
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis BSc2 in Econometrics and Economics

An Adaptive Large Neighborhood Search algorithm

for the Green Mixed Fleet Vehicle Routing Problem

with Partial Recharging and Time Windows

Tijn Hoogeveen (499802)

Supervisor: Ymro Hoogendoorn

Second assessor: dr. Riley Badenbroek

Date: 29th June 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics, or Erasmus University Rotterdam.

Abstract

In this thesis, we address the challenge of solving the Green Mixed Fleet Vehicle Routing

Problem with Partial Recharging and Time Windows. In this version of the vehicle rout-

ing problem, a fleet consisting of both electric vehicles and internal combustion commercial

vehicles is dispatched from a central depot to serve a set of customers, with the goal of

minimizing the costs while restricting CO2 emissions. We compare the performance of two

heuristics in solving this problem: iterated local search (ILS) and adaptive large neighbor-

hood search (ALNS). Our results demonstrate that the ALNS consistently outperforms the

ILS, producing better solutions in 91% of the instances and improving the initial solution

by an additional 10 percentage points more than the ILS on average. The ALNS also per-

forms better in handling infeasible initial solutions, achieving feasibility for all such instances,

while the ILS fails in three instances. Although the ALNS has longer computational times,

its average running time remains under a minute even for the largest instances (with 100

customers).

1 Introduction

In the past decade, policymakers have become increasingly concerned about greenhouse gas

emission reduction. As the transportation industry is one of the biggest contributors to these

emissions, policies aiming to decrease emissions in this sector are crucial (Zelasky & Buonocore,

2021). There is thus a need to develop transportation and distribution systems that are both

ecologically friendly and effective. Therefore, several researchers have started to view these

transportation problems from an ecologically conscious perspective by integrating sustainability

objectives into classic optimization problems. One of the most common of these transportation

problems is the Vehicle Routing Problem (VRP). This problem optimizes a set of routes for a

fleet of vehicles to traverse in order to deliver goods to a given set of customers. VRPs with

ecologically conscious objectives included are known as Green-VRPs (G-VRPs).

Increasingly more research is done on these G-VRPs in the last years (Fernández Gil, Lalla-

Ruiz, Gómez Sánchez, Castro et al., 2022). These G-VRPs take into account the CO2 emissions

from internal combustion commercial vehicles (ICCVs) and aim to find methods to decrease

these emissions. In many cases, this is done by replacing ICCVs with electric vehicles (EVs).

The VRP using electric vehicles is known as the Electric Vehicle Routing Problem (EVRP). The

main advantages of using EVs compared to ICCVs is that they do not produce CO2 emissions and

that they are more silent. The major disadvantages of EVs are their limited battery capacities,

long charging times, and the limited amount of public charging stations available. The EVRP,

therefore, includes battery constraints of the vehicles and a set of recharging stations into the

classical VRP.

This thesis will examine a mixed fleet model, in which both EVs and ICCVs are dispatched. A

limit is set on the CO2 emissions of the fleet. Furthermore, all customers will have time windows

in which they need to be visited, and the model will allow for partial recharging at a charging

station for the EVs. This model is called the Green Mixed Fleet Vehicle Routing Problem

with Partial Recharging and Time Windows, or GMFVRP-PRTW, and has been introduced by

Macrina, Di Puglia Pugliese, Guerriero and Laporte (2019).

The GMFVRP-PRTW, and G-VRPs in general, are NP-hard combinatorial optimization

1

problems. Solving them to optimality becomes computationally expensive for large instances.

Therefore, various heuristics have been introduced to efficiently generate a solution to approach

the optimal solution. In this thesis, two heuristical approaches will be implemented to solve the

GMFVRP-PRTW, namely iterated local search (ILS) and adaptive large neighborhood search

(ALNS).

The ILS metaheuristic first creates an initial solution and then uses a local search algorithm

to iteratively improve this solution. In every iteration, this local search heuristic will move one

customer to another route at a position such that the total cost decrease is maximized. The

implementation of this heuristic will be based on Macrina et al. (2019).

The ALNS also starts with the creation of an initial solution. The search process of the

ALNS is then characterized by a selection of destroy and repair heuristics, which denote the

“neighborhoods” which will be searched. At each iteration, both a destroy and a repair heuristic

will be applied to the current solution, after which is determined whether the new solution

is accepted. This selection process allows slightly worse solutions to still be selected. The

implementation will be based on Pisinger and Røpke (2007), modified for the GMFVRP-PRTW.

