
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis International Bachelor Econometrics and Operations Research

A study on Nonlinear charging functions in a

Green Mixed Fleet Vehicle Routing Problem with

Partial Recharge and Time Windows

Hoang Thi Khue Nguyen (574244)

Supervisor: Y.N. Hoogendoorn

Second assessor: R.M. Badenbroek

Date final version: 1st July 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Abstract

In the context of green vehicle routing problem, charging functions refer to modeling the

relationship between the amount of energy recharged and the state of charge of the electric

vehicle’s battery, which is typically nonlinear. Nevertheless, most existing studies adopt

linear charging functions, raising the question of how well this assumption captures real-world

problem. In this paper, we study the impact of nonlinear charging functions within a green

vehicle routing problem that involves a mixed fleet of conventional and electrical vehicles, a

partial recharge policy, and time windows. We propose a matheuristic combining an iterated

local search and a set partitioning formulation. A computational study is conducted based

on 288 test instances with different size. We find that nonlinear charging functions provide

a better approximation for instances with high level of complexity, as there are six instances

with 50 to 100 customers whose solutions found under the linear recharge assumption are

infeasible in the nonlinear scenario. Furthermore, we conclude that solving a set partitioning

formulation as an improvement step can reduce the solution cost found by the iterated local

search procedure by up to 48.49%. Lastly, our matheuristic is able to achieve solutions within

a reasonable amount of time.

1 Introduction

The Vehicle Routing Problem (VRP) is one of the most important and well-documented

NP-hard combinatorial optimisation problems due to its wide range of application in logistics

and transportation. Given a set of customers and a fleet of vehicles, the VRP looks for the

optimal design of routes to visit all customers such that a certain objective function is optimised.

Many variants of the VRP are intensively studied to tackle real-life situations, such as complex

system structures, constraints on customers, or the operation of vehicles and drivers (Vidal,

Crainic, Gendreau & Prins, 2013). In recent years, climate change has raised the need for more

green policies in logistics and transportation, thereby drawing attention to the environmental

externalities of vehicle routing. Consequently, the Green Vehicle Routing Problem (G-VRP),

a new variant that integrates environmental aspects into the VRP, was formally introduced by

Erdoğan and Miller-Hooks (2012) and has become more and more popular over the years.

In general, the G-VRP aims to decrease the environmental externalities. One can account for

the CO2 emissions generated from conventional vehicles (CVs) by including the aforementioned

in the problem objective. Another approach is to utilize the CVs efficiently in terms of speed and

load capacity, as these factors influence the amount of emissions the CVs produce. One of the

most popular directions is to employ alternative fuel vehicles (AFVs) since they generate lower

or zero greenhouse gases compared to conventional counterparts. Most existing AFV-related

G-VRP literature focuses on electrical vehicles (EVs) (Sabet & Farooq, 2022), which are tied

1

with the issues such as battery autonomy, battery degradation, or charging time. Furthermore,

the use of EVs involves charging stations (CSs), in which also require certain assumptions such

as the distribution of CSs or the available recharging technology. The aforementioned issues

extend further the variety of EV-related G-VRP variants, allowing for more practical problems.

Nonetheless, the realistic characteristics of the EV-related G-VRP were simplified in the

majority of existing literature. Most studies used a linear function to model the relationship

between the amount of energy recharged and the state of charge of the vehicle’s battery (linear

recharging function), whereas the aforementioned relationship is nonlinear in practice (Sabet &

Farooq, 2022). Montoya, Guéret, Mendoza and Villegas (2017) found that the linear recharge

assumption might result in infeasible routes under nonlinear scenario, and the linear recharge

solutions exhibit an average cost rise of 2.7%. They assumed a full recharge policy (i.e., an

EV is recharged to its maximum battery upon its departure from a CS), which is a common

assumption among G-VRP literature. Felipe, Ortuño, Righini and Tirado (2014) was the first

to investigate the effect of partial recharging, and concluded that this policy could significantly

improve the overall costs and energy consumption. In their computational study, allowing for

partial recharging saves on average 1.15%, 1.51%, and 1.7% costs for instances with 100, 200,

and 400 customers.

This paper studies a green mixed fleet VRP with nonlinear partial recharging and time

windows (GMFVRP-NLPRTW). In particular, we focus on the influence of nonlinear recharging

functions, which are commonly simplified as linear recharging functions in existing G-VRP

literature. We study a mixed fleet of conventional internal combustion commercial vehicles

(ICCVs) and electric commercial vehicles (ECVs). In addition, we employ a partial recharge

policy and account for battery degradation. Furthermore, we consider the direct restriction on

the amount of CO2 emissions as in Macrina, Pugliese, Guerriero and Laporte (2019) - a feature

that distinguishes their work from most studies whose focus was on cost and energy consumption

(Macrina et al., 2019). We propose a matheuristic ILS-SP which combines an iterated local

search (ILS) and a set partitioning (SP) formulation to solve the proposed problem. We conduct

a computational study based on 288 test instances of different size to examine the impact of

nonlinear recharge and the performance of the ILS-SP. Our results show that, when the number

of customers grows, the solution cost found under the nonlinear recharge assumption deviates

more frequently with greater variation from those found in the linear scenario. Furthermore,

there are six test instances with 50 to 100 customers whose linear recharge solutions become

infeasible in the nonlinear scenario. We therefore conclude that the nonlinear recharge functions

are more appropriate for modeling instances with high level of complexity. In addition, from

2

the performance of the ILS-SP, we find that it is cost-effective to solve an SP formulation as an

improvement step for the ILS procedure, as this can achieve a cost reduction by up to 48.49%.

The ILS-SP is able to achieve solutions within a reasonable amount of time for all instances.

The remaining text is organised as follows: In Section 2, we provide the literature that is

relevant to our study. In Section 3, we describe the GMFVRP-NLPRTW studied in this paper.

In Section 4, we discuss the proposed matheuristic. In addition, we provide a computational

study in Section 5 and conclude our findings in Section 6.

2 Literature review

The growing interest that the G-VRP has received is evidenced by the amount of articles

dedicated to it and its variants. Recent reviews of these articles include Asghari, Al-e et al.

(2021), Moghdani, Salimifard, Demir and Benyettou (2021), and Sabet and Farooq (2022), in

which the last one classified G-VRP studies based on the type of vehicles available in the fleet:

only CVs, only AFVs, or a mix of CVs and AFVs.

To account for environmental impact of a fleet of CVs, a common approach among the G-

VRP studies is to minimise the total amount of CO2 emissions generated by the CVs. Bektaş

and Laporte (2011) was the first the introduce the Pollution Routing Problem (PRP), in which

they included in their objective function the greenhouse emissions and fuel consumption of the

CVs. They provided a nonlinear integer programming formulation, together with a linearisation

procedure. Later studies considered also the vehicle speed in their problem due to its significant

correlation with the emissions generated by CVs. Jabali, Van Woensel and De Kok (2012)

included an upper bound on the maximum vehicle speed as part of the optimisation and solved

an emission-based time-dependent VRP with tabu search. They concluded that restricting the

vehicle speed was beneficial for minimising the overall costs. Tajik, Tavakkoli-Moghaddam,

Vahdani and Mousavi (2014) studied for the first time a time window pickup-delivery PRP

in which uncertain data was addressed. Their objective function included distance travelled,

greenhouse emissions, and number of CVs. A distinguishable feature of their study is the use

of a robust optimisation in which the vehicle speed was considered as an uncertain parameter.

Kramer, Subramanian, Vidal and Lućıdio dos Anjos (2015) studied the PRP introduced by

Bektaş and Laporte (2011) with a heuristic including an iterated local search (ILS), speed

optimisation, and a set partitioning (SP) formulation. They considered the vehicle speeds as

decision variables, and these were optimised for each route.

Thanks to the technological advances in electrical mobility in recent years, EVs has be-

come more and more appealing to researchers as an alternative to conventional counterparts

3

(Kucukoglu, Dewil & Cattrysse, 2021; Ye, He & Chen, 2022). The study on Electric VRP

(E-VRP), a variant of the G-VRP that studies a fleet of only EVs, is therefore substantially

extended over the years. On the contrary, there is a lack of attention on mixed fleet of CVs

and EVs compared to the other G-VRP types (Macrina et al., 2019; Sabet & Farooq, 2022).

Gonçalves, Cardoso, Relvas and Barbosa-Póvoa (2011) is one of the earliest to study a mixed

fleet G-VRP with pickup and delivery. To account for the charging process of the EVs, they

made a simple assumption as follows: Whenever it is necessary to recharge the EVs, an addi-

tional duration for recharging is added to the travelling time. Furthermore, the location of CSs

was not incorporated explicitly in their study.

Erdoğan and Miller-Hooks (2012) studied a G-VRP employing a fleet of AFVs and developed

two constructive heuristics. They assumed a constant fuel consumption rate and a full refueling

policy (i.e., all AFVs are refueled to their maximum capacity upon an arrival at any refueling

stations). However, the aforementioned assumptions raised the question whether they were good

approximation of the real-world problem. Attention has been drawn to the practical aspect of

the E-VRP, raising the need for more complex problem variants that are associated to realistic

assumptions on energy consumption model, charging policies, and CSs (Montoya et al., 2017).

Goeke and Schneider (2015) was the first G-VRP paper that employed an energy consump-

tion model depending on speed, gradients, and load, for both EVs and CVs. They incorporated

time windows and a mixed fleet of EVs and CVs. They considered a full recharge policy with

linear recharge, which are common assumptions among E-VRP literature. The former was

proven to be less beneficial compared to a partial recharge policy in Felipe et al. (2014), who

studied another version of the problem in Erdoğan and Miller-Hooks (2012). They assumed

that EVs could be partially recharged with a linear recharging function, and multiple charging

technologies were considered at the charging stations (CSs). They concluded that the impact of

partial recharge policy was significant in minimising costs and energy, and it helped guaranteeing

feasibility for some instances. Macrina et al. (2019) also studied a mixed fleet of EVs and CVs

with time windows, partial recharge policy, and linear recharge functions. They employed an

emissions model which took into account the distance travelled and the amount of load avail-

able. A distinguishable feature in their study was that they directly restricted the amount of

CO2 emissions to a certain level instead of including it in the objective. They proposed an ILS

heuristic to solve their proposed problem.

According to Montoya et al. (2017), the charging functions are typically nonlinear in real-

ity. This indicates that the results of most EV-related literature with a linear charging process

might become impractical (Sabet & Farooq, 2022). Montoya et al. (2017) was one of the earliest

4

studies that investigated nonlinear (NL) recharging functions. They introduced the E-VRP-

NL with full recharge policy and multiple charging technologies. They modeled the recharging

procedure by fitting piecewise linear functions on actual charging data, and proposed a meta-

heuristic combining an ILS with a heuristic concentration that solves an SP formulation. Their

computational experiments showed that the solutions when assuming linear charging functions

might be too costly or even infeasible. Froger, Mendoza, Jabali and Laporte (2019) extended

the aforementioned paper by developing two new formulations to the E-VRP-NL and further

enhanced Montoya et al. (2017)’s metaheuristic with three new algorithms.

3 Problem description

This paper studies a green mixed fleet vehicle routing problem with nonlinear partial rechar-

ging and time windows (GMFVRP-NLPRTW). We will use the notation from Macrina et al.

(2019). We denote by N the set of customers, each of which has a demand qi (kg), a time window

[tei , t
l
i] (hours), and a service duration si (hours). The set of charging stations (CSs) is denoted

by R. The problem includes a single depot at which all vehicles must start and end their route,

and the depot is also a CS in the set R. We denote two artificial depots s and t indicating the

start and end of all routes, respectively. The set of all vertices is V = R ∪ N ∪ {s, t}, and the

set of arcs is A = {(i, j) : i, j ∈ V, i ̸= j}. For any arc (i, j) ∈ A, the distance is dij (km), and

the travelling time is tij (hours). All vehicles travel with a constant speed v (km/h), and they

should return to the depot within T hours.

The fleet is composed of ICCVs (C) and ECVs (E). For each vehicle type k ∈ {C,E},

the number of available vehicles is nk, and each vehicle has a maximum load capacity of Qk

(kg). The total CO2 emissions generated by the ICCVs must not exceed an upper bound UB

(kg). Additionally, each ECV has a maximum battery capacity of BE (kWh). The energy

consumption on any arc (i, j) ∈ A is assumed to be proportional to the travelled distance at

the rate π (kWh/km). We denote the travelling cost by ckij (e/km). If an ECV is assigned to a

route, it will be activated at the depot by being charged to full battery. The activation cost wa

(e) is therefore the cost of a full recharge with the technology available at the depot.

Furthermore, partial recharging is allowed at all CSs, each of which is characterised by a

charging cost wr
j (e) and a charging function, for j ∈ R. Following the notation in Montoya et

al. (2017), we denote the charging function at a CS j ∈ R by gj(zj ,∆j), where the first input zj

is the energy upon arrival at j of an ECV (kWh), the second input ∆j is the charging time at

j (hours), and the output is the energy upon departure from j of the ECV (kWh).

