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including the 10-year Treasury spread, M2 money supply, and JPYUSD exchange rate.

Supervisor: Anastasija Tetereva

Date final version: 1st July 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

Understanding and using the correlation between stock and oil markets is essential for portfolio

managers to minimise the risk of adverse price fluctuations. Recent macroeconomic events

have illustrated the impact of oil supply uncertainties, and the related oil price fluctuations, on

stock performance. The global shift towards renewable energy and the simultaneous industrial

expansion and development of lower income countries makes the demand side of the energy

industry volatile. Simultaneously, the supply of fossil fuels is decreasing and local supply is

impacted by geopolitics and energy policies. The exposure of investors to these uncertainties

and complex interactions requires them to offset energy-related risks, a process called hedging.

Whereas hedging via the futures market could reduce risks, futures are illiquid and often not a

perfect fit for the required hedge. Cross-asset hedging offsets risk by leveraging co-movement

information between two different assets. Central in this type of hedging is to determine the

risk-minimising hedging ratio, i.e. the ratio of the hedge to the initial position that minimises

the portfolio risk. The minimum-variance hedge ratio gives the position (in $ amounts) that

portfolio managers should take in oil to offset their oil price exposure per $1 of the stock position.

Hence, minimising the downside risk of a position in the S&P500 index using the Brent Oil index

by finding the minimum-variance hedge ratio is a relevant topic to study.

In the literature, many studies have focused on estimating the time-varying hedge ratios for

oil and equity markets using different estimation techniques (Arouri, Jouini & Nguyen, 2011;

Basher & Sadorsky, 2016; Batten, Kinateder, Szilagyi & Wagner, 2017). However, most of

these studies ignore the transaction costs present in rebalancing portfolio weights. The Hedging

Random Forest (HRF) (Van der Bij, Ter Horst, Palim & Zegwaart, 2023) is a model that seeks

to find the optimal time-varying portfolio weights whilst considering portfolio rebalancing costs.

It is a local linear random forest, based on the local linear Macroeconomic Random Forest

(MRF) (Coulombe, 2020), that uses macroeconomic data to allocate observations to the leaves.

Transaction costs are directly considered by the change in hedge ratios between consecutive time

periods. This results in a smoother set of optimal portfolio weights throughout time. Van der

Bij et al. (2023) have shown substantial in-sample gains when hedging the S&P 500 with the

VIX.

Therefore, the central goal of this paper is to assess the performance of the Hedging Random

Forest (HRF) in hedging the S&P500 index using the Brent Oil index.

Time-varying minimum-variance hedge ratios are predicted based on monthly return data of

the S&P500 and Brent Oil index and monthly data on financial and macroeconomic variables

from January 1990 to January 2023. The HRF model is estimated for different sensitivities

to transaction costs. The performance of these HRF models is compared to that of several

benchmark models, i.e. Ordinary Least Squares (OLS), DCC-GARCH (R. Engle, 2002), ADCC-

GARCH (Cappiello, Engle & Sheppard, 2006), DCC-GJR-GARCH (Glosten, Jagannathan &

Runkle, 1993), and GOGARCH models (Van der Weide, 2002). The latter four are analysed

as they have shown promising results in the context of hedging stocks with oil. For the HRF

and benchmark models, one-step-ahead hedge ratios are constructed using a rolling window

technique. The estimation window is set at 120 observations (5 years). This produces 208

one-step-ahead one-step-ahead forecasts. All models are refit every 24 observations (2 years)
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and monthly rebalancing is assumed. The performance of the proposed models over the rolling

windows is evaluated using the hedging effectiveness (HE), i.e. the proportion of market risk

from S&P500 that is offset by the hedge when using Brent oil, and a utility measure in terms

of risk, returns, and transaction costs.

The HRF model is unable to significantly outperform OLS and benchmark models in terms

of only the hedging effectiveness. Additionally, lower values of the transaction cost penalty λ

result in smoother HE paths compared to higher values of λ. The results suggest that relatively

high transaction cost penalties should be used in periods with high volatility, whereas low

transaction cost sensitivities should be used in case the hedged asset is less volatile than the

hedge. Moreover, HRF models with high transaction cost sensitivities perform best amongst

all HRF models. HRF models with high λ significantly outperform the multivariate GARCH

models in terms of utility, but fail to provide significantly better results compared to OLS.

Finally, an analysis of the variable importance of the HRF shows that a diverse set of variables

plays an important role in modelling the equity-oil dynamics, including the M2 money stock,

JPYUSD exchange rate and 10-year Treasury spread.

The contribution of this research to the literature on local linear models is threefold. Firstly,

the out-of-sample performance of the HRF is evaluated. Secondly, the performance of the HRF is

compared to models that have shown promising results in previous literature. Finally, measuring

the utilities extends the performance analysis of the HRF beyond the HE.

This paper also extends the literature on estimating the minimum-variance hedge ratio for

S&P500 and oil. To the best of the author’s knowledge, random forests have not previously

been applied to estimating the optimal time-varying hedge ratio. In addition, transaction costs

are explicitly considered in estimating the hedge ratios. Moreover, the variable importance of

the financial and macroeconomic drivers is analysed. This makes the HRF model interpretable

and helps investors identify important macroeconomic drivers.

The remainder of the paper is organized as follows. The relevant literature is discussed in

Section 2. Section 3 describes the data collected and used in this study. Section 4 discusses

the methodology of the HRF, benchmark models, and used performance measures. Section

5 presents the results of the estimated hedge ratios, portfolio returns, drivers, and hedging

effectiveness of the different models. Section 6 concludes the findings, and Section 7 outlines the

limitations of this paper and further research opportunities.

2 Literature review

This section gives a short review of relevant papers that focus on the development of local linear

models (Section 2.1), and hedging equities with oil (Section 2.2).

2.1 Local Linear Models

Random Forests (RFs) (Breiman, 2001) are an ensemble of multiple individual decision trees,

where bagging and bootstrapping (Breiman, 1996; Bühlmann & Yu, 2002) increase the smooth-

ness of the trees compared to single trees. RFs handle interactions and nonlinearities in data,

while bypassing the overfitting issues of regular regression decision trees. Typical RFs fit a
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constant function to each of the different tree leaves. One of the weaknesses of trees is that

they do not exploit the smoothness of the prediction surface, but consider it as step-wise. The

same step-wise issue holds for random forests. Several papers have considered random forests as

adaptive kernel methods (Hothorn, Lausen, Benner & Radespiel-Tröger, 2004; Athey, Tibshir-

ani & Wager, 2019). Based on this literature, Bloniarz, Talwalkar, Yu and Wu (2016) consider

local linear regression with supervised weighting functions, and Friedberg, Tibshirani, Athey and

Wager (2020) adapt the tree-splitting procedure. As an extension to the latter, Coulombe (2020)

introduced the Macroeconomic Random Forest (MRF). This model expands multiple nonlinear

time series models by adapting RFs for macro forecasting, interpreting estimates as generalized

time-varying parameters, and introducing a five step Olympic podium kernel for time stabiliz-

ation. In the context of predicting recessions and the Philips curve, the MRF model achieves

substantial empirical gains as compared to other nonlinear models, both when modelling short-

run regime-switching behaviour and long-run trends. Van der Bij et al. (2023) introduce the

HRF. This model extends the MRF by modelling transaction costs into the changing slope para-

meter estimate. For hedging the S&P500 with the Volatility Index (VIX), the HRF has shown

substantial in-sample improvements hedging effectiveness compared to standard GARCH(1,1),

OLS, and QTLS models.

This paper adds to the body of literature of local linear models in three ways. Firstly, the out-

of-sample performance of the HRF has not been evaluated in earlier literature. The performance

of the HRF has been analysed in-sample, which is useful for understanding model fit, but less

relevant for investors that seek future returns. Secondly, the HRF model has previously been

compared to OLS, QTLS, and univariate GARCH, all relatively simple benchmark models.

This paper compares the HRF performance with several benchmark models that have previously

proven to be promising in the context of hedging stocks with oil. Finally, the models are analysed

in terms of utilities. This measure more accurately reflects investors’ practical tradeoffs between

portfolio rebalancing costs, risks, and returns than the HE.

2.2 Hedging equities with oil

Due to the central role of energy price exposure in equity markets, several studies have focused

on estimating the time-varying hedge ratios between oil and stocks.

Arouri et al. (2011) estimate four bivariate GARCH models (BEKK-GARCH, VAR-GARCH,

CCC-GARCH and DCC-GARCH models) using weekly data from 1998 to 2009 to investigate

volatility spill-overs between oil and stock market sectors in the US and Europe. For Europe,

they find a spillover effect from oil to equity, and for the US, they find a bidirectional spillover

effect between oil and the S&P500. The BEKK-GARCH and DCC-GARCH model perform

best. Chang, McAleer and Tansuchat (2011) research the BEKK-GARCH, VARMA-GARCH,

CCC-GARCH, and DCC-GARCH model for hedging BRENT and WTI crude oil spot with their

corresponding crude oil futures. Hedges calculated from DCC-GARCH have the highest hedging

effectiveness, while the BEKK-GARCH results in the worst hedges. Based on these results, the

DCC-GARCH is included as one of the benchmark models.

Basher and Sadorsky (2016) model volatility dynamics using the DCC-GARCH, ADCC-

GARCH and GOGARCH models to estimate the daily hedge ratios between emerging market
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stock prices, oil prices, VIX, gold prices and bond prices between. The GARCH models are

refit every 20 months and analysed for a series of rolling window, one-step-ahead forecasts. The

authors conclude that oil is the best hedge for emerging markets. Additionally, hedging ratios

from the ADCC-GARCH and GOGARCH are most effective for hedging emerging market stock

prices. Based on these findings, the ADCC-GARCH and GOGARCH model are included as

benchmark models.

However, the mentioned literature does not consider the transaction costs that result from

the frequent rebalancing of the hedged portfolio positions. Chen and Sutcliffe (2012) show

that these hedged portfolios can result in expensive trading due to high transaction costs. The

effects of portfolio rebalancing and transaction costs, e.g. bid-ask spreads, on dynamic hedging

strategies have been explored in the literature (Coakley, Dollery & Kellard, 2008; Kroner &

Sultan, 1993). Batten, Kinateder, Szilagyi and Wagner (2021) emphasise the practical and

economic significance of different hedging strategies to investors by comparing the expected

utility gains from hedge positions between several equity indices (S&P500 and MSCI indices)

and oil indices (Brent and WTI crude oil). Specifically, their approach considers the returns,

transaction costs and risks that result from different estimates of the model returns. The utility

approach will be used in this paper. Time-varying utilities are also analysed to accurately

reflect an investor’s tradeoff between portfolio transaction costs, returns and risks throughout

time. This allows for more holistic conclusions on the performance of the HRF and benchmark

models as compared to the earlier literature, which only measures performance in terms of the

hedging effectiveness.