The advantages of the ALNS compared to the ILS are that due to the broader search,

stemming from the larger neighborhoods, the randomization in neighborhood selection, and the

chance that worse solutions are accepted, better minima can be found, as the ILS is likely to

get stuck in a local minimum earlier. Therefore, the ALNS could lead to better solutions than

the ILS. The main disadvantage of the ALNS is that it is computationally slower than the ILS.

In this thesis, the performance of both the ILS and the ALNS on the GMFVRP-PRTW will

be compared, with a focus on the quality of the algorithms’ solutions and computation speeds.

Furthermore, we will examine the solutions derived from these algorithms.

In Section 2, we will cover the literature review. In Section 3, the problem statement will

be defined. In Section 4, we will describe the iterated local search heuristic. In Section 5 the

adaptive local search neighborhood heuristic will be covered. In Section 6, we will describe the

numerical experiment and show the results. We will provide the conclusion and discussion in

Section 7.

2 Literature review

Dantzig and Ramser (1959) were the first to introduce the concept that is now known as the

Vehicle Routing Problem (VRP), which they named the “Truck Dispatching Problem.” Their

work focused on creating a model that addressed the efficient transportation of oil from a central

depot to multiple gas stations using a fleet of identical trucks, with the aim of minimizing the

total distance traveled. Building upon their foundation, Clarke and Wright (1964) expanded the

problem into a broader context, formalizing the VRP framework. The VRP involves optimizing

the distribution of goods to geographically dispersed customers from a central depot, considering

trucks with varying capacities. Over the years, the VRP has become a highly researched area

within Operations Research.

The introduction of green objectives in VRPs is a relatively new phenomenon. The first

G-VRPs calculated CO2 emissions and included them in the objective function. Figliozzi (2011)

modeled the fuel spent as a proxy for the emissions. Bektaş and Laporte (2011) were the first to

2

explicitly model the emissions. They called this problem, with the emissions incorporated into

the objective function, the Pollution Routing Problem (PRP).

Other versions of G-VRPs included the introduction of alternative fuel vehicles. Erdoğan

and Miller-Hooks (2012) created such a G=VRP with alternative fuel vehicles. In this problem,

a vehicle’s fuel tank can be charged at designated charging stations, and its fuel consumption is

proportional to the distance traveled by the vehicle.

This problem is extended by Schneider, Stenger and Goeke (2014), who introduced the

Electric Vehicle Routing Problem with Time Windows (EVRP-TW). In the case of an EVRP,

implementing time windows is more complex than for regular VRPs, as a charging strategy

needs to be constructed which considers the charging times and their effect on the time windows.

Schneider et al. (2014) computed these charging times by using their battery state of charge on

arrival at a charging station, modeling a full recharge at each charging station visit.

Goeke and Schneider (2015) considered a green mixed fleet VRP including time window

(GMFVRP-TW), in which both EVs and ICCVs are dispatched. They introduced a realistic

energy consumption model considering factors like speed, vehicle mass, and gradient and pro-

posed three objective functions: minimizing distance, minimizing energy and labor costs, and

considering battery replacement costs after depreciation. Like Schneider et al. (2014), they

modeled a full recharge at each charging station.

Macrina et al. (2019) built on this GMFVRP-TW, and extended it by allowing a partial

recharging strategy (GMFVRP-PRTW), as this can lead to better solutions. Furthermore, they

took into account the CO2 emissions produced by the ICCVs and explicitly restricted these.

As mentioned in the introduction, these complex vehicle routing problems can only be solved

to optimality using exact methods for small instances. Therefore, heuristics are used to obtain

high-quality solutions for large instances of these problems.

The earlier mentioned paper by Macrina et al. (2019) uses an Iterated Local Search (ILS)

for this purpose. The ILS starts from an initial solution and iteratively searches for an improve-

ment in the solution. The ILS implemented by Macrina et al. (2019) specifically searches for

improvement following from moving one customer to another route at each iteration.

Another popular heuristic used in VRPs is the Adaptive Large Neighborhood Search (ALNS).