To account for battery degradation, we introduce an additional set of constraints, namely

5

the state of charge (SoC) constraints. In particular, the energy upon arrival at any vertices of

an ECV must be at least 10%BE .

As in Macrina et al. (2019), the objective is to minimise the overall costs function (1),

f(η) =
∑
i∈R

∑
j∈V

wr
i gij +

∑
j∈V

waxEsj +
∑
i∈V

∑
j∈V

cCijdijx
C
ij +

∑
i∈V

∑
j∈V

cEijdijx
E
ij , (1)

where η denotes a solution to the GMFVRP-NLPRTW, xkij takes value of 1 if the vehicle of

type k travels on arc (i, j) and 0 otherwise, and gij is the amount of energy recharged at CS i

before visiting vertex j. The total costs includes the cost of recharging at the CSs, the cost of

using the ECVs, and the costs of travelling for ICCVs and ECVs, respectively.

Lastly, the amount of CO2 emissions is accounted by an emission function ε(·), whose input

is the load carried by an ICCV to a vertex, as in Macrina et al. (2019). Using the estimation of

emission factors for a 10 tonne load capacity vehicle from Úbeda, Faulin, Serrano and Arcelus

(2014), we assume that the emission factor εij = ε(uCi) on an arc (i, j) takes value 0.77, 0.83, 0.90,

0.95, or 1.01, if the load carried on the arc belongs to the domain [0, 0.25QC), [0.25QC , 0.50QC),

[0.50QC , 0.75QC), [0.75QC , QC), or equal to QC , respectively. Following Macrina et al. (2019),

we directly restrict the amount of CO2 emissions with an upper bound UB (kg).

3.1 Estimating the charging functions

As mentioned in the previous section, the charging function gj(zj ,∆j) requires two different

inputs. Following Montoya et al. (2017) who transformed the charging functions in the same

manner as Zündorf (2014), we define a function ĝj(x) that yields the energy upon departure

from the CS j (kWh) of an ECV whose energy is 0 kWh upon arrival at j and it is charged for

x hours at j. The inverse ĝ−1
j (x) is therefore the charging time at j for a target energy level

upon departure of x kWh. We estimate gj(zj ,∆j) with ĝj(ĝ
−1
j (zj) + ∆j).

To estimate ĝj(x), Zündorf (2014) proposed to use piecewise linear functions and claimed that

such estimation was accurate. Montoya et al. (2017) reinforced the aforementioned argument

by fitting piecewise linear functions to real world charging data contributed by Uhrig, Weiß,

Suriyah and Leibfried (2015). The average absolute error of their estimation is 0.90%, 1.24%,

and 1.90% for a CS with charging power of 11, 22, and 44 kW, respectively. Following the

aforementioned research, we use piecewise linear functions to approximate the function ĝj(x).

3.2 A set partitioning formulation

We use a set partitioning (SP) formulation to model our problem. Let Ω = ΩC ∪ ΩE be the

set of all feasible routes, where ΩC and ΩE contains all ICCV- and ECV-routes, respectively.

6

A route rk, k ∈ {C,E}, is considered to be feasible if it starts and ends at the depot, it obeys

the time windows of its vertices, and the total load of all customers served by rk does not

exceed the maximum load capacity. Additionally, if k = E, then the corresponding ECV must

has sufficient energy level to reach each vertex and satisfies the SoC constraints to account for

battery degradation, i.e., the battery level must be at least 10%BE upon arrival at the successor

vertex. We introduce the binary decision variable xr, which takes value 1 if route r ∈ Ωk is

chosen for a vehicle of type k ∈ {C,E}, and 0 otherwise. The parameters include ai,r which

takes value 1 if the route r ∈ Ωk covers customer i ∈ N and 0 otherwise, cr the overall cost

associated to the route r ∈ Ωk, as described in the previous section; and εr is the total CO2

emission generated by the conventional route r ∈ ΩC . The SP formulation is as follows:

min
∑

k∈{C,E}

∑
r∈Ωk

crxr (2a)

s.t.
∑

k∈{C,E}

∑
r∈Ωk

ai,r · xr = 1, ∀i ∈ N, (2b)

∑
r∈ΩC

xr ≤ nC , (2c)

∑
r∈ΩE

xr ≤ nE , (2d)

∑
r∈ΩC

εrxr ≤ UB, (2e)

xr ∈ {0, 1}, ∀r ∈ Ωk, k ∈ {C,E}. (2f)

The objective (2a) minimises the overall cost of the chosen routes. Constrains (2b) ensures

that each customer is visited exactly once. Constraints (2c)-(2d) limit the number of used ICCVs

and ECVs, respectively, to the available vehicles of the fleet. Constraint (2e) restricts the total

CO2 emissions generated by the ICCVs to an upper bound UB. Lastly, constraints (2f) define

the values of the decision variables.

4 Methodology

We propose the ILS-SP method, a matheuristic that combines an iterated local search (ILS)

and a set partitioning (SP) formulation. We denote a solution, which is a set of conventional

and electrical routes, by η. Algorithm 1 presents the framework of our method which consists

of the following main procedures. In Section 4.1, we describe our initialisation phase. In

Section 4.2 and Section 4.3, we introduce the two main components of the ILS, namely the

localSearch and the perturbation procedures. To optimise the charging decisions (including

7

the decisions on which CSs to visit and how much energy the ECV should recharge), we employ

a labeling algorithm whose mechanism is elucidated in Section 4.4. Lastly, in Section 4.5, we

describe the procedure for solving the SP formulation as our improvement procedure.

Algorithm 1 The ILS-SP framework

procedure ILS-SP
η ← initialisation

η∗ ← localSearch(η)
Add η∗ to Ω
while Termination condition is not satisfied do

η ← perturbation(η∗)

η∗ ← localSearch(η)
Add η∗ to Ω

end while
η∗ ← Solving an SP formulation with Ω
return η∗

end procedure

4.1 Initialisation

Following the constructive heuristic proposed by Macrina et al. (2019), our initialisation

procedure consists of three steps: First, we perform a clustering algorithm to obtain two

disjoint sets of customers, one is served by the ICCVs (set C) and the other by the ECVs

(set E). Second, we apply an insertion strategy based on the sequential insertion heuristic

proposed by Solomon (1987) to construct the routes travelled by the ICCVs (ICCV-routes).

Third, we apply the aforementioned insertion strategy with some modifications to construct

the routes travelled by the ECVs (ECV-routes). Algorithm 2 presents the framework of our

initialisation procedure.

Algorithm 2 The initialisation procedure

procedure initialisation
C,E ← clustering(N)

ηC ← insertionHeuristicForICCV(C)

if There are unrouted customers in C then
Add the unrouted customers in C to E

end if
ηE ← insertionHeuristicForECV(E)

return η′ = ηC ∪ ηE
end procedure

Different from Macrina et al. (2019), we perform two preliminary steps before running the

ILS-SP. First, we look for the customers that cannot be served by an ECV. In particular, we

employ a labeling algorithm, which is described in Section 4.4, to find a feasible ECV-route to

visit a single customer i, ∀i ∈ N . If the labeling algorithm is unable to find any feasible ECV-

route for a customer, then the customer is added to the set of vertices that must be served by

the ICCVs (C ′). However, it might be impossible to route the customers in C ′ if the limit on the

8

amount of CO2 emissions is too low. Therefore, the second preliminary step is to guarantee that

each instance has at least a feasible solution corresponding to the upper bound UB on the total

emissions. We compute the amount of CO2 emissions generated by initialising an ICCV-route

for each vertex in C ′, denoted by εC′ . If UB is lower than this value, then we set UB = εC′ .

With this step, we are guaranteed that all customers in C ′ are routed with the ICCVs.

4.1.1 Clustering

Given a set of customers N , we perform a clustering algorithm to find two disjoint sets

of customer, namely set C consists of customers served by the ICCVs, and set E consists of

customers served by the ECVs, where C ∪ E = N . We use the same notation as in Macrina et

al. (2019). For k ∈ {C,E}, we let bk be the barycentre of the set k, and dki be the Euclidean

distance from customer i ∈ N to the barycentre of the set k. We define dkmin = mini∈N dki and

dkmax = maxi∈N dki the distances from the barycentre of k to the nearest and furthest customers,

respectively. In addition, the smallest and largest customer demands are denoted by qmin and

qmax, respectively. For each customer i ∈ N , we compute the scores pEi and pCi as follows:

pEi = 11−
(
1 + 9× dEi − dEmin

dEmax − dEmin

)
, (3)

pCi = λ× pDC
i + (1− λ)× pQi, (4)

pDC
i = 11−

(
1 + 9× dCi − dCmin

dCmax − dCmin

)
, (5)

pQC
i = 11−

(
1 + 9× qi − qmin

qmax − qmin

)
, (6)

where the parameter λ ∈ [0, 1] puts weights on the distance from customer i to the barycentre of

C, as well as the demand of customer i, since the latter directly influences the total emissions.

We initialise the two sets as C = E = {s}, then iteratively add customers to the set until

all customers are assigned. For each iteration, we compute the new barycentres of both sets

C and E, the new distances for each customers j ∈ N (the minimum/maximum distances to

the barycentres are therefore also updated), and the scores pCi and pEi for each unassigned

customer i ∈ N \ (C ∪ E). Next, we select the customers whose scores are the largest, namely

i∗k = argmaxi∈N\(C∪E){pki } for k ∈ {C,E}. If i∗C ̸= i∗E , then we add customer i∗k to the set k for

k ∈ {C,E}. If i∗C = i∗E = i∗, we add customer i∗ to the set k∗ which corresponds to the higher

score, i.e. k∗ = argmaxk∈{C,E}{pki∗}. The algorithm terminates when all customers are assigned

to either the set C or E, and we remove the depot s from both sets.

Different from Macrina et al. (2019), we will remove the customers in E that must be served

9

by the ICCVs (i.e., the vertices in E ∩ C ′) and add them to C. Next, C is sorted in ascending

order of the customers’ due time, with those who must be served by the ICCVs being prioritised.

4.1.2 Insertion heuristic for ICCV-routes

As in Macrina et al. (2019), our insertion heuristic is based on the sequential insertion heuristic

proposed by Solomon (1987). We provide in the Appendix A the pseudocode for constructing

the set of ICCV-routes ηC . In each iteration, the current route r is initialised as {s, i′, t} where

i′ is customer who has the earliest due time among the unrouted customers. Next, we iteratively

add the best customer u∗ into the corresponding best inserting position p∗u∗ of the current route.

Let (s, i1, i2, ..., im, t) be the current route, the best unrouted customer u∗ and the best inserting

position p∗u are selected based on the criteria from Solomon (1987) as in Macrina et al. (2019).

We first find the best insertion position p∗u for each unrouted customer u by computing the

criterion c1 as follows:

c1(i, u, j) = γ1c11(i, u, j) + γ2c12(i, u, j), (7)

c11(i, u, j) = diu + duj − µdij , (8)

c12(i, u, j) = bju − bj , (9)

where bj (hours) denotes the service start time at customer j in the current route, and bju

(hours) the service start time at customer j when we insert customer u into the current route at

the position right before j. The parameters µ, γ1, γ2, and θ are all non-negative, and γ1+γ2 = 1.

The best insertion position for each u ∈ C is defined by p∗u = argminp∈{1,...m}∪{t}{c1(ip−1, u, ip)}.

Next, we computing the criterion c2 for each unrouted customer u ∈ C as follows:

c2(u, p
∗
u) = θdsu − c1(ip∗u−1, u, ip∗u). (10)

The best customer u∗ to be inserted into their corresponding best position p∗u∗ is the one with

the highest c2 value, i.e., u∗ = argmaxu∈C{c2(u, p∗u)}. If the insertion is feasible, i.e., it satisfies

the fleet size, load capacity, time windows, and emissions constraints, then we insert u∗ into

the position p∗u∗ of the current route, and start a new iteration of finding the next customer

to insert. Otherwise, we add the current route to the set of ICCV-routes ηC and evaluate the

feasibility of initialising a new ICCV-route.

The stopping criteria for the insertion heuristic is when all customers in C are routed, or

when there are unrouted customers and the initialisation of a new route violates the emissions

constraint. Note that, if the current route cannot serve any customers, i.e. it only contains

10

the depot, then it is considered as invalid, meaning that we cannot initialise any other feasible

route. If there are any unrouted customers left after the insertion heuristic for ICCV-routes

terminates, we add them to the set E.

Different from Macrina et al. (2019), we take into account the customers that must be served

by the ICCVs (i.e., customers in C ′). These customers are prioritised in C (after C is sorted)

and thereby during the routing for ICCVs. If the insertion heuristic for ICCV-routes terminates

when some customers in C ′ are still unrouted, then we remove the customers that are not in

C ′ in the last ICCV-route until it is feasible (i.e., the emissions constraint is not violated) to

initialise a new ICCV-route with the unrouted customers in C ′.