Whereas the incorporation of transaction costs is useful in the performance evluation, it

considers transaction costs only after the optimal hedge ratios have been determined. The

strength of the HRF model is that it ensures smoother estimates of the time-varying hedge ratio

by explicitly considering the presence of rebalancing costs when the values of the hedging ratios

are optimised.

Random forests have been previously applied to selecting the optimal portfolio (Tan, Yan &

Zhu, 2019), but to the best of the author’s knowledge, not to estimating the optimal time-varying

hedge ratio. An issue that arises with machine learning models is the lack of interpretability.

Another contribution of this paper is that the macroeconomic and financial drivers behind the

time-varying hedge ratios are identified via the variable importance of the HRF model. Batten

et al. (2021) identified the the implied volatility index (VIX), gold price and term spread as

important drivers of stock-oil portfolios based on six macroeconomic variables. This paper

contributes by identifying the main drivers behind the time-varying hedge ratios from a set of

450 variables. This improves the interpretability of the random forest model and provides a

clearer understanding of the benefits of stock-oil hedging for investors.

3 Data

This section introduces and analyses the data that has been used. Section 3.1 discusses the

data, and associated preliminary analyses for the S&P 500 and Brent Oil return data. Section

3.2 introduces the macroeconomic data as input for the HRF.
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3.1 S&P 500 and Brent Oil returns

Daily closing prices (in USD) of the S&P 500 were collected from Yahoo Finance for a period

from December 1989 to February 2023 (Yahoo Finance, 2023). The S&P 500 index is chosen as

proxy for the US equity market as it is the most studied equity index in the literature. Daily

energy closing prices (in USD) of the Global price of Brent Crude Oil were collected from the

Federal Reserve Bank of St. Louis (FRED) for a period from January 1990 to February 2023

(McCracken & Ng, 2016). The Brent oil index is used instead of the West Texas Intermediate

(WTI) contract because previous literature has shown that using Brent oil as a hedge results in

a higher hedge effectiveness than using WTI oil (Batten et al., 2021).

In the sample period from January 1990 to December 31 2023, NBER Business Cycle Dating

Committee (n.d.) has identified four periods of economic recession. These include the periods

July 1990 until March 1991, March 2001 until November 2001, December 2007 until June 2009,

and February 2020 until April 2020. These periods could be identified as the Gulf War recession,

the early 2000s recession, the Great Financial Crisis, and the COVID-19 crisis, respectively. In

the remainder of this paper, the term ’recessions’ is used with a reference to these time periods.

Monthly equity and oil returns are measured as the difference in the natural logarithm of

intermonth closing prices, Rit = ln(Pi,t) − ln(Pi,t−1), where Pi,t is the closing price of asset

i ∈ {s, o} in month t. Monthly returns data is used for two reasons. Firstly, it can counter

biases that could arise from daily data (for instance, the bid-ask effect, non-synchronous trading

days). Secondly, it corresponds with most macroeconomic data that the HRF model uses is

collected at monthly intervals.

The descriptive statistics of S&P 500 and Brent Oil monthly returns are reported in Table 1

for the full sample period from January 1990 to February 2023. At 0.6% per month, the mean

return of the S&P 500 is approximately double the mean return of Brent Oil (0.3%). Brent Oil

has a substantially higher standard deviation of 0.092 compared to the 0.043 of S&P 500. This

can also be observed from the lower minimum and higher maximum monthly return for Brent

Oil, and can be seen from the time series plot in Figure 1. Both asset returns have negative

skew. This is common in stock markets and means that the there is a higher probability of

observing extreme negative returns relative to observing extreme positive returns. From the

more negative skew of S&P compared to the skew of Brent Oil, equities seem to display more

negative returns (i.e. downside risk) relative to positive returns than oil. Finally, the S&P has

a kurtosis of 1.387 and Brent a kurtosis of 3.506. The higher kurtosis indicates that the Brent

index has higher fat tailed risk than S&P. The Jarque-Bera test rejects the null hypothesis of

normality at the 1% significance level for both oil returns (p-value 5.892e-19) and stock returns

(p-value 8.327e-15).

The time series graph of the squared monthly log returns (presented in Figure 1b) is a proxy

for how volatility has changed throughout time. Volatility clustering is primarily present around

periods of crisis and is stronger for Brent Oil than S&P 500. Based on the presented volatility

clustering and the property of returns data to be serially correlated, the conditional volatilities

can be modelled by applying GARCH.

Table 2 includes the Pearson pairwise correlation between S&P 500 and Brent Oil monthly

log returns for the full sample period, recessionary periods, and non-recessionary periods. The

5



Table 1: The descriptive statistics (mean, standard deviation (std. dev.), skew, kurtosis),
Jarque-Bera’s normality test statistic, and Augmented Dicky-Fuller unit root (ADF) test stat-
istic for the S&P 500 and Brent Oil monthly log returns over the full sample period from January
1990 to February 2023.

Mean Std. dev. Skew Kurtosis Jarque-Bera ADF unit root Obs

S&P 500 0.006 0.043 -0.723 1.387 219.064∗∗∗ −20.026∗∗∗ 398
Brent Oil 0.003 0.092 -0.578 3.506 64.831∗∗∗ −12.722∗∗∗ 398

Note: ∗∗∗, ∗∗ and ∗ denote the statistical significance at the 1%, 5% and 10% level, respectively.

Table 2: Pearson pairwise correlations between S&P 500 and Brent Oil returns for the full
sample from January 1990 to February 2023, the recessionary months in the sample period and
the non-recessionary months in the sample period.

Full sample Recessions Non-recessions

Pearson pairwise Correlation 0.141∗∗∗ 0.322∗∗ 0.035

Note: ∗∗∗, ∗∗ and ∗ denote the statistical significance at the 1%, 5% and 10% level, respectively,
for the null of no autocorrelation.

latter two are included given the strong similarity between the close prices and returns series

plotted in Figure 1 during recessionary periods. An associated test, with a null hypothesis that

the distributions are uncorrelated, is applied. During recessions, the pairwise correlation is 0.322

and statistically significant (p = 0.038) from the null hypothesis of no autocorrelation at the 5%

significance level. During non-recessionary months, the pairwise correlation is not significantly

different from zero.

The Augmented Dickey-Fuller (ADF) unit root statistics indicate that monthly returns of

both indices are stationary at the 5% significance level (see Table 1). Given stationarity of

the time series, the Johansen cointegration test is applied to test the presence of a long term

cointegration relationship between energy and stock returns. Based on the trace statistics, the

null hypothesis of less than or equal to one cointegration relation is rejected. Thus, taken over

the full sample, more than one cointegration relation exists between the asset returns. This

indicates a complex long-term relationship among the asset returns and makes modelling time-

varying hedge ratios useful.

3.2 Macroeconomic data

The HRF model requires a large set of macroeconomic and financial variables to make useful

tree splits. The core of the used macroeconomic and financial data is retrieved from the Saint

Louis branch of the Federal Reserve (McCracken & Ng, 2016). The initial dataset includes

127 variables for a time period from March 1959 until January 2023, which accumulates to a

total of 767 monthly time observations per variable. McCracken and Ng (2016) identify eight

groups of data in the dataset: Output and income, Labor market, Housing, Consumption, orders

and inventory, Money and credit, Interest and exchange rates, Prices, Stock market. To avoid

bias in forecasting, one-month lags are taken for each time period. The dataset is transformed

using specified transformations for each variable, as elaborated in McCracken and Ng (2016).

6



(a) Monthly log returns (b) Squared monthly log returns

(c) Monthly closing prices

Figure 1: Monthly log returns, squared log returns, and closing prices of the S&P 500 (blue)
and Brent Oil Index (red) from a period of January 1990 until February 2023. The grey bars
indicate the presence of an NBER recession (NBER Business Cycle Dating Committee, n.d.).

These include taking the first difference, second difference, logarithm, both logarithm and first

difference, both logarithm and second difference, and first difference of percentage change.

This dataset was complemented with several indices. The conjecture is that these indices

could be relevant in splitting the observations into leaves, as the indices combine much macroeco-

nomic information into one value. The Aruoba-Diebold-Scotti (ADS) index (Aruoba, Diebold &

Scotti, 2009) is a business condition tracker. The index includes weekly jobless claims, monthly

payroll employment, monthly industrial production, monthly real personal income less transfer

payments, monthly real manufacturing and trade sales; and quarterly real GDP). The daily

index is downloaded from of Philadelphia (n.d.) for the period of March 1960 to April 2023.

In addition, the NFCI weekly is included. This index provides weekly updates on US financial

conditions in money markets, debt and equity markets and the banking system. The weekly

data is retrieved from Federal Reserve Bank of Chicago (2023) from January 1971 until April

2023. Finally, the change in the US Economic Policy Uncertainty index (S. R. Baker, Bloom

& Davis, 2015) is included. This index is relevant for stock market and oil price volatility that

results from geopolitics and (energy) policies. The monthly data is retrieved from S. Baker,

Bloom and Davis (n.d.) for a period from January 1985 until April 2023.

The transformation of the total dataset is taken from Coulombe (2020). The procedure

includes a Principal Component Analysis (PCA) that transform the set of variables into five
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uncorrelated principal components that capture the key patterns in the data. The purpose is to

twofold. Firstly, the dense information in the principal components make them relevant variables

for the HRF model to consider during the splitting procedure. Secondly, the feature weights

op the principal components identify the most influential variables that drive macroeconomic

variability. Appendix A.2 specifies further details on the decomposition. The results show

that volatility, consumer sentiment index, change in NFCI, and the federal funds spreads are

important determinants. Several of these variables will be further analysed in Section 5.

4 Methodology

This section discusses this paper’s methodology. The hedging objective and forecasting proced-

ure are introduced in Section 4.1 and 4.2, respectively. Section 4.3 details the HRF model and

Section 4.4 details the benchmark models. Finally, Section 4.5 elaborates on the performance

measures used to evaluate the models.

4.1 Hedging objective

To reduce the downside risks related to their initial equity position, investors seek to hold a

portfolio of S&P 500 and Brent oil. For an invested quantity in the S&P 500, the quantity of

Brent oil that the investor should invest in to minimise the portfolio variance can be calculated.

Following the derivations of L. H. Ederington (1979), Kroner and Sultan (1993), and Batten

et al. (2021), let rj,t denote the monthly log return of asset j at time t, where j = {s, o} for the

stock and oil index, respectively, and t = 1, ..., T . The portfolio return of a portfolio with these

two assets can be given by:

rp,t = rs,t − βtro,t, (1)

where βt represents the time-varying hedge ratio. Consequently, the k-step-ahead conditional

variance of the portfolio return from Equation 1 is:

V ar(rp,t|Qt−k) = V ar(ra,t|Qt−k) + β2
t V ar(ro,t|Qt−k) + 2βtCov(ra,t, ro,t|Qt−k). (2)

Minimising the k-step-ahead portfolio variance by setting the derivative of Equation 3 equal

to 0 results in time-varying minimum variance hedge ratio being:

βoptimal,t =
Cov(rs,t, ro,t|Qt−k)

V ar(ro,t|Qt−k)
. (3)

This equals the conditional, one-step-ahead OLS estimate for the slope coefficient in the following

linear relationship between the asset returns at time t:

rs,t = αt + βtro,t + ϵt, (4)

where αt and βt are the time-varying intercept and slope coefficients, and ϵt is the error term.