This method has been introduced by Røpke and Pisinger (2006a), for the pickup and delivery

problem with time windows. The ALNS searches for a much broader neighborhood, by making

multiple changes at each iteration, and by allowing to accept solutions with a worse objective

value. Pisinger and Røpke (2007) build a framework to implement the ALNS for a variety of

VRPs. This framework will be used to apply the ALNS to the GMFVRP-PRTW,

The ALNS has been implemented on several G-VRPs. For example, by Bektaş and Laporte

(2011) for the earlier introduced PRP and by Goeke and Schneider (2015) for the GMFVRP-

TW. The main difference between the implementation of the latter and this thesis is that we

will allow for partial recharging, and will restrict CO2 emissions, in a similar fashion as Macrina

et al. (2019).

3

3 Problem definition

The problem definition is based on that of Macrina et al. (2019), with some minor alterations.

We define N as the set of customers and R the set of recharging stations. Each recharging

station is copied σ times, resulting in set R′, with |R′| = (σ + 1)R. This ensures each station

can be visited at most σ+1 times. A special node is the depot, from which each vehicle departs

and where each vehicle returns. This depot is duplicated to indicate a starting depot s and an

ending depot t. We define V = R ∪ N ∪ {s, t} and V ′ = R′ ∪ N ∪ {s, t}. The graph on which

the problem is defined is then G = (V ′, A), where A is the set of all possible arcs between two

nodes in V ′.

The fleet consists of two types of vehicles: electric vehicles (EVs) and conventional, i.e.,

internal combustion commercial vehicles (ICCVs). In notation, the superscripts E and C will

be used to refer to electric and conventional vehicles respectively. The fleet sizes for both vehicle

types are unrestricted. All routes begin at s and end at t. All customers must be visited by

exactly one vehicle, and all customers i ∈ N have a demand of qi in kg and a service time of si

in hours. Furthermore, each customer has a time window [ei, li], denoted in hours since the start

time of the problem, in which the customer needs to be visited, i.e., the arrival time needs to

be in this window. For each arc (i, j) ∈ A, the distance is denoted by dij in km, and the travel

time by tij in hours. All nodes i ∈ V ′ have coordinates (xi, yi), and the distance between two

nodes is given by the Euclidian distances. The travel time is a linear function of the distance

traveled, as it is assumed that the vehicle speed is constant. The costs in euros per km are given

by cEij and cCij for EVs and ICCVs respectively. The time limit of a single route is T , this is

established by setting lt = T . Furthermore, the vehicles have load capacities QE and QC , and

electric vehicles have battery capacity BE . All recharging stations i ∈ R′ have charging speed

ρ, in kW. The parameter π denotes the coefficient of energy consumption, in kWh/km. Partial

recharging is allowed at each recharging station. The decision variables in the problem are

• xE
ij , a binary variable denoting whether an electric vehicle traverses from node i to j, with i, j ∈ V ′,

• xC
ij , a binary variable denoting whether a conventional vehicle traverses from node i to j, with

i, j ∈ V ′,

• uE
i , the load left (in kg) in the electric vehicle after visiting node i ∈ V ′,

• uC
i , the load left (in kg) in a conventional vehicle after visiting node i ∈ V ′,

• τi, the arrival time (in seconds) of the vehicle at node i ∈ V ′,

• zij , the battery charge (in kWh) available at arrival at node j after directly before having visited

node i, defined for i, j ∈ V ′, and

• gij , the energy recharged (in kWh) at recharging station i ∈ R′, before travelling to node j ∈ V ′

immediately afterwards.

4

Table 1: Notation in the MIP formulation

Symbol Type Description Domain Unit

N Set Set of customers
R Set Set of recharging stations
R′ Set Set of recharging stations, including σ copies of each station
V Set Set of both customers and recharging stations (V = N ∪R)
V ′ Set Set of both customers and recharging stations, including copies (V ′ = N ∪R′)
A Set Set of all possible arcs between two nodes in V ′ (A = {(i, j) : i, j ∈ V ′, i ̸= j})
s, t Element Depot, denoting starting point (s) and ending point (t) of all routes s, t ∈ R′