4.1.3 Insertion heuristic for ECV-routes

The insertion heuristic for ECV-routes follows the same framework of that for ICCV-routes,

except for the insertion stopping criterion. In particular, it is feasible to insert the best customer

u∗ into the associated best position p∗u∗ of the current route if the insertion satisfies the fleet

size, load capacity, time windows, and energy constraints. Every time a customer is inserted

into the current route, a labeling algorithm is applied to find the cheapest feasible insertion

of CSs. The insertion heuristic for ECV-routes terminates when all customers in the set E are

routed. Since every customer can be routed with at least an ECV, we are guaranteed that the

aforementioned procedure always find an ECV solution ηE .

4.2 Local search

As in Macrina et al. (2019), we employ three inter-route local search operators: The ICCV-

Relocate, in which a customer of an ICCV-route is relocated to another ICCV-route; the ECV-

Relocate which moves a customer of an ECV-route to another ECV-route; and the general

Relocate operator which relocates a customer from a route to another. We let the operators

exhaustively explore the local search space, e.g., the ICCV-Relocate operator looks for the best

customer to insert into the new best position in another ICCV-route such that the total cost of

the solution is the minimal.

The localSearch procedure is described in Algorithm 3, where we define f(η) the cost of a

solution η. First, we randomly select one among the aforementioned local search operators to

operate on the current solution η. Then, we iteratively apply the selected operator to improve

the solution until a new solution cannot reduce the current cost anymore.

It is important to mention that a relocation from or to an ECV-route requires the adjustment

of the CSs in that route and the amount of energy being recharged, if any. Therefore, whenever

11

Algorithm 3 The local search procedure

procedure localSearch(η)
lsOperator ← Randomly selected among ICCV-Relocate, ECV-Relocate, and Relocate
η∗ ← η
η′ ← lsOperator(η)
while f(η′) < f(η∗) do

η∗ ← η′

η′ ← lsOperator(η)
end while
return η∗

end procedure

a customer is removed from or inserted into an ECV-route, the labeling algorithm will be

performed to find the cheapest feasible solution. If the aforementioned algorithm cannot find

any feasible solution for the case of an insertion into an ECV-route, then the insertion is counted

as invalid and thus, the operator will move on to other positions/ routes.

4.3 Perturbation

As in Macrina et al. (2019), we reuse the three relocate operators described in Section 4.2 as

perturbation operators to escape the local optimum, with the exception that we accept more

expensive solutions to explore different neighborhoods. Furthermore, we employ two additional

operators that are not included in Macrina et al. (2019), namely the Random-Permute which

randomly selects and destroys an ICCV- and an ECV-route, then routes the customers from

the destroyed routes in a new order; and the Cyclic-Exchange operator which randomly selects

two routes from the current solution and cyclically exchange a sequence of customers from

each route. These two operators allow for randomness to diversify the solution space, which

potentially leads to better solutions. We verify this statement by testing the ILS-SP with and

without the Random-Permute and Cyclic-Exchange operators. According to our preliminary

results, including the additional perturbation operators improves the solution costs for most

cases. The mechanisms of the additional operators are described in Appendix B.

During each iteration, a perturbation operator is considered to be feasible if it can perturb

the current solution. For example, if the current solution contains only ECV-routes, then the

ICCV-Relocate is not a feasible perturbation operator. Every time the perturbation procedure

is called, a list of perturbation operators is constructed to include only the feasible operators.

Then, the algorithm will randomly select one among the operators in the list.

It is important to note that the Random-Permute and the Cyclic-Exchange operators, even

though they can be considered as feasible operators at the beginning of the procedure, might

not be able to perturb the current solutions (i.e., they cannot find any feasible perturbation).

In such case, the perturbation procedure will remove the currently-employed operator from

12

the list of feasible operators and randomly select a new one. This step allows the perturbation

procedure to always perturb the current solution to search for new neighborhoods.

4.4 The Labeling algorithm

Different from Macrina et al. (2019), we employ a labeling algorithm based on that of Zhao

and Lu (2019) to optimise the decision on inserting/removing the CSs and on the amount of

energy recharged for each ECV-route while ensuring the feasibility of the energy constraints.

As described in the previous sections, the labeling algorithm is used in the insertion heuristic

for ECV-routes, the local search and the perturbation procedures. The input for this algorithm

includes the set of CSs R, and an ECV-route rE = (s, v1, v2, ..., vm, t) containing only the depots

and customers, in which the load capacity and time windows constraints are satisfied, but the

energy constraints might be violated. Our labeling algorithm considers a graph illustrated by

Figure 1, and looks for the cheapest s, t-path such that all customers are served in time and the

energy constraints are satisfied.

Figure 1: Input graph for the labeling algorithm

Following the notations from Zhao and Lu (2019), we define a label of customer i ∈ rE

by li = (tai , zi, fi, i, l), where tai is the arrival time at customer i (hour), zi is the energy level

upon the arrival at i (kWh), fi is the accumulated cost upon the arrival at i (e), and l is the

predecessor label of li. Each vertex i ∈ rE is associated with a set Li containing all valid labels of

i. Travelling from customer i to the successive customer j ∈ rE , a new label lj = (taj , zj , fj , j, li)

is created based on two scenarios: First, the ECV travels directly from i to j, resulting in at

most a single new label. Second, the ECV stops by a CS before reaching j, therefore generating

at most |R| new labels. The pseudocode for each scenario is provided in Appendix C.

Different from Zhao and Lu (2019) who allows for constraint violations by adding penalty

terms to the cost, we only consider valid labels in our algorithm. A label is valid only if it violates

neither the time windows nor the energy constraints. Furthermore, a label li = (tai , zi, fi, i, l)

of customer i dominates a label l′i = (ta
′

i , z
′
i, f

′
i , i, l

′) of the same customer only if the following

conditions hold: tai ≤ ta
′

i , zi ≥ z′i, fi ≤ f ′
i , and there is at least a strict inequality.

13

In the second scenario, the ECV travels from customer vi−1 to a CS k before reaching

customer vi. Here, it is crucial to consider how much energy the ECV should recharge at k, as

this will influence the time windows constraints of all customers served after vi. We assume that

the ECV is recharged as much as needed to travel to the successor vertex of vi, i.e., customer

vi+1. However, if this amount of recharge results in the violation of the time window of vi, then

the ECV is recharged as much as allowed such that it can reach vi in time.

For notation, we let v0 = s and vm+1 = t. The algorithm starts with the initial label

l0 = (0, BE , wa, v0, null) of the set L0, where null indicates that l0 does not have a predecessor

label. Then, for each label l of every vertex vi−1, i ∈ {1, ...m + 1}, we create new labels for

the successor vertex vi based on the aforementioned scenarios. Only valid labels which are not

dominated by any other labels of vi are added to the set Lvi . When all labels are found, we look

for the label l∗vm+1
∈ Lvm+1 whose cost is the lowest, and trace back to v0 via the predecessor

labels to find the cheapest feasible v0, vm+1-path. We consider a sequence of customers to be

infeasible if the labeling algorithm cannot find any v0, vm+1-path that visits all customers. The

pseudocode for the labeling algorithm is provided in Appendix C.

4.5 Solving the Set Partitioning formulation

At the final stage of the ILS-SP, we will solve the Set Partitioning (SP) formulation introduced

in Section 3.2. In the remaining of this paper, we refer to this stage as the SP procedure which

takes in the set Ω containing all routes found in each ILS iteration. Each of these routes must

satisfy the time windows constraints, the SoC constraints, and the load capacity constraint.

During the SP procedure, we solve the SP formulation (2) using CPLEX Studio 22.1.0. and the

final solution is obtained.

5 Computational study

As in Macrina et al. (2019), the test instances used in this paper are the VRPTW instances

introduced in Schneider, Stenger and Goeke (2014), which were originally created by Solomon

(1987) based on three different types of customer geographical distribution: clustered (C), ran-

dom (R), and both clustered and random (RC). Additionally, C1, R1, and RC1 denotes a short

scheduling horizon, whereas C2, R2, and RC2 denotes a long scheduling horizon. To solve the

E-VRPTW, Schneider et al. (2014) added to each instances a set of 21 CSs whose locations

were set randomly and computed new feasible time windows. As in Macrina et al. (2019), we

consider three sets of instances. Set 1 consists of the 36 small-sized instances (5, 10, or 15

customers) from Schneider et al. (2014). Set 2 consist of medium-sized instances with 25, 30,

14

or 50 customers. Lastly, Set 3 consists of 15 large-sized instances with 100 customers and short

scheduling horizon from Schneider et al. (2014). To achieve Set 2, we keep the 21 CSs and select

the first 25, 30, and 50 customers from each large-sized instance in Set 3.

The load capacities of vehicles (of both types) are included in the instance. In addition, we

assume that the numbers of available vehicles are infinite. The vehicle speed is included in the

instances, such that the feasibility of the instances is ensured. Furthermore, following Solomon

(1987), we assume that the travelled time tij on an arc (i, j) ∈ A is equal to the distance travelled

dij on this arc, where dij is determined using the Euclidean distance metric.

To account for the emissions generated, we define UBmax as the total emissions in the worst

case in which the emissions constraint is relaxed and only ICCVs are employed. For each in-

stance, we find UBmax by solving a mixed-integer programming (MIP) formulation with CPLEX

Studio 22.1.0. The aforementioned MIP formulation is provided in Appendix D, together with

the details regarding the gap we set. The upper bound UB on the amount of CO2 emissions

is set to αUBmax, in which α ∈ {0.25, 0.5, 0.75} indicates three level of allowed emissions as

in Macrina et al. (2019). An instance denoted as, for example, C101C5 (0.25) means that it

is of type C1 (clustered customer geographical distribution with short scheduling horizon), the

instance ID is 01, the number of customers is five (C5), and α = 0.25.

In the clustering algorithm, we set λ = 0.5. In the insertion heuristics, we let θ = 1 to account

for the case where a new route is initialised for the customer in consideration instead of inserting

the aforementioned customers into an existing route, and γ1 = γ2 = 0.5 to balance the weights

on distance travelled and time windows. As Macrina et al. (2019) found that performing 200

iterations in their ILS heuristic leads to better trade-off between solution quality and executing

time compared to 100, 150, and 250 iterations, we also restrict the number of iterations in the

ILS-SP to 200. Furthermore, the ECV battery is fixed to 16 kWh for all instances since we

use the estimated charging functions found by Montoya et al. (2017). Following our preliminary

results, the coefficient of energy consumption π = 1 kWh/km as in Macrina et al. (2019) leads to

infeasible problem for some instances (especially with α = 0.25), and π = 0.125 kWh/km as in

Montoya et al. (2017) leads to the ECVs mostly have sufficient energy to visit all customers on

their routes, or they require very little amount of recharged energy. Therefore, we set π = 0.25

kWh/km as this value offers greater insights into the charging decisions of the ILS-SP.

5.1 Charging functions

In the linear scenario, we assume that all CSs employ the moderate technology from Felipe

et al. (2014). In particular, the charging speed is assumed to be 20 kWh/h for all CS. In the

15

nonlinear scenario, we make use of the recharging function found in Montoya et al. (2017) for

the moderate technology and the battery capacity of 16 kWh. The function consists of the

following breakpoints: (0, 0), (0.62, 13.6), (0.77, 15.2), and (1.01, 16), in which the first value

indicates the time in hours, and the second value indicates the energy level in kWh. We also use

the moderate technology charging cost of 0.176 e/kWh from Felipe et al. (2014) in all instances

and charging scenarios since Montoya et al. (2017) did not mention the cost of recharging.

Figure 2 shows the linear and the estimated nonlinear charging functions corresponding to

the moderate technology at all CSs. To illustrate the estimation of charging time in the case of

nonlinear recharge, we assume an ECV arrives at a CS when its energy level is 8 kWh, and the

target level is 14.4 kWh. According to our nonlinear charging function, the corresponding times

are 0.36 and 0.70, respectively. The recharging time is therefore ∆ = 0.70−0.36 = 0.34 (hours).

Figure 2: The linear and nonlinear charging functions corresponding to the moderate technology

5.2 Linear recharge

This section discusses the results on all test instances under the linear recharging assumption.

We evaluate the ILS-SP based on the solution quality and the execution time. For each instance

and level of emissions constraint (α), we obtain the cost of the initial solution (initial cost), the

cost of the solution found by the ILS procedure (ILS cost), and the cost of the solution found by

solving the SP formulation (SP cost). To examine the performance of the ILS-SP, we introduce

two improvement metrics. First, the percentage decreasing from the initial cost to the SP cost,

in which we denoted by M1. Second, the percentage decreasing from the ILS cost to the SP

cost, denoted by M2. Table 1 presents the results obtained with the ILS-SP for the small-sized

instances. We report the SP costs (in e) and the running time (in seconds). Below each SP

cost, the corresponding metrics M1 and M2 is presented in the parentheses, respectively.