In practice, investors are interested in the optimal (minimum-variance) portfolio weights.

These can be obtained by dividing the coefficients in Equation 1 by the sum of the coefficients.
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For ωs denoting the portfolio weight of the S&P 500 and ωo the portfolio weight of Brent Oil,

the weighted portfolio return, rP,t, is given by:

rp,t =
1

1− βt
rs,t −

βt
1− βt

ro,t = ωs,trs,t + ωo,tro,t. (5)

4.2 Forecasting procedure

A rolling and expanding window method are used for analysing the out-of-sample performance

of the models. In these approaches, periodic model refittings are common. Basher and Sadorsky

(2016) model the dynamic hedge ratio between stocks and oil by forecasting 1000 one-step-ahead

dynamic conditional correlations using a rolling window approach. To account for periodic

changes in the structure of the training set, the GARCH models are refit every 20 observations.

Coulombe (2020) applies the MRF model to forecast quarterly macroeconomic targets, in-

cluding real GDP and unemployment. He uses an expanding window estimation with direct 1-,

2-, 4-, 6- and 8-quarter-ahead forecasting horizons. He refits the MRF and benchmark models

every two years to account for new predictive structures and nonlinear patterns in the data.

Mathematically, let β̂t|N = F̂N (St) denote the estimated slope coefficient β̂t at time t. The

estimate is obtained from using the information set St as input into the specification F̂N . F̂N

denotes the model specification for which the parameters have last been refitted, or re-estimated,

in time period N , where N < t. In the one-step-ahead rolling window approach, the set St is

updated for each time period t. Therefore, despite having a model specification that is fixed

since time period N , the estimates obtained in each new period are time-varying.

Coulombe (2020) also analyses the time-varying parameters over a period of 25 years when

only two MRF refits are performed. His results show that as the time since the last refit

increases, the optimal estimated parameter values deviate more from (the credible region of)

the optimal parameters. Specifically, out-of-sample structural breaks, like the 2008 Financial

Crisis, are difficult to be modelled in this approach. Whereas cyclical behaviour can be modelled,

he concludes that the size and level of the variations has evolved exogenously, which forces the

MRF to update the set of estimated F repeatedly. This ensures that the (importance of the)

nonlinearities in the dataset are constantly re-evaluated.

Given the substantial volatility in the energy market and the presence of several recessions,

and potentially structural breaks, this paper follows Coulombe (2020) and Basher and Sadorsky

(2016) in evaluating the HRF and benchmark models using a one-step-ahead rolling window

forecast in which the models are refit every 24 observations. The estimation window is varied at

a fixed rolling window of 120 and 180 days, and an expanding window that starts at 180 days

as minimal window. This paper follows Batten et al. (2021) in analysing the performance of the

models for a monthly rebalancing period. The results of other rebalancing windows are shown

in Appendix B.1.

4.3 Hedging Random Forest

This section outlines the Heding Random Forest (HRF) model that was developed by Van der

Bij et al. (2023). The aim of the model is to use macroeconomic variables to estimate optimal
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time-varying parameters, while penalising the transaction costs that result from changing para-

meter estimates between different (consecutive) times. The HRF is designed to create sets of

homogeneous leaves to which a time-invariant OLS regression is applied. In each regression,

the optimal hedge ratio is estimated for the set of training variables. The linear part allows for

better extrapolation of the HRF as compared to a regular random forest models.

The splitting process is as follows. For the sample at each node l, splits are made by selecting

the optimal variable Sj from the variable space S to split the sample into two child nodes l1 and

l2. The threshold value c at which the split is optimal must also be found. The optimal j∗ and

c∗ are determined by adding the weighted sum of squared errors in the right and left child node

for a potential splits. Hence, following (Van der Bij et al., 2023), the tree fitting procedure of

the HRF in each node l can be represented as:

min
j∈J−,c∈R

[
min
β1

∑
{t∈l1|Sj,t≤c}

η(t; ζ)(r1,t − α1 − r2,tβ1)
2+

min
β2

∑
{t∈l2|Sj,t>c}

η(t; ζ)(r1,t − α2 − r2,tβ2)
2

]
,

(6)

where the weights, η(t; ζ), introduce a source of regularization that was created by Coulombe

(2020). These weights introduce a regularisation source for period t, as a weight of ζ < 1 is

placed on observations t − 1 and t + 1 and a weight of ζ2 < 1 for observations t − 2 and t + 2.

These weights are set to zero during the splitting to reduce computation time.

Equation 6 is iteratively applied to all the created child nodes until a stopping criterion is

met. In the leafs, the optimal beta value is then estimated. Estimating a time-varying βt implies

changing the portfolio weights in each period, called portfolio rebalancing. This results in high

transaction costs that arise from selling part of the overweight asset and/or buying part of the

underweight asset. As a result of this process, investors incur transaction costs, like trading fees

and crossing the bid-ask spread. The HRF model smoothens the time-varying βt estimates in the

estimation phase by incorporating transaction costs in a similar way as a ridge or lasso penalty.

The specification of this penalty is based on (Hautsch & Voigt, 2019) and uses the L1-norm to

proxy the rebalancing costs. The L1-norm of the difference between the target βt in period t

and the previous estimated value βt−1 penalizes fluctuations of the estimated parameters, hence

pulling the βt estimate towards that of βt−1. The L1-norm imposes a stronger penalization on

turnover than a quadratic penalization, and is hence found to be more realistic (Hautsch &

Voigt, 2019). Given that the set of assets is denoted as A, transaction costs are given by:

vL1({ωi,t, ωi,t−1, ci,t}i∈A) =
∑
i∈A

ci,t|ωi,t − ωi,t−1|, (7)

with ci,t being a cost parameter for asset i at time t. Given that in this context A = {s, o}, and
assuming that the portfolio is fully invested (i.e. ωs,t + ωo,t = 1) and that transaction costs are

constant throughout time t (i.e. ci,t = ci for i ∈ A), Equation 7 can be simplified to:

vL1(ωs,t, ωs,t−1, cs, co) = (cs + co)|ωi,t − ωi,t−1|, (8)
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for i ∈ {o, s}.
In the leave nodes, the time-invariant OLS is applied in combination with the transaction

cost penalty from Equation 8:

min
β

N∑
t∈l(j,c)

η(t; ζ)(r1,t − α− r2,tβ)
2 + λ∗vL1(ω2,t, ω2,t−1, c1, c2) =

min
β

N∑
t∈l(j,c)

η(t; ζ)(r1,t − α− r2,tβ)
2 + λ|ω2,t − ω2,t−1|,

(9)

where the weights η(t; ζ) are non-zero to ensure smoothing of the estimated β, and λ is tuning

parameter for the sensitivity of the transaction costs. Note that λ equals λ∗ × (c1 + c2), but

since both λ∗ from Equation 9 and (cs + co) from Equation 8 are constants, this distinction

is irrelevant during the tuning. Since this paper considers a cross-asset hedge with only two

assets, the OLS regressions in the leaves only have one regressor ro,t. Hence, Equation 9 does

not contain a ridge penalty.

As multiple time periods t are included in a leaf, there are different time periods t− 1 that

must be known to calculate the transaction cost penalty and determine the optimal value of βt

in that leaf. Hence, the βt estimates are not determined chronologically. Given the large size

and lack of guaranteed convexity, this creates an infeasible optimisation to solve. The heuristic

used to overcome this problem is by taking the average estimated β from all periods t− 1 over

the preceding trees. For the first tree, OLS estimates are used. Though the estimates of the first

tree will be biased towards OLS, this effect fades as more trees are added. The final random

forest contains 250 trees per model. After this number, the results seem to converge.

4.3.1 Variable importance

Understanding what variables impact the time-varying path of the slope estimates is useful in

practice. Coulombe (2020) developed specific variable importance measures that are applicable

to the MRF and HRF model. 1 Let VIOOS be the out-of-sample variable importance measure

that is based on the standard out-of-bag variable importance measure from the random forest

literature (Wei, Lu & Song, 2015). The VIOOS is calculated by randomly removing one feature,

Sj , from the total set S, and comparing the forecasting accuracy of this model to the model

that is based on the full set of variables, S. The difference in overall fit is compared via the

Root Mean Squared Prediction Error (RMSPE). VIβk,j
, another variable importance measure,

is calculated in a similar way as VIOOS , but considers how much the path of βk changes when

variable Sj is randomly removed in the forest part. Using these measures, Coulombe (2020)

finds that from the total set of predictors S, the number of important variables rarely exceeds

more than 3 or 4 variables.

Since the out-of-sample forecasts are based on rolling or expanding windows, the out-of-

sample variable importance can only be evaluated for a relatively small number of observations.

Consequently, a static approach is applied to find the variable importance. Both the train and

1These measures were previously not supported in the HRF package. This paper’s package development
contributions and an updated Python package are included in the supplementary material to this paper.
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test set consist of 50% of the sample. This allows for sufficient out-of-sample observations to

evaluate the variable importance. The train set is from June 1990 until November 2006 and the

test set from December 2006 until January 2023.

4.3.2 Parameter settings

The hyperparameters λ and ζ in Equation 6 can be tuned. λ is the sensitivity of the HRF to

include the transaction cost in the determination of the optimum hedge ratio. ζ denotes the

sensitivity of the model to the inclusion of the weighted regularisation, where ζ = 0 means

no regularisation. For λ = inf, the HRF approaches an OLS model. For λ = ζ = 0, the

HRF approaches the local linear forest from Friedberg et al. (2020). For λ = 0, the HRF

reduces to the MRF model from Coulombe (2020). The out-of-sample performance of the HRF

is evaluated for varying transaction cost sensitivities. The sensitivities that are evaluated are:

λ ∈ {0, 1, 5, 10, 25, 50, 100}. Due to computational constraints, the tuning of ζ is not considered.

ζ = 0.5 is used based on Van der Bij et al. (2023) and Coulombe (2020).

4.4 Benchmark models

The performance of the HRF model will be assessed against several benchmark models that

are discussed in this section. These include Least Squares estimation (Section 4.4.1) and four

multivariate GARCH models for which promising results have been established in the literat-

ure. These include DCC-GARCH (Section 4.4.2), ADCC-GARCH (Section 4.4.4), DCC-GJR-

GARCH (Section 4.4.3), and GOGARCH (Section 4.4.5). These multivariate GARCH models

have been implemented using R, with packages rugarch (Galanos, 2022b) and rmgarch (Galanos,

2022a).

