two ABC-based heuristics are introduced and employed for instances of the OPHS and

TOPHS.

• The performance of the heuristic algorithms is assessed, for both the OPHS as well as

the TOPHS.

2



This boils down to the following research question: What is the effectiveness of an Artificial

Bee Colony (ABC) optimization procedure compared to the Skewed Variable Neighborhood Search

(SVNS) method for solving the newly developed multi-tour extension to the Orienteering Problem

with Hotel Selection (OPHS)?

The answer to this question is highly relevant as orienteering problems depend on strong

and efficient heuristic methods, as high-quality solutions are sometimes needed on a real-time

basis. Using exact methods is generally infeasible for larger instances given that the problems are

NP-hard. Especially since the TOPHS is a new problem, the presence of a strong and efficient

heuristic is crucial not only scientifically, but also to make processes in society more accurate

and efficient.

The scientific relevance is that the currently existing research on the OPHS is extended in line

with another commonly used model, the team orienteering problem (TOP). As also benchmark

instances are developed, this invites future research on new heuristics for these extended models.

Next to that, three heuristics are developed and assessed on their effectiveness. Variations on

these heuristics may be applicable to and promising for similar problems.

We find that the TSVNS is the most promising algorithm, providing the lowest average

gaps and a reasonable computation time. Especially for smaller instances it outperforms the

other methods. For larger instances, however, its execution time increases substantially. The

TAV demonstrates potential advantages for such larger instances, because it has lower execution

times than TSVNS but maintains an acceptable gap. The TABC does not perform as well, both

in terms of average gap and running time.

The remainder of the thesis is structured as follows. Section 2 discusses relevant literature re-

lated to orienteering problems and heuristics. The MIP formulation of the TOPHS is introduced

in Section 3.1, whereas the adapted SVNS method and the ABC-based heuristics are outlined

in Section 3.2 to 3.4. Moreover, Section 3.5 presents how instances with known optimal values

can be generated and Section 4 concerns the analysis and the performance evaluation of the

heuristic. Lastly, Section 5 summarizes the findings and Section 6 provides insights into future

research directions.

2 Literature Review

2.1 Orienteering Problem

The Orienteering Problem (OP) was first developed by Tsiligirides (1984), but Golden, Levy and

Vohra (1987) were the first to call it such. It can be regarded as a Travelling Salesman Problem

(TSP) where not all nodes need to be visited by the salesman, but there is a time/cost limit.

Also, the objective is not minimizing costs, but maximizing score over all nodes visited. This

problem description matches that of a Traveling Salesman Problem with Profits (TSPP) (Feillet,

Dejax & Gendreau, 2005).

As the problem is relatively old, numerous extensions have been developed, such as the

Team Orienteering Problems (TOP), the Orienteering Problem with Time Windows (OPTW),

Time-Dependent Orienteering Problem (TDOP), Orienteering Problem with Stochastic Profits

(OPSP), Multi-Modal Orienteering Problem (MMOP), Multi-Objective Orienteering Problem

3



(MOOP), Multi-Period Orienteering Problem (MPOP), and a variety of combinations of those

(Vansteenwegen, Souffriau & Van Oudheusden, 2011; Gunawan, Lau & Vansteenwegen, 2016;

Vansteenwegen & Gunawan, 2019).

The OP is proven to be NP-hard (Golden et al., 1987). As a result, so are most of its

extensions as they only add complexity or more generality to the problem. It is therefore not

surprising that many authors who investigate a certain extension of the OP, also find themselves

developing a heuristic.

In the remainder, we discuss extensions of the OP related to the problem that is developed

in this research. For any other OP problems, we refer to the survey by Vansteenwegen and

Gunawan (2019), as it is a rather complete overview of existing OP extensions.

2.2 Orienteering Problem with Hotel Selection

The OPHS is introduced by Divsalar et al. (2013). In this problem, a solution tour consists of

D trips, each of which has a time limit. Note that D is not a decision variable. Furthermore,

we have a set of H + 1 hotels and N POIs. Each POI has a score. A trip should start and end

in a hotel, and the starting hotel of a certain day should be the same as the ending hotel of the

day before. Furthermore, the start and end hotel of the tour are given and fixed. The goal is

to construct a feasible combination of POIs and hotels that maximizes the sum of scores visited

over the total tour.

Divsalar et al. (2013) created a skewed variable neighborhood search (SVNS). First, an OP

instance is heuristically solved for all feasible pairs of hotels, called the sub-OP. Then, for all

feasible combinations of pairs of hotels, a score is calculated by adding the OP-outcomes of all

pairs in the combination. The best k hotel combinations according to this score are then used

for the remainder of the algorithm, where k is fixed. The optimal POIs of the sub-OPs are

added in between the hotels. As some POIs may overlap, repetitions are removed to make it

feasible. Then, in the local search procedure, the hotels and POIs are shuffled, replaced, added,

and removed for several iterations in an attempt to improve the solution. A solution is better if

it increases the total score of the route, or decreases its length while keeping its score constant.

Sometimes, also changes that do not increase the total score are accepted, to avoid being trapped

in local minima.

Not only did Divsalar et al. (2013) make this heuristic, the authors also designed benchmark

instances of the OPHS to test the performance with. The heuristic was capable of solving 102 of

the 224 instances to optimality, with an average gap of 1.44% and an average computation time

of less than two seconds. A disadvantage of this heuristic is that its performance decreases dra-

matically when the number of feasible hotel sequences increases (Sohrabi, Ziarati & Keshtkaran,

2020; Divsalar, Vansteenwegen, Sörensen & Cattrysse, 2014). Another disadvantage is that only

a subset of all feasible hotel combinations is used during the improvement step, causing that the

optimal combination is not considered anymore.

Divsalar, Vansteenwegen, Sörensen and Cattrysse (2014) developed a memetic algorithm

(MA), which is able to handle larger instances of the OPHS than the SVNS, because not all

feasible combinations of hotels need to be known. The MA delivers a smaller average gap and

finds the optimal solution in more cases than SVNS.

4



Another heuristic for the OPHS is the Greedy Randomized Adaptive Search Procedure

(GRASP) that uses dynamic programming to improve the order of hotels on the go, instead

of considering all possible combinations beforehand (Sohrabi et al., 2020). Toledo, Riff and

Neveu (2019) consider a hyperheuristic, that selects one of eleven local search methods based on

the state of the problem and how successful a certain method is expected to be. Looking at the

number of instances solved to optimality, this heuristic in particular was relatively successful.

A last heuristic is an Ant Colony System (ACS) heuristic by Sohrabi, Ziarati and Keshtkaran

(2021). It adopts the ACS as developed by Dorigo and Gambardella (1997) to perform a bi-

directional search pattern, where one ant colony searches from the starting hotel of the first trip,

and the other ant colony from the arriving hotel of the last trip. As such, the route is iteratively

grown from both sides until a complete solution is found. This is the first heuristic where tours

are created sequentially. It provides better solutions than the other heuristics for some of the

OPHS instances.

The OPHS-TW is an extension to the OPHS, and was introduced by Divsalar, Vansteenwe-

gen, Chitsaz, Sörensen and Cattrysse (2014). It is similar to the OPHS except that now opening

hours for the nodes are considered. In other words, a score is only awarded when a POI is visited

within that time window. The authors also develop a heuristic, namely MA similar to Divsalar,

Vansteenwegen, Sörensen and Cattrysse (2014), now called a Genetic Algorithm with embed-

ded Variable Neighborhood Descent (GA-VND). The Genetic Algorithm focuses on the hotel

selection, whereas the VND takes care of the POI placement, while taking the time windows

into account. Divsalar, Emami and Vansteenwegen (2017) instead uses a Lagrangian relaxation

method in combination with a heuristic for ensuring feasibility, resulting in strong results as well.

Another recent extension to the OPHS is the Bi-Objective OPHS (BO-OPHS) by Ataei,

Divsalar and Saberi (2022). Apart from POIs, the authors also attach a score to hotels based on

several criteria. They use a real-world case in eastern Australia to show the applicability of the

problem, using real-world data such as customer reviews by using natural language processing.

As the problem remains relatively small, it is solved exactly using a commercial solver.

2.3 Artificial Bee Colony Heuristic

The Artificial Bee Colony (ABC) algorithm was introduced by Karaboga (2005). It is an optim-

ization algorithm based on the behaviour of honey bees in nature. Karaboga (2005) identifies

three types of bees: scouts, employed bees and onlookers. Generally speaking, scouts do the ex-

ploration, onlookers do the exploitation, and employed bees also do exploitation, but also make

sure that there is a balance between exploitation and exploration of solutions.

Initially, the algorithm starts with k random solutions to the problem, generated by k scouts.

Each of the k employed bees goes to one of them, and calculates its objective value (and already

does some quick local search). The employed bees then return to the hive to do the waggle dance,

informing the n ≥ k onlooker bees about their findings. The onlooker bees are then distributed

over the solutions with a probability proportional to the solution’s objective value. They then

perform local search to try and improve the solution. Solutions which are not improved over a

preset number of iterations, are not further explored and a new random solution is generated by

the scout bees, such that there are always k solutions being considered (Karaboga, 2005).

5



ABC is not widely applied to orienteering problems. However, Cura (2014) uses the approach

for the Team Orienteering Problem with Time Windows (TOP-TW). The research shows that

the ABC heuristic is capable of producing high quality solutions for the TOP-TW, comparable

to other commonly-used heuristics for this problem.

2.4 Applications

The OP and OPHS specifically have numerous interesting applications. As the name of the

problem is derived from the practice of orienteering, this is the first application to be discussed.

In the sport of score orienteering, competitors travel by foot or other means of transport in an

unknown area to find an optimal route from start to finish, while visiting as many as possible

control points within a given time limit (Tsiligirides, 1984). They use a map, so at the start of

the competition, they know the travel distances, bot net yet the optimal route.

Another application of the OP is that of the travelling salesman that does not have to visit

each and every sales location, but instead tries to visit only the locations with the highest profits

within a given time limit. Compared to the travelling salesman problem (TSP), the objective also

changes from minimizing costs to maximizing sales, or total score. This problem is also called the

Travelling Salesman Problem with Profits (TSPP) (Feillet et al., 2005). When multiple periods

are considered, we have an instance of the OPHS.

Designing a tourist trip matches the description of OP as well, as the tourist wants to visit

as many touristic highlights as possible during their holiday. As time is limited, they cannot see

every inch of a city, so they need to be selective on such highlights and find an efficient route

between them, which is an OP. This problem is known in literature as the Tourist Trip Design

Problem (TTDP) (Gavalas, Konstantopoulos, Mastakas & Pantziou, 2014). Again, if multiple

periods are considered and the tourist can travel to different hotels, this would be an OPHS.

An example of this is the tourist hotel selection problem by Ataei et al. (2022). This applic-

ation used the OPHS with hotel scores together with Natural Language Processing (NLP) to

get a tour where the scores are related to true customer reviews from sources such as Trustpilot.

This makes the model highly adaptive.

Álvarez-Miranda, Luipersbeck and Sinnl (2018) solve a generalized clustered OP to efficiently

visit different categories of Pokémon in the popular game of Pokémon Go. This is a clustered

problem, which means that each POI is distributed over different locations, and visiting one of

its locations is sufficient to get the score of the POI, such that neither of its locations need to be

visited in later stages of the tour. In the Pokémon analogy, this means that the same Pokémon

species may be found at different locations in a city, but the player only needs one of each species,

so visiting one of these locations is enough.

The problems are also relevant for military missions. (Divsalar et al., 2013) mention a

situation where a submarine does as many as possible missions (POIs), while resulting to save

zones (hotels) for provisioning. As provisioning needs to occur regularly, there is a time limit on

each trip. The number of trips and the start and ending location are fixed, meaning that this is

an instance of the OPHS.

Another real-life instance of an OPHS is truck planning with mandatory intermediate stops.

For example, imagine a truck driver that wants to replenish as many as possible locations where

6



the score received depends on demand. Assume the truck has a sufficiently high capacity. As

the trip length is restricted by law, the truck driver needs to rest at rest stations next to the

highway, which can be considered as the hotels. If the start and end locations are known, this is

also an OPHS (Divsalar, Vansteenwegen, Sörensen & Cattrysse, 2014).

3 Methodology

3.1 MIP Formulation

In this section, we introduce the modifications necessary to change the OPHS into a TOPHS.

First, we introduce notation for the model in Table 3.1. It is based on the MIP from Divsalar et

al. (2013).

Table 2: Definition of variables for the TOPHS
Notation Description Set

D Number of trips in the route D = {1, ..., D}
H + 1 Number of hotels (hotel 0 is the starting hotel H = {0, ...,H}

in trip 1, hotel H is the ending hotel in trip D)

N Number of POIs N = {H + 1, ...,H +N}
Q Number of team members Q = {1, ..., Q}
Si Score of POI i

ti,j Symmetric travel time between vertex i and j

Td Travel time limit for trip d

T Travel time limit for any whole tour

xi,j,q,d Binary variable indicating if j is visited right

after i by team member q in trip d

ui Order in which the POIs are visited. If i is

visited before j in the same trip, then ui < uj

Apart from introducing multiple tours instead of one, another addition is the variable T ,

which denotes the maximum total travel time per tour. This variable may not be necessary

in all cases (for example when
∑D

d=1 Td ≤ T ), but it is added to increase the flexibility and

application possibilities of the problem. If such a time limit is not present in the case under

study, T can of course always be set to infinity, eliminating the corresponding constraint. For

even more flexibility, an index q could be added (Tq), to give each team member a time limit for

their tour. However, we assume all team members to be symmetrical, implying Tq = T .

Then, the model is represented by equations (1) - (13).

7



max

D∑
d=1

Q∑
q=1

H+N∑
i=0

H+N∑
j=0

Sixi,j,q,d (1)

subject to

Q∑
q=1

H+N∑
i=1

x0,i,q,1 = Q (2)

Q∑
q=1

H+N∑
i=0

xi,H,q,D = Q (3)

H∑
h=0

H+N∑
i=0

xh,i,q,d = 1 d ∈ D, q ∈ Q (4)

H∑
h=0

H+N∑
i=0

xi,h,q,d = 1 d ∈ D, q ∈ Q (5)

H+N∑
i=0

xi,h,q,d =
H+N∑
i=0

xh,i,q,d+1 d ∈ {1, ..., D − 1} , h ∈ H, q ∈ Q

(6)

H+N∑
i=0

xi,k,q,d =
H+N∑
i=0

xk,i,q,d k ∈ N , d ∈ D, q ∈ Q (7)

D∑
d=1

Q∑
q=1

H+N∑
i=0

xk,i,q,d ≤ 1 k ∈ N (8)

H+N∑
i=0

H+N∑
j=0

ti,jxi,j,q,d ≤ Td d ∈ D, q ∈ Q (9)

D∑
d=1

H+N∑
i=0

H+N∑
j=0

ti,jxi,j,q,d ≤ T q ∈ Q (10)

ui + 1− uj ≤ (N − 1)

1−
Q∑

q=1

D∑
d=1

xi,j,q,d

 i, j ∈ N (11)

ui ∈ N i ∈ N , d ∈ D, q ∈ Q (12)

xi,j,q,d ∈ B i, j ∈ H ∪N , d ∈ D, q ∈ Q (13)

The objective function (1) maximizes the total score obtained by visiting POIs over all trips

and all team members. Constraint (2) ensures that each tour starts in hotel 0, and constraint (3)

ensures that each tour ends in hotel H. Constraints (4) and (5) ensure that each trip respectively

starts at a hotel and ends at a hotel. Constraints (6) guarantee that each trip is started from

the hotel where the previous trip ended. Constraints (7) ensure that if a POI is visited, it is

also left in the same trip. Constraints (8) limit the number of visits to any POI by one, over all

trips and all team members, whereas the trip and tour length are regulated by constraints (9)

and (10), respectively. The subtour elimination constraints are constraints (11), which is similar

to the one in Divsalar et al. (2013). They give the order of the POIs in each of the trips using

an increasing value of the variable ui. Constraints (12) and (13) limit the range of the decision

8



variables and ensure integrality of the problem.

Note that the variables ti,j , Td and T can be interpreted as travel distance, travel time, or

any other quantity that makes the transition between two vertices expensive.

Note that if T ≥
∑D

d=1 Td and the start and end hotel are the same, an upper bound on the

TOPHS objective value can be derived from an OPHS instance with the same hotels and POIs,

Q ×D trips and trip time limits T ′
f = Tf−nD, ∀n ∈ N, f ≤ (n + 1)D ≤ Q ×D. For a proof, we

refer to Appendix A.1. If the start and end hotel are not the same, we can also construct an

OPHS as an upper bound for the optimum of the TOPHS. The proof of that case is presented

in Appendix A.2.

3.2 Skewed Variable Neighborhood Search for the TOPHS (TSVNS)

The first heuristic used to solve the TOPHS is based on the SVNS heuristic by Divsalar et al.

(2013). We call our generalization the team-SVNS, or TSVNS.

The general structure is presented in Algorithm 1. Note that we changed the while loop

of Divsalar et al. (2013) slightly to prevent an infinite loop resulting from NoImprovement

becoming too high while K is not reaching Kmax. Another change is that local search is now

performed within the vertices shake function, and that we check if the solution after vertices

shake is an improvement. This is in contrast to Divsalar et al. (2013), which performs local

search after the vertices shake and only checks for improvement after also the hotels shake is

performed.

The initialization phase is discussed in Section 3.2.1. In the improvement phase, the current

solution is explored and exploited. For the improvement phase, the parameterNoImprovementMax

limits the number of subsequent iterations where no improvement was found, and Kmax limits

the number of subsequent iterations where X is not updated. These conditions are the condi-

tions for the loop. In the loop, the vertices of the current solution are changed to diversify the

search (see Section 3.2.2). If the best solution is then not improved, the hotels are exchanged for

another set of hotels (see Section 3.2.3), after which again local search is applied. If the solution

is improved after any change, the current best solution is updated.

Notably, under some condition, a suboptimal solution may also be used to recenter the

solution currently under investigation. In this paper, we use the condition that the current

solution has an objective value not further than MaxPercentageWorse percent away from the

best found objective value. This part of the algorithm ensures that we are not stuck in a local

optimum and promotes exploring apparently suboptimal branches.