16

Table 1: Solution costs for small-sized instances under linear recharge

5 customers 10 customers 15 customers

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time

C101C5 281.03 1 264.64 0 264.64 0 C101C10 446.6 1 424.01 0 371.17 0 C103C15 404.76 1 392.14 0 381.65 0

(14.48%; 0%) (0%; 12.83%) (12.17%; 4.73%) (26.17%; 0%) (9.86%; 4.36%) (0.08%; 21.41%) (27.56%; 15.29%) (26.21%; 19%) (37.53%; 14.33%)

C103C5 172.09 0 164.87 0 164.87 0 C104C10 367.91 0 355.4 0 318.49 0 C106C15 355.23 0 318.88 0 317.6 0

(14.32%; 0%) (0%; 0%) (0%; 0%) (20.67%; 0%) (12.29%; 1.54%) (20.98%; 11.77%) (39.19%; 0.49%) (30.35%; 17.55%) (27.8%; 15.98%)

R104C5 168.91 0 143.75 0 143.75 0 R102C10 281.36 0 284.18 0 253.06 0 R102C15 431.52 0 400.53 0 389.05 0

(16.42%; 0%) (18.75%; 0%) (18.75%; 0%) (15.26%; 0%) (22.23%; 0%) (17.22%; 10.06%) (20.95%; 0%) (31.37%; 7.91%) (20.41%; 13.62%)

R105C5 191.79 0 188.97 0 156.3 0 R103C10 216.15 1 201.47 0 198.61 0 R105C15 384.3 0 356.04 0 317.92 0

(0%; 13.18%) (0%; 0%) (0%; 15.5%) (35.16%; 1.69%) (3.41%; 8.56%) (11.95%; 7.51%) (19.6%; 0%) (24.5%; 5.92%) (20.69%; 12.22%)

RC105C5 257.63 0 254.54 0 250.58 0 RC102C10 421.05 0 384.75 0 384.75 0 RC103C15 452.39 0 416.16 0 397.95 0

(3.92%; 0%) (1.76%; 0%) (0%; 0%) (6.46%; 0%) (19.12%; 0%) (19.12%; 0%) (30.19%; 0.64%) (29.61%; 8.98%) (30.06%; 11.08%)

RC108C5 282.17 0 302.03 0 259.88 0 RC108C10 405.35 0 355.55 0 344.77 0 RC108C15 531.45 0 419.45 0 404.39 0

(0%; 0%) (0%; 11.68%) (0%; 0%) (12.6%; 3.15%) (10.19%; 12.52%) (8.37%; 5.46%) (29.03%; 14.04%) (30.07%; 5.26%) (27.05%; 20.79%)

C206C5 269.72 0 252.34 0 252.34 0 C202C10 299.64 0 297.58 0 245.24 0 C202C15 521.6 0 471.2 0 488.02 0

(0%; 15.58%) (0%; 0%) (0%; 0%) (26.29%; 6.19%) (27.27%; 3.83%) (0%; 22.03%) (28.8%; 4.15%) (37.46%; 13.57%) (26.59%; 4.56%)

C208C5 262.53 0 262.53 0 233.38 0 C205C10 367.91 0 326.43 0 262.22 0 C208C15 514.55 0 312.74 0 308.24 0

(27.91%; 0%) (22.37%; 16.88%) (34.54%; 0%) (19.58%; 11.67%) (17.75%; 21.78%) (10.81%; 35.63%) (20.72%; 10.73%) (16.44%; 26.13%) (21.51%; 22.48%)

R202C5 189.4 0 183.65 0 176.92 0 R201C10 251.4 0 234.5 0 224.31 0 R202C15 461.54 1 396.09 0 392.55 0

(0%; 0%) (0%; 0%) (18.16%; 0%) (28.53%; 4.77%) (17.84%; 1.27%) (18.28%; 0%) (35.54%; 2.78%) (32.8%; 6.96%) (31.1%; 6.24%)

R203C5 221.12 0 254.57 0 206.99 0 R203C10 289.74 0 277.48 0 259.88 0 R209C15 438.47 1 350.66 1 316.87 0

(6.66%; 0.13%) (4.29%; 0%) (21.74%; 0%) (37.09%; 0%) (20.4%; 12.3%) (40.57%; 0%) (30.01%; 2.33%) (39.27%; 0.21%) (41.71%; 3.06%)

RC204C5 251.8 0 251.8 0 212.57 0 RC201C10 356.91 0 335.2 0 315.34 0 RC202C15 508.38 0 450.98 0 433.13 0

(1.44%; 0%) (23.21%; 0%) (28.06%; 1.24%) (10.58%; 19.86%) (18.2%; 2.65%) (7.59%; 18.93%) (29.49%; 2.73%) (31.65%; 7.99%) (35.34%; 12.28%)

RC208C5 212.12 0 212.12 0 222.6 0 RC205C10 451.01 0 425.01 0 350.17 0 RC204C15 482.73 1 404.88 2 324.83 1

(25.58%; 0%) (27.59%; 0%) (5.39%; 0%) (27.23%; 0%) (17.02%; 15.85%) (26.1%; 24.44%) (29.76%; 2.83%) (28.18%; 10.35%) (30.34%; 28.72%)

Average 230.03 0.08 227.98 0 212.07 0 Average 346.25 0.17 325.13 0 294 0 Average 457.24 0.33 390.81 0.25 372.68 0.08

(9.23%; 2.41%) (8.16%; 3.45%) (11.57%; 1.79%) (22.14%; 3.94%) (16.3%; 7.06%) (15.09%; 13.1%) (28.4%; 4.67%) (29.83%; 10.82%) (29.18%; 13.78%)

17

The ILS-SP is capable of improving both the initial and the ILS solutions for the majority of

the small-sized instances. Considering the case of five customers, we find 10 among 36 instances

where the initialisation procedure performs relatively well, in the sense that it directly yields

the SP solution (i.e., 0% decreasing in cost for both metrics). When the number of customers

increases to 10 and then 15, the values for M1 and M2 metrics also increase. These findings

indicate that for instances with larger size and higher complexity, the initialisation procedure

becomes less suitable to optimise the routing, while the SP procedure demonstrates a greater

impact on improving the ILS solutions.

In addition, we obtain for the majority of the small-sized instances lower costs for higher

values of α. The underlying cause for the aforementioned finding is likely the higher expenses

associated with employing ECVs, primarily due to the activating and recharging costs at CSs,

together with the needs for more ECVs when stricter upper bounds on the total CO2 emissions

(lower α) are imposed. Our matheuristic is also time-efficient as it finds the optimal solution

within a second for most small-sized instances.

To analyse the effect of long and short scheduling horizon, we consider the average perform-

ance of the ILS-SP on each type of horizon for the small-sized instances in Table 2. Overall, the

ILS procedure achieves higher improvement on the initial solutions (i.e., higher M1 values) in

the case of long scheduling horizon for every instance size and level of emissions restriction.

Table 2: The performance based on short and long scheduling horizon for small-sized instances

α = 0.25 α = 0.5 α = 0.75

Cost Time Cost Time Cost Time

Short

scheduling

horizon

|N | = 5 225.60 (8.19%; 2.2%) 0.17 219.80 (3.42%; 4.09%) 0.00 206.67 (5.15%; 3.37%) 0.00

|N | = 10 356.40 (19.39%; 0.81%) 0.33 334.23 (12.85%; 4.5%) 0.00 311.81 (12.95%; 9.37%) 0.00

|N | = 15 426.61 (27.75%; 5.08%) 0.17 383.87 (28.69%; 10.77%) 0.00 368.09 (27.26%; 14.67%) 0.00

Average 336.21 (18.44%; 2.7%) 0.22 312.63 (14.99%; 6.45%) 0.00 295.52 (15.12%; 9.14%) 0.00

Long

scheduling

horizon

|N | = 5 234.45 (10.27%; 2.62%) 0.00 236.17 (12.91%; 2.81%) 0.00 217.47 (17.98%; 0.21%) 0.00

|N | = 10 336.10 (24.88%; 7.08%) 0.00 316.03 (19.75%; 9.61%) 0.00 276.19 (17.23%; 16.84%) 0.00

|N | = 15 487.88 (29.05%; 4.26%) 0.50 397.76 (30.97%; 10.87%) 0.50 377.27 (31.1%; 12.89%) 0.17

Average 352.81 (21.4%; 4.65%) 0.17 316.65 (21.21%; 7.76%) 0.17 290.31 (22.1%; 9.98%) 0.06

Table 3 shows the results of the medium-sized instances. As the complexity of the instances

increases, the SP cost becomes more expensive whereas the effectiveness of the initialisation

procedure declines. On average, the instances with the strictest upper bound on the emissions,

i.e., α = 0.25, tend to achieve lower level of improvement. Nevertheless, the SP procedure reduces

the ILS cost for the majority of the instances, emphasising its benefit as an improvement step

in our matheuristic. Even though the executing time increases with respect to the size of the

instance, the ILS-SP is still capable of solving the medium-sized instances within a minute.

18

Table 3: Solution costs for medium-sized instances under linear recharge

25 customers 30 customers 50 customers

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time

C101C25 306.75 5 321.24 4 303.94 4 C101C30 339.63 7 332.66 6 342.45 6 C101C50 584.67 19 481.08 17 499.46 18

(36.03%; 14.01%) (21.73%; 6.8%) (31.18%; 18.91%) (22.57%; 8.03%) (28.01%; 3.21%) (25.97%; 17.12%) (19.56%; 5.56%) (25.32%; 10.26%) (35.73%; 5.47%)

C102C25 300.99 7 301.16 6 301.47 7 C102C30 333.97 10 333.97 10 282.57 10 C102C50 650.46 30 541.71 33 498.06 33

(43.86%; 14.8%) (38.31%; 22.47%) (43.76%; 23.58%) (56.71%; 8.15%) (62.73%; 0%) (64.3%; 2.32%) (44.73%; 12.96%) (55.55%; 11.01%) (56.48%; 11.26%)

C103C25 296.95 10 296.95 10 297.23 10 C103C30 333.34 12 318.73 13 298.8 14 C103C50 577.88 43 568.31 42 489.7 40

(42.6%; 3.82%) (43.81%; 7.36%) (42.16%; 12.17%) (55.8%; 3.55%) (57.91%; 0.8%) (55.41%; 11.6%) (52.1%; 6.54%) (43.62%; 11.61%) (52.2%; 15.03%)

C104C25 270.23 11 264.95 12 265.56 12 C104C30 326.77 16 286.77 21 285.99 18 C104C50 570.59 48 522.04 50 497.43 53

(35.67%; 14.09%) (31.07%; 14.98%) (26.53%; 11.99%) (31.2%; 10.22%) (41.97%; 12.06%) (37.79%; 11.58%) (26.18%; 22.56%) (27.63%; 30.95%) (41.8%; 12.2%)

C105C25 306.13 6 291.83 5 291.62 6 C105C30 365.73 8 325.89 9 325.33 9 C105C50 561.41 24 481.23 23 481.4 24

(32.85%; 0.15%) (22.82%; 15.33%) (40.83%; 5.3%) (37.61%; 0.11%) (44.38%; 2.32%) (37.32%; 0%) (35.28%; 2.9%) (33.16%; 10.86%) (27.15%; 10.73%)

R101C25 642.07 3 613.12 3 603.96 3 R101C30 715.85 6 698.96 6 689.65 5 R101C50 1131.24 14 1100.58 13 1062.58 13

(30.93%; 3.02%) (34.1%; 0.38%) (33.42%; 1.72%) (30.01%; 4.83%) (31.75%; 3.6%) (30.4%; 2.42%) (35.86%; 3.78%) (37.85%; 7.13%) (38.06%; 7.47%)

R102C25 557.89 8 526.39 8 530.46 8 R102C30 636.85 13 615.94 13 589.55 13 R102C50 1084.31 25 966.48 26 968.99 26

(33.34%; 1.81%) (32.99%; 7.04%) (35.3%; 5.25%) (32.78%; 1.94%) (27.84%; 2.32%) (26.64%; 5.75%) (39.53%; 0.5%) (42.33%; 5.29%) (48.14%; 5.32%)

R103C25 520.83 12 496.21 11 480.29 11 R103C30 587.45 18 520.4 17 526.23 18 R103C50 888.53 45 814.26 44 839.29 39

(22.96%; 2.55%) (29.16%; 5.24%) (28.93%; 9.37%) (15.41%; 3.94%) (23.19%; 8.23%) (14.15%; 14.5%) (38.08%; 4.84%) (43.05%; 5.6%) (44.31%; 2.71%)

R104C25 522.02 12 506.76 12 461.43 10 R104C30 536.81 19 507.25 19 486.78 17 R104C50 860.28 54 825.96 53 837.8 51

(18.02%; 3.62%) (23.33%; 1.79%) (24.57%; 8.56%) (15%; 13.53%) (24.28%; 9.11%) (19.83%; 14.73%) (31.68%; 5.85%) (29.03%; 9.41%) (31.61%; 2.18%)