4.4.1 Ordinary Least Squares

As discussed in Section 4.1, the optimal hedge ratio equals the slope estimate obtained from the

Ordinary Least Squares (OLS) regression in Equation 4. Hence, this estimation method will

be used. The coefficient estimate is time-invariant within a re-fitting window, but will follow a

step-wise pattern over the full sample.

4.4.2 DCC-GARCH

Equation 3 implies that the conditional variance and covariance should be estimated to obtain the

optimal hedge ratio. Therefore, the Dynamic Conditional Correlation GARCH (DCC-GARCH)

model (R. Engle, 2002) is one of the multivariate GARCH benchmark models used. Contrary to

the Constant Conditional Correlation GARCH (CCC-GARCH) specification, the DCC-GARCH

allows for time varying conditional correlation. The former model is left out as a benchmark,

given that the constant correlation assumption does not hold in most cases (Arouri et al., 2011;

Chang et al., 2011).

The DCC GARCH model consists of two steps. Firstly, the volatilities are estimated using

GARCH. Secondly, the conditional correlations are estimated. The listed derivations follow
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R. Engle (2002). Basher and Sadorsky (2016) apply the DCC-GARCH model for stock and oil

returns. Based on their results, an AR(1) process for the mean return equation is estimated.

Given rt = [rs,t, ro,t] is a 2×1 vector containing two asset return series of the S&P 500 index

and Brent oil index, an AR(1) process for rt conditional on the information set Qt−1 can be

written as:

rt = µ+ αrt−1 + ϵt. (10)

Following the notations and specifications in R. Engle (2002) and (), the residuals from

Equation 10 can be modelled as:

ϵt = H
1/2
t zt, (11)

where Ht is the 2 × 2 conditional covariance matrix. This matrix can be expressed in a 2 × 2

conditional correlation matrix, Rt, and a 2 × 2 diagonal matrix, Dt, with conditional, time-

varying standard deviations, h
1/2
i,t for i ∈ {s, o}, on the diagonal:

Ht = DtRtDt, (12)

Dt = diag(h
1/2
s,t , h

1/2
o,t ). (13)

Given a GARCH(1,1) specification, the conditional variances hi,t can be expressed as:

hi,t = ω0i + ω1iϵ
2
i,t−1 + ω2ihi,t−1, (14)

with i ∈ {s, o}. Estimating these GARCH(1,1) parameters to obtain conditional volatility

estimates is the first step of the DCC procedure. To account for non-normality in the residuals,

the DCC is estimated with a multivariate t-distribution.

The second step includes the estimation of the conditional correlations. The matrix Rt from

Equation 12 can be expressed in terms of a 2× 2 symmetric positive definite matrix, Qt, which

has the conditional (co)variances qi,j,t (i, j ∈ {o, s}, i ̸= j) as its elements, and a transformed

matrix Q∗
t :

Rt = Q∗
tQtQ

∗
t , (15)

Qt = (1− θ1 − θ2)Q+ θ1ztz
′
t−1 + θ2Qt−1, (16)

Q∗
t = diag(q

−1/2
s,t , q

−1/2
o,t ). (17)

Q from Equation 16 is the 2× 2 unconditional correlation matrix of the standardised residuals

zi,t (which can be denoted as zi,t = ϵi,t/
√

hi,t following Equation 11). The parameters θ1 and θ2

from Equation 16 are non-negative scalar parameters that capture the effect of previous shocks

and the effect of previous dynamic conditional correlations, respectively. For θ1 + θ2 ≤ 1, the

DCC-GARCH is mean reverting. The conditional correlations for the asset returns at time t

give the hedging ratio βt as defined in Equation 3 and are estimated as follows:

ρs,o,t =
qs,o,t√

qs,s,t
√
qo,o,t

. (18)
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4.4.3 DCC-GJR-GARCH

As an extension to symmetric GARCH model in Equation 20, Glosten et al. (1993) create the

Glosten Jagannathan Runkle (GJR) GARCHmodel. By including an asymmetric GARCH effect

in modelling individual asset volatility dynamics, the model better accounts for an asymmetric

leverage effect. This means that financial markets, equity markets in particular, lose money

when uncertainty or volatility rises. In the GJR specification, the conditional volatility of the

returns sis given by:

hi,t = ω0i + ω1iϵ
2
i,t−1 + ω2iI{ϵi,t−1<0}ϵ

2
i,t−1 + ω3ihi,t−1, (19)

where I{ϵi,t−1<0} is an indicator function that equals one if ϵi,t−1 < 0 and zero otherwise, for

i ∈ {s, o}. In the second step, i.e. modelling the conditional correlation dynamics, the regular

DCC model is used. These two steps together create the DCC-GJR GARCH model. Using a

DCC-GJR specification to find the optimal hedge ratio between stocks and oil returns has shown

good in-sample performance (Batten et al., 2021).

4.4.4 ADCC-GARCH

The ADCC GARCH model (Cappiello et al., 2006) is another extension to the DCC GARCH

models. It models asymmetric effects in terms of both correlation and volatility. In the first

step of modelling the assets’ conditional volatilities, the ADCC follows the GJR GARCH spe-

cification, i.e. the asymmetric effects are modelled using Equation 19. In the second step, an

asymmetric term is added when modelling the dynamic conditional correlations. This is reflected

in the correlation evolution matrix, Qt from Equation 15, by:

Qt = (Q−A′QA−B′QB −G′Q
−
G) +A′zt−1z

′
t−1A+B′Qt−1B +G′z−t z

′−
t G, (20)

where A, B and G are scalars, i.e. not asset-specific, asymmetric and smoothing parameters. z−t
are standardised errors for which it holds that z−t = max(z−t , 0). Q and Q− are the unconditional

correlation matrices of zt and z−t , respectively.

4.4.5 GOGARCH

Besides conditional correlation modelling, an alternative way of multivariate GARCH modelling

is factor GARCH models (R. F. Engle, Ng & Rothschild, 1990). These models assume that

the returns are generated by unobserved underlying factors that are conditionally heteroske-

dastic. The orthogonal GARCH (OGARCH) model (Alexander, 2001) uses uncorrelated and

independent factors. The linear mapping of the factors to observations is orthogonal. Moreover,

estimating the covariance matrices from the principal components reduces the dimensionality

and computational burden. Van der Weide (2002) generalise the OGARCH model by allowing

for non-orthogonal mappings, thereby creating the generalized OGARCH (GOGARCH) model.

Given the use of uncorrelated and independent factors, the GOGARCH model is more flexible

than other multivariate GARCH models (Basher & Sadorsky, 2016). The GOGARCH model is

estimated using the rugarch package in R.
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Theoretically, the GOGARCH model (Van der Weide, 2002) has the following specifications.

The returns rt can be modelled as a function of the conditional mean (µt) and an error term

(ϵt) as follows:

rt = µt + ϵt (21)

The innovations in Equation 21 are mapped to the unobservable, uncorrelated and independent

factors ft:

ϵt = Aft, (22)

where matrix A denotes the linear mapping. The rows of matrix A display the assets and the

columns display the factors (ft) from Equation 22. The matrix A can be decomposed into an

unconditional covariance matrix Σ and an orthogonal (rotation) matrix U as given by:

A = Σ1/2U. (23)

Following (Broda & Paolella, 2009) and (Basher & Sadorsky, 2016), the matrix U is estimated

using independent component analysis (ICA). The factors f can be specified as:

ft = H
1/2
t zt, (24)

where random variable z follows the multivariate affine negative inverse Gaussian (MANIG)

distribution, with mean 0 and variance 1 (Basher & Sadorsky, 2016). The unconditional distri-

bution of factors, ft, satisfy E(ft) = 0 and E(ftf
′
t) = I. Combining Equations 22, 23, and 24

yields:

rt = mt +AH
1/2
t zt (25)

Thus, the conditional covariance matrix of the error terms can be given as:

Σt = AHtA
′ (26)

4.5 Performance measures

This section describes the performance measures that are used to compare the models. The

discussed measures include the hedging effectiveness (Section 4.5.1), which is based on the

Value-at-Risk (Section 4.5.2) and the expected shortfall (Section 4.5.3), and the utility gain of

the model portfolio compared to the unhedged portfolio (Section 4.5.4).

4.5.1 Hedging effectiveness

The hedging effectiveness (HE) (L. Ederington, 1979) considers the percent risk reduction from

the hedging strategy compared to the unhedged scenario, where a higher HE means the hedge

provides a bigger risk reduction. Consistent with this definition, Sukcharoen and Leatham (2017)

define the HE at time t as:

HEt =

(
1−

Riskhedged
Riskunhedged

)
× 100, (27)
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where Riskhedged denotes a risk measure for the return of the hedged portfolio and Riskunhedged

denotes a risk measure for the return of the unhedged portfolio. In this context, the return of

the unhedged portfolio is the S&P 500 return and the return of the hedged portfolio can be

given by Equation 5.

This paper uses two downside risk measures: the Value-at-Risk (Section 4.5.2), and Expected

Shortfall (Section 4.5.3). These risk measures are selected as the downside risk of portfolio

returns seems more relevant to investors than the upside risk.

To test for significant differences between the HEs and several other results, a paired t-test is

performed (Sukcharoen & Leatham, 2017). It compares the means of two related treatments and

tests the null hypothesis of zero mean difference between the two groups against the alternative

hypothesis of nonzero mean. Normality of the distributions can be assumed from the Central

Limit Theorem with sufficient (208) observations.

4.5.2 Value-at-risk

The value-at-risk (VaR) measures the largest potential loss over a certain period of time for a

particular confidence level p. The one-period estimates for the V aR with a confidence level p of

the P&L are computed by multiplying the sample standard deviation with the pth percentile of

the theoretical distribution (Hull & White, 1998). The sample standard deviation of the P&L is

estimated over a one-year backward-looking moving window. The obtained standard deviation

estimate is scaled with the p% percentile of the theoretical distribution of the P&Ls. Given the

number of observations exceeds 200, the standard normal distribution seems an approporiate

approximation (Central Limit Theorem). The sequence of V aR estimates is given by:

ˆV aRp = σMW=12 × zp, (28)

where σMW=12 is the sample standard deviation of the monthly portfolio P&Ls, and zp is the

pth quantile of the standard normal distribution. Given that the percentile zq is independent of

the sample, the ratio ˆV aRp values equals the ratio of standard deviations. Hence, Equation 27

based on the VaR equals:

HE ˆV aR,t =

(
1−

σMW=12,hedged,t

σMW=12,unhedged,t

)
× 100. (29)

Given the independence of the HE with respect to the selected confidence level, one VaR-based

HE value is calculated for all confidence levels.

The Kupiec POF test (Kupiec et al., 1995) is applied to evaluate the accuracy of the measured

VaR estimates against actual gains and losses. This process is called backtesting and tests the

null hypothesis that the observed violation rate α̂ equals the theoretical violation rate α that is

suggested by the confidence level. Given a sample of T observations, the test statistic suggested
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by (Kupiec et al., 1995) is:

POF = 2 log

((
1− α̂

1− α

)T−I(α)( α̂

α

)I(α)
)

∼ χ2(1),

α̂ =
1

T
I(α) =

1

T

T∑
t=1

It(α).