QE , QC Parameter Loading capacities of electric (E) and conventional (C) vehicles kg
π Parameter Constant coefficient of energy consumption kWh/km
ρ Parameter Constant recharging speed kW (=kWh/hour)
BE Parameter Maximum battery capacity of an electric (E) vehicle kWh
qi Parameter Demand of customer i ∈ N (qi = 0,∀i ∈ R′) i ∈ V ′ kg
si Parameter Service time for customer i i ∈ N hours
ei, li Parameter Time window for node i, from ei to li i ∈ V ′ hours
(xi, yj) Parameter Coordinates of node i i ∈ V ′ km
cEij , c

C
ij Parameter Travel costs for electric (E) and conventional (C) vehicles from i to j i, j ∈ V ′ e/km

dij Parameter Travel distance from i to j i, j ∈ V ′ km
tij Parameter Travel time from i to j i, j ∈ V ′ hours
xE
ij Decision variable 1 if an electric (E) vehicle travels from i to j (0 otherwise) i, j ∈ V ′

xC
ij Decision variable 1 if a conventional (C) vehicle travels from i to j (0 otherwise) i, j ∈ V ′

zij Decision variable Energy available when arriving at node j from the node i i, j ∈ V ′ kWh
gij Decision variable Energy recharged at node i for travelling to node j i ∈ R′, j ∈ V ′ kWh
τi Decision variable Arrival time of the vehicle to the node i i ∈ V ′ hours
uE
i Decision variable Amount of load left in electric vehicle after visiting node i i ∈ V ′ kg

uC
i Decision variable Amount of load left in conventional vehicle after visiting node i i ∈ V ′ kg

ε(uC
i) Function Models the emission factor of a conventional (C) vehicle using its load at i i ∈ V ′ kg CO2 / km

5

For the ICCVs, an overall CO2 emission limit is in place. The emissions are computed using

function ε(uCi), which models the emission factor of an ICCV using its load at a given node i.

The function is a piecewise constant function, which is defined as

ε(uCi) =

0.77 if 0 ≤ uCi ≤ 0.25QC

0.83 if 0.25QC < uCi ≤ 0.50QC

0.90 if 0.50QC < uCi ≤ 0.75QC

0.95 if 0.75QC < uCi ≤ QC

∀i ∈ V ′, (1)

and denotes the CO2 emitted in kg/km. These values are based on Macrina et al. (2019),

computed using a vehicle with capacity QC = 10000 kg.

All notations used and their explanations can be found in Table 1. The mixed integer

problem at hand is:

minimize
∑

(i,j)∈A

cEijdijx
E
ij +

∑
(i,j)∈A

cCijdijx
C
ij , (2a)

subject to
∑
j∈V ′

(xE
ij + xC

ij) = 1 i ∈ N, (2b)

∑
j∈V ′

xE
ij ≤ 1 i ∈ R′, (2c)

∑
j∈V ′\{s}

xE
ij −

∑
j∈V ′\{t}

xE
ji = 0 i ∈ V ′, (2d)

∑
j∈V ′\{s}

xC
ij −

∑
j∈V ′\{t}

xC
ji = 0 i ∈ V, (2e)

∑
i∈V ′\{s}

xE
si −

∑
j∈V ′\{t}

xE
jt = 0, (2f)

∑
i∈V ′\{s}

xC
si −

∑
j∈V ′\{t}

xC
jt = 0, (2g)

uE
j ≤ uE

i − qix
E
ij +QE(1− xE

ij) i ∈ V ′\{t}, j ∈ V ′\{s}, (2h)

uC
j ≤ uC

i − qjx
C
ij +QC(1− xC

ij) i ∈ V \{t}, j ∈ V {s}, (2i)

uE
t = 0, (2j)

uC
t = 0, (2k)

uE
j ≤ QE j ∈ V ′, (2l)

uC
j ≤ QC j ∈ V, (2m)

τj ≥ τi + (tij + si)x
E
ij −M(1− xE

ij) i ∈ N, j ∈ V ′, (2n)

τj ≥ τi + (tij + si)x
C
ij −M(1− xC

ij) i ∈ N, j ∈ V, (2o)