R105C25 557.09 4 541.98 4 531.19 4 R105C30 615.58 7 603.26 7 557.96 6 R105C50 1067.49 19 1029.76 19 966.45 19

(21.82%; 5.98%) (12.98%; 3.71%) (15.56%; 4.81%) (23.57%; 2.79%) (21.57%; 0%) (22.18%; 5.93%) (30.24%; 0.59%) (31.11%; 3.61%) (31.14%; 3.21%)

RC101C25 569.41 2 500.06 2 490.5 2 RC101C30 1163.67 5 799.46 4 786.09 3 RC101C50 1382.83 14 1084.55 10 992.66 7

(1.23%; 20.04%) (3.96%; 14.26%) (0.82%; 17.29%) (0.67%; 10.82%) (12.02%; 3.37%) (12.57%; 3.76%) (35.88%; 5.05%) (41.68%; 6.35%) (42.05%; 10.07%)

RC102C25 596.6 5 469.31 3 454.98 2 RC102C30 1078.96 7 1056.22 7 684.78 3 RC102C50 1280.72 16 964.39 12 900.74 16

(30.94%; 3.81%) (31.17%; 20.26%) (30.14%; 5.24%) (18.36%; 8.97%) (13.56%; 7.18%) (41.14%; 10.21%) (35.53%; 0.07%) (30.75%; 13.84%) (30.98%; 14.72%)

RC103C25 596.07 6 516.51 4 394.35 2 RC103C30 1054.97 6 759.26 5 626.66 4 RC103C50 1310.85 25 839.58 23 794.83 14

(34.54%; 4.58%) (24.82%; 13.59%) (16.21%; 17.81%) (15.96%; 8.33%) (11.69%; 29.21%) (27.34%; 12.29%) (26.73%; 21.76%) (57.66%; 14.91%) (50.54%; 14.3%)

RC104C25 586.91 7 509.16 5 392.13 4 RC104C30 1051.49 7 873.4 7 916.43 7 RC104C50 1611.1 24 830.68 23 696.77 20

(28.44%; 1.85%) (31.75%; 3.33%) (20.13%; 4.07%) (12.85%; 7.1%) (19.61%; 18.27%) (13.21%; 8.49%) (24.24%; 4.16%) (44.34%; 33.25%) (41.52%; 43.97%)

RC105C25 741.31 4 658.8 3 485.18 2 RC105C30 1214.02 5 1066.99 5 919.88 4 RC105C50 1747.64 19 940.5 10 830.09 10

(27.09%; 2.48%) (27.7%; 4.44%) (14.83%; 14.55%) (16.36%; 2.34%) (9.43%; 7.91%) (13.49%; 20.61%) (20.36%; 6.29%) (28.22%; 13.62%) (39.33%; 18.79%)

Average 491.42 6.8 454.3 6.13 418.95 5.8 Average 690.34 9.73 606.61 9.93 554.61 9.13 Average 1020.67 27.93 799.41 26.53 757.08 25.53

(29.35%; 6.44%) (27.31%; 9.4%) (26.96%; 10.71%) (25.66%; 6.31%) (28.66%; 7.17%) (29.45%; 9.42%) (33.07%; 6.89%) (38.09%; 12.51%) (40.74%; 11.83%)

19

The results for the large-sized instances with 100 customers are presented in Table 4. The

average costs are around two times higher than that of the 50-customer instances for each level

of restriction on the total emissions. The average improvement on the initial costs is also higher

than that in the medium-sized instances, indicating that the ILS-SP can handle well problems

with high level of complexity. All values corresponding to the M2 metric are positive, once again

highlighting the advantage of the SP procedure. Our matheuristic terminates within around five

minutes for the large-size instances.

Table 4: Solution costs for large-sized instances under linear recharge

α = 0.25 α = 0.50 α = 0.75

Instance Cost Time Cost Time Cost Time

C101C100 1717.89 (28.56%; 12.11%) 98 1539.14 (46.29%; 5.35%) 94 1266.98 (40.05%; 13.71%) 116

C102C100 1416.68 (58.52%; 9.11%) 177 1188.43 (53.31%; 19.18%) 180 1115.87 (58.63%; 18.31%) 150

C103C100 1460.38 (37.53%; 28.96%) 245 1252.47 (47.49%; 23.09%) 267 1223.89 (50.2%; 19.91%) 234

C104C100 1297.86 (40.31%; 31.61%) 319 1290.6 (42.53%; 15.83%) 340 1058.29 (48.57%; 20.92%) 208

C105C100 1552.89 (43.6%; 2.4%) 108 1510.85 (43.73%; 8.89%) 117 1411.44 (49.63%; 4.49%) 135

R101C100 1999.87 (38.14%; 2.35%) 52 1903.86 (36.58%; 3.78%) 52 1796.4 (36.54%; 4.38%) 45

R102C100 1794.22 (41.1%; 2.74%) 98 1576.99 (45.94%; 6.83%) 100 1571.58 (42.22%; 5.95%) 94

R103C100 1538.49 (42.84%; 1.74%) 163 1485.89 (41.51%; 4.11%) 161 1379.27 (44.03%; 7.86%) 179

R104C100 1392.93 (29.72%; 6.72%) 243 1199.64 (27.74%; 7.81%) 227 1194.12 (33.5%; 3.68%) 206

R105C100 1669.35 (36.04%; 3.81%) 78 1561.77 (39.71%; 3.11%) 76 1431 (43.03%; 1.4%) 69

RC101C100 2341.69 (40.24%; 8.36%) 83 2146.4 (42.78%; 8.25%) 71 1889.14 (48.08%; 6.67%) 71

RC102C100 2093.67 (36.91%; 19.43%) 116 2085.64 (35.7%; 12.65%) 112 1835.82 (35%; 25.13%) 98

RC103C100 2047.61 (32.57%; 19.75%) 136 1838.16 (41.99%; 13.12%) 140 1721.27 (36.06%; 20.16%) 138

RC104C100 2115.14 (39.75%; 0.08%) 188 2076.35 (36.47%; 1.98%) 187 1452.14 (41.84%; 25.26%) 200

RC105C100 1903.49 (46.57%; 12.11%) 115 1758.71 (40.94%; 23.7%) 102 1634.62 (55.36%; 2.38%) 69

Average 1756.14 (39.49%; 10.75%) 147.93 1627.66 (41.51%; 10.51%) 148.4 1465.46 (44.18%; 12.01%) 134.13

Table 5 summarises the results for all classes of instances on each level of emissions restriction.

It is clear that the SP cost and executing time increase with respect to the complexity of the

instances. In addition, the ILS-SP finds more expensive costs for low values of α in all classes

of instances. Indeed, imposing lower upper bounds on the CO2 emissions leads to the need for

more ECVs, which are more expensive than ICCVs due to the activation and recharging costs.

The aforementioned claim is supported by the results in Table 6, in which we present the

impact of the ECVs on the solution costs for medium- and large-sized instances. The lower

the value of α, the higher contribution to the overall costs of the ECVs. We also find that the

influence of the ECVs decreases for more complex instances. In particular, the ECVs contribute

on average 94.38% to the solution costs of the 25-customer instances, whereas this value drops

to 82.84% for the case of 100 customers.

20

Table 5: Summary for all classes of instances under linear recharge

Small α Cost Time Medium α Cost Time Large α Cost Time

0.25 230.03 0.08 0.25 491.42 6.8 0.25 1756.15 147.93

|N | = 5 0.5 227.98 0 |N | = 25 0.5 454.30 6.13 |N | = 100 0.5 1627.66 148.4

0.75 212.07 0 0.75 418.95 5.8 0.75 1465.46 134.13

Average 223.36 0.03 Average 454.89 6.24 Average 1616.42 143.49

0.25 346.25 0.17 0.25 690.34 9.73

|N | = 10 0.5 325.13 0 |N | = 30 0.5 606.61 9.93

0.75 294.00 0 0.75 554.61 9.13

Average 321.79 0.06 Average 617.19 9.60

0.25 457.24 0.33 0.25 1020.67 27.93

|N | = 15 0.5 390.81 0.25 |N | = 50 0.5 799.41 26.53

0.75 372.68 0.08 0.75 757.08 25.53

Average 406.91 0.22 Average 859.05 26.67

Table 6: Impact of ECVs on the solution costs under linear recharge for the medium- and large-
sized instances

α = 0.25 α = 0.5 α = 0.75

|N | = 25 94.38% 72.61% 59.69%

|N | = 30 91.95% 72.31% 56.76%

|N | = 50 90.09% 60.16% 44.93%

|N | = 100 82.84% 63.55% 44.58%

5.3 Non-linear recharge

In this section, we present and analyse the results on all test instances under the assumption

of nonlinear recharge. To evaluate the impact of the nonlinear recharging function compared to

the linear counterpart, we transform the linear recharge solutions, i.e., the solutions obtained

from performing the ILS-SP under the linear recharge assumption, as follows: For each test

instance, we perform the labeling algorithm on the customer sequence of each ECV-route in

the linear recharge solution, in which the algorithm considers the nonlinear charging function

employed in this computational study. The new linear recharge solutions are considered in this

section for comparison.

Table 7 shows the optimal costs and executing times for the small-sized instances. Again,

the values in parentheses are the percentage of costs that the ILS procedure is able to reduce

from the initialised solution (M1), and that the SP procedure is able to improve from the ILS

solution (M2), respectively. Furthermore, each of the SP costs emphasised in bold indicates that

it deviates from the SP cost of the corresponding linear recharge solution.

21

Table 7: Solution costs for small-sized instances under nonlinear recharge

5 customers 10 customers 15 customers

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time

C101C5 281.03 1 264.64 0 264.64 0 C101C10 446.6 1 424.01 0 402.3 0 C103C15 404.76 1 389.53 0 367.32 0

(14.48%; 0%) (0%; 12.83%) (12.17%; 4.73%) (26.17%; 0%) (9.86%; 4.36%) (11.28%; 4.06%) (27.56%; 15.29%) (29.04%; 16.33%) (38.78%; 15.87%)

C103C5 172.09 0 164.87 0 164.87 0 C104C10 367.91 0 355.4 0 310.8 0 C106C15 355.23 0 342.82 0 317.6 0

(14.32%; 0%) (0%; 0%) (0%; 0%) (20.67%; 0%) (12.29%; 1.54%) (20.98%; 13.9%) (39.48%; 0%) (33.87%; 6.64%) (25.48%; 18.59%)

R104C5 168.91 0 143.75 0 143.75 0 R102C10 281.36 0 284.18 0 253.06 0 R102C15 424.41 0 400.53 0 389.05 0

(16.42%; 0%) (18.75%; 0%) (18.75%; 0%) (15.26%; 0%) (22.23%; 0%) (17.22%; 10.06%) (20.31%; 2.44%) (30.93%; 8.51%) (29.54%; 2.42%)

R105C5 191.79 0 188.97 0 156.3 0 R103C10 216.15 0 201.47 0 198.61 0 R105C15 384.3 0 356.04 0 317.92 0

(0%; 13.18%) (0%; 0%) (0%; 15.5%) (35.16%; 1.69%) (3.41%; 8.56%) (11.95%; 7.51%) (19.6%; 0%) (24.5%; 5.92%) (20.69%; 12.22%)

RC105C5 257.63 0 254.54 0 250.58 0 RC102C10 421.05 0 384.75 0 384.75 0 RC103C15 452.39 0 444.62 0 395.86 0

(3.92%; 0%) (1.76%; 0%) (0%; 0%) (6.46%; 0%) (19.12%; 0%) (19.12%; 0%) (30.19%; 0.64%) (33.54%; 2.75%) (38.35%; 10.55%)

RC108C5 282.17 0 302.03 0 259.88 0 RC108C10 405.35 0 355.55 0 344.77 0 RC108C15 537.21 0 400.39 0 405.73 0

(0%; 0%) (0%; 11.68%) (0%; 0%) (12.6%; 3.15%) (10.19%; 12.52%) (8.37%; 5.46%) (29.03%; 13.11%) (36.76%; 0%) (27.05%; 20.53%)

C206C5 269.72 0 252.34 0 252.34 0 C202C10 299.64 0 297.58 0 245.24 0 C202C15 521.6 0 471.2 0 488.02 0

(0%; 15.58%) (0%; 0%) (0%; 0%) (26.29%; 6.19%) (27.27%; 3.83%) (0%; 22.03%) (28.8%; 4.15%) (39.89%; 10.08%) (26.59%; 4.56%)

C208C5 262.53 0 262.53 0 233.38 0 C205C10 367.91 0 326.43 0 259.51 0 C208C15 514.55 0 313.19 0 308.24 0

(27.91%; 0%) (35.48%; 0%) (34.54%; 0%) (19.58%; 11.67%) (17.75%; 21.78%) (10.81%; 36.3%) (20.72%; 10.73%) (16.44%; 26.02%) (21.51%; 22.48%)