(30)

where It(α) equals 1 if the portfolio return at time t is lower than the V aRt at a confidence

level α. If α̂ = α, the Kupiec test statistic equals zero, and the null hypothesis is not rejected,

i.e. there is no statistically significant evidence that the VaR is inaccurate. If the violation

rate α̂ differs significantly from α, then the underlying VaR risk measure likely understates or

overstates the portfolio’s underlying risk level.

4.5.3 Expected Shortfall

The expected shortfall (ES) is the expected loss given that a loss exceeds the V aR. For the

dependent variable rs,t, the ES at confidence level p is given by:

ESp = −E[r1,t|r1,t ≤ −V aRp]. (31)

Combining Equation 27 and 31 for the empirical ˆV aRp gives:

HEÊS,t,p =

(
1−

ˆEShedged,t,p

ˆESunhedged,t,p

)
× 100. (32)

In this paper, the ˆESp is calculated based on the ˆV aRp, where p ∈ {0.90, 0.95, 0.99}.

4.5.4 Utility

Besides risks, investors are also interested returns and transaction costs. To compare different

results in terms of returns, risk and transaction costs, this paper uses Batten et al. (2021) as

inspiration to calculate the one-period-ahead utility of each model. The difference is that Batten

et al. (2021) uses the variance as a risk measure, whereas the VaR will be used here to focus

on downside risk. For portfolio p, let rp,t be the portfolio return at time t, Risk(rp) be a risk

measure at time t, and ¯TCp,t the absolute difference in transaction costs between period t and

t− 1. The monthly utility of holding the portfolio at time t is then given by:

Ut(p) = rp,t − γRisk(rp,t)− TCp,t, (33)

where γ is the sensitivity of the investor to the VaR, i.e. the investor’s risk aversion. This papers

follows Batten et al. (2021) in using γ ∈ {3, 6, 12} to evaluate different levels of risk aversion.

A higher value of γ corresponds with more risk aversion. Following Chen and Sutcliffe (2012),

transaction costs TCp,t are calculated as the sum of the absolute changes in the dynamic hedge

ratios.
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5 Results

This section displays the results. Firstly, some preliminary results are discussed (Section 5.1).

Section 5.2 reports and analyses the HE results. Section 5.3 analyses the utility results. Finally,

Section 5.4 discusses the variable importance of the HRF models.

5.1 Preliminary analysis

The focus of this paper is one-step-ahead, i.e. monthly, rebalancing. Appendix B discusses the

robustness of this specification by checking the HE for quarterly, semi-annual, and annual rebal-

ancing. In short, the results seem to be robust to the choice of the rebalancing frequency. Note

that the advantage of lower transaction costs in the HRF model decreases as the rebalancing

frequency increases. For lower rebalancing frequencies, the potential costs that arise from mis-

specifying the optimal hedge ratio (i.e. a decrease in portfolio returns and increase in portfolio

risk) are more likely to exceed the additional rebalancing costs.

The Kupiec test shows that the null hypothesis that the computed VaR matches the the-

oretical value can be rejected for several specifications for the 95% and most specifications for

the 99% significance levels. Based on these results, the performance will be evaluated using the

expected shortfall and the VaR with the 90% significance level.

Multivariate GARCH models are used to capture the serial correlation in the multivariate

return series. For a well-specified model, there should be no serial correlation in the squared

residuals. Applying the Ljung-Box test for no serial correlation in this rolling window setting

is unfeasible. Given that the applied GARCH models have been specified in accordance with

previous literature (Batten et al., 2021), the models are assumed to be calibrated correctly.

5.2 Hedging effectiveness

Table 3 illustrates the mean HE values of all benchmark and HRF models, where the HE

measures are based on the VaR and ES (90%) hedging objective. Bold indices indicate that

that model has the highest hedging effectiveness compared to the other models in their group

(Bench or HRF) under an equal estimation window specification.

For the VaR hedging objective, the OLS and HRF models with λ ∈ {50, 100} display the

highest mean HE values, indicating the most reduction of downside risk. For the ES (90%), the

HRF model with λ = 100 has the highest HE amongst all other HRFs. The ADCC, GOGARCH

and DCC have the highest HE from the benchmark models for a 120, 180, and expanding window

(respectively).

For all models, the estimation window of 120 observations has a higher HE compared to the

window of 180 observations and the expanding window for the VaR objective. Pairwise t-test

results for the VaR HE of each model between the different estimation windows are displayed

in Table 8. For most benchmark models, the estimation window of 120 observations provides

a significantly higher HE than the other windows. This can most likely be attributed to the

frequently changing volatility dynamics (Figure 1b). Moreover, Figure 4 shows the that the

estimated time-varying correlations between the returns are highly volatile. Therefore, a shorter

training window might be preferred to capture more recent volatility patterns that could be
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Table 3: Mean HE based on the Value-at-Risk for the benchmark models (Bench), and HRF
models with sensitivity λ ∈ {0, 1, 5, 10, 25, 50, 100}. These results are based on 208 one-step-
ahead forecasts with an estimation window of 120 and 180 months, and an expanding window
(exp).

Model
Hedging objective

VaR ES 90%
120 180 exp 120 180 exp

Bench

OLS 3.690 2.932 2.587 8.024 6.915 2.626
DCC 2.152 -2.245 -2.144 7.122 5.807 6.155
DCC-GJR 1.594 -4.806 -3.012 6.625 3.824 3.739
GOGARCH 3.430 0.447 -1.231 4.244 8.983 1.571
ADCC 2.017 0.430 1.113 12.185 1.682 3.665

HRF

0 2.683 1.743 0.020 3.973 4.074 1.248
1 2.202 1.178 -0.749 0.696 3.563 0.158
5 2.414 2.279 2.079 0.044 1.197 0.926
10 2.787 2.652 2.410 5.274 2.224 5.381
25 3.054 2.803 2.421 6.422 5.848 2.296
50 3.419 3.346 2.409 5.911 5.784 2.271
100 3.682 2.931 2.595 8.027 6.922 2.514

Note: bold HE values indicate that the model has the highest HE amongst all models that belong
to the same group (i.e. Bench or HRF) and are evaluated for the same estimation window.

more relevant for the one-step-ahead forecast.

For the HRF models, the difference between all the three estimation windows is insignificant

for the VaR (Table 8) and significant for some models for the ES. This result is unexpected.

The HRF for the 180 and exponential window are expected to (significantly) outperform the

120 window, as random forests usually perform better if trained on more data. Figure 2 shows a

time series plot of the HE of the HRF model (λ = 100) for different estimation windows. Three

potential reasons for the mentioned results could be identified from the graph. Firstly, the

difference between the estimation window lengths might be insufficient to obtain statistically

significant differences in the hedge ratios and, consequently, HE. This is partially confirmed

by Figure 2, which shows that after 2016, the HE of the rolling windows with 120 and 180

observations closely follow each other. Secondly, the HE of two different windows could follow

different paths, but have the same mean HE. Figure 2 shows that around the extreme values, the

HEs across models are different. Since the effects for the minima are negated by the maxima, the

resulting means of the series are not (significantly) different. Thirdly, the volatile time-varying

relationship between the asset returns (Figure 4) might imply that adding data further in the

past does not add relevant information. This could be especially because of the short forecasting

horizon and short model refit horizon.

t-test results for the 120 window show that the ES HEs are significantly different for most

models (Appendix B.3). ADCC shows a strong outperformance compared to all other models,

but this result seems relatively unrobust given the low value for larger windows. Again, OLS

shows similar performance to the HRF model with λ = 100.

For further analysis, an estimation window of 120 observations is considered. For this win-

dow, a paired t-test is performed between all benchmark and HRF models (Appendix B.3). The
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Figure 2: Time series plot of the HE for the HRF models with λ = 100. The estimation window
is varied for an exponential window and a rolling window of 120 months and 180 months. Vertical
grey bars indicate the months during which there is an NBER recession (NBER Business Cycle
Dating Committee, n.d.).

results show that none of the models is significantly different from all other models at the 1%

and 5% significance level, and only two pairs are significant at the 10% level. Given that HRF

models differ insignificantly across λ values, the further analysis is simplified by considering

λ ∈ {0, 10, 100}.

5.2.1 HRF models

The dynamics behind the mean HE for an estimation window of 120 observations are analysed

here. Figure 3 shows the time-varying HE and weights for different values of λ. Figure 3b

shows that a higher value of λ corresponds with less volatile weights. For the highest sensitivity

to transaction costs, λ = 100, the bi-annual refitting causes a step-wise movement that is

comparable to fitting a constant in every refit period. The weights of λ = 10 and λ = 100 are

closely aligned form 2010 to 2014 and from 2017 to 2021, but show discrepancies between 2008

and 2010.

(a) Hedging effectiveness HRF models (b) Weights HRF models

Figure 3: Time series plots of the HE and optimal weights of HRF models with λ ∈ {0, 10, 100}.
Monthly rebalancing and an estimation window of 120 months are used. Vertical grey bars
indicate the months during which there is an NBER recession (NBER Business Cycle Dating
Committee, n.d.).
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During the 2008 Great Financial Crisis, the path of the weights and HE differ between the

HRF models. From 2008 to 2010, the hedge weight for λ = 10 falls to -0.06 at the start of the

crisis. This is likely caused by the elevated volatility in S&P prices at the end of 2007 (Figure 1b).

For λ = 100, these dynamics are captured at the next model refit two years later. It seems that

the threshold of the λ = 10 model was exceeded such that the optimal weight was decreased, but

that this did not (yet) happen for the λ = 100, given it considers higher transaction costs. After

the second refitting moment in mid-2009, the models reach similar weights. The impact of this

deviation on the HE is visible in Figure 3a. During the Great Financial Crisis, the HRF without

transaction cost penalty experiences a negative HE. The volatilities of the stock and oil returns

were high during this period (Figure 1) and the HRF model tries to capture this volatility by

constantly rebalancing the portfolio weights (Figure 3b). However, short and frequent periods

of stock rebounds during a period of decreasing returns and economic downturn could cause the

weights to be frequently misspecified during the next month, resulting in increased risk exposure.

Figure 1c and 3b show that even though oil prices fell sharply after September 2008, i.e. the fall

of Lehman Brothers, the HRF with = 0 occasionally fixes weights above 0. A higher transaction

cost penalty limits this flexibility. With the portfolio weight of the hedge being close to 0, the

HRF with λ = 100 mimics the unhedged position. This results in an HE around zero during

the recession. For λ = 10, the negative weight of -0.06 first slightly worsens and subsequently

improves the downside risk of the portfolio compared to the unhedged position. This likely

arises due to the strong positive returns of oil at the start of 2008 and the subsequent negative

returns of oil at the end of 2008.