τj ≥ τi + tijx
E
ij +

1

ρ
gij −M(1− xE

ij) i ∈ R′, j ∈ V ′, (2p)

ej ≤ τj ≤ lj j ∈ V ′, (2q)

zij ≤ (zhi + gij)− πdijx
E
ij +M(1− xE

ij) +M(1− xE
hi) h, i, j ∈ V ′, i ̸= s, i ̸= j, i ̸= h, j ̸= h,

(2r)

zsj ≤ BE − πdsjx
E
sj +M(1− xE

sj) j ∈ V ′\{s}, (2s)

gij ≤ BE − zhi +M(1− xE
ij) +M(1− xE

hi) h, j ∈ V ′, i ∈ R′, (2t)∑
(i,j)∈A

ε(uC
i)dijx

C
ij ≤ UB, (2u)

xE
ij , x

C
ij ∈ {0, 1} i, j ∈ V ′, uE

i , u
C
i , zij , τi ≥ 0 i ∈ V ′, gij ≥ 0 i ∈ R′, j ∈ V ′. (2v)

6

The objective function (2a) minimizes the total costs. The total costs are dependent on the

costs of the distance traveled by the EVs and the ICCVs. Constraints (2b) ensure each customer

is visited exactly once. Constraints (2c) ensure that each copy of a recharging station is visited

at most once. Constraints (2d)-(2e) are the flow conservation constraints. Constraints (2f)-(2g)

ensure that all vehicle routes start and end at the depot. Constraints (2h)-(2i) model the load

change after visiting a customer, using this customer’s demand. Together with Constraints (2j)-

(2k), which ensure the vehicles are empty when they return at the depot, they model the course

of the vehicle load during the routes. Constraints (2l)-(2m) ensure that the maximum capacity

of a vehicle is not exceeded. Constraints (2n)-(2o) model the arrival time at a node after serving

a customer at the previous node, while Constraints (2p) model the arrival time at a node after

using a recharging station at the previous node. Constraints (2q) ensure that each customer is

visited within its time window. Constraints (2r) model the course of the battery charge of an

EV, where Constraints (2s) initialize this charge. Constraints (2t) model the partial recharging.

They ensure that at a recharging station, there can be recharged at most until the battery is

completely recharged. Constraint (2u) models that the upper bound on the emissions, UB,

cannot be exceeded. Finally, Constraints (2v) define the ranges for the decision variables, which

ensure that the load, and charge at any moment cannot be negative. Furthermore, they define

that the time at any node, and the amount recharged at any recharging station are nonnegative,

and ensure the binary nature of the route selection variables.

4 Iterated local search (ILS) heuristic

In this section, the ILS heuristic, based on Macrina et al. (2019), will be explained. The general

structure of the heuristic is described in Algorithm 1.

Algorithm 1 Iterated local search (ILS)

1: Generate the initial solution ηinit (see Section 4.1)
2: Set current solution η′ = ηinit

3: while Stop condition is not verified do
4: if current solution η′ is feasible then
5: Apply the local search improvement heuristic (see Section 4.2.1)
6: else
7: Apply the local search improvement heuristic using the penalty function (see Section

4.2.2)
8: end if
9: end while

10: return: best solution η∗ = η′

First, an initial solution ηinit is generated using the process described in Section 4.1. Then,

until the stop criterion is satisfied, the local search is applied. This process will be explained

in Section 4.2. In case the initial solution is feasible, the improvement heuristics described in

Section 4.2.1 are used to improve the solution. If the initial solution is infeasible, a penalty

function is introduced to seek a feasible solution. This function is explained in 4.2.2. In case a

feasible solution is found by this process, afterwards the regular improvement heuristic is used.

7

4.1 Initial solution generation

An initial solution is generated by the sequential insertion heuristic, as provided by Macrina et

al. (2019), based on Solomon (1987). Algorithm 2 provides the structure of this algorithm.

Algorithm 2 Sequential insertion heuristic (SIH)

1: Clustering: divide N into C ′, and E′ (see Section 4.1.1)
2: Insertion heuristic: obtain ηC from C ′ (see Section 4.1.2)
3: if customers in C ′ not served by ηC then
4: Update E′ by including unserved customers
5: end if
6: Insertion heuristic: obtain ηE (see Section 4.1.3)
7: return: solution η′ = ηC ∪ ηE

8: if customers in E′ not served by ηE then
9: Repeat conventional insertion heuristic (see Section 4.1.2) on unserved customers, while

relaxing emission constraint
10: end if

First, the customers (set N) are divided into two clusters to indicate whether they will be

served by EVs (set E′) or ICCVs (set C ′). This clustering process is described in Section 4.1.1.