R202C5 189.4 0 183.65 0 176.92 0 R201C10 251.4 0 234.8 0 224.31 0 R202C15 461.54 1 392.69 0 392.55 0

(0%; 0%) (0%; 0%) (18.16%; 0%) (17.25%; 17.75%) (17.84%; 1.14%) (18.28%; 0%) (35.54%; 2.78%) (32.8%; 7.76%) (31.1%; 6.24%)

R203C5 221.12 0 254.57 0 206.99 0 R203C10 289.74 0 277.48 0 259.88 0 R209C15 438.47 1 366.9 1 316.62 0

(6.66%; 0.13%) (4.29%; 0%) (21.74%; 0%) (37.09%; 0%) (20.4%; 12.3%) (40.57%; 0%) (30.01%; 2.33%) (26.03%; 14.27%) (43.49%; 0.08%)

RC204C5 251.8 0 251.8 0 212.57 0 RC201C10 356.91 0 335.2 0 315.34 0 RC202C15 508.38 0 450.98 0 433.13 0

(1.44%; 0%) (23.21%; 0%) (28.06%; 1.24%) (10.58%; 19.86%) (18.2%; 2.65%) (7.59%; 18.93%) (29.49%; 2.73%) (31.65%; 7.99%) (37.76%; 8.88%)

RC208C5 212.12 0 212.12 0 222.6 0 RC205C10 451.01 0 425.01 0 350.17 0 RC204C15 482.73 1 404.88 2 324.83 1

(25.58%; 0%) (27.59%; 0%) (5.39%; 0%) (27.23%; 0%) (23.42%; 8.82%) (26.1%; 24.44%) (29.76%; 2.83%) (28.18%; 10.35%) (30.34%; 28.72%)

Average 230.03 0.08 227.98 0 212.07 0 Average 346.25 0.08 325.16 0 295.73 0 Average 457.13 0.33 394.48 0.25 371.41 0.08

(9.23%; 2.41%) (9.26%; 2.04%) (11.57%; 1.79%) (21.2%; 5.03%) (16.83%; 6.46%) (16.02%; 11.89%) (28.37%; 4.75%) (30.3%; 9.72%) (30.89%; 12.6%)

22

For the instances with five customers, we find that the solutions, and therefore the costs, from

both charging scenarios are the same. The nonlinear recharge solution costs start to deviate when

we solve the instances with 10 and 15 customers. Figure 3a and Figure 3b illustrates the optimal

routes found by the ILS-SP under the assumption of linear and nonlinear recharge, respectively,

for instance C104C10 (0.75). At each CS in the ECV routes, the values in the parentheses

indicate the amount of energy recharged in kWh. Our matheuristic found completely different

optimal routes for each assumption of the charging function.

(a) Linear charging function (b) Nonlinear charging function

Figure 3: Illustration of the optimal routes found for C104C10 (α = 0.75)

Table 8 shows the results obtained for the medium-sized instances. Here, it is clear that

there are more bolded values, indicating that the ILS-SP finds different solutions under the

nonlinear assumption more frequently for instances whose size are larger. The aforementioned

finding suggests that nonlinear recharge functions provide a better approximation of real-world

problems. In the case of 100 customers, in which the results are presented in Table 9, we find for

all instances different solutions compared to that found under the linear recharge assumption.

The advantage of the SP procedure remains noteworthy as it improves the solution cost for

the majority of the instances. In the case of instance RC104C50 (α = 0.75), the SP procedure

decreases the ILS cost by 48.49%, which is also the best improvement among all results.

It is important to mention that we find six instances whose linear recharge solutions consists

of an infeasible ECV-route, i.e., the labeling algorithm cannot construct any feasible s, t-path

that visits all customers in the original one given the set of CSs in the instances. In particular,

these instances include R102C50 (0.75), RC104C50 (0.25), R104C100 (0.5), RC102C100 (0.5),

RC103C100 (0.75), and RC104C100 (0.5). Furthermore, these six instances all have 50 to

100 customers whose geographical distribution is (partially) random, while the linear recharge

solution of each instance with clustered customer locations remains feasible for all cases. The

aforementioned findings suggests that linear recharge functions might lead to infeasible solutions

when problem instances are highly complex.

23

Table 8: Solution costs for medium-sized instances under nonlinear recharge

25 customers 30 customers 50 customers

α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75 α = 0.25 α = 0.50 α = 0.75

Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time Instance Cost Time Cost Time Cost Time

C101C25 312.87 6 321.24 4 304.07 4 C101C30 339.63 8 340.18 7 308.51 6 C101C50 584.67 20 481.08 19 506.95 18

(36.03%; 12.29%) (21.73%; 6.8%) (31.18%; 18.87%) (22.57%; 8.03%) (28.01%; 1.02%) (32%; 18.71%) (19.81%; 5.27%) (25.32%; 10.26%) (34.65%; 5.63%)

C102C25 300.99 7 301.94 7 314.64 7 C102C30 336.9 11 333.97 10 282.57 11 C102C50 579.91 35 551.7 34 552.39 33

(43.86%; 14.8%) (38.49%; 22.04%) (44.5%; 19.18%) (59.37%; 1.26%) (62.73%; 0%) (64.3%; 2.32%) (50.03%; 14.17%) (54.57%; 11.33%) (50.55%; 13.38%)

C103C25 305.52 9 296.95 10 297.23 10 C103C30 333.34 13 318.73 15 294.76 13 C103C50 576.18 44 578.9 41 529.9 39

(40.37%; 4.75%) (43.81%; 7.36%) (42.16%; 12.17%) (55.8%; 3.55%) (57.91%; 0.8%) (53.59%; 16.2%) (52.1%; 6.82%) (43.62%; 9.96%) (50.14%; 11.86%)

C104C25 270.76 12 264.95 12 267.98 11 C104C30 326.77 17 285.07 23 286.42 19 C104C50 536.82 55 569.54 52 503.67 65

(35.93%; 13.57%) (31.07%; 14.98%) (25.69%; 12.2%) (31.2%; 10.22%) (43.94%; 9.51%) (38.38%; 10.59%) (43.19%; 5.33%) (44.51%; 1.76%) (44.86%; 6.17%)

C105C25 306.13 6 291.83 5 291.62 6 C105C30 365.73 8 324.34 8 325.33 9 C105C50 558.05 26 508.68 25 477.98 26

(32.85%; 0.15%) (22.82%; 15.33%) (40.83%; 5.3%) (37.61%; 0.11%) (44.64%; 2.34%) (37.32%; 0%) (35.37%; 3.34%) (35.81%; 1.89%) (32.27%; 4.67%)

R101C25 644.29 4 614.56 4 614.26 4 R101C30 723.7 6 692.16 6 684.47 5 R101C50 1140.4 15 1127.46 14 1066.3 13

(31.51%; 1.87%) (34.1%; 0.15%) (33.32%; 0.2%) (30.01%; 3.78%) (31.38%; 5.04%) (29.5%; 4.38%) (35.86%; 3%) (37.85%; 4.86%) (38.06%; 7.15%)

R102C25 562.02 9 548.14 9 533.39 8 R102C30 637.75 13 633.85 13 592.36 12 R102C50 1081.4 29 962.3 30 933.32 27

(33.34%; 1.09%) (32.99%; 3.2%) (35.3%; 4.73%) (32.78%; 1.8%) (24.96%; 3.34%) (26.64%; 5.3%) (39.53%; 0.76%) (42.33%; 5.71%) (48.32%; 8.49%)

R103C25 520.83 12 468.09 12 467.27 12 R103C30 539.02 17 531.98 18 522.19 18 R103C50 923.3 46 855.94 47 856.59 52

(22.96%; 2.55%) (29.16%; 10.61%) (27.76%; 13.26%) (15.41%; 11.86%) (23.19%; 6.19%) (19.7%; 9.3%) (34.71%; 3.54%) (39.77%; 6.18%) (44.31%; 0.7%)

R104C25 488.5 14 454.23 12 454 11 R104C30 536.81 20 491.16 19 482.89 20 R104C50 860.28 59 804 56 771.08 50

(18.02%; 9.81%) (23.33%; 11.97%) (24.57%; 10.03%) (15%; 13.53%) (24.28%; 11.99%) (26.17%; 8.15%) (31.68%; 5.85%) (29.03%; 11.82%) (34.95%; 5.35%)

R105C25 573.94 5 525.24 4 519.12 4 R105C30 614.75 7 594.63 7 557.96 7 R105C50 1079.12 20 1046.56 22 1013.22 19

(21.82%; 3.14%) (12.98%; 6.68%) (15.95%; 6.53%) (23.57%; 2.92%) (21.57%; 1.43%) (22.18%; 5.93%) (26.62%; 4.47%) (31.11%; 2.03%) (29.66%; 0.67%)

RC101C25 635.01 3 501.12 2 491.49 2 RC101C30 1231.92 5 799.52 4 787.14 3 RC101C50 1306.17 14 1021.61 10 983.29 9

(1.23%; 10.82%) (3.96%; 14.08%) (0.82%; 17.12%) (0.67%; 5.59%) (12.02%; 3.37%) (12.57%; 3.63%) (33.64%; 13.35%) (42.78%; 10.1%) (42.05%; 10.92%)

RC102C25 596.6 5 469.31 3 456.58 5 RC102C30 914.13 7 1068.97 5 588.63 3 RC102C50 1208.21 22 967.49 16 948.87 13

(30.94%; 3.81%) (31.17%; 20.26%) (27.54%; 8.32%) (17.38%; 23.79%) (17.81%; 1.21%) (51.69%; 5.96%) (35.35%; 6%) (35.98%; 6.51%) (30.98%; 10.17%)

RC103C25 596.07 7 516.51 5 394.35 3 RC103C30 1054.97 7 759.26 5 626.66 4 RC103C50 1010.53 27 921.29 23 775.31 17

(34.54%; 4.58%) (24.82%; 13.59%) (16.21%; 17.81%) (15.96%; 8.33%) (11.69%; 29.21%) (27.34%; 12.29%) (26.75%; 39.67%) (55.72%; 10.73%) (50.14%; 17.08%)

RC104C25 586.91 7 509.16 5 391.92 4 RC104C30 1051.49 7 880.25 7 727.3 7 RC104C50 1437.22 28 842.14 29 661.66 20

(28.44%; 1.85%) (31.75%; 3.33%) (20.13%; 4.13%) (11.68%; 8.32%) (19.61%; 17.63%) (13.21%; 27.38%) (24.34%; 14.4%) (44.12%; 32.6%) (39.59%; 48.49%)

RC105C25 713.42 4 658.8 3 504.44 2 RC105C30 1227.73 5 1066.99 6 1052.07 4 RC105C50 1103.19 19 931.23 11 828.45 11

(27.61%; 5.48%) (27.7%; 4.44%) (14.83%; 11.16%) (16.36%; 1.24%) (9.43%; 7.91%) (13.49%; 9.2%) (20.36%; 40.85%) (28.28%; 14.4%) (39.33%; 18.95%)

Average 494.26 7.33 449.47 6.47 420.16 6.2 Average 682.31 10.07 608.07 10.2 541.28 9.4 Average 932.36 30.6 811.33 28.6 760.6 27.47

(29.3%; 6.04%) (27.33%; 10.32%) (26.72%; 10.73%) (25.69%; 6.96%) (28.88%; 6.73%) (31.21%; 9.29%) (33.96%; 11.12%) (39.39%; 9.34%) (40.66%; 11.31%)

24

Table 9: Solution costs for large-sized instances under nonlinear recharge

α = 0.25 α = 0.50 α = 0.75

Instance Cost Time Cost Time Cost Time

C101C100 1667.55 (39.04%; 0.03%) 115 1443.88 (47.65%; 8.9%) 109 1235.6 (41.43%; 13.86%) 98

C102C100 1424.35 (58.52%; 8.62%) 164 1273.53 (53.31%; 13.4%) 182 1193.77 (58.75%; 12.37%) 152

C103C100 1947.96 (37.53%; 5.24%) 212 1454.56 (50.49%; 6.87%) 237 1121.31 (56.5%; 16%) 200

C104C100 1799.1 (40.31%; 5.2%) 321 1141.7 (49.44%; 15.36%) 333 1101.43 (48.35%; 18.04%) 321

C105C100 1595.59 (43.37%; 0.13%) 149 1488.89 (43.73%; 10.21%) 185 1300.18 (54.87%; 1.82%) 170

R101C100 1860.34 (39.85%; 6.58%) 58 1857.54 (36.58%; 6.13%) 60 1763.68 (36.42%; 6.3%) 47

R102C100 1706.82 (41.21%; 7.3%) 110 1623.09 (44.12%; 7.24%) 117 1523.57 (42.22%; 8.82%) 101

R103C100 1567.51 (41.38%; 2.37%) 202 1457.64 (40.46%; 7.09%) 201 1343.07 (46.87%; 5.49%) 206

R104C100 1455.34 (27.67%; 5.3%) 273 1226.1 (26.62%; 7.21%) 271 1197.31 (34.31%; 2.23%) 233

R105C100 1685.39 (36.04%; 2.89%) 87 1615.98 (37.88%; 2.7%) 88 1481.23 (41.56%; 0.51%) 86

RC101C100 2353.38 (40.05%; 8.19%) 79 1954.39 (42.78%; 16.46%) 74 2159.38 (42.37%; 3.9%) 87

RC102C100 2517.15 (37.71%; 1.9%) 123 1877.35 (35.6%; 21.5%) 107 1727.22 (45.82%; 15.49%) 96

RC103C100 2392.22 (34.82%; 3%) 147 1865.54 (41.4%; 12.72%) 162 1646.64 (38.93%; 20.08%) 174

RC104C100 2235.56 (35.96%; 0.64%) 192 1955.96 (37.78%; 5.72%) 206 1486.28 (40.72%; 24.96%) 196

RC105C100 2507.08 (36.15%; 3.12%) 117 1737.9 (41.25%; 24.2%) 129 1630.57 (55.36%; 2.62%) 130

Average 1914.36 (39.31%; 4.03%) 156.6 1598.27 (41.94%; 11.05%) 164.07 1460.75 (45.63%; 10.17%) 153.13

We also provide Table 10 which summarises average costs on every level of emissions re-

strictions for each class of instances under the nonlinear recharge scenario. Furthermore, the

values in parentheses indicate the (absolute) deviation in percentage from the corresponding

costs when we assume linear recharge.