Essentially, this implementation of the TSVNS heuristic is very similar to that of the SVNS

heuristic of Divsalar et al. (2013). In fact, when setting Q = 1 in the TSVNS heuristic, it reduces

to our the SVNS heuristic. Therefore, solving OPHS instances with the TSVNS heuristic would

replicate the results of Divsalar et al. (2013).

For the rest of the discussion of the algorithm, it is worth mentioning that we consider a

solution X to the TOPHS as a better solution than Y (denoted X > Y ), if either X has a higher

objective value than Y , or if the objectives are the same but X has a shorter total distance/time

travelled than Y .

9



Algorithm 1 Structure of the TSVNS heuristic

Initialization

M ← matrix for all pairs of hotels with potential scores using a sub-OP heuristic

L′ ← list of best feasible combinations of hotels

L← list of the NUFC best feasible combinations of hotels, based on M and L′

X ← initial solution based on L

Improvement

bestX ← X, K ← 1, NoImprovement ← 0

while NoImprovement < NoImprovementMax and K < Kmax do

X ′′ ←Vertices-Shake(X)

if X ′′ > bestX then X ← X ′′, bestX ← X, K ← 1, NoImprovement ← 0, continue

X ′ ←Hotels-Shake(X, L)

X ′′ ←Local-Search(X ′)

if X ′′ > bestX then X ← X ′′, bestX ← X, K ← 1, NoImprovement ← 0

else

NoImprovement++

if X ′′ is slightly worse than X then X ← X ′′, K ← 1

else K++

return bestX

3.2.1 Initialization Phase

As follows from Algorithm 1, the first step is to find the potential score between all pairs of

hotels, for each trip d ∈ D. This is done using a Sub-OP procedure, similar to Divsalar et al.

(2013). A Sub-OP is an orienteering problem between two hotels with the time limit set equal

to Td. It is solved using the greedy Algorithm 2, which uses local search methods from Section

3.2.4. As this algorithm is relatively straight-forward, it takes little computation time. The four

methods used in this algorithm are discussed in Section 3.2.4.

Algorithm 2 Sub-OP

X ← initial solution with only the start hotel and the end hotel

Level ← 0

Methods ← [Insert, Replacement, Two-Opt, Move-Best]

while Level < 4 do

X ′ ← Methods[Level](X)

if X ′ > X: X ← X ′, Level← 0, continue

Level++

return X

Next, the list of feasible combinations of hotels is obtained. This is done by obtaining all

permutations of size D − 1 from the set of hotels, and then appending the start and end hotel

to the front and back respectively. This creates a tour of D trips, and its feasibility is easily

checked using the trip time limits Td and T . By taking all Q-permutations of these tours, a

10



feasible combination of hotels is obtained for the TOPHS.

All these combinations of hotels are subsequently given a score, which is the sum of sub-OP

scores of each pair of hotels in each tour of the combination. This score is called the Heuristic

Estimated Score (HES), because some nodes may appear in multiple solutions to the sub-OPs

and better sub-OP solutions may exist. Based on this HES, the list of combinations is sorted and

the best NUFC (Number of Used Feasible Combinations of hotels, a parameter of the algorithm)

are selected.

Note that these NUFC combinations do not contain any POIs yet. To construct an initial

solution, we apply three methods similar to (Divsalar et al., 2013), each of which creates a feasible

solution. The feasible solution with the highest outcome is then used as the initial solution.

The first two methods iteratively solve the Sub-OP of Algorithm 2 for each pair of hotels in

the solution, taking into account the nodes that have already been added to previous trips. The

first method does this starting from the first trip of the first route, whereas the second method

starts at the last trip of the last route. After that, local search of Section 3.2.4 is applied to

improve the solution to the first and second method. The third method just applies local search

as described in Section 3.2.4 to the initial empty combination of hotels.

3.2.2 Vertices Shake

In the Vertices Shake method, some of the vertices in the current solution are replaced by new

ones in order to explore the solution space for a given set of hotels. Two methods are used to

remove vertices. In the first method, the first half of the vertices in each trip is deleted, after

which local search (see Section 3.2.4) is applied. In the second method, the last half of the

vertices in each trip is deleted, also followed by local search. The best result is then returned.

3.2.3 Hotels Shake

In the Hotels Shake method, the hotels in the tour are replaced by another one of the NUFC

feasible combinations of hotels from the list L in Algorithm 1. It is determined randomly with

equal probability which hotel combination is selected.

After replacing the hotels, the set of tours may become infeasible. If this is the case, nodes

are removed from the infeasible trips according to an iterative procedure, where the node with

the highest ratio of time saved by a removal over score is removed. This is repeated until the set

of tours is again feasible.

3.2.4 Local Search

In Local Search, the current solution is exploited by adding, moving or replacing POIs in the set

of tours. The implementation of this method is presented in Algorithm 3. As the Local Search

procedure is the core of the TSNVS algorithm, the neighborhoods need to be carefully chosen.

As the TOPHS is an extension of the OPHS and can be seen as Q simultaneously optimized

OPHS instances, we expect the methods used for OPHS by (Divsalar et al., 2013) to work well.

Therefore, we use the nine neighborhoods from that paper.

As the TOPHS has an extra dimension compared to the TOPHS, namely the fact that we

now have Q tours instead of one, we should slightly change some of the neighborhoods, to allow

11



for example swapping nodes from one tour to another. In the remainder of this section follows

a short description of each neighborhood, based on Divsalar et al. (2013).

Insert : for all non-included POIs, identify the cheapest location to insert it in the solution, if

possible. Insert the POI that results in the largest increase in total score, relative to additional

travel time.

Move-Best : for all POIs in the solution, identify the cheapest location to move it to. After

the move is done, consider the next POI.

Two-Opt : within each trip in each tour, identify the pair of POIs that can be swapped

resulting in the highest decrease in travel time. After the swap is done, consider the next trip.

Swap-Trips: for each pair of trips, identify the pair of POIs (one coming from each trip) for

that can be swapped resulting in the highest decrease in travel time, while keeping both trips

feasible. After the swap is done, consider the next pair of trips.

Extract-Insert : for each POI, identify if it is possible to increase the score by removing it and

inserting as many other vertices as possible (using Insert). If this is possible, keep the change

and consider the next POI.

Extract2-Insert : same as Extract2-Insert, except that a sequence of two POIs in the same

trip is now considered for exclusion.

Extract5-Insert : same as Extract-Insert, except that a sequence of five POIs in the same

trip is now considered for exclusion. If one possibility is found, the move is performed and the

neighborhood search is terminated.

Extract-Move-Insert : for each POI, identify if it is possible to increase total score by (1)

removing the node, (2) moving another node in the tour and (3) inserting a new node. If this is

the case, perform the move and consider the next POI.

Replacement : for each non-included POI, identify the cheapest position to insert it in each

trip. If this move is feasible, insert this POI. If not, all other POIs in the trip with a lower score

are considered for removal. If removing one of these POIs makes insertion of the initial POI

feasible, perform the replacement and consider the next trip.

Note that these neighborhoods only change the choice and order of included POIs, not the

hotels. Therefore, in the local search algorithm, the hotels are considered fixed.

Algorithm 3 Local Search

X ← initial solution

Level ← 0

Methods ← [Insert, Move-Best, Two-Opt, Swap-Trips, Extract-Insert, Extract2-Insert,

Extract5-Insert, Extract-Move-Insert, Replacement]

while Level < 9 do

X ′ ← Methods[Level](X)

if X ′ > X: X ← X ′, Level← 0, continue

Level++

return X

12



3.2.5 Parameters Overview

This TSVNS has several parameters that require tuning. Divsalar et al. (2013) already found

appropriate parameters for their OPHS instance set. As the TOPHS is based on the OPHS

and because we did not greatly change the methods, we stick with the values they used. Also,

the authors found that small changes in the parameter values did not significantly change the

performance of the algorithm.

The values they found are the following: NoImprovementMax = 50, NUFC = 250,

MaxPercentageWorse = 0.3, Kmax = max{0.25×min{NUFC, TNFC}, 1}.
Here, TNFC denotes the total number of feasible combination of hotels in the instance of

the problem. For example, if there are only three distinct hotels and two trips per route, then

there are at most three feasible combinations of hotels. This means that only when TNFC is

larger than NUFC, we do not consider all possible combinations in the algorithm.

3.2.6 Theoretical Problems with TSVNS

One difficulty with the SVNS of Divsalar et al. (2013) is that its computation time increases

substantially when the number of hotels in an OPHS increases. This is a result of the algorithm

considering a subOP for each pair of hotels, and the fact that it heuristically solves all feasible

combinations of hotels before starting the improvement phase. Because of that, the initialization

phase can take obstructively long. We have a similar problem for the TSVNS as hotels are

selected in a similar fashion.

Another possible disadvantage is that the TSVNS only selects the NUFC combinations of

hotels which have the highest HES. This implies that some feasible combinations of hotels are

not considered in the improvement step, even though they may give a higher feasible solution

than the set of the best NUFC hotels.

Both difficulties advocate the use of a more randomized algorithm. The ABC-based al-

gorithms of Section 3.3 and 3.4 may therefore be a successful alternative.

3.3 Artificial Bee Colony Heuristic (TABC)

The second heuristic used in this research is a modified version of the ABC-based heuristic by

Cura (2014). They applied the heuristic to a similar problem, namely the team orienteering

problem with time windows (TOP-TW). By changing its algorithm slightly, a heuristic for the

TOPHS can be developed.

An important factor in using this heuristic is the solution representation. Instead of defining

a set of feasible tours as a solution and performing neighborhood searches by inserting nodes

from a pool of nodes, all nodes are already present in the solution. One can construct a solution

as one sequence, with N POIs, Q×(D−1) hotels and Q−1 tour separators (TSs), which indicate

where the previous tour ends and the next one starts. Note that as the tours are separated by a

TS, there is no need to explicitly insert the start and end hotels of each tour. An example of a

solution representation is given in Table 3.

To convert this solution to a feasible set of tours, the tours are separated around the TS

operator and the start and end hotel are inserted. Note that some time limits may be violated

as we inserted all nodes into the solution. To solve that, all nodes are visited until one of the

13



time restrictions is violated. In the example in Table 3 and given appropriate time limits, node

5 can be visited in the first trip of tour 1, but node 4 cannot be reached within the trip distance

limit and is skipped because of that. In this fashion, we can construct the two tours as used in

the TSVNS heuristic. Note that the two solutions in Table 3 are then equivalent.

The reason for using this representation is that it makes randomly changing the order of

vertices a lot easier. Note that all solutions automatically have the same length. Namely, they

always consist of N POIs, (D − 1)×Q hotels and (Q− 1) TSs.

Table 3: Solution representation of the same feasible solution for each of the heuristics. TS

denotes an operator that separates the tours. Parameters: N = 8, Q = 2, H = 2 (so vertices 0,

1 and 2 are the hotels).

Heuristic Solution representation

TSVNS, TAV 1: [0 5 1 3 2]

2: [0 8 0 6 2]

TABC [5 4 1 3 7 TS

8 0 6 9 10]

Algorithm 4 shows how this heuristic is implemented. It is based on how a bee hive explores its

surroundings for the highest amount of nectar (the highest objective value). For a given number

of iterations, the nEB employed bees and the nOB onlooker bees explore the neighborhood of

the L current solutions by swapping and moving vertices in a solution, and reversing the order

between two vertices. The employed bees choose each of the L solutions with equal probability,

whereas the onlooker bees take the amount of nectar in each solution into account. Then, with

a probability of µ, new random solutions are generated by the nSB scout bees. After each

change in one of the solutions, the current best solution is updated, such that the variable best

in Algorithm 4 always reflects the best found solution.

Algorithm 4 Implementation TABC heuristic

sols ← L randomly generated feasible solutions

best ← Best solution from sols

for i in 1:maxIter do

for b in 1:nEB, do employedBee(sols)

P← waggleDance()

for b in 1:nOB, do onlookerBee(P , sols)

if Random draw from UNIF (0, 1) < µ then

for b in 1:nSB, do scoutBee(sols)

3.3.1 Generating random solutions

In the first step of Algorithm 4, L random solutions are generated. This is done by creating a list

of all N POIs, a random subset of (D − 1)×Q hotels and Q− 1 TSs. Then, this list is shuffled

to create a solution in line with Table 3.

Note that this solution is not necessarily feasible, even after deleting all POIs, as some

combinations of hotels may be infeasible due to travel time restrictions. Therefore, generating a

14



random solution is tried until either a feasible solution is found, or time runs out of the set time

limit, implying that there is likely no feasible solution.

3.3.2 Employed Bees

The function employedBee(sols) in Algorithm 4 randomly selects two of the solutions in sols,

called k and l. Then, a random vertex i in l is chosen, which is either a Hotel, a POI or a TS.

Next, the location of i in k and l is recorded as rk and rl respectively.

The employed bees explore three neighborhoods of l, each of which is chosen with equal

probability. The three neighborhoods are SWAP(i), INSERT(i) and INVERT(i), and how they

are implemented depends on the type of i, as not all moves from Cura (2014) are allowed for all

types of vertices. The neighborhoods are explained in Section 3.3.6.

After the neighborhood is explored and neighbour lnew is discovered, the objective value of

lnew is calculated. The new solution is accepted with a probability of one if the new objective

value is better, and it may also be accepted if it is not according to a certain probability. This

probability is based on the probability calculation in a Simulated Annealing algorithm (Cura,

2014), namely exp {(f(lnew)− f(l))/ρ}, where f(x) denotes the objective value of solution x and

ρ is a parameter. If accepted, l is replaced by lnew in sols.

3.3.3 Waggle Dance

In a waggle dance, employed bees inform the other bees about the amount of nectar available in

the location they explored. The onlookers can then distribute themselves over these locations in

a proportional way.

Our algorithm simulates this by assigning a probability to each location in sols. This is done

in proportion to their objective values. Thus, P in Algorithm 4 is a vector of L probabilities.

3.3.4 Onlooker Bees

Onlooker bees explore the neighborhood of the food sources even further, after having been

informed by the employed bees using the waggle dance. Specifically, they select food sources k

and l with a probability P [k] and P [L]. After that, they do explore the neighborhoods of l in

exactly the same manner as the employed bees.

3.3.5 Scout Bees

When a food source is exhausted, scout bees go to a random new location. They inform the

other bees of this new location, so that they can explore it further.

In our implementation, it is hard to determine when a solution is exhausted, or when no

single (sequence of) move(s) can improve the objective value. Therefore, in each iteration, the

nSB scout bees are employed with a small probability µ.

The scout bee function does the following. First, a random food source l is selected from

the L current food sources. Then, all vertices are swapped with each other and all vertices are

moved to all possible positions, to find the feasible solution with the highest objective value.

This solution is then saved. This practice is explained in more detail in Algorithm 5.

15



Algorithm 5 Scout Bee

l ← L random solution from sols

numV ertices ← N +(D− 1)×Q+(Q− 1) ▷ number of POIs + hotels + TS in each solution

for i, j in 1 : numV ertices do

lnew ← swap ith and jth vertex in l

if lnew is feasible & lnew > l then l← lnew

for i, j in 1 : numV ertices do

lnew ← insert ith vertex at jth position in l

if lnew is feasible & lnew > l then l← lnew

3.3.6 Neighborhoods

Both the employed bees and the onlooker bees explore three types of neighborhoods, each of

which is chosen with equal probabilities. The three neighborhoods are SWAP(i), INSERT(i)

and INVERT(i).

SWAP(i) swaps to vertices with each other, by swapping the elements at index rk and rl in

l. Note that this is not always possible, as swapping hotels or TSs may imply that the number

of hotels in each tour is not satisfied anymore. As a result, the range of values that rk may

take is restricted depending on the type of i. Similar complications also occur for the other

neighborhoods. In the remainder of this section, we therefore describe how each heuristic is

implemented for each type of i to account for such complications.

Firstly, if i is a POI, it can only swap with other POIs, with hotels in the same tour or with

TSs between the same hotels to prevent a change in the number of hotels per tour. If rk does

not satisfy this requirement, no move is applied.

Secondly, if i is a hotel, it can only swap with other hotels or with POIs in the same tour. If

rk does not satisfy this requirement, the hotel at rl in l is replaced with a random other hotel

from H.
Lastly, when i is a TS, it can swap with other TSs, which has no effect as a TS has no specific

meaning in the final solution. It can also swap with any POI between the same pair of hotels as

i. Any other move again causes an imbalance in the number of hotels in each tour. If rk does

not satisfy this requirement, no move is applied.

INSERT(i) removes the vertex at index rl from l and inserts it at index rk in l. If i is a POI,

this is always possible. If i is a hotel, it is possible only if rk is in the same tour as i. Otherwise,

the hotel at rl in l is replaced with a random other hotel from H. If i is a TS, the insert move

can be applied only if rk is between the same hotels as i. Otherwise, no move is applied.

The last neighborhood is INVERT(i). It reverses the order of the vertices in l between and

including indices rl and rk.

If i is a POI, this is possible if rl and rk belong to the same tour in l. It is also possible if

the number of to be reversed hotels in the route to which rl belongs, is the same as the number

of to be reversed hotels in the route to which rk belongs. If rk does not satisfy any of these

requirements, then either SWAP(i) or INSERT(i) is applied, with equal probability.

If i is a hotel, the same condition applies. If this condition is not satisfied, we replace the

hotel at rl in l with a random other hotel from H. Lastly, if i is a TS, it can invert if index rk in

16



l corresponds to a TS as well, or if rk is between the same pair of hotels as rl. Again, no move

is applied otherwise.

Lastly, for all neighborhoods, note that it may happen that hotel i is not present in k. In that

case, rk is undefined. Then, for all heuristics, we replace the hotel at rl in l with a random other

hotel from H. This is preferred over doing no move at all, as it promotes exploring solutions

with a different order or subset of the hotels.

The solution after the move is not necessarily feasible, as the order and choice of hotels may

have changed. In that case, the original solution is still used, without having applied any move.

Contrary to the TOP implementation by Cura (2014), the moves allowed for each of the

neighborhoods is highly restricted. This may negatively influence the performance of the heuristic

in terms of exploitation of a given solution. This motivates the use of the TAV heuristic.

3.3.7 Parameters

The TABC algorithm as above has several parameters that need to be set. Firstly, we have the

number of current solutions considered (L). Then, we specify the size and distribution of the

bee hive by the number of employed bees (nEB), onlooker bees (nOB) and scout bees (nSB).