Whereas the mean HE of all HRF models is around 2 (Table 3), Figure 3a shows that there

there are several periods for which the HEs sharply rise above and fall below zero. The latter

implies that the constructed hedged portfolios have more (downside) risk than the unhedged

portfolios. This occurs from 2014 until 2017, during 2018, and after the start of 2021. During

the former and latter period, the S&P exhibits stable positive returns with low downside risk.

Oil prices during these periods are more volatile, especially towards the upside. Given that oil

has negative portfolio weights, this introduces downside risk for the portfolio and results in a

negative HE compared to the relatively stable S&P 500. The negative HE in 2018 is caused by

the strong positive co-movements of the oil and S&P returns. The negative portfolio weights

limit the upside potential and introduce downside risk. The HRF with λ = 0 captures these

dynamics by more frequent rebalancing of the weights to values closer to the optimal weight

level. During these periods, the models with λ = 10 and λ = 100 only make small adjustments

in the weights (Figure 3b), resulting in a lower HE of these models compared to a sensitivity

of 0. Hence, the increased model flexibility mitigates the decrease in the HE by making timely

adjustments to the weights.

The periods of positive HE peaks occur from the end of 2016 to the start of 2018 and from

the start of 2020 until mid 2022. During both time periods, there is a strong positive correlation

between the general asset price trends (Figure 1) caused by increased economic growth and

reduced oil supplies. The positive asset co-movement combined with the negative portfolio

weight of oil reduce potential losses of the S&P 500. This reduces the downside risks during

these periods and improves the HE. The HRF model with λ = 0 mitigates the peaks in HE
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compared to the λ = 10 and λ = 100 models (Figure 3a). The most flexible model could capture

some small fluctuations in the asset trends that cause disturbances in modelling the general

macroeconomic co-movement.

From the above analysis, it could be interpreted that sensitivity values between 0 and 10

might result in a more optimal balance. Further analysis in Appendix C shows that intermediate

values of λ do not improve both the periods of high and periods of low HE without the other

deteriorating.

5.2.2 Benchmark models

The performance of the benchmark models is further analysed in this section. In general, the

multivariate GARCH models follow a similar HE path compared to the HRF models, with more

extreme minima and maxima.

Figure 4 shows the one-step-ahead time-varying conditional correlations between stock and

oil returns as modelled by the multivariate GARCH models. The correlations modelled by

the ADCC, DCC, DCC-GJR, and GOGARCH models show similar patterns until 2016. In

general, the correlations follow an upward trend until around 2009, followed by a downward

trend until 2016. This matches the results reported in Basher and Sadorsky (2016). After 2015,

the GOGARCH model shows a different, substantially more volatile, pattern than the three

other models.

Figure 4: Time series plots of the monthly dynamic conditional correlation as calculated by the
multivariate DCC, DCC-GJR, GOGARCH, and ADCC models based on an estimation window
of 120 observations. GARCH models are refit once every 24 observations. The (A)DCC and
DCC-GJR assume a multivariate t-distribution, the GOGARCH model a MANIG distribution.
Different estimation windows are considered in each of the subplots.

During the Great Financial Crisis, the benchmark models show a peak the modelled condi-

tional correlations. This strong positive correlation captures the strong (negative) co-movement

between oil and stock prices (Figure 1c). Figure 5 shows the impact of the conditional correlation

estimation on the weights and HEs of the models. The positive estimates result in a negative

hedge weight and a positive HE during the second half of 2008 and 2009. The OLS estimate of

the optimal weight, and the resulting HE, are close to zero during this period.
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(a) Hedging effectiveness

(b) Portfolio weights of oil

Figure 5: Time series plots of the HE (Figure 5a) and weights (Figure 5b) of the multivariate
benchmark models. An estimation window of 120 months and γ = 3 are used. Vertical grey bars
indicate the presence of an NBER recession (NBER Business Cycle Dating Committee, n.d.).

Several discrepancies between the multivariate GARCH models can be identified. The cor-

relations of the ADCC and GOGARCH model deviate from the DCC(-GJR) models from 2014

until 2016 (Figure 4). During this period, the S&P 500 exhibits stable positive returns with

low downside risk. Oil prices are highly volatile, with a strong oil price decrease at the start

of 2014. The DCC and DCC-GJR capture these movements by modelling a weaker conditional

correlations that are closer to zero (Figure 4). Based on asymmetries in the returns data and

the increase of correlations in highly volatile periods (Table 2, Figure 1b), ADCC could capture

the higher volatility of oil returns by estimating a relatively high correlation. In 2014, oil prises

sharply fell and S&P 500 prices remained high. The more positive correlation modelled by the

ADCC results in a lower HE during 2014. In 2015, the S&P returns exhibit short periods of

negative returns, which causes the HE of the S&P 500 to exceed that of the DCC(-GJR) model.

After 2016, GOGARCH models a more volatile and generally higher conditional correla-

tion between the assets, resulting in periods of higher and lower HE compared to the other

multivariate GARCH models. During this period, prices of the S&P 500 and Brent oil gener-

ally move together, though Brent Oil exhibits some big deviations from the trend at the end
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of 2017 and 2020 (Figure 1). GOGARCH computes the time-varying conditional correlations

from the estimated individual asset volatilities. DCC-GARCH explicitly models the dynamic

conditional correlations by assuming a common volatility structure for the returns. This makes

the correlations modelled by the GOGARCH model more flexible in modelling (differences in)

the idiosyncratic volatilities of the individual assets. Moreover, several big deviations in the

oil price (volatility) could lead the DCC model to estimate lower common correlation patterns.

The GOGARCH can model higher correlations given that these big deviations only impact few

observations and most observations show a strong co-movement between asset returns. The im-

pact of these differences is illustrated in Figure 5 and show GOGARCH is especially effective in

modelling the discussed 2017 and 2020 deviations of Brent oil compared to the other multivariate

GARCH models.

Finally, for the period after 2020, the weights and HEs of all benchmark models show similar

paths as the paths modelled by the HRF models.

5.3 Utility differences

Table 4 reports the mean monthly percentage returns, mean 90% Value-at-Risk, mean transac-

tion costs, and the mean difference between the utility of the specified model and the utility of

the unhedged S&P 500 position (Equation 4.5.4). The unhedged portfolio achieves the highest

average return and the second lowest VaR. These results are expected, given that hedging usually

limits downside risks at the cost of some upside potentials. Moreover, mean transaction costs

are highest for the GOGARCH model, which also follows from Figure 5b. Following Batten et

al. (2021), the sensitivity of the utility to the included VaR, γ, is set to 3, 6, and 9, where 3

corresponds to low risk aversion and 9 to high risk aversion.

The utility differences of the multivariate GARCH models and HRF models with λ ∈ {0, 1, 5}
are mostly negative, whereas utility differences of the other models are mostly positive. This

former result follows from the lower return, high transaction cost and similar downside risk

levels between the multivariate GARCH portfolios and unhedged portfolio. Increasing γ from

3 to 9 leads to insignificant improvements in the utilities of the multivariate GARCH models

(Appendix D.2). As investors become more risk averse, the utility of holding the portfolio from

these benchmark models does not improve given the similar VaR levels between the unhedged

portfolio and multivariate models. The OLS model and HRF models with λ ∈ {25, 50, 100}
show positive and significantly increasing utility differences.

Pairwise significances of the utility differences across models are analysed for γ = 6 using a

t-test (Appendix D.2). This value of γ is selected to avoid any assumptions on the risk aversion

of investors. Three distinct model groups can be identified. For each of these groups, the utilities

differ insignificantly between all model pairs in the group and differ significantly from the other

models. The first group consists of the OLS and a HRF with λ ∈ {25, 50, 100}. The second

group consists of the unhedged portfolio and HRF model with λ ∈ {1, 5, 10}. The final group

consists of the four multivariate GARCH models. Based on the results of the t-test, Figure 6

displays the time-varying utilities for the DCC, OLS and HRF with λ = 0, i.e. one from each

of the mentioned groups. Plots of all models are included in Appendix D.1.

Utility differences for the DCC follow the general pattern of the HE from Figure 5a, but
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Table 4: The mean return, mean VaR, mean transaction costs (RC), and mean utility dif-
ferences under γ ∈ {3, 6, 9} for the benchmark models (’Bench’) and HRF models (λ ∈
{0, 1, 5, 10, 25, 50, 100})

).

Model
Utility difference

Return VaR TC γ = 3 γ = 6 γ = 9

Unhedged 0.551 -5.151 0.000 0.000 0.000 0.000

Bench

OLS 0.466 -4.963 0.101 0.366 0.930 1.494
DCC 0.518 -5.130 2.596 -2.623 -2.561 -2.500
DCC-GJR 0.518 -5.157 2.871 -3.022 -3.043 -3.063
GOGARCH 0.510 -5.148 4.466 -4.704 -4.696 -4.688
ADCC 0.476 -5.133 2.489 -2.559 -2.507 -2.455

HRF

0 0.498 -5.054 1.365 -1.108 -0.819 -0.531
1 0.508 -5.061 0.669 -0.442 -0.175 0.093
5 0.498 -5.075 0.406 -0.252 -0.026 0.200
10 0.476 -5.066 0.261 -0.100 0.154 0.408
25 0.467 -5.039 0.083 0.158 0.493 0.827
50 0.496 -5.017 0.101 0.236 0.638 1.039
100 0.465 -4.963 0.101 0.365 0.928 1.492

frequently exhibit strong downward spikes. These downward spikes are observed during periods

with big changes in the weight of oil, i.e. high transaction costs, but decreases or relatively small

increases in the downside HE (e.g. in 2008 and 2019).

The utility patterns of the OLS and HRF model with λ = 0 are substantially less volatile

than the patterns of the DCC. The utility paths between 2013 and 2017 show less negative

spikes than the time-varying HE, especially for the OLS model. A potential reason is that the

oil returns decreased sharply during this period (Figure 1c). The negative portfolio weight of

oil results in a positive portfolio return (Figure 5b), which positively impact the time-varying

utility during this period.

For all three models, positive utilities can be observed at the end or immediately after an

NBER recession (Figure 6).

Figure 6: Time series plots of the time-varying realised utilities based on the one-step-ahead
forecasts for the DCC, OLS and HRF model with λ = 0. The estimation window is set to 120
observations and γ = 3. Vertical grey bars indicate the months during which there is an NBER
recession (NBER Business Cycle Dating Committee, n.d.).
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5.4 Variable importance

This section presents and analyses the variable importance results. Table 5 reports the 10

variables with the highest variable importance that are found based on a static forecast with a

train and test set that are 50% of the data.

Table 5: Name, description and category of the top 10 most important variables, as given by
the HRF variable importance based on the out-of-sample variable importance (VIOOS) and out-
of-sample variable importance (VIβ) generated by a static forecast with 50% train and 50% test
data.