After the clustering process, the insertion heuristic for conventional routes, described in Section

4.1.2, is used to construct routes that serve the customers in C ′. If it is infeasible to serve some

of these customers due to the emission constraint, these unserved customers will be moved to

set C ′. Next, the insertion heuristic for electrical routes, described in Section 4.1.3, will be

executed to construct electrical routes to serve the remaining customers. In case there exist

some customers that cannot be served by electrical vehicles due to battery capacity constraints,

despite recharging attempts, these customers will be moved to set C ′. Finally, these last unserved

customers will be served by routes constructed by the insertion heuristic for conventional routes,

but this time while relaxing the emission constraint. It is thus possible that the initial solution

is infeasible. In those cases, the initial solution will only violate the emission constraint.

4.1.1 Clustering algorithm

The clustering algorithm will divide the customers, N , into two subsets, E′ and C ′, which will

be served by EVs and ICCVs respectively. The clustering process is described in Algorithm 3.

In order to find these two clusters, we initialize sets E and C both with a copy of s, the

starting depot. To select customers into a cluster, scores are defined for each customer i ∈ N for

each cluster: pEi and pCi , both with range [1,10]. The computation of the scores is explained in

the following paragraphs. In each iteration, the customer with the highest value for pEi and the

customer with the highest value for pCi are selected into clusters E and C respectively. In case one

customer has the highest value for both scores, this customer is placed into the cluster for which

it has the highest score. Afterwards the scores are recalculated for the remaining customers and

the process is repeated until each customer is selected into one of the two clusters. Finally, the

depot is removed from sets E and C in order to obtain the final clusters E′ and C ′.

8

Algorithm 3 Clustering Algorithm

1: initialize: sets E and C both only containing start depot s
2: while N\(E ∪ C) ̸= ∅ do
3: (Re)calculate the barycenters BE and BC

4: Compute pEi and pCi for all i ∈ N\(E ∪ C)
5: Define i∗E = argmaxi∈N\(E∪C){pEi }
6: Define i∗C = argmaxi∈N\(E∪C){pCi }
7: if i∗E ̸= i∗C then
8: Assign i∗E to E and i∗C to C
9: else if pEi∗E

> pCi∗C
then

10: Assign customer i∗E to E
11: else
12: Assign customer i∗C to C
13: end if
14: end while
15: Remove s from E and C to obtain E′ and C ′

16: return: E′ and C ′

EV case For electric vehicles, the score of customer i is determined by the difference in distance

between i and the customer already selected in E closest to the barycenter of E, scaled by the

maximum such difference among customers already selected in E. Mathematically, this gives

pEi = 10− diBE − dEmin

dEmax − dEmin

· 9, (3)

where diBE is the Euclidian distance between customer i and BE , the barycenter of set E with

coordinates given by

xBE =
1

|E|
∑
j∈E

xj , (4)

yBE =
1

|E|
∑
j∈E

yj , (5)

and with dEmin and dEmax defined as

dEmin = min
j∈N

djBE , (6)

and

dEmax = max
j∈N

djBE . (7)

ICCV case For conventional vehicles, the score of customer i is determined by two factors:

the difference in distance between i and the customer in C closest to the barycenter of C, scaled

by the maximum such difference among customers already selected in C, and the demand of i,

scaled by the minimum and maximum demands in the total set N , denoted by qmin and qmax

respectively. Mathematically

pCi = λ pDistCi + (1− λ)pQi, (8)

9

with λ a hyperparameter in the range [0, 1], controlling the relative weight of the two scores,

and where

pQi = 10− qi − qmin

qmax − qmin
· 9, (9)

pDistCi = 10− diBC − dCmin

dCmax − dCmin

· 9, (10)

with BC , dCmin and dCmax defined in similar fashion as for E.