Next to that, ρ is a value that determines the likelihood of accepting a solution that is worse

than the current solution. A lower value promotes exploration over exploitation, by increasing

this likelihood. Additionally, we have µ which specifies for each iteration the probability that

the scout bees are employed. Lastly, the maximum number of iterations (maxIter) needs to be

set. As larger problems likely need more iterations, it makes sense to relate this parameter to

the parameters of the model, as in Cura (2014).

Another value that can be considered as a parameter is the time limit. If a feasible random

solution cannot be found within this time limit, the heuristic algorithm quits.

Cura (2014) obtained the following parameters in their parameter tuning: L = 10, nEB =

10, nOB = 5, nSB = 1, ρ = 0.3, µ = 0.00015. Also, maxIter= (N + Q − 1) × 8000, where

N +Q− 1 is the number of elements in a solution to the TOP. In our case, we need to consider

the factor N + (D − 1) × Q + (Q − 1), which is the number of elements in a solution to the

TOPHS.

Lastly, one could consider the time limit a parameter of the heuristic.

3.4 Artificial Bee Colony Heuristic with Neighborhood Search (TAV)

The third heuristic that is implemented in this research is also based on the Artificial Bee Colony

optimization procedure. However, it is not inherited from any other ABC-based heuristic for an

OP specifically. Instead, the approach is based on the initial idea of ABC by Karaboga (2005). It

is extended with the neighborhood search and vertex shake methods from the TSVNS heuristic,

contrary to the TABC heuristic which mostly uses random moves. The motivation for this is

that the random moves of the TABC heuristic are highly restricted, limiting the possibilities for

exploitation, as discussed in Section 3.3.6.

As this heuristic is a combination of an ABC-based optimization procedure and the TSVNS

local search neighborhoods, we call this heuristic the Team-ABC-VNS or TAV heuristic for short.

17



Algorithm 6 summarizes the implementation of the TAV. Initially k random feasible solutions

are generated by the scout bees. These k solutions are then iteratively improved by the employed

bees and the onlooker bees. If a solution strain is not successful, i.e., no improvement has been

achieved over a given number of iterations, the employed bees ask the scout bee to replace it

with a new random one. This process is repeated until a stopping criterion is met, such as a

fixed time limit or number of iterations.

The behaviour of scout bees is further explained in Section 3.4.1, that of the employed bees

in Section 3.4.2, and that of the onlooker bees in Section 3.4.4. Section 3.4.3 explains the waggle

dance.

Again, we consider a solution X to the TOPHS as a better solution than Y (denoted X > Y ),

if either X has a higher objective value than Y , or if the objectives are the same but X has a

shorter total distance/time travelled than Y .

Algorithm 6 Artificial Bee Colony Heuristic for the TOPHS

X ← empty result matrix, to be filled with k potential solutions

C ← vector of length k keeping track of the number of iterations without improvement

bestX ← scoutBee()

for i in 1:k do X[i]← scoutBee(), C[i]← 0

while stopping criterion not satisfied do

for i in 1:k do

X[i]← employedBee(X[i])

if X[i] > bestX then bestX = X[i], C[i] = 0

else C[i] + +

if C[i] > l then ▷ l is the number of allowed iterations without improvement

X[i]← scoutBee(), C[i]← 0

X[i]← employedBee(X[i])

P ← waggleDance(X)

for j in 1:n do

X ← onlookerBee(X,P )

if for any i, X[i] > bestX then bestX = X[i], C[i] = 0

return bestX

3.4.1 Scout Bee

In Algorithm 7, scout bees are employed. They generate a random feasible solution from all nodes

and hotels, given the restrictions set by Td and T . This boils down to creating Q tours that are

mutually exclusive in the POIs. Therefore, let us first describe how the tours are generated

randomly.

First, D − 1 hotels are randomly selected from H. We call this set with D − 1 hotels H′.

Then the elements from the set H′∪N are put in a random order. Next, the start and end hotel

are appended at the front and back respectively.

This random tour is likely infeasible due to exceeded travel time limits. From all infeasible

trips, the first POI is removed, until either the trip is feasible or no nodes are left. We chose

18



to remove the first node of the infeasible trips instead of the node with the smallest ratio of

score over decrease in trip length by removing it, as to minimize computational efforts. Also,

this promotes diversification of the initial solutions and therefore prevents being stuck in local

optima.

If no nodes are left in the trip and the trip is infeasible, then this combination of hotels is

infeasible and one needs to restart at selecting D − 1 hotels randomly. If there exists a feasible

combination of hotels, then at one point, all Q tours are feasible. In our implementation, we set

a time limit for trying to generate this set of Q tours. If this time limit is exceeded, then the

problem is assumed to be infeasible and the TAV heuristic gives no output.

Now that there are Q tours, it does not mean that they are disjoint in the POIs. Therefore,

from all duplicate nodes, the one with the highest ratio of decrease in length after removal over

score is removed, until there are no duplicates left. As a result, the solution is feasible and the

scout bee has completed its task. Making the solution feasible is also summarized in Algorithm

8.

Algorithm 7 scoutBee()

V = null

while V is null do

H′ ← D − 1 random hotels from H = {0, ...,H}
V ← H′ ∪N where N = {H + 1, ...,H +N}
V ← shuffle(V ) ▷ shuffle() shuffles the set

V ← {0} ∪ V ∪ {H}
V ← makeFeasible(V ) ▷ See algorithm 8

return V

Algorithm 8 makeFeasible(V)

for Infeasible trip d in V do ▷ Remove violations of Td

while d infeasible do

if no POIs in d then

return null ▷ Infeasible combination of hotels

Remove POI with greatest ratio of marginal distance / score

while V not feasible & duplicate POIs in V do ▷ Remove duplicates

Remove duplicate POI with with greatest ratio of marginal distance / score

while V not feasible do ▷ Remove violations of T

if no POIs in V then

return null ▷ Infeasible combination of hotels

Remove POI with greatest ratio of marginal distance / score

return V

3.4.2 Employed Bee

During the exploration and exploitation phase in an ABC optimization procedure, employed

bees are used (Karaboga, 2005). They are in charge of improving the solution using local search

19



methods and informing the bee hive about the quality of the result. The first task is discussed

in this section, whereas the second task is discussed in Section 3.4.3. Next to that, if a certain

solution strain has not resulted in any improvement of the existing result for a sufficient number

of iterations, an employed bee also instructs the scout bee to find a new random solution. This

is handled by the general TAV implementation in Algorithm 6.

To improve a given solution, we first perform a vertices shake similar to the TSVNS. Contrary

to the method discussed for the TSVNS (Section 3.2.2), this is only done for a randomly chosen

tour instead of all Q tours. The reason for using a vertices shake is that in local search, the

algorithm tries to find an optimal neighbour of a solution until a local optimum is reached.

Because of that, performing local search on a solution to local search has no effect. By slightly

modifying the solution each time local search is performed, we therefore prevent getting stuck

in local optima. However, doing a vertices shake in all Q tours would diversify the new solution

too much from the original solution, meaning that exploitation of the original solution would be

reduced. Changing only one tour seems reasonable to preserve both exploitation and exploration

of our solution, especially given that the scout bees already do the randomization / exploration.

After the vertex shake, the local optimum is found using local search. The neighborhoods

used are the same as for TSVNS, namely Insertion, Move-Best, Two-Opt, Swap-Trips, Extract-

Insert, Extract2-Insert, Extract5-Insert, Extract-Move-Insert and Replacement, as discussed in

Section 3.2.4. Therefore, we use the local search method from Algorithm 3.

The complete algorithm for the employed bee is outlined in Algorithm 9. Note that in this

implementation local search is applied as part of the vertices shake procedure. Therefore, there

is no need to apply it again to the solution obtained from the vertices shake procedure.

Algorithm 9 employedBee(X[i])

q ← random integer between 1 and Q

L← X[i] where the first half of the nodes in all trips of tour q is removed

R← X[i] where the last half of the nodes in all trips of tour q is removed

L← localSearch(L), R← localSearch(R) ▷ See Algorithm 3

if L > R then return L, else return R

3.4.3 Waggle Dance

When the onlooker bees return, they do a so-called waggle dance to inform the hive which of

the k results are promising and should be explored further. The n onlooker bees distribute

themselves over these solution in a fraction that is proportional to the potential of the solution.

Our analogy to this is that the potential can be calculated as the fraction of the objective value

over the sum of all objective values. This is implemented in Algorithm 10.

Algorithm 10 waggleDance()

S ← 0, P ← vector of length k which contains the solution’s probability scores

for i in 1:k do S ← S + obj(X[i]) ▷ obj(x) calculates objective value of x

for i in 1:k do P [i] = obj(X[i])/S

return P

20



3.4.4 Onlooker Bee

The last type of bee is the onlooker bee. We have n of them and they are distributed over the k

solutions to explore their neighborhood. A promising solution (meaning it has a higher objective

value) gets more onlooker bees, so its neighborhood is explored more intensively. The exploration

of the onlooker bees occurs in the same way as the employed bees, just their distribution among

the solutions differs. The implementation is depicted in Algorithm 11.

Algorithm 11 onlookerBee(X,P )

i← index chosen in accordance to the probability mass function defined by P

X[i]← employedBee(X[i]) ▷ See Algorithm 9

return X

3.4.5 Parameter Overview

We have several parameters, namely the number of solutions considered at any point in time (k),

the number of onlooker bees (n), the maximum number of iterations without an improvement

of solution k (l) and the stopping criterion of algorithm. For the stopping criterion, we use

a maximum number of iterations maxIter. This leaves us with four parameters that require

tuning. As this is a new heuristic, we have no optimal parameters from the literature. Again,

the time limit can also be regarded as a parameter.

Note that contrary to the TABC heuristic, the number of scout bees is not specified in the

TAV heuristic. The reason is that it is assumed that an employed bee temporarily takes on the

task of a scout bee if needed, as in Karaboga (2005). Also, the number of employed bees is

assumed to be equal to the number of solutions k, and exactly one employed bee is allocated to

each solution.

3.5 Generation of instances with known optimal values

This research deals with assessing the performance of the heuristics. For that, it is necessary to

have benchmarks of the TOPHS, meaning that we need an instance and a solution. Luckily, these

can be generated straightforwardly, using existing instances of the Team Orienteering Problem

(TOP) from Tsiligirides (1984); Chao (1993); Chao, Golden and Wasil (1996a); Chao et al.

(1996b). They provide us with seven sets of in total 387 instances of different sizes.

To transform them into TOPHS instances, we follow a similar procedure as Divsalar et al.

(2013) used when they transformed instances from an OP to an OPHS. The procedure starts

from the optimal solution of a TOP instance, which has Q tours, one for each team member.

The time limit for each tour is T . For the TOPHS, these tours are split into D trips each. This

is done by first setting Td = T/D,∀d ∈ {1, ..., D − 1}.
The next step is to set the D−1 intermediate hotels exactly at the nodes that can be reached

on the existing optimal routes within each of the cumulative Tds, using a similar procedure as

in Divsalar et al. (2013). This gives rise to D − 1 trips. Finding the last parameter TD is a

little more tedious: it cannot just be set to TD = T/D, because generally not all points on the

optimal routes are visited at multiples of time T/D. Therefore, we need to set TD > T/D. The

size required is calculated by checking for all routes the time required to travel from the D− 1th

21



intermediate hotel to the endpoint, via the optimal route. TD is then the maximum of these

values over all routes.

Now, the problems at hand are complete TOPHS benchmarks. By construction, the optimal

value does not change: because the hotels are on the optimal route, there is no added distance by

adding the hotels, meaning we basically still have the TOP. The time limits Td implicitly decide

the hotels visited and T makes sure that the total route time is limited. Thus, these instances

are ready to be used for testing the heuristics.

The only difficulty lies in finding the optimal solutions to the TOP. These are calculated using

a commercial solver (CPLEX). A disadvantage is that the TOP is NP-hard as well, making larger

instances too complex to solve to optimality within reasonable computation time. For this part

of the research, we therefore focus on smaller instances of the TOP. To be precise, for each of

the seven sets of TOP instances from the literature and for each value of Q ∈ {2, 3, 4}, we use

the instance with the highest objective value which is solved to optimality within one hour of

computation time. In other words, for a given set of instances and value of Q, we try to solve all

TOP instances using CPLEX, and we use the instance with the highest objective value, given

that it is solved within one hour. As each set contains three values of Q, we have 3 × 7 = 21

instances with a known optimal value.

In the next step, for each of the 21 TOP instances, we create a set of TOPHS instances using

the procedure described above for D trips per tour. In this research, D ∈ {1, 2, 3}. The set of all
such instances is called SET 1, which therefore consists of 21 × 3 = 63 instances with a known

optimal value.

Then, we construct a second set, called SET 2. This set consists of all instances of SET 1

with D = 2 trips per tour, but where we add m extra possible hotels per instance. The extra

hotels are placed at the same location as vertices at an index corresponding to a multiple of

⌊N/ (2 + (D − 1)Q+m)⌋, similar to how Divsalar et al. (2013) constructed their SET2. Note

that the presence of these extra hotels by construction never changes the optimal solution. In

this research, m ∈ {1, 2, 3}, so SET 2 also consists of 21× 3 = 63 instances.

Furthermore, we create a set called SET 3. We follow the same procedure as for SET 1,

but instead of adding hotels at the location of the POIs at the end of each trip, we now choose

random POI locations for the hotels. Instead of keeping the POI to which we allocate a hotel, we

now remove the POI, so it is essentially replaced by a hotel. We do this for D = 2 trips per tour.

Additionally, we also replace m ∈ 1, 2, 3 other random POIs with hotels. As such, the optimal

value is unknown to us, and we have no optimal value to benchmark our results against. For the

trip distances, we set Td = T/2 for both trips. SET 3 then contains 21× 3 = 63 instances.

As the previously described procedure depends on being able to exactly solve a TOP instance

within one hour of computation time, the instances are not particularly large. Therefore, we also

create an additional SET 4 with larger instances. We use a similar procedure as for SET 3, but

instead of using the solved instances of the TOP, we now use the largest instance for each value

of Q in each set of TOP instances. Again, we use m ∈ 1, 2, 3. As some instances might then

overlap with SET 3, we only include new instances in SET 4. SET 4 then consists of at most

21× 3 = 63 instances, with unknown optimal value.

Note that as SET 3 and SET 4 have new hotels which are not necessarily on the optimal

TOP route, the instances may not be feasible.

22



All four sets of instances are used to study the effectiveness each of the three heuristics relative

to CPLEX. We impose a time limit of five minutes for each method.

4 Results

In this section, the performance of each heuristics with respect to the other heuristics and CPLEX

is studied. For CPLEX, the MIP of Section 3.1 is used. A guide to the code used can be found

in Appendix B.

The algorithms in Section 3 are implemented in Java, and are run on a Windows 10 computer

with a hexa-core Intel Core i5-10500 CPU at 3.10 GHz and 16.0 GB of RAM. The heuristics all

run on a single core, whereas CPLEX self-optimizes the number of cores used.

In Section 4.1, we briefly discuss the parameters used. In Section 4.2, CPLEX and the

three heuristics are employed on the OPHS instances from Divsalar et al. (2013), which can

be interpreted as TOPHS instances with Q = 1 and T = ∞. In Section 4.3, the methods are

employed on the TOPHS instances as described in Section 3.5.

Note that in this section, only aggregated results are discussed. The outcomes of each solving

method and for each instance can be found in Appendix C for the OPHS instances of Section

4.2, and in Appendix D for the TOPHS instances of Section 4.3.

4.1 Parameter Tuning

To determine appropriate values of the parameters, we take a random sample of 20 instances of

the OPHS and TOPHS. Based on the average gap and average computation time, we determine

appropriate settings of the parameters, for each heuristic. The results of this parameter tuning

procedure are presented in Table 4.

For the TSVNS heuristic, we consider the same values as Divsalar et al. (2013) for their

SVNS heuristic. Similar to what the authors find, the results are not much affected by small

changes in the parameters, both in terms of computation time and average gap. Therefore, we

determine that it is appropriate to use the same values as they do.

For the TABC heuristic, we deviate from the values that Cura (2014) use for their ABC-based

heuristic for the TOP. The reason for that is the following. Recall that the neighborhoods of the

TABC heuristic are constrained in the moves that they are allowed to make, because the number

of hotels in each tour must stay the same after each move. Therefore, some solutions cannot

straightforwardly be reached from a given solution. As a result, the neighborhood search of

the TABC is less powerful in exploration than the original ABC-based heuristic for the TOP. To

compensate for that, we need to increase the degree of randomization elsewhere in the algorithm.

This is done using more scout bees (a higher nSB) and a higher probability of employing the

scout bees (a higher µ). Because the algorithm for the scout bees is computationally rather

intensive, and because now more scout bees are employed, we also reduce the maximum number

of iterations compared to Cura (2014). To promote exploration even further, we also increase L.

The resulting parameter settings, as shown in Table 4, turn out to be the most competitive for

the sample of instances.

Lastly, for the TAV, no parameter settings have been inherited from existing literature as

23



the heuristic is newly introduced. The outcomes in Table 4 seem most appropriate given average

gap and calculation time of the sample of instances.

The value of the time limit parameter is not reported in Table 4, as we set it to five minutes

for all methods. The reason for choosing five minutes, is that it should be possible to find a

reasonable solution within five minutes in real world applications.

Table 4: Parameter tuning for each of the heuristics, based on 20 OPHS and TOPHS instances.
TSVNS TABC TAV

Param. Considered Chosen Param. Considered Chosen Param. Considered Chosen

NIM1 25, 50, 100 50 L 5, 10, 20 20 k 5, 10, 20 5

NUFC 150, 250, 350 250 nEB 5, 10, 20 10 n 5, 10, 20 5

Kmax NUFC/2, NUFC/4 nOB 2, 5, 10 5 l 5, 10, 20 5

NUFC/4, nSB 1, 2, 5 5 maxIter 10, 15, 20 15

NUFC/8 ρ 0.1, 0.3, 0.5 0.3

MPW 2 0.2, 0.3, 0.4 0.3 µ 0.015, 0.015

0.0015,

0.00015

maxIter3 80× n, 800× n

800× n,

8000× n

1 NoImprovementMax

2 MaxPercentageWorse

3 n is the number of vertices in a solution, so N + (D − 1)×Q+ (Q− 1)

4.2 Performance Analysis for the OPHS

Firstly, we study the case where Q = 1, T =∞, as it allows us to use the OPHS instances from

Divsalar et al. (2013). Namely, when Q = 1 and T =∞, the TOPHS reduces to an OPHS.