Name Description Category VIOOS VIβ
S&P: indust S&P’s Price Index: Industrials Stock market 0.173 0.094
S&P 500 S&P’s Price Index: Composite Stock market 0.081 0.076
CONSPI Consumer credit to Personal Income Money and credit - 0.158
M2SL M2 Money Stock Money and credit - 0.083
IPB51222S Industrial Production: Residential Utilities Income 0.053 0.071
EXJPUS Exchange rate JPY US Exchange rates 0.169 0.087
WPSID62 Producer Price Index: Crude Materials Prices 0.171 0.087
UEMPMEAN Average Duration of Unemployment (Weeks) Labor market - 0.083
PC1 Negatively related to the spread of Treasuries Interest rates 0.188 0.087

and corporate bonds minus Federal Funds

The categories of the top 10 most important variables show that there are different types

of macroeconomic or financial variables that determine the relationship between oil and stocks.

The variables together cover all categories that are identified in McCracken and Ng (2016): stock

market, money and credit, income, exchange and interest rates, prices and the labor market.

This illustrates that the relationship between oil and stocks is complex and can be modelled by

a set of mutually reinforcing variables.

The VIOOS and VIβ show that the composite and industrial S&P index, the Industrial

Production: Residential Utilities, and Producer Price Index: Crude Materials are important

variables for determining the next period hedge ratio. These variables all have strong links to

the S&P 500 and Brent Oil index that are analysed in the hedge. Moreover, the average duration

of unemployment is strongly related to recessionary periods and show results similar to what

has been analysed in Section 5. The remaining variables require more specific considerations.

PC1 denotes the first principal component that was derived in Appendix A.2. The value

of the PC is negatively related to the performance of the 10-Year Treasury Constant Maturity

Minus Federal Funds Rate (T10YFFM). This refers to the spread between the interest rate on

the 10-year U.S. Treasury bond and the short-term overnight interest rate at which banks lend

money to each other. Figure 7a and 7b show that increases in the spread, known as inverted

yield curves, occur before the 2008 and covid-19 recession. These inverted yield curves are often

a signal that economic recessions are expected. Although Figure 7a shows that this does not

have a one-directional effect for the HE of the HRF model, it is important for investors to

consider this information carefully.

Consumer credit to Personal Income (CONSPI) indicates change in consumer confidence,

where a decrease in CONSPI could be caused by fall in consumer confidence. Figure 7e and 7f

show the HE and weight as a function of the 5th percentile of periods for which log difference
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(a) T10YFFM HE, above 80th percentile (b) T10YFFM weights, above 80th percentile

(c) M2 HE, below 5th percentile (d) M2 weights, below 5th percentile

(e) CONSPI HE, below 5th percentile (f) CONSPI weights, below 5th percentile

(g) JPYUSD HE, below 5th percentile (h) JPYUSD weights, below 5th percentile

Figure 7: Time series plots of the HE of the HRF models with λ ∈ {0, 10, 100}. An estimation
window of 120 observation is used. Grey bars indicate periods in which the log difference of the
displayed variable is above or below the indicated percentile.
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of the CONSPI are lowest, i.e. most negative. In 2010, 2013 and 2021, periods of low CONSPI

change (indicated by grey bars) are followed by a short period of decreasing HE. This is primarily

caused by the volatility of oil increasing compared to that of S&P. One outlier, i.e. the increase

after 2016, could be attributed to a low volatility and increasing prices of both oil and stocks.

Therefore, CONSPI seems to have a (slightly) negative short-term impact on the variables.

The M2 money supply is a money supply measure that includes currency in circulation and

deposits that are easily convertible to cash. A decrease of this money supply measure could be

caused by increased savings, decreased borrowing, and contractionary monetary policies. Figure

7d shows that most periods in the lowest 5th percentile of log differences are immediately followed

by a more negative oil weight. This is unexpected, as a decrease in M2 money supply is mostly

paired with bad macroeconomic performance. The weight of the hedge is expected to increase

in such circumstances. Figure 7c shows that periods directly following a negative M2 supply

decrease also result in a decreasing HE. Hence, it seems that (extreme) decreases in the M2

supply could indicate that the performance of the HRF could decline in the future. Switching

to more conservative weights or the unhedged portfolio could be considered.

Finally, the exchange rate between the Japanese Yen and US dollar is identified as an import-

ant variable. The JPYUSD currency pair differentiates itself from other currency pairs because

both currencies are relatively safe. Figure 7g shows periods that fall below the 5th percentile of

the exchange rate. In analysing the HE after these periods, no one-directional effect is found. A

potential reason for this is that the extreme exchange rate changes are often caused by outliers or

tail events that might not be directly related to the presented hedge. Rather, the exchange rate

could mimic the more general pattern that the economy and S&P follow. E.g. a low JPYUSD

exchange rate suggests a strong USD, which is related to positive economic growth, i.e positive

S&P returns.

6 Conclusion

This paper evaluates the performance of the Hedging Random Forest (HRF) in forecasting the

optimal one-step-ahead time-varying hedging ratios for the S&P 500 and Brent Oil index. The

performance is compared to several benchmark models: OLS, DCC-GARCH, ADCC-GARCH,

DCC-GJR-GARCH and GOGARCH. One-step-ahead hedge ratios are constructed from October

2006 until January 2023 using a rolling window technique. Different estimation windows are

considered. The performance of these models is evaluated using the hedging effectiveness and a

measure of utility difference that incorporates returns, risks and transaction costs.

For all models, a smaller estimation window of 120 observations results in a higher HE

compared to a fixed window of 180 observations and an expanding window. For the benchmarks,

these differences are significant and can likely be attributed to the relevance of more recent data

in modelling the volatile correlations. For the HRF models, these differences are not significant.

The HRF model is unable to significantly outperform OLS and benchmark models in terms

of only the hedging effectiveness based on the VaR or ES. Lower values of the transaction cost

penalty λ result in smoother HE paths, i.e. patterns with higher negative and lower positive

extreme values, compared to higher values of λ. The results suggest that relatively high trans-

action cost penalties should be used in periods with high volatility, whereas low transaction
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cost sensitivities should be used in case the hedged asset is less volatile than the hedge. During

periods of steady S&P 500 growth and volatile oil prices, the unhedged portfolio outperforms

all hedged portfolios and low λ penalties can decrease the weight of the hedge, resulting in lower

risks. However, during periods of macroeconomic uncertainty, e.g. the 2008 Great Financial

Crisis and covid-19 crisis, low values λ seem too flexible. A potential reason that was identified

is the rebound effects for asset prices, leading to frequent misspecifications because the optimal

weight estimates are lagged.

HRF models with high λ significantly outperform the unhedged portfolio, HRF models with

lower λ values, and multivariate GARCH models in terms of the utility measure. However,

HRF models with high λ fail to provide significantly better results compared to OLS. The

lower downside risk of OLS and the HRF models leads to an increasing utility difference as

risk aversion increases. Multivariate GARCH models have a significantly lower utility than the

unhedged portfolio due to high transaction costs and a relatively small improvement of the

downside risk.

Finally, analysis of the variable importance of the HRF shows that the relationship between

stock and oil returns is caused by a diverse set of macroeconomic and financial variables. Analysis

has shown that the JPYUSD exchange rate, M2 money stock and 10-year Treasury spread are

important variables for investors to consider.

7 Discussion

Despite the HRF model failing to outperform the simple OLS method in terms of hedging

effectiveness and utility, several research limitations and promising directions for future research

are outlined in this section.

7.1 HRF application

One-step-ahead hedge ratios are constructed using a varying estimation window, i.e. a rolling

window (120 and 180 observations) and expanding window. Models are refit once every 24

observations. The choice for this refit window has been justified in Section 4.2, but its robustness

has not been further analysed. Random forests are adaptive and can exhibit a learning process

throughout time. Other methods, like OLS, cannot do this. Hence, less frequent refitting and

larger forecasting windows could result in an improved HRF performance compared to other

benchmark models. A different refit window could be applied in the context of a rolling window

or a static window. Moreover, additional estimation windows could be analysed. Although this

study is not about finding the optimal estimation length of the rolling window, no significant

differences between window of 120, 180 and the expanding window were found. This might

suggest that the windows are too similar, such that increasing the window size could result in

significant differences and a clearer directional effect for the model performance. In this respect,

it could be interesting to consider ways to combine forecasts across estimation windows (Pesaran

& Pick, 2011). The Python code for this implementation can be found in the supplementary

material to this paper.

This research considers one series of refits that are 24 observations apart. Based on this

29



refitting, 24 possible series can be generated (each one starting in a different period). Although

computing each of these forecast series and taking the average over each of the forecasts for one

observation could provide more robust results, this was not researched. An issue that arises is

that this approach results in changing OLS estimate during every observation. This does not

correspond with the practical implementation of the strategy in practice and is, therefore, not

considered.

The stock and oil hedge problem that is studied in this paper has been well studied in

previous literature. This paper focuses on this specific problem given the recent social relevance

of oil prices that have not (yet) been researched in the literature, and this paper’s goal to

provide a detailed comparison of the out-of-sample forecasting performance of the new HRF

with established models that have previously performed well. An interesting extension would

be to relate this problem to clean energy, e.g. by studying the hedge of the S&P Global Clean

Energy Index using Brent oil. Another interesting extension would be to hedge stocks with two

(or more) assets, e.g. oil and gold. Gold is a safe asset that generally exhibits a low (or negative)

correlation with oil returns.

7.2 HRF technicalities

This research compares the performance of multiple transaction cost sensitivities λ during the

out-of-sample performance. For different hedges and forecasting designs (e.g. different estima-

tion window, forecasting window, refit frequency), different optimal values of λ can be found.

Hence, the reason for analysing different sensitivities out-of-sample is not necessarily to find the

specific value of λ that generates the best model fit or HE, neither in a train set, nor in a test set.

Different values are analysed to analyse and understand the dynamic paths of the optimal hedge

ratio. Hence, although more tuning of λ was not feasible due to computational constraints, this

is not considered as a big limitation of this research.

The results of this paper show that different transaction cost sensitivities show different

different performances during different times. Although the goal of this research was not to

provide a complex ensemble method in which transaction costs are altered based on specific

regimes, this could be an interesting avenue of further research.