Table 10: Summary for all classes of instances under nonlinear recharge

|N | α Cost Time |N | α Cost Time |N | α Cost Time

0.25 230.03 (0%) 0.08 0.25 494.26 (2.06%) 7.33 0.25 1914.36 (11.49%) 156.6

5 0.5 227.98 (0%) 0 25 0.5 449.47 (1.6%) 6.47 100 0.5 1598.27 (5.4%) 164.07

0.75 212.07 (0%) 0 0.75 420.16 (1.25%) 6.2 0.75 1460.75 (4.56%) 153.13

Average 223.36 (0%) 0.03 Average 454.63 (1.64%) 6.67 Average 1657.79 (7.15%) 157.93

0.25 346.25 (0%) 0.08 0.25 682.31 (2.18%) 10.07

10 0.5 325.15 (0.01%) 0 30 0.5 608.07 (1.07%) 10.2

0.75 295.73 (0.99%) 0 0.75 541.28 (4.23%) 9.4

Average 322.38 (0.33%) 0.03 Average 610.55 (2.49%) 9.89

0.25 457.13 (0.23%) 0.33 0.25 932.36 (6.77%) 30.6

15 0.5 394.48 (2.1%) 0.25 50 0.5 811.33 (3.27%) 28.6

0.75 371.41 (0.39%) 0.08 0.75 760.60 (3.7%) 27.47

Average 407.67 (0.91%) 0.22 Average 834.76 (4.58%) 28.89

On average, instances with larger size achieve higher deviation in costs, suggesting that the

linear recharge assumption becomes less appropriate as an estimation for problem instances with

high level of complexity. Furthermore, we conclude that the nonlinear recharge assumption does

not exhibit disadvantage compared to the linear scenario in terms of executing time due to two

25

reasons. First, the ILS-SP also obtains the solutions for large-sized instances within roughly

five minutes under the nonlinear scenarios. Second, the executing time of the ILS-SP under the

linear recharge assumption is only 10 to 20 seconds faster on average.

In addition, we analyse the impact of the CSs in the solutions found by the ILS-SP. Table 11

presents the proportion of the ECV-routes that visit at least one CS grouped by the level of

emissions restriction and the size of the instances. For all cases, more than half of the ECV-

routes in the optimal solutions require at least a visit to the CSs. This finding is consistent

with that found in Montoya et al. (2017), in which they stated that allowing ECVs to recharge

during their routes was crucial for optimising the ECV routing with nonlinear recharge.

Table 11: Proportion of the ECV-routes that visit at least one CS

Number of customers

α 5 10 15 25 30 50 100

0.25 90.48% 87.88% 82.50% 86.25% 81.44% 86.36% 84.02%

0.5 88.89% 76.19% 80.77% 79.63% 77.33% 85.23% 71.52%

0.75 84.62% 81.82% 75.00% 78.05% 75.00% 85.71% 66.97%

In Table 12, we show the proportion of the ECV-routes which is partially recharged among

those that visit at least one CS. The proportion varies from 69.56% to 100%, emphasising the

importance of partial recharge in our problem and also in practice. Partial recharge is beneficial

in terms of costs since it avoids charging more than necessary, and in terms of customer time

windows since the ECVs can be charged as much as needed to reach the targeted customers in

time. It is therefore more flexible for the ILS-SP to route the customers on ECV-routes under

partial recharge policy.

Table 12: Proportion of partially recharged ECV-routes among those that visit at least one CS

Number of customers

α 5 10 15 25 30 50 100

0.25 75.68% 84.00% 88.24% 95.40% 77.17% 90.45% 88.52%

0.5 71.88% 82.86% 94.44% 94.92% 79.27% 96.70% 92.31%

0.75 69.57% 80.00% 95.00% 100.00% 83.64% 98.28% 97.73%

Lastly, we analyse the maximum number of visits to a CS for each test instances. We find

that this number varies from 0 (i.e., the ECVs in the solution does not visit to the CSs) to 11.

This finding suggests that restricting the number of CS-visits to a certain number, which is a

common practice in the VRP studies, might not be beneficial for finding the optimal routing.

Therefore, our ILS-SP is superior in the sense that it allows as many visits to the same CS as

needed, giving more flexibility to the matheuristic in routing the customers.

26

6 Conclusions

In this paper, we introduce a green mixed fleet vehicle routing problem with nonlinear par-

tial recharge and time windows (GMFVRP-NLPRTW). We focus on the impact of nonlinear

recharging functions, which refers to the nonlinear relationship between the amount of energy

recharged and the state of charge of the vehicle’s battery. Our problem accounts for the CO2

emissions generated by conventional vehicles (ICCVs) by limiting the total amount of emissions

to a certain value. We propose a matheuristic that combines an iterated local search and a set

partitioning formulation (ILS-SP) to solve the aforementioned problem. In addition, we conduct

a computational study with 288 test instances whose size can be classified into small, medium,

and large. As our focus is on the nonlinear recharge functions, we execute the ILS-SP under

two scenarios: linear recharge and nonlinear recharge.

We find that when the number of customers grows, the deviation of costs found under the

nonlinear recharge assumption compared to that under the linear scenario becomes more frequent

and exhibits greater variation. The linear solutions of six instances with 50 to 100 customers are

also found to be infeasible under the nonlinear scenario. The aforementioned findings indicate

that the more complex the problem instance is, the less appropriate the linear recharge assump-

tion becomes. Furthermore, the solutions found under the linear recharge assumption remain

feasible under the nonlinear scenario for 97.92% of our instances. A possible explanation is that

the partial recharge policy helps avoid the violation of time windows constraints (the potential

cause for infeasibility of the solutions with linear recharge). We conclude that nonlinear char-

ging functions should be considered for problem instances with high level of complexity, as they

provide a better approximation compared to the linear counterparts.

In addition, we analyse the routes travelled by an electric vehicle (ECV) under the nonlinear

recharge assumption. We find that the partial recharge policy is beneficial in practice to avoid

charging more than necessary, and it offers flexibility for the ILS-SP to route the customers.

We also find that the optimal solution for a test instance can require up to 11 visits to the

same charging station (CS), emphasizing a strength of our ILS-SP in which it does not limit

the number of CS-visits to a certain value. Furthermore, we conclude that it is beneficial to

solve the SP formulation as an improvement step after the ILS procedure. This is due to the

fact that the SP procedure improves the costs found at the end of the ILS procedure for 84.72%

of our instances in the nonlinear scenario, and it can achieve a cost reduction of up to 48.49%.

Lastly, our ILS-SP is time-efficient in the sense that it achieves the solutions within a reasonable

amount of time.

27

Potential future research includes developing a new method to solve the GMFVRP-NLPRTW

to compare with our study. One might be interested in adding guidance for searching new

neighborhoods and local optimum in the solution space, as our choice of perturbation and local

search operator in each iteration is random. New recharge policies should also be considered,

as we only let the ECVs recharge enough to reach the customers subsequent to the following

node. Although our problem allows for multiple charging technologies, we do not analyse the

effect of this characteristic in our computational study. Therefore, another research direction

is to study the impact of employing multiple technologies. Lastly, we assume in this study a

constant energy consumption rate for the ECVs, which depends only on the distance travelled.

One might consider a more realistic model of energy consumption that involves vehicle load,

vehicle speed, or traffic congestion.

28

References

Asghari, M., Al-e, S. M. J. M. et al. (2021). Green vehicle routing problem: A state-of-the-art

review. International Journal of Production Economics, 231 , 107899.

Bektaş, T. & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part

B: Methodological , 45 (8), 1232–1250.

Erdoğan, S. & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation research

part E: logistics and transportation review , 48 (1), 100–114.

Felipe, Á., Ortuño, M. T., Righini, G. & Tirado, G. (2014). A heuristic approach for the green

vehicle routing problem with multiple technologies and partial recharges. Transportation

Research Part E: Logistics and Transportation Review , 71 , 111–128.

Froger, A., Mendoza, J. E., Jabali, O. & Laporte, G. (2019). Improved formulations and

algorithmic components for the electric vehicle routing problem with nonlinear charging

functions. Computers & Operations Research, 104 , 256–294.

Goeke, D. & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles.

European Journal of Operational Research, 245 (1), 81–99.

Gonçalves, F., Cardoso, S. R., Relvas, S. & Barbosa-Póvoa, A. (2011). Optimization of a

distribution network using electric vehicles: A vrp problem. In Proceedings of the io2011-

15 congresso da associação portuguesa de investigação operacional, coimbra, portugal (Vol.

2011, pp. 18–20).

Jabali, O., Van Woensel, T. & De Kok, A. (2012). Analysis of travel times and co2 emissions

in time-dependent vehicle routing. Production and Operations Management , 21 (6), 1060–

1074.

Kramer, R., Subramanian, A., Vidal, T. & Lućıdio dos Anjos, F. C. (2015). A matheuristic

approach for the pollution-routing problem. European Journal of Operational Research,

243 (2), 523–539.

Kucukoglu, I., Dewil, R. & Cattrysse, D. (2021). The electric vehicle routing problem and its

variations: A literature review. Computers & Industrial Engineering , 161 , 107650.

Macrina, G., Pugliese, L. D. P., Guerriero, F. & Laporte, G. (2019). The green mixed fleet

vehicle routing problem with partial battery recharging and time windows. Computers &

Operations Research, 101 , 183–199.

Moghdani, R., Salimifard, K., Demir, E. & Benyettou, A. (2021). The green vehicle routing

problem: A systematic literature review. Journal of Cleaner Production, 279 , 123691.

Montoya, A., Guéret, C., Mendoza, J. E. & Villegas, J. G. (2017). The electric vehicle routing

problem with nonlinear charging function. Transportation Research Part B: Methodolo-

29

gical , 103 , 87–110.

Sabet, S. & Farooq, B. (2022). Green vehicle routing problem: State of the art and future

directions. IEEE Access.

Schneider, M., Stenger, A. & Goeke, D. (2014). The electric vehicle-routing problem with time

windows and recharging stations. Transportation science, 48 (4), 500–520.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations research, 35 (2), 254–265.

Tajik, N., Tavakkoli-Moghaddam, R., Vahdani, B. & Mousavi, S. M. (2014). A robust optimiz-

ation approach for pollution routing problem with pickup and delivery under uncertainty.

Journal of Manufacturing Systems, 33 (2), 277–286.

Úbeda, S., Faulin, J., Serrano, A. & Arcelus, F. J. (2014). Solving the green capacitated vehicle

routing problem using a tabu search algorithm. Lecture Notes in Management Science,

6 (1), 141–149.

Uhrig, M., Weiß, L., Suriyah, M. & Leibfried, T. (2015). E-mobility in car parks–guidelines for

charging infrastructure expansion planning and operation based on stochastic simulations.

In Evs28 international electric vehicle symposium and exhibition (pp. 1–12).

Vidal, T., Crainic, T. G., Gendreau, M. & Prins, C. (2013). Heuristics for multi-attribute vehicle

routing problems: A survey and synthesis. European Journal of Operational Research,

231 (1), 1–21.

Ye, C., He, W. & Chen, H. (2022). Electric vehicle routing models and solution algorithms in

logistics distribution: A systematic review. Environmental Science and Pollution Research,

29 (38), 57067–57090.

Zhao, M. & Lu, Y. (2019). A heuristic approach for a real-world electric vehicle routing problem.