We deployed CPLEX and all three heuristics on all instances discussed by Divsalar et al.

(2013). The results per instance are presented in Tables 10 to 18 in Appendix C. The aggregated

results presented in Table 5 and Table 6 are discussed here.

Table 5 shows the average gap and average computation time of each method, separated by

the set (as defined in Divsalar et al. (2013)), number of trips in the tour (D) and the number

of ’extra’ hotels (EH), which is the total number of hotels excluding the start and end hotels.

The gap is defined as the relative difference between the known optimum and the heuristic value

with respect to the optimum. Note that for some instances the objective is not known. For these

instances, the gap is not reported with respect to the objective, but with respect to the best

known feasible solution found with CPLEX within five minutes. The weighted average over all

instances with known optimum is also reported, to compare the performance of all methods.

24



Table 5: Average gap and average computation time for the OPHS problem (TOPHS with Q = 1

and T =∞), for each of the solving methods. D: number of trips, EH: number of hotels, except

start and end hotel, #: number of instances in this set

Instance CPLEX TSVNS TABC TAV

SET D EH # Gap CPU Gap CPU Gap CPU Gap CPU

(%) (s) (%) (s) (%) (s) (%) (s)

1 2 1 35 5.10 151.14 1.64 5.14 4.76 21.25 1.18 10.33

1 3 2 35 8.1 234.31 1.38 5.09 8.26 18.40 4.99 8.72

1 4 3 35 13.56 235.42 1.67 9.95 12.60 19.30 10.76 7.69

2 3 5 35 9.80 240.20 1.34 7.17 7.09 22.14 4.87 9.10

2 4 6 35 9.26 224.84 1.74 18.24 13.01 20.99 12.26 7.85

3 4 10 22 36.70 300.00 4.02 144.11 15.49 59.96 9.60 66.36

3 5 12 22 43.15 300.00 4.77 128.32 19.34 48.90 13.79 59.87

4 2 3 5 9.76 273.72 0.92 1.54 3.58 80.86 0.97 2.13

41 3 3 5 0.00 300.00 -90.3 4.0 -90.29 79.16 -92.39 4.52

Weighted Average2: 15.22 234.71 2.10 33.91 10.65 28.45 7.56 19.24

1 Instances have no known objective value, so the gap presented is the gap with respect to the best feasible solution

found using CPLEX.

2 Only instances with known optimal value are included.

From this table, we observe that CPLEX has a relatively high gap, which is to be expected

as it is an exact algorithm. Therefore, if it does not terminate, there may be a substantial gap,

which is indeed what we see here.

Regarding the three heuristics, we see that the TSVNS algorithm results in the lowest average

gap over all instances. However, the average computation time is the highest over all heuristics.

This seems to be mainly caused by the instances where many additional hotels have been added

(SET3). The cause of this is that the TSVNS approach lists all feasible combinations of hotels

and solves a subOP for each pair of hotels before the improvement phase. This is computationally

intensive, especially when the number of hotels is largee. As we do not have this problem for the

TABC and TAV heuristics, we expect their calculation times to be substantially lower, which is

indeed what we see.

Overall, the TSVNS still outperforms the other heuristics, as the average computation times

seem comparable but the gap is substantially lower that of the other heuristic. Nevertheless,

the TAV seems to be the best alternative when the instances are larger, providing slightly larger

gaps but substantially lower computation times.

Another conclusion that can be drawn from these results is that the TABC heuristic does not

perform too well, compared to both the TSVNS and the TAV heuristic, both in terms of average

computation time and average gap. This may be due to the nature of the hotels and the problem

of allocating them such that the route between them achieves a maximum score, which may not

be fully captured by the algorithm as it mainly performs random neighborhood searches.

25



Table 6: Relative comparison table for each solving method, and for each set of instances of the

OPHS. D: number of trips, EH: number of hotels, except start and end hotel, #: number of

instances in this set.
Instance Set CPLEX TSVNS TABC TAV

Set D EH # Opt1 ≥2 >3 Opt ≥ > Opt ≥ > Opt ≥ >

1 2 1 35 19 21 5 14 24 5 3 3 0 17 24 1

1 3 2 35 10 13 1 18 31 14 6 6 0 9 14 2

1 4 3 35 13 14 3 15 31 19 4 3 0 4 5 1

2 3 5 35 13 14 2 18 30 15 6 7 0 8 12 3

2 4 6 35 13 14 7 14 26 17 4 2 0 2 4 2

3 4 10 22 0 0 0 2 21 19 0 0 0 0 3 1

3 5 12 22 0 0 0 3 21 21 0 0 0 0 1 1

4 2 3 5 2 2 1 3 4 0 1 2 0 3 4 0

4 3 3 5 - 0 0 - 3 2 0 2 1 0 2 0

Total: 229 70 78 19 87 191 112 24 25 1 43 69 11

1 The column ’Opt’ denotes the number of instances for which this method found the known optimum.

2 The column ’≥’ denotes the number of instances for which this method achieved the best objective value of all methods.

3 The column ’>’ denotes the number of instances for which this method achieved a higher objective than all other methods.

From Table 6, it also follows that the TSVNS is the best performing method in general, as

it outperforms the other methods in terms of objective value for 112 instances, which is almost

half of all instances. For 191 instances, it did not perform worse than any other heuristic, which

is more than any other method. Nevertheless, there exist instances for which the other methods

outperform the objective value that TSVNS finds, but this is comparatively a small number.

Again, we also see that the TAV is more successful than the TABC. This provides evidence

that the random neighborhoods of the TABC are not as appropriate as the more informed

searches of the TAV and TSVNS.

4.3 Performance Analysis for the TOPHS

Now, we study cases where Q > 1. We generate the instances as explained in Section 3.5. SET

1, SET 2 and SET 3 contain 63 instances each, whereas SET 4 contains 39 instances.

Again, CPLEX and all heuristics are deployed on these instances. The results for all separate

instances can be found in Tables 19 to 30 in Appendix D. The aggregated results are presented

in Table 7 and Table 8 and are discussed here.

26



Table 7: Average gap and average computation time for the TOPHS instances, for each of the

solving methods. D: number of trips per tour, AH: number of hotels additional to those needed

to satisfy the number of trips (start hotel, end hotel and (D − 1) × Q intermediate hotels). #:

number of instances in this set.
Instance CPLEX TSVNS TABC TAV

SET D AH # Gap CPU Gap CPU Gap CPU Gap CPU

(%) (s) (%) (s) (%) (s) (%) (s)

1 1 0 21 0.27 164.12 1.30 1.66 1.35 20.26 0.22 3.67

1 2 0 21 2.96 186.50 0.20 2.44 2.73 24.69 1.33 2.10

1 3 0 21 5.99 216.57 0.48 99.55 6.04 22.17 4.96 1.79

2 2 1 21 0.88 184.78 0.30 2.31 3.23 21.16 2.27 2.24

2 2 2 21 1.50 191.89 0.55 2.51 2.89 25.50 2.84 2.12

2 2 3 21 1.64 194.56 0.42 3.31 3.32 29.04 3.66 2.22

31 2 1 21 0.00 100.12 -3.20 1.34 -1.38 19.93 -1.95 1.47

31 2 2 21 0.00 108.31 -7.27 1.31 -5.52 22.99 -5.31 1.42

31 2 3 21 0.00 98.91 -5.35 1.61 -3.36 21.39 -4.66 1.38

41 2 1 13 0.00 300.00 -142.88 52.66 -132.17 37.93 -136.07 27.38

41 2 2 13 0.00 300.00 -156.87 62.60 -138.68 34.47 -148.13 27.35

41 2 3 13 0.00 300.00 -146.85 74.52 -131.72 25.46 -132.89 24.71

Weighted Average2: 2.20 189.74 0.54 18.63 3.26 23.80 2.55 2.36

1 Instances have no known objective value, so the gap presented is the gap with respect to the best feasible solution

found using CPLEX.

2 Only instances with known optimal value are included.

In Table 7, we find again that the TSVNS algorithm achieves the lowest gap to the known

objective values on average. Also for the instances with unknown objective value, it achieves

the highest objective value on average. Notably, the average gap is smaller than for CPLEX,

whereas the computation time is substantially lower.

For the case where we have three trips per tour, the high average computation time is caused

by some instances running out of the 300 second time limit. As these are larger instances, this

is in line with our expectations that the TSVNS is slower for larger instances because it has to

iterate over all possible pairs of hotels and construct all feasible combinations of hotels. We also

see this behaviour for SET 4, which consists of the largest instances available. In these cases

TABC and TAV are quicker, and they also achieve an acceptable gap to the best known values.

In general, TAV slightly outperforms TABC in terms of average gap, and it is a lot quicker.

TAV thus seems to be a better method than TABC, which may again be caused by the limited

number of ways in which the TABC neighborhoods can change a solution. This is even the case

for the TOP instances (SET 1 with D = 1), even though the TABC is derived from an ABC

heuristic for the TOP (see Section 3.3).

TAV achieves a lower gap than TSVNS, but the gaps still seem reasonable to work with. The

benefit that TAV is a lot quicker than TSVNS may outweigh the disadvantage of the slightly

higher gap in real world applications. Especially for larger instances, the TSVNS running times

may become obstructive, making the TAV algorithm more promising.

27



Table 8: Relative comparison table for each solving method, and for each set of instances of the

OPHS. D: number of trips per tour, AH: number of hotels additional to those needed to satisfy

the number of trips (start hotel, end hotel and (D − 1)×Q intermediate hotels). #: number of

instances in this set.
Instance Set CPLEX TSVNS TABC TAV

Set D AH # Opt1 ≥2 >3 Opt ≥ > Opt ≥ > Opt ≥ >

1 1 0 21 18 19 2 16 16 0 16 16 0 17 18 2

1 2 0 21 15 15 0 18 21 4 18 21 4 15 16 0

1 3 0 21 13 13 1 17 19 5 13 13 0 12 13 0

2 2 1 21 15 17 2 17 18 1 12 12 0 15 15 1

2 2 2 21 15 17 3 17 18 3 13 13 0 12 12 0

2 2 3 21 13 14 1 17 20 6 13 13 0 11 11 0

3 2 1 21 - 12 0 - 19 3 - 15 0 - 17 2

3 2 2 21 - 12 0 - 20 5 - 15 0 - 15 1

3 2 3 21 - 13 0 - 21 4 - 15 0 - 17 0

4 2 1 13 - 0 0 - 9 9 - 1 1 - 3 3

4 2 2 13 - 0 0 - 10 7 - 3 0 - 5 3

4 2 3 13 - 2 0 - 11 9 - 3 0 - 2 1

Total: 228 89 134 9 102 202 56 85 140 5 82 144 13

1 The column ’Opt’ denotes the number of instances for which this method found the known optimum.

2 The column ’≥’ denotes the number of instances for which this method achieved the best objective value of all methods.

3 The column ’>’ denotes the number of instances for which this method achieved a higher objective than all other methods.

From Table 8, we see that the TSVNS heuristic outperforms all other methods in 56 cases,

and is not outperformed in 202 cases, which is almost 90%. The second best heuristic (by

some margin) in this perspective is the TAV, which outperforms the other methods in 13 cases.

Notably, 7 of those cases are in SET 4 which contains larger instances. TAV might thus have an

edge in larger instances, when TSVNS is more likely to hit the running time limit.

It can be concluded that the TSVNS method is still the best performing method in terms of

objective value, but if computation time is relevant, the TAV may be a good alternative with

slightly lower objective values but a lot quicker computation.

TABC again does not seem to be better than the other methods, even though it outperforms

the other methods in five cases.

5 Conclusion

In this research, the Team Orienteering Problem with Hotel Selection (TOPHS) is introduced as

a multi-tour extension of the Orienteering Problem with Hotel Selection (OPHS) proposed by

Divsalar et al. (2013). Given the NP-hard nature of the problem, the study aims to assess the

effectiveness of three heuristics specifically tailored for TOPHS.

The first heuristic, termed the TSVNS algorithm, is an extension of the heuristic proposed

by Divsalar et al. (2013) for OPHS. The other two heuristics are based on an artificial bee colony

(ABC) search approach, with one, referred to as TABC, implementing relatively random moves,

while the other, known as TAV, utilizes neighborhoods related to those of TSVNS. The primary

28



objective of this research is to compare the performance of these ABC-based heuristics against

the SVNS-based heuristic for solving the TOPHS.

To evaluate the effectiveness of the heuristics, we introduce a procedure to generate TOPHS

instances from the team orienteering problem (TOP). We have generated 126 instances with

known optimal values and 102 larger instances with an unknown optimal value.

After tuning the parameters of each heuristic, an exact solver and the three heuristics are

employed on instances of the OPHS. The results reveal that, on average, TSVNS yields the best

performance. However, for larger instances, the computation times significantly increase due

to the initialization phase of the algorithm, which involves heuristically solving an orienteering

problem for all pairs of hotels and exploring all feasible hotel combinations before starting the

neighborhood search algorithm.

Although TAV exhibits a larger average gap compared to TSVNS, it achieves lower average

running times. Therefore, the TAV may have an edge for larger instances, where the longer

execution time of the TSVNS may become obstructive. Nevertheless, TSVNS remains superior

for smaller instances. Notably, TAV outperforms TABC in terms of both running time and

average gap.

Regarding TOPHS instances, TSVNS once again outperforms the other algorithms, as it

achieves the best solution over all methods in nearly 90% of cases within reasonable average

computation time. However, the TAV offers a substantially lower average computation time

with a higher but still acceptable average gap.

The TABC heuristic continues to underperform, primarily due to its limited freedom to move

to a neighbour. This restriction arises from the fact that the number of hotels per tour may not

change when transitioning to a neighbour.

In conclusion, the TSVNS heuristic outperforms the ABC-based heuristics for solving the

TOPHS. However, the TAV heuristic demonstrates potential advantages for larger instances, as

it offers better running times while still maintaining an acceptable gap.

6 Discussion

In this section, we critically evaluate the obtained conclusions. We address some points in the

analysis of the heuristics that may have lead to biases or some implementation choices that may

affect the final outcomes. Ultimately, we also give suggestions for future research.

Firstly, even though we have performed parameter tuning in this research, only a small

number of potential parameter values have been analyzed. A more profound analysis might

arrive at more competitive heuristics, especially for the TABC and the TAV, which were more

sensitive to changes in the parameters than TSVNS.

Secondly, the neighborhoods of the TSVNS are implemented using an idea similar to the

SVNS for the OPHS by Divsalar et al. (2013). These neighborhoods are not specifically tailored

to the TOPHS, which could reduce effectiveness slightly. A similar problem occurred for the

TABC, where the range of reachable neighbours was restricted due to the condition that the

number of hotels needs to be the same in every tour. Designing neighborhoods more specifically

tailored to the OPHS would be beneficial for this.

Another consideration for the TABC heuristic is that we made a solution representation

29



feasible by removing vertices from the end of each trip (see Section 3.3). We chose this approach

to minimize computation time and promote exploration, but it is less likely to create an optimal

tour. This decision may have had influence on the effectiveness of the TABC heuristic.

Additionally, all the heuristics depend on a random number generator. Therefore, these

outcomes are unique and another run could give different values and conclusions. A perhaps

more insightful way to study the heuristics would be to run each instance multiple times and

take averages.

Furthermore, we mainly use relatively small instances in our research. The reason is that we

need an optimal solution to the TOP to generate instances of the TOPHS with a known optimal

value. As a result, SET 1, 2 and 3 all have relatively little POIs in their optimal tours. This may

bias our results towards these smaller instances. It would be interesting to study larger instances

as well, as the TSVNS might not be as competitive anymore due to its computationally advanced

initialization algorithm. However, this requires solving large TOP instances.

Notably, the results for the TSVNS heuristic for the OPHS have substantially higher execution

times than the SVNS heuristic in Divsalar et al. (2013), even though the same instances were

used and for one tour, the TSVNS and SVNS are the same. The difference in computation times

is therefore surprising. This may be caused by the coding language used: we used Java and not

C++, which is known to be more efficient. Another reason may be differences in implementation

or the usage of a different draw from the random number generator. Lastly, the used number of

cores may influence the results: we used only one, whereas the number of cores used by Divsalar

et al. (2013) is unknown.

As the TOPHS problem is new in the literature, not many solving methods exist. Future

research could therefore focus on more competitive heuristics than the ones discussed in this

research, such as for example simulated annealing or ant colony search.

It is also interesting to study variants of the TOPHS problem. For example, one could add

time windows or opening hours to the POIs and hotels. Another potential improvement is to

allow the hotels to have a score as well. As such, a hotel further away may be preferred over the

closest one. This is a more realistic scenario.

One particular problem improvement is optimizing the total length of the set of tours, besides

optimizing the sum of scores. The reason is that during the research, we found that some problem

instances have optimal solutions that share the same objective value, whereas their lengths

differed substantially. To prevent this, one could think of a bi-objective TOPHS, which first

maximizes the sum of scores and then, in case of equality, minimizes the total length. Especially

in a case where travelled distance is actually costly, minimizing this is socially relevant.

30



References

Álvarez-Miranda, E., Luipersbeck, M. & Sinnl, M. (2018). Gotta (efficiently) catch them all:

Pokémon go meets orienteering problems. European Journal of Operational Research,

265 (2), 779–794.

Ataei, M., Divsalar, A. & Saberi, M. (2022). The bi-objective orienteering problem with hotel

selection: An integrated text mining optimisation approach. Information Technology and

Management , 1–29.

Chao, I.-M. (1993). Algorithms and solutions to multi-level vehicle routing problems. University

of Maryland, College Park.

Chao, I.-M., Golden, B. L. & Wasil, E. A. (1996a). A fast and effective heuristic for the

orienteering problem. European Journal of Operational Research, 88 (3), 475–489.

Chao, I.-M., Golden, B. L. & Wasil, E. A. (1996b). The team orienteering problem. European

Journal of Operational Research, 88 (3), 464-474.

Cura, T. (2014). An artificial bee colony algorithm approach for the team orienteering problem

with time windows. Computers & Industrial Engineering , 74 , 270–290.

Divsalar, A., Emami, S. & Vansteenwegen, P. (2017). A lagrange relaxation for the orienteering

problem with hotel selection and time windows. In Verolog, date: 2017/07/10-2017/07/12,

location: Amsterdam.