7.3 Variable importance

The variable importance of the HRF is analysed using the variable importance measures in-

troduced by Coulombe (2020). These measures specifically consider the evolution of the beta

estimate rather than the model fit. Given that variable importance does not measure how each

variable improves the model’s accuracy, some of these variables are further analysed by plotting

the time-varying HE as a function of the variables. Other measures, like SHapley Additive

exPlanations (SHAP) values, could quantify how each predictor value influences each obser-

vation’s classification. Attempts to implement this measure and other components (like ALE

plots) have not succeeded. Since the HedgingRandomForest class is a custom class, more Py-

thon development of the class is required to implement these. This was beyond the scope of this

research.
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A Data preprocessing procedure

A.1 Data transformations

Table 6: Transformations of the macroeconomic data as specified by (Coulombe, 2020)

Transformation Reason Method

8 lags of r1 Endogenous SETAR like Dynamics -
t Exogenous structural change/breaks -

2 lags of Fred Fast-Switching behavior -
8 lags of 5 PCA’s of FRED Compress cross sectional information ex-ante Usual PCA

2 MAF’s for r2 Compress lag polynomial information ex-ante PCA on lags

Table 6 shows the further transformations that have been applied to the data to obtain

the final set of regressors S. The first three transformations are combined with FRED data

discussed in Section 3. This enlarges the number of regressors in the initial set. Subsequently,

five principal components are computed. The specific feature weightings of these components

can be found in Appendix A.2. Lags of the principal components are also included. Finally,

two Moving Average Factors (MAFs) for the Brent oil return ro are included. These MAFs

compress the information from the many lags of ro into two components. This ensures that ro

can be summarised using only two features. These two features are included in the existing set

of variables to create the final set S.

The usefulness of MAFs is further studied in Goulet Coulombe et al. (2020a) and found to

help, mostly with tree-based algorithms.

A.2 PCA feature weights

Table 7 contains the features with the highest and lowest feature weighting for each principal

component. A list of abbreviations can be found via McCracken and Ng (2016).
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B Supplementary material for the HE

This section contains supplementary tables to illustrate the robustness of rebalancing frequency

and estimation window specifications.

B.1 HE based on the VaR

Following Sukcharoen and Leatham (2017), a paired t-test is applied to find whether the reported

means are statistically (in)significantly different.The VaR-based HEs of the HRF models are

all insignificantly different from each other (at the 10% confidence level). The high standard

deviations of the HEs (see Section 5.2) likely cause the t-tests to conclude that the mean HEs

do not differ significantly between the HRF pairs.

Comparing across the estimation windows of the benchmark models, a rolling window of 120

observations outperforms the one with a size of 180 observations and an exponential window

in most scenarios. Except for the GOGARCH and ADCC model (with annual rebalancing

frequency), the window of 120 is significantly different from the two other estimation windows.

Hence, this window is selected for further analysis. Conclusions on the preferred rebalancing

window are slightly more arbitrary. For an estimation window of 120 observations, there are

no significant differences between rebalancing frequencies for the DCC and DCC-GJR models.

The GOGARCH is best for an annual rebalancing frequency, and the ADCC model is best for

quarterly rebalancing. Since

Table 8 reports the HE based on the VaR for the benchmark models and HRF models at

different rebalancing windows and different estimation windows. A paired t-test for the hedging

effectiveness based on the VaR is performed between all of the model specifications. The paired

t-test tests the null hypothesis that the mean HEs of the two provided models are equal. As

there are 156 models to compare (13 models times 4 rebalancing windows times 3 estimation

windows), the matrix of t-statistics and p-values is included in the supplementary material. From

the 3486 HRF model pairs, there are 6 pairs which have significantly different mean HEs (at

10% significance level). For the remaining model pairs, the HEs are not significantly different.

displays the HE values based on the VaR and ES (90%) objective for all HRF and bench-

mark models, under all considered rebalancing frequencies (monthly, quarterly, semi-annually,

annually), and all considered estimation windows (120, 180, expanding).

For the benchmark models, the situation can be further analysed. Comparing across the

estimation windows, a window of 120 outperforms a rolling window of size 180 and an exponential

window in most cases. With the exception of the GOGARCH model, and the ADCC model for

an annual rebalancing frequency, the window of 120 is significantly different than the exponential

window and window of 180 observations.

For an estimation window of 120 months, the HE of the DCC and DCC-GJR model do not

differ significantly between rebalancing frequencies. The GOGARCH is significantly best for

annual rebalancing frequency. The ADCC model is significantly better for quarterly rebalancing

compared to monthly and semi-annual rebalancing.
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Table 8: Mean HE based on the Value-at-Risk for the benchmark (8a) and HRF models (8b).
The rebalancing window (Reb.) is varied between 1 (monthly), 3 (quarterly), 6 (semi-annually),
and 12 (annually).The estimation window (Est.) is varied between a rolling window of 120 and
180 months, and an expanding window (exp).

(a) Benchmark models

Reb. Est. OLS QTLS DCC DCC-GJR GOGARCH ADCC

1
120 3.690 3.405 2.152 1.594 -1.572 2.017
180 2.932 2.145 -2.245 -4.806 0.447 0.430
exp 2.587 -0.285 -2.144 -3.012 -1.231 1.113

3
120 3.690 3.405 3.811 3.017 0.314 4.429
180 2.932 2.145 -2.253 -5.806 0.695 -0.701
exp 2.587 -0.285 -1.878 -2.866 -0.820 1.321

6
120 3.690 3.405 1.399 1.469 2.090 1.610
180 2.932 2.145 -2.963 -6.115 -0.037 -0.095
exp 2.587 -0.285 -3.637 -4.294 -1.982 0.486

12
120 3.690 3.405 3.154 3.117 3.517 2.689
180 2.932 2.145 0.809 -0.474 0.988 2.763
exp 2.587 -0.285 0.720 0.381 1.588 2.951

(b) HRF models with parameter settings ζ = 0.5, r = 0, and λ ∈ {0, 1, 5, 10, 12, 25, 50, 100}.

Reb. Est. 0 1 5 10 25 50 100

1
120 2.683 2.202 2.414 2.787 3.054 3.419 3.682
180 1.743 1.178 2.279 2.652 2.803 3.346 2.931
exp 0.020 -0.749 2.079 2.410 2.421 2.409 2.595

3
120 2.685 2.283 2.237 2.704 3.254 3.419 3.682
180 2.412 1.612 2.206 2.652 2.602 3.346 2.931
exp 1.276 0.115 1.952 2.352 2.421 2.409 2.595

6
120 1.954 1.726 2.442 2.781 3.245 3.419 3.682
180 1.189 0.810 2.320 2.674 2.602 3.346 2.931
exp 0.053 -0.286 1.987 2.424 2.421 2.409 2.595

12
120 2.481 1.879 2.453 2.745 3.241 3.419 3.682
180 1.742 1.106 2.279 2.603 2.600 3.346 2.931
exp 1.128 0.204 1.913 2.368 2.421 2.409 2.595

B.2 HE based on the ES

Table 9 shows the mean HE based on the ES at the 90% confidence level. The paired t-test

between the expected shortfalls of the different model specifications shows that none of the

hedging effectiveness values are significantly different.
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Table 9: Mean HE based on the Expected Shortfall at the 90% confidence level for the benchmark
(9a) and HRF models (9b). The rebalancing window (Reb.) is varied between 1 (monthly),
3 (quarterly), 6 (semi-annually), and 12 (annually).The estimation window (Est.) is varied
between a rolling window of 120 and 180 months, and an expanding window (exp).

(a) Benchmark models

Reb. Est. OLS QTLS DCC DCC-GJR GOGARCH ADCC

1
120 8.024 3.301 7.122 6.625 4.244 12.185
180 6.915 2.565 5.807 3.824 8.983 1.682
exp 2.626 0.640 6.155 3.739 1.571 3.665

3
120 8.024 3.301 9.971 8.969 4.910 12.496
180 6.915 2.565 7.627 5.201 8.343 1.266
exp 2.626 0.640 8.067 8.153 2.631 3.529

6
120 8.024 3.301 1.824 1.756 5.693 6.469
180 6.915 2.565 1.945 1.421 -0.961 3.843
exp 2.626 0.640 1.167 1.818 0.168 -0.972

12
120 8.024 3.301 -1.214 0.417 2.501 4.229
180 6.915 2.565 0.977 -0.023 -1.915 0.108
exp 2.626 0.640 2.517 2.233 -4.468 -0.073

(b) HRF models with parameter settings ζ = 0.5, r = 0, and λ ∈ {0, 1, 5, 10, 12, 25, 50, 100}.

Reb. Est. 0 1 5 10 25 50 100

1
120 3.973 0.696 0.044 5.274 6.422 5.911 8.027
180 4.074 3.563 1.197 2.224 5.848 5.784 6.922
exp 1.248 0.158 0.926 5.381 2.296 2.271 2.514

3
120 5.441 -0.483 -0.386 5.112 7.149 5.911 8.027
180 5.210 2.820 0.921 2.097 4.261 5.784 6.922
exp 2.174 1.154 0.733 5.260 2.296 2.271 2.514

6
120 4.206 -1.422 -0.020 5.227 7.136 5.911 8.027
180 2.116 1.382 1.139 2.185 4.263 5.784 6.922
exp 0.611 0.232 0.900 5.354 2.296 2.271 2.514

12
120 4.103 1.418 0.089 5.261 7.135 5.911 8.027
180 1.552 1.298 1.296 2.273 4.264 5.784 6.922
exp 0.567 0.362 0.856 5.313 2.296 2.271 2.514

B.3 Pairwise t-test
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180 exp

120 4.707 4.232
180 0.290

(a) OLS

180 exp

120 13.060*** 13.599***
180 0.533

(b) DCC

180 exp

120 12.760*** 11.466***
180 0.290

(c) DCC-GJR

180 exp

120 5.333 5.446
180 -3.488

(d) GOGARCH

180 exp

120 7.294** 7.234**
180 -0.150

(e) ADCC

180 exp

120 1.231 4.079
180 2.822*

(f) HRF, λ = 0

180 exp

120 1.762 5.819
180 4.328

(g) HRF, λ = 1

180 exp

120 0.211 0.578
180 0.348

(h) HRF, λ = 5

180 exp

120 0.137 0.350
180 0.234

(i) HRF, λ = 10

180 exp

120 0.237 0.715
180 0.449

(j) HRF, λ = 25

180 exp

120 0.074 1.176
180 1.205

(k) HRF, λ = 50

180 exp

120 0.739 1.318
180 0.401

(l) HRF, λ = 100

Figure 8: T-statistics for the pairwise t-tests between the different estimation windows for all
studied models. A negative t-statistic indicates that the model specification in the columns has
a higher hedging effectiveness. Note: ∗∗∗, ∗∗ and ∗ denote the statistical significance at the 1%,
5% and 10% level, respectively.
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C Supplementary graphs for HE based on VaR

(a) Hedging effectiveness

(b) Weights

Figure 9: Time series plots of the hedging effectiveness (Figure 9a) and weights (Figure 9b) of
all HRF models. An estimation window of 120 observations is used.

D Utilities

D.1 Time-varying utilities for all models

D.2 Pairwise t-tests
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(a) Benchmark models

(b) HRF models, λ ∈ {0, 10, 100}

Figure 10: Time series plots of the realised utilities based on the one-step-ahead forecasts for
the benchmark models (Figure 10a) and HRF models (Figure 10b). An estimation window of
120 observations and risk sensitivity of 3 are used. Vertical grey bars indicate the months during
which there is an NBER recession (NBER Business Cycle Dating Committee, n.d.).
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