Algorithms, 12 (2), 45.

Zündorf, T. (2014). Electric vehicle routing with realistic recharging models. Unpublished

Master’s thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany .

30

A Pseudocode for the Insertion Heuristic for ICCV-routes

In Section 4.1.2, we describe the insertion heuristic for creating the set of ICCV-routes in

the initial solution. Here, we present in Algorithm 4 the pseudocode for the aforementioned

procedure.

Algorithm 4 The insertion heuristic framework for the ICCV-routes

procedure insertionHeuristicForICCV(C)
Initialise the set of all ICCV-routes ηC
stopCriteria ← false

while stopCriteria is false do
r ← (s, i′, t), where i′ ← argmini∈C{tli}
if Adding r to ηC violates the emissions constraint then

If there are unrouted customers in C′, then remove the customers that are not in C′ in the last
ICCV-route until the emissions constraint is satisfied, then initialise a new ICCV-route with
the unrouted customers in C′.
Otherwise, stopCriteria ← true

end if
stopInserting ← false

while stopInserting is false do
p∗u ← minp∈{1,...m}∪{t}{c1(ip−1, u, ip)} ∀u ∈ C
u∗ ← maxu∈C{c2(i(u), u, j(u))}
if Inserting u∗ into the position p∗u∗ of the current route is feasible then

Insert u∗ and remove this customer from the set C
else

stopInserting ← true

end if
end while
Add the current route r to ηC
if C is empty then

stopCriteria ← true

end if
end while
return ηC

end procedure

B Perturbation operators

As mentioned in Section 4.3, the ILS-SP employs two additional perturbation operators,

Random-Permute and Cyclic-Exchange, beside the three Relocate operators. In this section, we

describe the mechanisms of the additional operators.

First, the Random-Permute is considered only if there are at least one ICCV- and one ECV-

routes. For each type of vehicles, we randomly selected a route from the current solution. These

two routes are then removed from the solution and destroyed, and their customers are stored

in ascending order of their due time. We first initialise an ICCV-route that visits the customer

with the earliest due time and is feasible with respect to the current solution. We then look for

the cheapest feasible customer to insert into the position right after the current customer (i.e.,

in the end of the current route). The insertion of new customers terminates when the algorithm

31

cannot find any feasible customer, after which the ECV-routes are created in the same manner.

In the end, we add the new ICCV- and ECV-routes to the current solution and terminate the

perturbation procedure.

Second, the Cyclic-Exchange considers two randomly selected routes, each can either be an

ICCV- or an ECV-route. Let the the first route consists of k customers and the second route

l customers. We consider exchanging two sequences of customers with lengths ranging from 1

to ⌊k/2⌋ and from 1 to ⌊l/2⌋ for route 1 and route 2, respectively. For each combination of

sequences, we verify the feasibility of the new routes and the new solution cost they generate.

We then choose the combination of sequences that generates the lowest cost and perturb the

current solution.

C The Labeling algorithm

In this section, we present the pseudocode for our labeling algorithm, whose framework is

shown in Algorithm 5. The algorithm takes in a sequence of customers to be visited (denoted

by (v1, v2, ...vm)), the starting and ending depots (denoted by v0 and vm+1, respectively), and

the set R of all CSs.

Algorithm 5 The labeling algorithm

procedure labeling({v0, v1, v2, ..., vm, vm+1}, R)
Initialise Lvi = ∅, ∀i ∈ {0, 1, ...m+ 1}
Add the initial label lv0 = (0, BE , wa, v0, null) to Lv0

for i ∈ {1, ...m+ 1} do
Consider going from customer vi−1 to customer vi
for l ∈ Lvi−1 do

Create new labels lvi , whose predecessor is l, for customer vi based on the two scenarios
Remove the invalid labels
if Any new label lvi dominates any existing labels in Lvi then

Add lvi to Lvi and remove the dominated labels from Lvi

end if
end for

end for
return The v0, vm+1-path whose cost is the minimal

end procedure

New labels are created based on two scenarios: Either the ECV travels directly from a cus-

tomer to another, or it visits a CS in between the customers. To illustrate the scenarios, we

consider a sequence of customers vi−1 → vi → vi+1 belong to the input sequence of customers.

Consider a label lvi−1 = (tavi−1
, zvi−1 , fvi−1 , vi−1, l) ∈ Lvi−1 of customer vi−1. We create new labels

for vi as follows: In the first scenario, the ECV travels directly from vi−1 to vi. Thus, we create

new labels as shown in Algorithm 6. The label is invalid if the arrival time at vi violates the

due time of vi, or the energy upon arrival at vi drops below 10%BE .

32

Algorithm 6 Creating new label: travel directly from i to j

procedure createNewLabel1(vi−1, vi, lvi−1)
tavi ← max{evi−1 , t

a
vi−1
}+ svi−1 + tvivj

zvi ← zvi−1 − πdvivj
fvi ← fvi−1 + cEvivjdvivj
if tavi > bvi or zvi < 0.1BE then

return null

end if
return New label lvi = (tavi , zvi , fvi , j, lvi−1)

end procedure

In the second scenario, we consider the possibility of inserting a CS k in between vi−1 and vi.

Algorithm 7 shows the procedure of creating new labels for vi under this scenario. To compute

the maximum amount of recharge g1, we take into account also the time windows of the next

customer after vi (i.e., customer vi+1) such that with the amount of charge g1, we can still reach

the next customer in time. To compute the required amount of recharge g2, we employ a policy

where we only charge enough to reach the customer after vi. If it is impossible, then we will

recharge as much as we can (i.e., recharge an amount of g1).

Algorithm 7 Creating new label: travel from i to j via a CS k

procedure createNewLabel2(vi−1, vi, k, lvi−1)
tak ← max{evi−1 , t

a
vi−1
}+ svi−1 + tvik

zk ← zvi−1 − πdvik
if tak > bk or zk < 0.1BE then

return null

end if
g1 ← compute the maximum amount of recharge
g2 ← compute the required amount of recharge
g ← min{g1,max{g2 − zk, 0}}
fk ← fvi−1 + cEvikdvik + wkg
lk ← (tak, zk, fk, k, lvi−1)
tc ← charging time corresponding to the amount of recharge g
tavvi−1

← tak + tc + tkvj
zvvi−1

← zk + g − πdkvj
fvvi−1

← fk + cEkvjdkvj
if tavi > bvi or zvi < 0.1BE then

return null

end if
return New label lvi = (tavi , zvi , fvi , j, lk)

end procedure

D The Mixed Integer Program formulation for finding the max-

imum emissions

In this section, we provide the Mixed Integer Program (MIP) formulation for solving the G-

VRP with time windows in which the fleet in consideration only consists of ICCVs. As we do

not consider ECVs, we redefine the set of vertices V = N ∪ {s, t} consisting of the customers,

33

the starting and the ending depots. The set of arcs A is also redefined such that it excludes all

arcs that are incident to the CSs. Our decision variables include xCij which takes value of 1 if the

ICCV travels on arc (i, j) ∈ A and 0 otherwise, uCi denoting the load remaining after serving

customer i (kg), and τi denoting the arrival time at customer i (hour). The MIP is as follows:

min
∑
i∈V

∑
j∈V

cCijdijx
C
ij (11a)

s.t.
∑
j∈V

xCij = 1, ∀i ∈ N, (11b)

∑
j∈V \{s}

xCij −
∑

j∈V \{t}

xCji = 0, ∀i ∈ V, (11c)

∑
j∈V

xCsj ≤ nC , (11d)

∑
j∈V \{s}

xCsi −
∑

j∈V \{t}

xCjt = 0, (11e)

uCi + qjx
C
ij −QC(1− xCij) ≤ uCj , ∀i ∈ V \ {s, t}, j ∈ V \ {s}, (11f)

uCs = QC , (11g)

τCi + (tij + si)x
C
ij − T (1− xCij) ≤ τCj , ∀i ∈ V, j ∈ V, (11h)

tei ≤ τi ≤ tli, ∀i ∈ V, (11i)∑
i∈V

∑
j∈V

εijdijx
C
ij ≤ UB, (11j)

xCij ∈ {0, 1}, ∀i ∈ V, j ∈ V, (11k)

uCi ≥ 0, ∀i ∈ V, (11l)

τi ≥ 0, ∀i ∈ V. (11m)

The objective function (11a) is the total distance travelled by the ICCVs. Constraints (11b)

ensure that each customer is visited by a single ICCV. Constraints (11c) present the flow con-

servation. Constraint (11d) ensures that the number of ICCVs employed does not exceed that

available in the fleet. Constraint (11e) ensures that every route starts and ends at the de-

pot. Constraints (11f) defines the decision variables uCi . Constrain (11g) sets the initial load

before the ICCVs visit any customers. Constraints (11h) define the decision variables τi. Con-

straints (11i) ensure that the time windows of every customer are satisfied. Constraint (11j)

restricts the total amount of emissions generated by the ICCVs to a certain level UB. Lastly,

constraints (11k)-(11m) define the domains of the decision variables.

We solve the aforementioned MIP formulation using CPLEX Studio 22.1.0. with the gap

34

being set as follows: For the small-sized instances, we set the gap to 0. For the medium- and

large-sized instances, if the solving time exceed 10 minutes, then we set the gap to 0.2. This

value will be increased to 0.4, 0.5, and then 0.6 each time the algorithm cannot find a solution

within 10 minutes for the current gap. After the algorithm terminates, we compute the total

emissions generated by the found solutions and set UBmax to this value.

E Programming Code

We implement our ILS-SP matheuristic in Java. The structure of our Java project consists of

the following classes:

Vertex: An object of this class stores the relevant information about a vertex, namely type

(depot, customer, or CS), ID, coordinates, demand, time windows, service time. If the vertex

is the depot or a CS, then the corresponding object also stores the charging function (either

linear or nonlinear) and the charging cost. The class Vertex stores the following variables: the

predecessor vertex, the distance travelled up to this vertex, the load remaining after serving

this vertex, the service start time, the energy level upon arrival, the energy recharged, and

the emissions generated up to this vertex. The main methods of this class include setting

a predecessor vertex, setting the amount of energy recharged, retrieving the emission factor,

retrieving the maximum amount of energy that can be recharged at this vertex, and retrieving

the charging time given a desired amount of charge.

Instance: An object of this class stores all the vertices belongs to a test instance, together

with other information provided by the instance such as the load capacity, the battery capacity,

and the vehicle speed. The main methods of this class include retrieving the set of customers

N , the set of CSs R, and the set of all vertices V .

ICCVRoute: An object of this class represents an ICCV-route, which is stored as an ArrayList

of objects belonging to the class Vertex. The parameter stored in this class is the upper bound

on the emissions. Initialising an ICCVRoute object requires the starting and ending depot, and

a customer. The main methods of this class include inserting a vertex/ a sequence of vertices,

removing a vertex/ a sequence of vertices, retrieving a vertex given a certain position in the

route, verifying the feasibility of the corresponding ICCV-route, and retrieving the total cost or

emissions of the corresponding ICCV-route.

ECVRoute: An object of this class represents an ECV-route, which is stored as an ArrayList

of objects belonging to the class Vertex. The parameter stored in this class is battery capacity

of the corresponding ECV. Initialising an ECVRoute object requires the starting and ending

depot, and a customer. The main methods of this class are those of the ICCVRoute class but

35

with different mechanisms.

Label: An object of this class represents a label in the labeling algorithm. A Label object

stores a vertex, the arrival time at the vertex, the energy level upon arrival at the vertex, the

accumulated cost upon arrival at the vertex, and the predecessor label. The main method of

this class is verifying if a given label is dominant to this label.

ECVLabeling: An object of this class represents the labeling algorithm on a graph. Initial-

ising an ECVLabeling object requires the stating and ending depots, a sequence of customers to

be visited, and the set of CSs R. The main method of this class is finding the best ECV-route

(in the sense that it achieves the minimal cost), which return either the best found cost or ∞ if

no feasible ECV-route can be found. The mechanism of the aforementioned method is described

in Section 4.4 and Section C. We also implement for this class a method which retrieves the

best ECV-route, if any (return null if no feasible ECV-route is found).

ILSSP: An object of this class represents the ILS-SP algorithm on a test instance. Initialising

an ILSSP object requires a test instance, an upper bound UB on the amount of CO2 emissions,

and a value for the level of restriction α. Upon creating an ILSSP object, we perform the

preliminary steps mentioned in Section 4.1 and adjust the value of UB if necessary. The main

method of this class is running the ILS-SP on the input test instance, which is based on the four

main procedures: initialisation, localSearch, perturbation, and solveSP which solves

the SP formulation after the termination of the ILS procedure using CPLEX. The mechanism

of each procedure is described in the previous sections. We also implement a method to return

the solution found by the ILS-SP, whose output includes the objective cost, the total emissions

generated by the ICCVs, the ICCV-routes, and the ECV-routes with the amount of energy

recharged at the CSs, if any.

36