Divsalar, A., Vansteenwegen, P. & Cattrysse, D. (2013). A variable neighborhood search method

for the orienteering problem with hotel selection. International Journal of Production

Economics, 145 (1), 150–160.

Divsalar, A., Vansteenwegen, P., Chitsaz, M., Sörensen, K. & Cattrysse, D. (2014). Personalized

multi-day trips to touristic regions: a hybrid ga-vnd approach. In Evolutionary computation

in combinatorial optimisation (pp. 194–205).

Divsalar, A., Vansteenwegen, P., Sörensen, K. & Cattrysse, D. (2014). A memetic algorithm for

the orienteering problem with hotel selection. European Journal of Operational Research,

237 (1), 29–49.

Dorigo, M. & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach

to the traveling salesman problem. IEEE Transactions on evolutionary computation, 1 (1),

53–66.

Feillet, D., Dejax, P. & Gendreau, M. (2005). Traveling salesman problems with profits. Trans-

portation science, 39 (2), 188–205.

Gavalas, D., Konstantopoulos, C., Mastakas, K. & Pantziou, G. (2014). A survey on algorithmic

approaches for solving tourist trip design problems. Journal of Heuristics, 20 , 291–328.

Golden, B. L., Levy, L. & Vohra, R. (1987). The orienteering problem. Naval Research Logistics

(NRL), 34 (3), 307–318.

Gunawan, A., Lau, H. C. & Vansteenwegen, P. (2016). Orienteering problem: A survey of recent

variants, solution approaches and applications. European Journal of Operational Research,

255 (2), 315–332.

Karaboga, D. (2005, 01). An idea based on honey bee swarm for numerical optimization, technical

report - tr06. Technical Report, Erciyes University .

Sohrabi, S., Ziarati, K. & Keshtkaran, M. (2020). A greedy randomized adaptive search pro-

31



cedure for the orienteering problem with hotel selection. European Journal of Operational

Research, 283 (2), 426–440.

Sohrabi, S., Ziarati, K. & Keshtkaran, M. (2021). ACS-OPHS: Ant colony system for the

orienteering problem with hotel selection. EURO Journal on Transportation and Logistics,

10 , 100036.

Toledo, A., Riff, M.-C. & Neveu, B. (2019). A hyper-heuristic for the orienteering problem with

hotel selection. IEEE Access, 8 , 1303–1313.

Tsiligirides, T. (1984). Heuristic methods applied to orienteering. Journal of the Operational

Research Society , 35 , 797–809.

Vansteenwegen, P. & Gunawan, A. (2019). Orienteering problems. EURO Advanced Tutorials

on Operational Research.

Vansteenwegen, P., Souffriau, W. & Van Oudheusden, D. (2011). The orienteering problem: A

survey. European Journal of Operational Research, 209 (1), 1–10.

32



A Proof upperbound TOPHS

A.1 Start and end hotel are the same

Given that we have a TOPHS instance R where (1) the start and end hotel are the same and

(2) where

T ≥
D∑

d=1

Td, (14)

we can construct an OPHS instance O with an objective value at least as large as the TOPHS

instance. In other words, if f(x) denotes the objective of problem x, then

f(R) ≤ f(O). (15)

Proof: Firstly, note that an optimal solution to the TOPHS instance R with Q tours and

D trips per tour has a total of Q×D trips. If we append these trips behind each other, we have

one tour of Q×D trips.

To make the trip distances correspond to the trip distance limits of the TOPHS, we define the

trip limits as follows. Define T ′
f as the trip distance limit in the new tour for all f ∈ N, f ≤ Q×D.

Then,

T ′
f = Tf−nD,∀n ∈ {0} ∪ N s.t. f − nD ≤ D (16)

or, equivalently

T ′
f = Tf−nD.∀n ∈ {0} ∪ N s.t. f ≤ (n+ 1)D. (17)

As also n < Q or n+ 1 ≤ Q, we have

T ′
f = Tf−nD,∀n ∈ {0} ∪ N s.t. f ≤ (n+ 1)D ≤ Q×D. (18)

.

So now we have a tour where each trip limit corresponds to the same trip in the original

TOPHS R. Note that this is just a different way to represent the same solution to TOPHS R.

We now construct the OPHS O. Let O have the same hotels and POIs as R. Let O have

Q×D trips. Let the time limits of the trips of O be given by T ′
f , f ≤ Q×D. Let the start hotel

and end hotel of O be the same as those of R.

Now, we have an OPHS. As the optimal solution to the TOPHS R is still feasible in this form

of the OPHS O by condition (1), we have that

f(R) ≤ f(O). (19)

This proves the statement. □

Note that we used condition (1) to assure that the TOPHS solution is feasible in the OPHS,

because if condition (1) would not hold, not all trips in the OPHS would start in the same hotel

as where the previous trip ended. Also, we use condition (2) as the OPHS formulation does not

33



allow us to restrict the time limit on a subset of sequential trips.

A.2 Start and end hotel differ

Given that we have a TOPHS instance R where

T ≥
D∑

d=1

Td, (20)

we can construct an OPHS instance O with an objective value at least as large as the TOPHS

instance. In other words, if f(x) denotes the objective of problem x, then

f(R) ≤ f(O). (21)

Proof: Firstly, note that the optimal solution to the TOPHS instance R with Q tours and

D trips per tour has a total of Q×D trips. If we append these trips behind each other, we have

one tour of Q × D trips. However, these trips cannot directly follow after each other, because

the end hotel of the ith trip with i = m ×D,m ∈ N,m < Q differs from the start hotel of the

following trip.

Therefore, we need to define a new trip between the ith and i + 1th trip, i = m × D,m ∈
N,m < Q. This gives usQ−1 additional trips, bringing the total toQ×D+Q−1 = Q×(D+1)−1.

For this new tour, we define the trip limits as follows. Define T ′
f as the trip distance limit in

the new tour for all f ∈ N, f ≤ Q× (D + 1)− 1. Also, define T0 =the travel time from the end

hotel to the start hotel. Then,

T ′
f = Tf−n(D+1),∀n ∈ {0} ∪ N s.t. f − n(D + 1) ≤ D. (22)

So now we have a tour where each trip limit corresponds to the same trip in the original

TOPHS R. Note that this is just a different way to represent the same solution to TOPHS R.

We now construct the OPHS O. Let O have the same hotels and POIs as R. Let O have

Q × (D + 1) − 1 trips. Let the time limits of the trips of O be defined by T ′
f , f ∈ N, f ≤

Q× (D + 1)− 1. Let the start hotel and end hotel of O be the same as those of R.

Now, we have an OPHS. As the optimal solution to the TOPHS R is still feasible in this form

of the OPHS O, we have that

f(R) ≤ f(O). (23)

This proves the statement. □

Note that we use condition (21) as the OPHS formulation does not allow us to restrict the

time limit on a subset of sequential trips.

34



B Code

This Appendix gives an introduction to the code used. We used Java for all code files.

Each class belongs to one of three categories: problem, solution and solver. The problem

category defines the problem, its vertices and its parameters. The solution category defines the

parts that belong to a data structure representing a solution to the TOPHS problem. The solver

category represents the heuristics and the exact solving methods. An overview is given in Table

9.

The code can be used by opening the project in a Java IDE, and running the method main

in the Main class. This produces the results similar to those in the paper.

For parameter tuning, the main methods in the TSVNS, TABC and TAV classes can be run.

Now follows a brief description of all classes and their most important variables and methods.

Table 9: Code classes used in this research, in alphabetical order per category

Problem Solution Solver

OPHS Hotel ExactOPHS

TOP Node ExactTOP

TOPHS POI ExactTOPHS

Tour Main

TourSeparator TABC

TTour TAV

TTourRep TSVNS

B.1 Solution

Firstly, we discuss the data structure for the solution. We start with the Node data structure,

as it is a superclass of the Hotel, POI and TourSeparator class.

B.1.1 Node

A Node contains a set of (x, y)-coordinates and a name. Apart from getter methods, it contains

a method this.distanceTo(other), which returns the Cartesian distance from this to other. Note

that the definition of a Node differs compared to the main text of the paper: Node here means

the same as vertex in the main text.

B.1.2 Hotel

Subclass of Node with no additional methods.

B.1.3 POI

Subclass of Node, which apart from the (x, y)-coordinates and name also records a score.

35



B.1.4 TourSeparator

Subclass of Node, which is used to indicate the start of a new tour for the TOPHS instances in

the TABC heuristic. This class does not contain any additional methods or instance variables

compared to a Node.

B.1.5 Tour

Contains a list of Nodes called nodes, a list of doubles called tds representing the time limits per

trip and a double called tmax representing the time limit for a whole tour. Important methods

defined within the class are:

• getVal(), which returns the sum of the scores of all POIs in nodes.

• getLength(), which returns the sum of Cartesian distances between all subsequent pairs of

Nodes in nodes.

• isBetterThan(other), which returns TRUE if this tour either has a higher value or if the

value is the same but it has a lower length.

• makeTrips(), which returns a list of lists of Nodes representing the separate trips in the

tour

• isFeasible(), which determines if the time requirements are satisfied for the tour and no

duplicates are present

B.1.6 TTour

Contains a list of Tour objects representing a solution to the TOPHS problem. Its most important

methods are getVal(), getLength(), isBetterThan(other) and isFeasible(), which have a similar

meaning as in the Tour class.

B.1.7 TTourRep

Contains a list of Nodes that acts as the representation of a solution for the TABC heuristic. Its

most important method is makeTTour(), which converts the TTourRep into a feasible TTour,

if possible (and null otherwise). Apart from that, it also contains the methods getVal(), ge-

tLength(), isBetterThan(other) and isFeasible(), which have a similar meaning as in the Tour

class.

B.2 Problem

The classes in the problem category collect all parameters of the instances that we discuss in our

research, as well as store the list of nodes in the problem.

36



B.2.1 OPHS

The OPHS class contains several instance variables relating to the various parameters found in

the OPHS. These include:

• name: name of the instance

• optimalValue: optimal value of the instance, if known

• pois: list of all POIs in the problem

• hotels: list of all Hotels in the problem

• startHotel and endHotel : the first respectively the last hotel in a tour which is a solution

to the OPHS

• numTrips: number of trips

• Tmax : maximal travel time for the full tour

• Td : list of travel time limits for each trip separately

The constructor takes a file name from the repository by Divsalar et al. (2013) as input

(which we saved in the folder ”Input/OPHS/”). It then automatically creates an instance of the

OPHS.

Note that in the folder ”Input/OPHS/” we also included a file named ”instances.txt”, which

maps each instance to its optimal value according to Divsalar et al. (2013).

B.2.2 TOP

Similar to the OPHS class, but then defines the parameters of the TOP. This includes among

others also the number of tours to be created, which is stored as an integer teamSize.

Again, the constructor takes a file name from the repository by Tsiligirides (1984); Chao

(1993); Chao et al. (1996a, 1996b) as input, which we saved in the folder ”Input/TOP/”.

B.2.3 TOPHS

Similar to the OPHS class, with an additional parameter for the number of tours to be created,

referred to as teamSize.

The constructor takes again a file name, which corresponds to the file names given when

creating the TOPHS instances from the TOP instances. They are stored in the folder ”In-

put/TOPHS/”.

This class also has the methods SET1, SET2 and SET3, which create the instances of the

TOPHS as described in Section 3.5. Note that the instances of SET 4 can be generated using

the method SET3 as well.

Another useful method is getTOPHS(ophs) which takes an OPHS instance as argument and

converts it to a TOPHS problem (by copying the parameters and setting teamSize=1 ).

37



B.3 Solution

This category of classes involve the implementation of CPLEX and heuristic solving methods.

B.3.1 ExactOPHS

Implementation of the OPHS MIP from Divsalar et al. (2013) in CPLEX. After creating an

instance of this class, by passing an OPHS instance to the constructor. The method solve(tlim)

attempts to solve the instance given tlim as a time limit.

If feasible (then this.getStatus() returns ”Optimal” or ”Feasible”), the outcomes can be re-

trieved using the methods getOptVal() and getX().

B.3.2 ExactTOP

Implementation of the TOP MIP from Vansteenwegen et al. (2011) in CPLEX. After creating

an instance of this class, by passing a TOP instance to the constructor. The method solve(tlim)

attempts to solve the instance given tlim as a time limit.

The method makeInstances() runs the exact TOP algorithm for all TOP instances. Next, it

exports the optimal solution (or best known feasible solution if the time limit is reached) to a

file in the folder ”Output/TOP/” which can be used for generating the TOPHS instances.

B.3.3 ExactTOPHS

Implementation of the TOP MIP from Section 3.1 in CPLEX. After creating an instance of this

class, by passing a TOPHS instance to the constructor. The method solve(tlim) attempts to

solve the instance given tlim as a time limit.

If feasible (then this.getStatus() returns ”Optimal” or ”Feasible”), the outcomes can be re-

trieved using the methods getOptVal() and getX().

B.3.4 Main

The main class contains two methods, mainOPHS and mainTOPHS. These methods solve (a

given subset of) all instances of respectively the OPHS and TOPHS using the exact method

and each of the heuristics, given a set time limit. They result in a text file of the form ”Out-

put/allOutputOPHS[]” and ”Output/allOutputTOPHS[]” respectively, where [] denotes a range

of values ran. These files form the basis for our analysis in this paper.

B.3.5 TABC

This is the implementation of the TABC heuristic, as described in Section 3.3. After creating an

instance for a given TOPHS and a set of parameters, the method solve(tlim) can be called with a

given time limit tlim. It returns the TTour that the algorithm found using its search procedure.

The class also contains a method paramTuning that runs a sample of a given number of

instances for a set of different parameter values, to assess what parameter settings are most

appropriate.

38



B.3.6 TAV

This is the implementation of the TAV heuristic, as described in Section 3.4. After creating an

instance for a given TOPHS and a set of parameters, the method solve(tlim) can be called with a

given time limit tlim. It returns the TTour that the algorithm found using its search procedure.

Similar to the TABC, it also includes a paramTuning method.

B.3.7 TSVNS

This is the implementation of the TSVNS heuristic, as described in Section 3.2. After creating

an instance for a given TOPHS and a set of parameters, the method solve(tlim) can be called

with a given time limit tlim. It returns the TTour that the algorithm found using its search

procedure. Similar to the TABC, it also includes a paramTuning method.

39



C Results per instance of the OPHS

Table 10: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET1 with 2 trip and 1 extra hotel.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

T1-65 240 240 0.00 6.56 240 0.00 1.04 235 2.08 2.02 240 0.00 2.26

T1-70 260 260 0.00 5.64 260 0.00 0.91 225 13.46 2.11 260 0.00 2.19

T1-73 265 265 0.00 7.47 245 7.55 1.10 250 5.66 1.97 265 0.00 2.45

T1-75 270 270 0.00 3.97 270 0.00 1.03 265 1.85 1.95 270 0.00 2.58

T1-80 280 280 0.00 7.60 265 5.36 1.17 270 3.57 3.03 270 3.57 2.81

T1-85 285 285 0.00 11.44 280 1.75 1.22 265 7.02 2.30 280 1.75 3.20

T3-65 610 610 0.00 33.36 610 0.00 1.06 600 1.64 2.95 610 0.00 2.12

T3-75 670 670 0.00 10.14 650 2.99 1.14 630 5.97 2.47 670 0.00 2.55

T3-80 710 710 0.00 35.52 690 2.82 1.40 700 1.41 1.73 700 1.41 2.96

T3-85 740 740 0.00 37.78 740 0.00 1.31 690 6.76 2.66 740 0.00 3.06

T3-90 770 770 0.00 12.54 770 0.00 1.35 730 5.19 1.81 770 0.00 3.12

T3-95 790 790 0.00 7.79 780 1.27 1.45 770 2.53 2.35 790 0.00 3.26

T3-100 800 800 0.00 38.68 800 0.00 2.00 790 1.25 2.89 800 0.00 3.37

T3-105 800 790 1.25 300.00 800 0.00 1.53 770 3.75 3.06 800 0.00 3.67

64-45 816 816 0.00 12.90 798 2.21 3.51 804 1.47 25.40 816 0.00 9.16

64-50 900 876 2.67 300.00 876 2.67 5.02 870 3.33 20.99 876 2.67 11.61

64-55 984 948 3.66 300.00 972 1.22 6.11 942 4.27 19.58 972 1.22 14.61

64-60 1062 996 6.21 300.00 1056 0.56 13.07 984 7.34 18.06 1050 1.13 20.44

64-65 1116 1116 0.00 115.38 1116 0.00 9.75 1062 4.84 17.70 1116 0.00 23.50

64-70 1188 1146 3.54 300.00 1170 1.52 13.94 1110 6.57 22.01 1170 1.52 26.96

64-75 1236 1230 0.49 300.00 1212 1.94 12.28 1176 4.85 19.01 1218 1.46 32.59

64-80 1284 1212 5.61 300.00 1278 0.47 17.53 1230 4.21 12.19 1266 1.40 35.50

66-40 575 495 13.91 300.00 570 0.87 1.30 540 6.09 25.59 570 0.87 3.08

66-45 650 615 5.38 300.00 615 5.38 1.72 615 5.38 19.51 645 0.77 5.24

66-50 730 480 34.25 300.00 715 2.05 4.19 705 3.42 24.14 690 5.48 5.42

66-55 825 590 28.48 300.00 805 2.42 3.44 680 17.58 17.92 785 4.85 7.67

66-60 915 620 32.24 300.00 890 2.73 4.77 820 10.38 17.87 890 2.73 9.08

66-125 1670 1485 11.08 300.00 1665 0.30 24.86 1595 4.49 14.79 1665 0.30 51.32

66-130 1680 1580 5.95 300.00 1680 0.00 34.54 1675 0.30 14.76 1680 0.00 53.10

100-30 173 173 0.00 28.38 173 0.00 0.42 173 0.00 58.39 173 0.00 0.96

100-35 241 241 0.00 10.05 227 5.81 0.89 241 0.00 56.12 227 5.81 2.42

100-40 299 299 0.00 63.45 283 5.35 1.59 298 0.33 89.51 298 0.33 3.19

100-45 367 367 0.00 41.10 367 0.00 2.28 310 15.53 65.37 367 0.00 3.29

102-50 181 153 15.47 300.00 181 0.00 0.33 181 0.00 82.39 181 0.00 0.82

102-60 243 223 8.23 300.00 243 0.00 0.81 233 4.12 69.26 233 4.12 1.95

Average: 5.10 151.14 1.64 5.14 4.76 21.25 1.18 10.33

40



Table 11: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET1 with 3 trips and 2 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

T1-65 240 215 10.42 300.00 240 0.00 0.97 235 2.08 1.71 210 12.50 1.54

T1-70 260 260 0.00 78.72 260 0.00 1.04 205 21.15 1.22 250 3.85 1.79

T1-73 265 265 0.00 64.41 265 0.00 1.04 265 0.00 2.20 240 9.43 1.86

T1-75 270 270 0.00 115.35 270 0.00 1.07 230 14.81 2.38 260 3.70 1.87

T1-80 280 280 0.00 57.75 280 0.00 1.27 270 3.57 2.23 270 3.57 2.40

T1-85 285 275 3.51 300.00 285 0.00 1.82 260 8.77 2.38 265 7.02 2.47

T3-65 610 520 14.75 300.00 610 0.00 0.98 530 13.11 2.37 610 0.00 1.58

T3-75 670 630 5.97 300.00 670 0.00 1.26 580 13.43 2.03 650 2.99 2.21

T3-80 710 610 14.08 300.00 680 4.23 1.25 650 8.45 2.39 640 9.86 2.42

T3-85 740 710 4.05 300.00 740 0.00 1.45 640 13.51 2.56 670 9.46 2.59

T3-90 770 770 0.00 170.32 740 3.90 1.50 670 12.99 2.39 770 0.00 2.91

T3-95 790 790 0.00 85.00 790 0.00 1.57 740 6.33 2.76 720 8.86 3.23

T3-100 800 750 6.25 300.00 800 0.00 1.70 760 5.00 1.87 800 0.00 3.30

T3-105 800 760 5.00 300.00 800 0.00 1.96 750 6.25 1.88 750 6.25 3.37

64-45 816 582 28.68 300.00 762 6.62 3.13 726 11.03 12.72 720 11.76 6.14

64-50 900 648 28.00 300.00 870 3.33 4.70 792 12.00 14.16 876 2.67 8.37

64-55 984 972 1.22 300.00 948 3.66 6.07 918 6.71 12.74 966 1.83 12.03

64-60 1062 930 12.43 300.00 1050 1.13 15.54 984 7.34 12.98 996 6.21 14.11

64-65 1116 996 10.75 300.00 1098 1.61 9.42 1068 4.30 14.26 1038 6.99 18.72

64-70 1188 1128 5.05 300.00 1152 3.03 19.03 1134 4.55 17.03 1146 3.54 20.59

64-75 1236 1122 9.22 300.00 1206 2.43 18.29 1176 4.85 18.25 1200 2.91 28.54

64-80 1284 1236 3.74 300.00 1254 2.34 16.21 1200 6.54 14.23 1260 1.87 32.01

66-40 575 570 0.87 300.00 570 0.87 1.24 445 22.61 18.52 425 26.09 2.09

66-45 650 615 5.38 300.00 645 0.77 1.71 530 18.46 8.17 645 0.77 2.75

66-50 730 675 7.53 300.00 680 6.85 2.20 575 21.23 15.50 570 21.92 4.22

66-55 825 575 30.30 300.00 805 2.42 4.80 735 10.91 14.09 785 4.85 5.29

66-60 915 860 6.01 300.00 890 2.73 3.85 820 10.38 12.43 890 2.73 7.07

66-125 1670 1225 26.65 300.00 1640 1.80 23.62 1545 7.49 11.17 1640 1.80 49.20

66-130 1680 1280 23.81 300.00 1670 0.60 24.74 1615 3.87 21.51 1660 1.19 49.44

100-30 173 173 0.00 9.35 173 0.00 0.37 173 0.00 69.79 173 0.00 0.88

100-35 241 241 0.00 15.60 241 0.00 0.81 223 7.47 41.78 241 0.00 2.26

100-40 299 299 0.00 56.48 299 0.00 0.90 299 0.00 55.10 299 0.00 2.41

100-45 367 367 0.00 47.84 367 0.00 1.46 367 0.00 58.74 367 0.00 4.19

102-50 181 181 0.00 300.00 181 0.00 0.35 181 0.00 74.94 181 0.00 0.44

102-60 243 196 19.34 300.00 243 0.00 0.90 243 0.00 95.58 243 0.00 0.76

Average: 8.09 234.31 1.38 5.09 8.26 18.40 4.99 8.72

41



Table 12: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET1 with 4 trips and 3 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

T1-65 240 240 0.00 135.91 240 0.00 1.65 200 16.67 1.81 215 10.42 1.18

T1-70 260 260 0.00 72.17 260 0.00 2.07 210 19.23 2.01 230 11.54 1.49

T1-73 265 265 0.00 40.99 265 0.00 2.16 215 18.87 1.85 240 9.43 1.63

T1-75 270 270 0.00 45.22 270 0.00 2.15 225 16.67 3.09 235 12.96 1.73

T1-80 280 280 0.00 225.01 270 3.57 2.90 240 14.29 2.75 270 3.57 2.08

T1-85 285 285 0.00 65.75 285 0.00 2.87 270 5.26 2.57 265 7.02 1.81

T3-65 610 610 0.00 228.06 610 0.00 2.05 570 6.56 2.93 520 14.75 1.51

T3-75 670 670 0.00 237.70 650 2.99 3.10 540 19.40 1.41 590 11.94 2.06

T3-80 710 620 12.68 300.00 710 0.00 2.74 560 21.13 1.79 580 18.31 1.85

T3-85 740 620 16.22 300.00 700 5.41 3.05 610 17.57 2.21 620 16.22 2.25

T3-90 770 670 12.99 300.00 720 6.49 3.09 630 18.18 2.38 700 9.09 2.57

T3-95 790 790 0.00 263.57 760 3.80 3.46 630 20.25 3.37 710 10.13 2.72

T3-100 800 690 13.75 300.00 760 5.00 4.13 700 12.50 3.80 710 11.25 2.81

T3-105 800 720 10.00 300.00 790 1.25 4.94 730 8.75 2.24 710 11.25 3.39

64-45 816 564 30.88 300.00 816 0.00 4.13 756 7.35 14.04 672 17.65 4.85

64-50 900 654 27.33 300.00 870 3.33 7.42 840 6.67 23.51 756 16.00 7.71

64-55 984 882 10.37 300.00 972 1.22 11.40 966 1.83 16.62 864 12.20 8.51

64-60 1062 684 35.59 300.00 1002 5.65 14.19 948 10.73 23.27 936 11.86 10.92

64-65 1116 1056 5.38 300.00 1116 0.00 22.68 972 12.90 11.54 1008 9.68 15.11

64-70 1188 1008 15.15 300.00 1134 4.55 26.87 1110 6.57 10.12 1104 7.07 18.25

64-75 1236 1098 11.17 300.00 1206 2.43 31.33 1170 5.34 16.89 1122 9.22 22.76

64-80 1284 1026 20.09 300.00 1260 1.87 46.49 1182 7.94 16.90 1200 6.54 25.65

66-40 575 570 0.87 300.00 570 0.87 2.25 440 23.48 13.89 435 24.35 1.56

66-45 650 215 66.92 300.00 645 0.77 3.15 550 15.38 19.36 525 19.23 2.21

66-50 730 590 19.18 300.00 715 2.05 4.61 685 6.16 16.94 595 18.49 3.04

66-55 825 620 24.85 300.00 805 2.42 5.57 730 11.52 25.39 655 20.61 3.73

66-60 915 430 53.01 300.00 910 0.55 6.97 775 15.30 16.78 765 16.39 5.41

66-125 1670 1215 27.25 300.00 1635 2.10 55.77 1515 9.28 18.73 1600 4.19 44.55

66-130 1680 1060 36.90 300.00 1645 2.08 59.89 1570 6.55 23.28 1625 3.27 49.85

100-30 173 173 0.00 21.28 173 0.00 0.43 173 0.00 88.74 NaN1 NaN NaN

100-35 241 241 0.00 34.46 241 0.00 0.79 241 0.00 50.11 241 0.00 1.72

100-40 299 299 0.00 141.77 299 0.00 0.90 299 0.00 56.15 299 0.00 1.97

100-45 367 367 0.00 127.97 367 0.00 1.41 367 0.00 71.32 367 0.00 3.28

102-50 181 181 0.00 300.00 181 0.00 0.50 123 32.04 45.78 161 11.05 0.39

102-60 243 185 23.87 300.00 243 0.00 0.98 130 46.50 61.90 243 0.00 0.80

Average: 13.56 235.42 1.67 9.95 12.60 19.30 10.76 7.69

1 The heuristic was unable to find a feasible solution within the time limit

42



Table 13: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET2 with 3 trips and 5 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

T1-65 240 240 0.00 175.10 240 0.00 1.29 210 12.50 2.52 240 0.00 1.60

T1-70 260 260 0.00 141.11 260 0.00 1.51 255 1.92 1.88 230 11.54 1.75

T1-73 265 265 0.00 107.13 265 0.00 1.61 220 16.98 1.73 255 3.77 1.96

T1-75 270 270 0.00 131.74 270 0.00 1.76 240 11.11 2.03 250 7.41 2.21

T1-80 280 280 0.00 151.60 280 0.00 2.01 280 0.00 1.56 265 5.36 2.31

T1-85 285 250 12.28 300.00 280 1.75 2.00 260 8.77 2.06 270 5.26 2.31

T3-65 610 500 18.03 300.00 610 0.00 1.46 530 13.11 1.30 590 3.28 1.83

T3-75 670 570 14.93 300.00 670 0.00 1.89 620 7.46 2.39 580 13.43 2.09

T3-80 710 630 11.27 300.00 690 2.82 2.27 630 11.27 2.74 670 5.63 2.56

T3-85 740 690 6.76 300.00 740 0.00 2.27 710 4.05 2.04 700 5.41 2.62

T3-90 770 770 0.00 280.14 750 2.60 2.39 700 9.09 3.47 720 6.49 3.02

T3-95 790 790 0.00 227.30 790 0.00 2.60 710 10.13 2.41 790 0.00 3.05

T3-100 800 710 11.25 300.00 800 0.00 2.69 780 2.50 2.60 760 5.00 3.32

T3-105 800 770 3.75 300.00 800 0.00 2.91 770 3.75 2.62 780 2.50 3.42

64-45 816 816 0.00 187.07 816 0.00 5.48 732 10.29 17.01 780 4.41 7.08

64-50 900 810 10.00 300.00 870 3.33 7.45 870 3.33 16.61 858 4.67 10.11

64-55 984 792 19.51 300.00 948 3.66 9.52 948 3.66 12.89 972 1.22 13.09

64-60 1062 1062 0.00 172.75 1020 3.95 12.04 978 7.91 27.56 1008 5.08 13.84

64-65 1116 1056 5.38 300.00 1098 1.61 14.86 1056 5.38 16.96 1080 3.23 19.76

64-70 1188 1116 6.06 300.00 1146 3.54 27.28 1104 7.07 10.22 1152 3.03 24.67

64-75 1236 1188 3.88 300.00 1212 1.94 22.61 1158 6.31 11.60 1206 2.43 27.75

64-80 1284 1188 7.48 300.00 1278 0.47 24.58 1212 5.61 22.22 1266 1.40 33.02

66-40 575 495 13.91 300.00 570 0.87 1.85 525 8.70 15.47 460 20.00 2.51

66-45 650 600 7.69 300.00 645 0.77 2.81 555 14.62 19.42 560 13.85 3.11

66-50 730 510 30.14 300.00 680 6.85 3.56 635 13.01 6.83 645 11.64 3.92

66-55 825 405 50.91 300.00 785 4.85 4.51 715 13.33 25.85 665 19.39 5.90

66-60 915 860 6.01 300.00 860 6.01 5.99 820 10.38 18.10 890 2.73 7.23

66-125 1670 1475 11.68 300.00 1645 1.50 35.50 1605 3.89 18.62 1635 2.10 47.84

66-130 1680 1605 4.46 300.00 1675 0.30 39.31 1645 2.08 20.08 1675 0.30 54.04

100-30 173 173 0.00 8.31 173 0.00 0.38 173 0.00 118.76 173 0.00 0.79

100-35 241 241 0.00 33.43 241 0.00 0.83 241 0.00 56.69 241 0.00 2.23

100-40 299 299 0.00 106.57 299 0.00 0.92 299 0.00 74.02 299 0.00 2.32

100-45 367 367 0.00 84.81 367 0.00 1.49 367 0.00 77.47 367 0.00 3.93

102-50 181 181 0.00 300.00 181 0.00 0.31 145 19.89 76.65 181 0.00 0.40

102-60 243 30 87.65 300.00 243 0.00 0.91 243 0.00 80.58 243 0.00 0.72

Average: 9.80 240.20 1.34 7.17 7.09 22.14 4.87 9.10

43



Table 14: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET2 with 4 trips and 6 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

T1-65 240 210 12.50 300.00 240 0.00 3.80 200 16.67 2.54 195 18.75 1.33

T1-70 260 260 0.00 17.69 260 0.00 4.28 215 17.31 1.46 215 17.31 1.62

T1-73 265 265 0.00 34.35 265 0.00 4.53 220 16.98 2.47 220 16.98 1.62

T1-75 270 270 0.00 13.63 270 0.00 4.92 215 20.37 1.30 225 16.67 1.85

T1-80 280 280 0.00 188.75 275 1.79 5.65 240 14.29 3.16 255 8.93 2.05

T1-85 285 280 1.75 300.00 285 0.00 5.77 230 19.30 1.62 255 10.53 2.08

T3-65 610 550 9.84 300.00 610 0.00 4.41 560 8.20 2.67 510 16.39 1.48

T3-75 670 570 14.93 300.00 650 2.99 5.44 560 16.42 1.37 550 17.91 2.19

T3-80 710 710 0.00 34.30 710 0.00 5.93 630 11.27 2.10 570 19.72 1.87

T3-85 740 740 0.00 214.16 700 5.41 6.55 620 16.22 3.04 630 14.86 2.22

T3-90 770 770 0.00 124.95 720 6.49 6.93 720 6.49 3.06 650 15.58 2.56

T3-95 790 790 0.00 150.99 750 5.06 7.62 670 15.19 2.87 710 10.13 2.75

T3-100 800 800 0.00 195.80 760 5.00 8.69 720 10.00 1.38 720 10.00 3.04

T3-105 800 780 2.50 300.00 760 5.00 8.77 730 8.75 2.71 750 6.25 3.32

64-45 816 630 22.79 300.00 798 2.21 14.79 630 22.79 18.67 660 19.12 5.72

64-50 900 660 26.67 300.00 864 4.00 18.60 768 14.67 18.76 756 16.00 7.31

64-55 984 894 9.15 300.00 972 1.22 25.97 870 11.59 15.18 852 13.41 8.80

64-60 1062 936 11.86 300.00 1002 5.65 32.08 1002 5.65 12.38 888 16.38 11.51

64-65 1116 1026 8.06 300.00 1116 0.00 42.97 1050 5.91 21.44 1056 5.38 14.71

64-70 1188 996 16.16 300.00 1152 3.03 48.64 1104 7.07 17.78 1098 7.58 19.37

64-75 1236 1194 3.40 300.00 1206 2.43 56.65 1140 7.77 15.14 1188 3.88 22.95

64-80 1284 972 24.30 300.00 1260 1.87 68.32 1188 7.48 16.35 1206 6.07 25.97

66-40 575 420 26.96 300.00 570 0.87 4.35 405 29.57 15.11 440 23.48 1.70

66-45 650 500 23.08 300.00 645 0.77 6.18 495 23.85 24.43 525 19.23 2.57

66-50 730 480 34.25 300.00 715 2.05 8.86 580 20.55 27.39 610 16.44 3.41

66-55 825 695 15.76 300.00 805 2.42 10.85 690 16.36 11.93 670 18.79 3.92

66-60 915 860 6.01 300.00 910 0.55 13.71 725 20.77 17.61 815 10.93 5.51

66-125 1670 1310 21.56 300.00 1655 0.90 97.59 1555 6.89 16.61 1630 2.40 43.99

66-130 1680 1135 32.44 300.00 1660 1.19 99.38 1585 5.65 15.27 1660 1.19 46.51

100-30 173 173 0.00 13.27 173 0.00 0.47 173 0.00 72.17 173 0.00 0.96

100-35 241 241 0.00 35.61 241 0.00 0.79 241 0.00 82.84 NaN NaN NaN

100-40 299 299 0.00 74.00 299 0.00 0.91 299 0.00 58.97 NaN NaN NaN

100-45 367 367 0.00 171.98 367 0.00 1.42 367 0.00 57.35 367 0.00 3.17

102-50 181 181 0.00 300.00 181 0.00 0.60 129 28.73 114.67 161 11.05 0.43

102-60 243 243 0.00 300.00 243 0.00 1.29 188 22.63 52.91 211 13.17 0.69

Average: 9.26 224.84 1.74 18.22 13.01 20.99 12.26 7.85

44



Table 15: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET3 with 4 trips and 10 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

64-75 1236 858 30.58 300.00 1212 1.94 63.20 1110 10.19 13.95 1164 5.83 23.00

64-80 1284 1170 8.88 300.00 1284 0.00 68.39 1188 7.48 17.91 1278 0.47 27.25

66-125 1670 1405 15.87 300.00 1640 1.80 94.26 1575 5.69 15.41 1640 1.80 46.87

66-130 1680 950 43.45 300.00 1675 0.30 102.35 1620 3.57 15.60 1650 1.79 45.84

100-50 412 330 19.90 300.00 408 0.97 3.42 371 9.95 93.73 408 0.97 4.61

100-60 504 373 25.99 300.00 504 0.00 9.21 412 18.25 79.68 464 7.94 6.32

100-70 590 513 13.05 300.00 578 2.03 24.28 492 16.61 77.37 514 12.88 9.34

100-80 652 489 25.00 300.00 626 3.99 39.20 478 26.69 54.21 594 8.90 13.50

100-90 725 501 30.90 300.00 706 2.62 54.21 550 24.14 69.84 569 21.52 15.74

100-100 782 454 41.94 300.00 760 2.81 71.18 612 21.74 58.72 615 21.36 22.23

100-110 835 470 43.71 300.00 796 4.67 83.82 664 20.48 95.46 723 13.41 29.10

100-120 894 603 32.55 300.00 825 7.72 126.95 717 19.80 37.28 755 15.55 39.41

100-130 956 611 36.09 300.00 918 3.97 146.44 775 18.93 32.64 780 18.41 44.84

100-140 1013 527 47.98 300.00 919 9.28 153.19 777 23.30 50.35 893 11.85 61.59

100-150 1057 632 40.21 300.00 1024 3.12 187.18 914 13.53 55.09 934 11.64 80.33

100-160 1114 502 54.94 300.00 1010 9.34 210.47 870 21.90 88.19 998 10.41 89.65

100-170 1164 484 58.42 300.00 1056 9.28 245.80 956 17.87 71.60 1039 10.74 112.34

100-180 1201 712 40.72 300.00 1096 8.74 286.91 1029 14.32 76.11 1100 8.41 128.89

100-190 1234 683 44.65 300.00 1147 7.05 300.00 1018 17.50 71.42 1115 9.64 134.04

100-200 1261 785 37.75 300.00 1204 4.52 300.00 1122 11.02 91.12 1165 7.61 146.16

100-210 1284 540 57.94 300.00 1237 3.66 300.00 1134 11.68 61.32 1186 7.63 164.56

100-240 1306 564 56.81 300.00 1297 0.69 300.00 1225 6.20 92.05 1275 2.37 214.37

Average: 36.70 300.00 4.02 144.11 15.49 59.96 9.60 66.36

45



Table 16: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET3 with 5 trips and 12 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

64-75 1236 966 21.84 300.00 1188 3.88 54.12 1056 14.56 8.75 1140 7.77 20.55

64-80 1284 1098 14.49 300.00 1236 3.74 58.13 1170 8.88 25.87 1194 7.01 26.25

66-125 1670 765 54.19 300.00 1620 2.99 88.54 1460 12.57 19.84 1610 3.59 37.80

66-130 1680 1025 38.99 300.00 1660 1.19 94.05 1425 15.18 5.20 1640 2.38 44.99

100-50 412 393 4.61 300.00 393 4.61 2.18 393 4.61 79.87 NaN NaN NaN

100-60 504 393 22.02 300.00 504 0.00 14.48 348 30.95 38.27 415 17.66 4.66

100-70 590 437 25.93 300.00 590 0.00 24.54 466 21.02 83.84 402 31.86 6.63

100-80 652 505 22.55 300.00 652 0.00 34.08 517 20.71 94.50 466 28.53 9.75

100-90 725 406 44.00 300.00 709 2.21 49.93 537 25.93 77.51 571 21.24 15.54

100-100 782 584 25.32 300.00 752 3.84 62.45 571 26.98 63.98 644 17.65 20.43

100-110 835 560 32.93 300.00 798 4.43 75.57 632 24.31 42.61 698 16.41 26.30

100-120 894 575 35.68 300.00 827 7.49 89.50 704 21.25 52.89 739 17.34 29.09

100-130 956 349 63.49 300.00 882 7.74 113.23 722 24.48 60.24 803 16.00 40.41

100-140 1013 524 48.27 300.00 939 7.31 136.45 733 27.64 31.46 837 17.37 49.29

100-150 1057 423 59.98 300.00 965 8.70 140.06 861 18.54 37.09 904 14.47 59.38

100-160 1114 331 70.29 300.00 1014 8.98 175.12 851 23.61 47.26 946 15.08 77.86

100-170 1164 540 53.61 300.00 1048 9.97 200.06 876 24.74 37.44 1021 12.29 92.56

100-180 1201 532 55.70 300.00 1111 7.49 239.29 1025 14.65 52.71 1031 14.15 98.37

100-190 1234 771 37.52 300.00 1165 5.59 271.23 988 19.94 38.62 1088 11.83 116.49

100-200 1261 449 64.39 300.00 1183 6.19 300.00 1092 13.40 69.26 1173 6.98 133.86

100-210 1284 277 78.43 300.00 1210 5.76 300.00 1034 19.47 44.02 1205 6.15 154.37

100-240 1306 326 75.04 300.00 1270 2.76 300.00 1148 12.10 64.62 1256 3.83 192.71

Average: 43.15 300.00 4.77 128.32 19.34 48.90 13.79 59.87

Table 17: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET4 with 3 trips and 2 extra hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

100-20 247 247 0.00 195.99 247 0.00 1.13 244 1.21 96.36 247 0.00 1.79

100-25 385 385 0.00 272.58 382 0.78 4.74 337 12.47 53.43 381 1.04 4.74

102-35 157 139 11.46 300.00 151 3.82 0.38 151 3.82 97.09 151 3.82 0.81

102-40 210 145 30.95 300.00 210 0.00 0.69 210 0.00 83.40 210 0.00 1.34

102-45 266 249 6.39 300.00 266 0.00 0.75 265 0.38 74.03 266 0.00 1.96

Average: 9.76 273.72 0.92 1.54 3.58 80.86 0.97 2.13

46



Table 18: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

OPHS SET4 with 3 trips and 3 extra hotels. Note that the gap is calculated relative to the best

feasible solution of the CPLEX method, as the optimal value is unknown.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap* CPU Obj. Gap* CPU Obj. Gap* CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

100-20 N/A 314 0.00 300.00 367 -16.88 2.88 349 -11.15 78.39 350 -11.46 3.62

100-25 N/A 491 0.00 300.00 526 -7.13 9.62 480 2.24 60.50 501 -2.04 9.38

102-35 N/A 114 0.00 300.00 300 -163.16 1.27 324 -184.21 79.56 324 -184.21 2.05

102-40 N/A 169 0.00 300.00 383 -126.63 2.33 385 -127.81 108.88 383 -126.63 2.99

102-45 N/A 186 0.00 300.00 442 -137.63 4.03 429 -130.65 68.48 442 -137.63 4.55

Average: 0.00 300.00 -90.29 4.03 -90.31 79.16 -92.39 4.52

D Results per instance of the TOPHS

Table 19: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 1 with 1 trip per tour (TOP).
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r 280 270 3.57 300.00 275 1.79 0.64 270 3.57 1.54 280 0.00 1.35

p1.3.f 40 40 0.00 197.95 40 0.00 0.05 40 0.00 2.25 40 0.00 0.10

p1.4.h 45 45 0.00 300.00 45 0.00 0.08 45 0.00 2.07 45 0.00 0.13

p2.2.k 275 275 0.00 161.16 275 0.00 0.14 270 1.82 0.74 275 0.00 0.32

p2.3.k 200 200 0.00 20.39 200 0.00 0.15 200 0.00 0.88 200 0.00 0.19

p2.4.k 180 180 0.00 300.00 180 0.00 0.11 180 0.00 0.76 180 0.00 0.15

p3.2.t 800 800 0.00 87.71 800 0.00 0.76 800 0.00 1.80 800 0.00 1.63

p3.3.e 200 200 0.00 300.00 200 0.00 0.15 200 0.00 2.05 200 0.00 0.26

p3.4.g 220 220 0.00 300.00 220 0.00 0.29 220 0.00 2.41 220 0.00 0.32

p4.2.d 531 528 0.56 300.00 483 9.04 7.70 468 11.86 21.95 522 1.69 19.02

p4.3.d 335 330 1.49 300.00 298 11.04 1.82 314 6.27 59.58 332 0.90 4.53

p4.4.d 38 38 0.00 5.59 38 0.00 0.10 38 0.00 63.31 38 0.00 0.18

p5.2.c 50 50 0.00 92.44 50 0.00 0.12 50 0.00 21.33 50 0.00 0.23

p5.3.c 20 20 0.00 4.21 20 0.00 0.08 20 0.00 17.37 20 0.00 0.15

p5.4.d 20 20 0.00 6.57 20 0.00 0.09 20 0.00 23.29 20 0.00 0.17

p6.2.n 1260 1260 0.00 35.32 1230 2.38 10.16 1200 4.76 14.69 1248 0.95 22.26

p6.3.n 1170 1170 0.00 300.00 1134 3.08 6.78 1170 0.00 22.36 1158 1.03 14.97

p6.4.n 1068 1068 0.00 40.76 1068 0.00 5.41 1068 0.00 20.68 1068 0.00 10.70

p7.2.a 30 30 0.00 62.81 30 0.00 0.05 30 0.00 63.13 30 0.00 0.09

p7.3.b 46 46 0.00 300.00 46 0.00 0.09 46 0.00 26.79 46 0.00 0.16

p7.4.b 14 14 0.00 31.62 14 0.00 0.06 14 0.00 56.47 14 0.00 0.11

Average: 0.27 164.12 1.30 1.66 1.35 20.26 0.22 3.67

47



Table 20: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 1 with 2 trips per tour.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r 280 265 5.36 300.00 280 0.00 0.70 245 12.50 1.93 265 5.36 1.08

p1.3.f 40 40 0.00 8.55 40 0.00 0.12 40 0.00 3.18 40 0.00 0.12

p1.4.h 45 45 0.00 300.00 45 0.00 0.35 45 0.00 2.29 45 0.00 0.18

p2.2.k 275 275 0.00 268.86 275 0.00 0.16 275 0.00 0.72 275 0.00 0.22

p2.3.k 200 200 0.00 6.97 200 0.00 0.26 200 0.00 0.80 200 0.00 0.20

p2.4.k 180 180 0.00 300.00 180 0.00 0.66 180 0.00 1.18 180 0.00 0.18

p3.2.t 800 800 0.00 243.79 800 0.00 1.16 760 5.00 2.24 750 6.25 1.59

p3.3.e 200 200 0.00 300.00 200 0.00 0.44 200 0.00 2.78 200 0.00 0.35

p3.4.g 220 220 0.00 300.00 220 0.00 1.54 220 0.00 4.39 220 0.00 0.38

p4.2.d 531 486 8.47 300.00 523 1.51 6.11 431 18.83 57.42 496 6.59 8.35

p4.3.d 335 330 1.49 300.00 331 1.19 1.94 311 7.16 58.85 331 1.19 2.54

p4.4.d 38 38 0.00 7.17 38 0.00 0.26 38 0.00 64.59 38 0.00 0.35

p5.2.c 50 50 0.00 268.55 50 0.00 0.17 50 0.00 22.93 50 0.00 0.28

p5.3.c 20 20 0.00 1.38 20 0.00 0.13 20 0.00 18.37 20 0.00 0.23

p5.4.d 20 20 0.00 1.42 20 0.00 0.22 20 0.00 29.46 20 0.00 0.32

p6.2.n 1260 1086 13.81 300.00 1242 1.43 15.36 1218 3.33 21.55 1158 8.10 12.96

p6.3.n 1170 1140 2.56 300.00 1170 0.00 13.32 1080 7.69 11.02 1164 0.51 8.52

p6.4.n 1068 1068 0.00 64.95 1068 0.00 7.97 1038 2.81 21.12 1068 0.00 5.63

p7.2.a 30 30 0.00 36.79 30 0.00 0.08 30 0.00 98.05 30 0.00 0.14

p7.3.b 46 32 30.43 300.00 46 0.00 0.15 46 0.00 45.37 46 0.00 0.27

p7.4.b 14 14 0.00 8.15 14 0.00 0.15 14 0.00 50.34 14 0.00 0.22

Average: 2.96 186.50 0.20 2.44 2.73 24.69 1.33 2.10

48



Table 21: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 1 with 3 trips per tour.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r 280 270 3.57 300.00 280 0.00 5.78 235 16.07 2.84 240 14.29 0.81

p1.3.f 40 40 0.00 108.55 40 0.00 49.93 40 0.00 2.68 40 0.00 0.19

p1.4.h 45 45 0.00 300.00 45 0.00 300.00 45 0.00 3.27 45 0.00 0.29

p2.2.k 275 275 0.00 142.16 265 3.64 0.91 200 27.27 0.79 240 12.73 0.27

p2.3.k 200 200 0.00 300.00 200 0.00 194.21 200 0.00 1.06 200 0.00 0.26

p2.4.k 180 180 0.00 300.00 180 0.00 300.00 160 11.11 1.26 140 22.22 0.20

p3.2.t 800 760 5.00 300.00 800 0.00 14.61 760 5.00 2.78 710 11.25 1.30

p3.3.e 200 200 0.00 300.00 200 0.00 71.13 200 0.00 3.85 200 0.00 0.42

p3.4.g 220 210 4.55 300.00 220 0.00 300.00 220 0.00 3.40 220 0.00 0.56

p4.2.d 531 496 6.59 300.00 519 2.26 4.52 439 17.33 44.34 519 2.26 6.77

p4.3.d 335 252 24.78 300.00 335 0.00 14.04 263 21.49 38.84 289 13.73 1.68

p4.4.d 38 38 0.00 8.58 38 0.00 5.92 38 0.00 65.30 38 0.00 0.51

p5.2.c 50 50 0.00 300.00 50 0.00 1.57 50 0.00 21.72 50 0.00 0.29

p5.3.c 20 20 0.00 7.96 20 0.00 23.54 20 0.00 13.46 20 0.00 0.31

p5.4.d 20 20 0.00 19.18 20 0.00 289.44 20 0.00 12.51 20 0.00 0.46

p6.2.n 1260 1014 19.52 300.00 1242 1.43 60.69 1062 15.71 18.85 1140 9.52 11.26

p6.3.n 1170 804 31.28 300.00 1170 0.00 155.04 1020 12.82 9.57 1044 10.77 6.96

p6.4.n 1068 1068 0.00 300.00 1038 2.81 30.55 1068 0.00 33.88 990 7.30 4.18

p7.2.a 30 30 0.00 41.76 30 0.00 2.17 30 0.00 88.55 30 0.00 0.21

p7.3.b 46 32 30.43 300.00 46 0.00 240.90 46 0.00 29.13 46 0.00 0.38

p7.4.b 14 14 0.00 19.82 14 0.00 25.57 14 0.00 67.52 14 0.00 0.36

Average: 5.99 216.57 0.48 99.55 6.04 22.17 4.96 1.79

49



Table 22: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 2 with 2 trips per tour and 1 additional hotel.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r 280 265 5.36 300.00 280 0.00 0.82 250 10.71 2.26 280 0.00 1.11

p1.3.f 40 40 0.00 6.27 40 0.00 0.15 40 0.00 1.73 40 0.00 0.11

p1.4.h 45 45 0.00 107.58 45 0.00 0.40 40 11.11 2.74 40 11.11 0.17

p2.2.k 275 275 0.00 300.00 275 0.00 0.20 275 0.00 0.86 240 12.73 0.26

p2.3.k 200 200 0.00 4.42 200 0.00 0.28 200 0.00 1.13 200 0.00 0.18

p2.4.k 180 180 0.00 300.00 180 0.00 0.62 160 11.11 1.24 160 11.11 0.18

p3.2.t 800 760 5.00 300.00 800 0.00 2.06 710 11.25 2.30 800 0.00 1.53

p3.3.e 200 200 0.00 300.00 200 0.00 0.44 200 0.00 2.45 200 0.00 0.32

p3.4.g 220 220 0.00 300.00 220 0.00 1.51 220 0.00 3.52 220 0.00 0.40

p4.2.d 531 529 0.38 300.00 523 1.51 6.17 499 6.03 62.19 500 5.84 8.77

p4.3.d 335 327 2.39 300.00 331 1.19 2.00 328 2.09 55.48 335 0.00 2.44

p4.4.d 38 38 0.00 8.68 38 0.00 0.27 38 0.00 32.28 38 0.00 0.33

p5.2.c 50 50 0.00 300.00 50 0.00 0.17 50 0.00 16.02 50 0.00 0.24

p5.3.c 20 20 0.00 1.81 20 0.00 0.14 20 0.00 19.67 20 0.00 0.19

p5.4.d 20 20 0.00 1.71 20 0.00 0.21 20 0.00 17.68 20 0.00 0.34

p6.2.n 1260 1206 4.29 300.00 1254 0.48 11.67 1176 6.67 16.64 1224 2.86 15.23

p6.3.n 1170 1158 1.03 300.00 1134 3.08 10.18 1074 8.21 19.04 1122 4.10 9.09

p6.4.n 1068 1068 0.00 106.10 1068 0.00 10.82 1062 0.56 21.53 1068 0.00 5.66

p7.2.a 30 30 0.00 33.07 30 0.00 0.08 30 0.00 58.75 30 0.00 0.14

p7.3.b 46 46 0.00 300.00 46 0.00 0.15 46 0.00 55.28 46 0.00 0.24

p7.4.b 14 14 0.00 10.83 14 0.00 0.15 14 0.00 51.54 14 0.00 0.22

Average: 0.88 184.78 0.30 2.31 3.23 21.16 2.27 2.24

50



Table 23: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 2 with 2 trips per tour and 2 additional hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r 280 260 7.14 300.00 280 0.00 0.97 255 8.93 2.82 245 12.50 1.15

p1.3.f 40 40 0.00 3.53 40 0.00 0.12 40 0.00 3.78 40 0.00 0.11

p1.4.h 45 40 11.11 300.00 45 0.00 0.36 45 0.00 2.35 45 0.00 0.18

p2.2.k 275 275 0.00 281.25 275 0.00 0.22 260 5.45 0.96 240 12.73 0.24

p2.3.k 200 200 0.00 7.01 200 0.00 0.51 200 0.00 1.21 200 0.00 0.18

p2.4.k 180 180 0.00 300.00 180 0.00 0.81 180 0.00 0.74 180 0.00 0.18

p3.2.t 800 750 6.25 300.00 800 0.00 1.32 760 5.00 2.37 760 5.00 1.62

p3.3.e 200 200 0.00 300.00 200 0.00 0.44 200 0.00 3.23 200 0.00 0.37

p3.4.g 220 220 0.00 300.00 220 0.00 2.33 220 0.00 2.09 220 0.00 0.39

p4.2.d 531 529 0.38 300.00 523 1.51 6.23 484 8.85 68.54 521 1.88 8.51

p4.3.d 335 335 0.00 300.00 331 1.19 2.03 323 3.58 60.75 331 1.19 2.36

p4.4.d 38 38 0.00 6.17 38 0.00 0.28 38 0.00 65.18 38 0.00 0.32

p5.2.c 50 50 0.00 300.00 50 0.00 0.17 50 0.00 16.91 45 10.00 0.25

p5.3.c 20 20 0.00 6.57 20 0.00 0.14 20 0.00 16.88 20 0.00 0.24

p5.4.d 20 20 0.00 5.88 20 0.00 0.22 20 0.00 14.50 20 0.00 0.32

p6.2.n 1260 1242 1.43 300.00 1206 4.29 11.55 1188 5.71 17.21 1182 6.19 12.38

p6.3.n 1170 1110 5.13 300.00 1116 4.62 13.02 978 16.41 14.47 1098 6.15 8.84

p6.4.n 1068 1068 0.00 65.40 1068 0.00 11.64 996 6.74 16.34 1026 3.93 6.33

p7.2.a 30 30 0.00 29.93 30 0.00 0.09 30 0.00 99.61 30 0.00 0.14

p7.3.b 46 46 0.00 300.00 46 0.00 0.17 46 0.00 91.21 46 0.00 0.25

p7.4.b 14 14 0.00 23.92 14 0.00 0.14 14 0.00 34.37 14 0.00 0.24

Average: 1.50 191.89 0.55 2.51 2.89 25.50 2.84 2.12

51



Table 24: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 2 with 2 trips per tour and 3 additional hotels.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r 280 265 5.36 300.00 280 0.00 1.06 235 16.07 2.30 270 3.57 1.20

p1.3.f 40 40 0.00 10.04 40 0.00 0.12 40 0.00 3.44 40 0.00 0.12

p1.4.h 45 45 0.00 300.00 45 0.00 0.35 45 0.00 1.53 45 0.00 0.17

p2.2.k 275 270 1.82 300.00 275 0.00 0.27 260 5.45 0.83 260 5.45 0.23

p2.3.k 200 200 0.00 6.18 200 0.00 0.71 200 0.00 0.73 200 0.00 0.21

p2.4.k 180 180 0.00 300.00 180 0.00 1.24 180 0.00 1.14 160 11.11 0.18

p3.2.t 800 730 8.75 300.00 800 0.00 1.92 760 5.00 2.74 750 6.25 1.80

p3.3.e 200 200 0.00 300.00 200 0.00 0.60 200 0.00 3.27 200 0.00 0.31

p3.4.g 220 210 4.55 300.00 220 0.00 2.32 220 0.00 2.31 210 4.55 0.38

p4.2.d 531 520 2.07 300.00 524 1.32 8.19 437 17.70 97.14 457 13.94 7.87

p4.3.d 335 326 2.69 300.00 331 1.19 2.02 328 2.09 75.12 295 11.94 2.45

p4.4.d 38 38 0.00 9.86 38 0.00 0.29 38 0.00 81.40 38 0.00 0.34

p5.2.c 50 50 0.00 200.22 50 0.00 0.17 50 0.00 21.54 45 10.00 0.21

p5.3.c 20 20 0.00 1.39 20 0.00 0.14 20 0.00 15.68 20 0.00 0.20

p5.4.d 20 20 0.00 1.45 20 0.00 0.22 20 0.00 26.78 20 0.00 0.31

p6.2.n 1260 1248 0.95 300.00 1212 3.81 14.17 1200 4.76 20.73 1218 3.33 13.79

p6.3.n 1170 1074 8.21 300.00 1140 2.56 18.05 1104 5.64 20.78 1092 6.67 9.67

p6.4.n 1068 1068 0.00 211.62 1068 0.00 17.29 930 12.92 19.10 1068 0.00 6.62

p7.2.a 30 30 0.00 36.48 30 0.00 0.09 30 0.00 31.50 30 0.00 0.15

p7.3.b 46 46 0.00 300.00 46 0.00 0.15 46 0.00 96.81 46 0.00 0.26

p7.4.b 14 14 0.00 8.44 14 0.00 0.15 14 0.00 84.95 14 0.00 0.22

Average: 1.64 194.56 0.42 3.31 3.32 29.04 3.66 2.22

52



Table 25: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 3 with 2 trips per tour and 1 additional hotel. Note that gaps are calculated

as the relative difference to the best known feasible solution found by the CPLEX method.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r N/A 200 0.00 300.00 210 -5.00 1.06 200 0.00 1.95 215 -7.50 0.77

p1.3.f N/A 15 0.00 0.30 15 0.00 0.04 15 0.00 2.09 15 0.00 0.07

p1.4.h N/A 15 0.00 0.36 15 0.00 0.06 15 0.00 1.93 15 0.00 0.07

p2.2.k N/A 165 0.00 73.67 175 -6.06 0.23 165 0.00 0.64 165 0.00 0.14

p2.3.k N/A 100 0.00 3.33 100 0.00 0.12 100 0.00 0.88 100 0.00 0.11

p2.4.k N/A 75 0.00 2.17 85 -13.33 0.10 75 0.00 0.88 75 0.00 0.09

p3.2.t N/A 600 0.00 300.00 650 -8.33 1.06 650 -8.33 2.22 610 -1.67 1.22

p3.3.e N/A 110 0.00 13.69 110 0.00 0.10 110 0.00 1.45 110 0.00 0.12

p3.4.g N/A 90 0.00 3.36 90 0.00 0.11 90 0.00 2.87 90 0.00 0.16

p4.2.d N/A 382 0.00 300.00 435 -13.87 3.98 416 -8.90 95.11 435 -13.87 5.47

p4.3.d N/A infeasible1

p4.4.d N/A infeasible1

p5.2.c N/A 20 0.00 0.51 20 0.00 0.09 20 0.00 8.35 20 0.00 0.19

p5.3.c N/A 15 0.00 0.74 15 0.00 0.10 15 0.00 15.39 15 0.00 0.17

p5.4.d N/A 20 0.00 0.96 20 0.00 0.15 20 0.00 14.19 20 0.00 0.25

p6.2.n N/A 1056 0.00 300.00 1122 -6.25 8.20 1110 -5.11 14.53 1134 -7.39 11.35

p6.3.n N/A 912 0.00 300.00 984 -7.89 9.48 948 -3.95 17.44 972 -6.58 7.04

p6.4.n N/A 174 0.00 300.00 174 0.00 0.35 174 0.00 11.25 174 0.00 0.58

p7.2.a N/A 0 0.00 0.82 0 0.00 0.04 0 0.00 59.81 0 0.00 0.04

p7.3.b N/A 0 0.00 1.13 0 0.00 0.07 0 0.00 55.20 0 0.00 0.07

p7.4.b N/A 0 0.00 1.22 0 0.00 0.11 0 0.00 72.40 0 0.00 0.09

Average: 0.00 100.12 -3.20 1.34 -1.38 19.93 -1.95 1.47

1 Due to removal of POIs, solutions may become infeasible. Computation times are not included in the average.

53



Table 26: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 3 with 2 trips per tour and 2 additional hotels. Note that gaps are calculated

as the relative difference to the best known feasible solution found by the CPLEX method.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r N/A 200 0.00 300.00 215 -7.50 0.95 215 -7.50 1.75 215 -7.50 0.79

p1.3.f N/A 15 0.00 0.30 15 0.00 0.04 15 0.00 2.27 15 0.00 0.06

p1.4.h N/A 15 0.00 0.50 15 0.00 0.06 15 0.00 1.90 15 0.00 0.08

p2.2.k N/A 160 0.00 52.94 170 -6.25 0.21 160 0.00 0.57 160 0.00 0.14

p2.3.k N/A 85 0.00 1.62 85 0.00 0.17 85 0.00 0.59 85 0.00 0.08

p2.4.k N/A 70 0.00 0.12 70 0.00 0.23 70 0.00 0.85 70 0.00 0.06

p3.2.t N/A 560 0.00 300.00 580 -3.57 0.89 570 -1.79 1.01 570 -1.79 0.96

p3.3.e N/A 110 0.00 1.78 110 0.00 0.23 110 0.00 1.61 100 9.09 0.12

p3.4.g N/A 70 0.00 1.66 70 0.00 0.18 70 0.00 2.19 70 0.00 0.10

p4.2.d N/A 277 0.00 300.00 394 -42.24 3.28 337 -21.66 69.90 350 -26.35 4.27

p4.3.d N/A 139 0.00 300.00 150 -7.91 0.71 150 -7.91 98.28 150 -7.91 0.88

p4.4.d N/A infeasible1

p5.2.c N/A 20 0.00 0.71 20 0.00 0.10 20 0.00 19.59 20 0.00 0.18

p5.3.c N/A 15 0.00 0.96 15 0.00 0.10 15 0.00 5.55 15 0.00 0.18

p5.4.d N/A 20 0.00 1.07 20 0.00 0.14 20 0.00 9.06 20 0.00 0.24

p6.2.n N/A 768 0.00 300.00 1122 -46.09 7.70 1098 -42.97 15.66 1086 -41.41 10.93

p6.3.n N/A 870 0.00 300.00 978 -12.41 8.52 960 -10.34 16.75 984 -13.10 6.75

p6.4.n N/A 558 0.00 300.00 666 -19.35 2.45 660 -18.28 21.15 654 -17.20 2.38

p7.2.a N/A 0 0.00 1.20 0 0.00 0.04 0 0.00 82.69 0 0.00 0.04

p7.3.b N/A 0 0.00 1.60 0 0.00 0.07 0 0.00 45.76 0 0.00 0.07

p7.4.b N/A 0 0.00 1.83 0 0.00 0.10 0 0.00 62.58 0 0.00 0.10

Average: 0.00 108.31 -7.27 1.31 -5.52 22.99 -5.31 1.42

1 Due to removal of POIs, solutions may become infeasible. Computation times are not included in the average.

54



Table 27: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 3 with 2 trips per tour and 3 additional hotels. Note that gaps are calculated

as the relative difference to the best known feasible solution found by the CPLEX method.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.2.r N/A 195 0.00 300.00 220 -12.82 0.64 200 -2.56 0.98 215 -10.26 0.66

p1.3.f N/A 20 0.00 0.55 20 0.00 0.05 20 0.00 2.09 20 0.00 0.08

p1.4.h N/A 15 0.00 0.77 15 0.00 0.12 15 0.00 1.18 15 0.00 0.07

p2.2.k N/A 170 0.00 64.30 170 0.00 0.09 170 0.00 0.54 170 0.00 0.11

p2.3.k N/A 135 0.00 0.79 135 0.00 0.17 135 0.00 0.57 135 0.00 0.08

p2.4.k N/A 30 0.00 0.33 30 0.00 0.17 30 0.00 0.64 30 0.00 0.05

p3.2.t N/A 540 0.00 300.00 580 -7.41 1.06 560 -3.70 1.02 580 -7.41 0.94

p3.3.e N/A 50 0.00 4.15 50 0.00 0.10 50 0.00 2.18 50 0.00 0.08

p3.4.g N/A 120 0.00 0.92 120 0.00 0.15 120 0.00 1.91 120 0.00 0.18

p4.2.d N/A 289 0.00 300.00 333 -15.22 2.80 323 -11.76 87.01 317 -9.69 3.95

p4.3.d N/A infeasible1

p4.4.d N/A infeasible1

p5.2.c N/A 15 0.00 0.82 15 0.00 0.08 15 0.00 17.75 15 0.00 0.13

p5.3.c N/A 15 0.00 0.90 15 0.00 0.10 15 0.00 11.74 15 0.00 0.20

p5.4.d N/A 10 0.00 1.07 10 0.00 0.18 10 0.00 11.90 10 0.00 0.16

p6.2.n N/A 822 0.00 300.00 1134 -37.96 7.93 1080 -31.39 14.17 1122 -36.50 9.91

p6.3.n N/A 840 0.00 300.00 984 -17.14 8.01 906 -7.86 10.91 954 -13.57 6.30

p6.4.n N/A 648 0.00 300.00 720 -11.11 8.79 690 -6.48 11.70 720 -11.11 3.21

p7.2.a N/A 0 0.00 1.25 0 0.00 0.04 0 0.00 80.93 0 0.00 0.04

p7.3.b N/A 0 0.00 1.57 0 0.00 0.08 0 0.00 81.02 0 0.00 0.07

p7.4.b N/A 0 0.00 1.78 0 0.00 0.10 0 0.00 68.19 0 0.00 0.09

Average: 0.00 98.91 -5.35 1.61 -3.36 21.39 -4.66 1.38

1 Due to removal of POIs, solutions may become infeasible. Computation times are not included in the average.

Table 28: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 4 with 2 trips per tour and 1 additional hotel. Note that gaps are calculated

as the relative difference to the best known feasible solution found by the CPLEX method.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.3.r N/A 170 0.00 300.00 180 -5.88 0.79 175 -2.94 1.83 170 0.00 0.41

p1.4.r N/A 105 0.00 300.00 125 -19.05 0.97 110 -4.76 2.30 105 0.00 0.26

p3.3.t N/A 420 0.00 300.00 490 -16.67 1.37 480 -14.29 1.96 480 -14.29 0.62

p3.4.t N/A 360 0.00 300.00 440 -22.22 3.43 430 -19.44 2.10 430 -19.44 0.52

p4.2.t N/A 616 0.00 300.00 1242 -101.62 71.28 1155 -87.50 78.75 1198 -94.48 107.67

p4.3.t N/A 337 0.00 300.00 1124 -233.53 111.94 1069 -217.21 50.84 1089 -223.15 54.50

p4.4.t N/A 656 0.00 300.00 1054 -60.67 271.35 1008 -53.66 51.05 1060 -61.59 44.76

p5.2.z N/A 1010 0.00 300.00 1575 -55.94 9.27 1505 -49.01 20.03 1590 -57.43 16.25

p5.3.z N/A 390 0.00 300.00 1425 -265.38 14.46 1315 -237.18 15.69 1400 -258.97 10.10

p5.4.z N/A 650 0.00 300.00 1220 -87.69 32.72 1125 -73.08 13.16 1130 -73.85 6.60

p7.2.t N/A 177 0.00 300.00 1075 -507.34 38.77 1020 -476.27 82.06 1078 -509.04 65.30

p7.3.t N/A 247 0.00 300.00 925 -274.49 44.51 901 -264.78 78.08 879 -255.87 35.42

p7.4.t N/A 243 0.00 300.00 746 -207.00 83.76 773 -218.11 95.23 731 -200.82 13.52

Average: 0.00 300.00 -142.88 52.66 -132.17 37.93 -136.07 27.38

55



Table 29: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 4 with 2 trips per tour and 2 additional hotels. Note that gaps are calculated

as the relative difference to the best known feasible solution found by the CPLEX method.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.3.r N/A 125 0.00 300.00 160 -28.00 0.78 155 -24.00 2.33 145 -16.00 0.39

p1.4.r N/A 110 0.00 300.00 120 -9.09 1.50 120 -9.09 2.33 110 0.00 0.25

p3.3.t N/A 460 0.00 300.00 490 -6.52 2.32 490 -6.52 2.23 490 -6.52 0.65

p3.4.t N/A 390 0.00 300.00 460 -17.95 3.63 460 -17.95 2.18 460 -17.95 0.54

p4.2.t N/A 425 0.00 300.00 1304 -206.82 66.78 1192 -180.47 70.79 1226 -188.47 100.58

p4.3.t N/A 369 0.00 300.00 1187 -221.68 120.65 1110 -200.81 75.54 1186 -221.41 64.59

p4.4.t N/A 375 0.00 300.00 1008 -168.80 300.00 929 -147.73 59.52 992 -164.53 38.33

p5.2.z N/A 975 0.00 300.00 1515 -55.38 15.20 1445 -48.21 14.41 1520 -55.90 15.05

p5.3.z N/A 580 0.00 300.00 1420 -144.83 20.67 1330 -129.31 14.60 1385 -138.79 9.25

p5.4.z N/A 345 0.00 300.00 1210 -250.72 47.46 1135 -228.99 12.01 1130 -227.54 5.43

p7.2.t N/A 245 0.00 300.00 1048 -327.76 27.22 996 -306.53 78.89 1089 -344.49 62.73

p7.3.t N/A 319 0.00 300.00 936 -193.42 62.97 877 -174.92 71.00 963 -201.88 37.88

p7.4.t N/A 180 0.00 300.00 915 -408.33 144.64 771 -328.33 42.22 796 -342.22 19.86

Average: 0.00 300.00 -156.87 62.60 -138.68 34.47 -148.13 27.35

Table 30: Results of the solving methods CPLEX, TSVNS, TABC and TAV for each instance of

the TOPHS SET 4 with 2 trips per tour and 3 additional hotel. Note that gaps are calculated

as the relative difference to the best known feasible solution found by the CPLEX method.
CPLEX TSVNS TABC TAV

Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU Obj. Gap CPU

Inst. Opt. (%) (s) (%) (s) (%) (s) (%) (s)

p1.3.r N/A 150 0.00 300.00 160 -6.67 0.81 160 -6.67 1.36 160 -6.67 0.33

p1.4.r N/A 125 0.00 300.00 120 4.00 2.06 125 0.00 1.88 110 12.00 0.24

p3.3.t N/A 530 0.00 300.00 530 0.00 2.42 530 0.00 2.46 500 5.66 0.59

p3.4.t N/A 400 0.00 300.00 430 -7.50 6.80 410 -2.50 1.78 410 -2.50 0.45

p4.2.t N/A 580 0.00 300.00 1254 -116.21 65.96 1212 -108.97 55.63 1261 -117.41 88.26

p4.3.t N/A 449 0.00 300.00 1169 -160.36 168.72 1059 -135.86 39.45 1058 -135.63 58.28

p4.4.t N/A 455 0.00 300.00 1139 -150.33 300.00 1074 -136.04 42.24 1009 -121.76 38.35

p5.2.z N/A 780 0.00 300.00 1580 -102.56 12.27 1485 -90.38 14.38 1545 -98.08 13.67

p5.3.z N/A 560 0.00 300.00 1410 -151.79 22.76 1365 -143.75 11.67 1350 -141.07 8.04

p5.4.z N/A 210 0.00 300.00 1245 -492.86 67.90 1180 -461.90 20.03 1155 -450.00 5.28

p7.2.t N/A 402 0.00 300.00 1119 -178.36 32.56 996 -147.76 34.60 1075 -167.41 55.50

p7.3.t N/A 346 0.00 300.00 925 -167.34 84.90 910 -163.01 38.00 912 -163.58 30.48

p7.4.t N/A 187 0.00 300.00 896 -379.14 201.61 777 -315.51 67.45 825 -341.18 21.75

Average: 0.00 300.00 -146.85 74.52 -131.72 25.46 -132.89 24.71

56