4.1.2 Insertion algorithm conventional routes

A conventional route with vehicle number k, denoted as ZC
k , is initialized by serving the customer

i′ ∈ C ′\C∗ (where C∗ denotes the customers already visited by a conventional route) with

the lowest value for li, the closure of its time window. Now ZC
k = (s, i′, t). Afterward, the

algorithm iteratively computes for all unvisited customers u ∈ C ′\(C∗ ∪ ZC
k), what the most

efficient position is to visit customer u on current route ZC
k . This is done by computing the

added cost for a given customer u for all possible positions on the route. Denote the current

route as (s, i1, i2, ..., im, t). Then for a given customer u, and for each possible position n ∈
{1, ...,m,m+ 1}, the algorithm computes

f1(u, n) = cCin−1,udin−1,u + cCu,indu,in − cCin−1,indin−1,in . (11)

This is in line with the idea used in Macrina et al. (2019). Inserting a customer at position

n denotes adding it between customer in−1 and customer in, where i0 denotes s, and im+1

denotes t. After (11) is computed for all possible positions n, the minimum is determined:

n∗
u = argminn∈{1,...,m,m+1}{f1(u, n)}, where n∗

u is the optimal position to place customer u.

After this is done for each customer, (12) is used to compute the cost saving of adding a

customer u to its optimal position n∗
u on the current route, compared to serving it directly from

the depot.

f2(u, n
∗
u) = cCs,uds,u + cCu,tdu,t − f1(u, n

∗
u) (12)

Now u∗ denotes the customer with the maximum value of (12). This is the customer that we

preliminarily add to route ZC
k . We check whether the load and time constraints are verified for

the route with the new customer added, and whether the total emission constraint is verified.

If all constraints hold, the customer is definitively added to the route and the algorithm will

search for a potential new customer to add to the route. If the emission constraint does hold,

but the time window and/or load constraints cannot hold with the new customer, customer u∗

will not be added, this route is terminated, and a new route is initialized. If the total emission

constraint does not hold, this customer will not be added to the route, no new route will be

initialized, and all remaining customers in C ′ that have not been served will be moved to E′.

A formal description of the conventional route insertion algorithm can be found in Appendix

A.1.

10

4.1.3 Insertion algorithm electrical routes

The electrical route insertion algorithm is similar to the previously described insertion algorithm

for conventional routes. The main difference is the creation of routes visiting recharging stations.

A route is initially created in a similar fashion as the conventional route, however evidently

without checking for emission constraints. After a route creation process is terminated because

the time window or load conditions do not allow for an extra customer, the route is checked for

battery charge feasibility. In case the route is infeasible because of an empty battery along the

route, a recharging station is added to the route. Specifically, at the position before the node

where the charge runs out, the nearest recharging station is inserted, if it is feasible to reach this

recharging station. If this is not feasible, the position is iteratively put one node before, until

a charging station can feasibly be reached. The recharge is taken such that the end depot can

be reached if the battery capacity allows it. Otherwise, the battery will be recharged until it is

full, and new recharging stations are added in a similar fashion until the battery constraints are

satisfied. Afterwards, the time constraints will be rechecked. If they are not satisfied, a feasible

solution is constructed by iteratively removing customers. After each customer removal, the

energy charged is optimized for each recharging station, and superfluous recharging stations are

removed. If it is not possible to serve all customers in E′, the remaining customers are transferred

back into C ′ and the emission constraint is relaxed. Again, the formal pseudo-algorithms for

the EV insertion algorithm and the route repairing algorithm can be found in Appendix A.1.

4.2 Local search

After the initial solution generation, the local search algorithm searches iteratively for a better

solution. For a fixed number of iterations, the improvement heuristic searches for an improve-

ment to the solution by moving customers to a new route (see Section 4.2.1). In case the initial

solution generated by the SIH is infeasible, a penalty function is introduced to find a feasible

solution. Section 4.2.2 describes this process.

4.2.1 Improvement heuristic

The local search improvement heuristic consists of three strategies: the optimal customer change

within the conventional routes, the optimal customer change within the electrical route, and the

optimal customer change between all routes. The following paragraphs will specify the exact

algorithms used. At each iteration, randomly one of the three strategies is chosen. Formal

descriptions of these algorithms can be found in Appendix A.2.

Strategy 1: best customer change in conventional routes This strategy searches for

the maximal cost saving by moving a customer from a certain conventional route to another

conventional route. It does so by iteratively searching for each customer, for each other route,

the cheapest position on that route to move the customer to. It then computes the maximal

cost saving between all options. Before computing these costs, for each node insertion at each

position, first, the constraints are checked. In case this yields an infeasible solution, this move

will not be considered a possible option.

11

Strategy 2: best customer change in electrical routes This strategy searches for the

maximal cost saving by moving a customer from a certain electrical route to another electrical

route. It does so in a similar fashion as strategy 1, but it includes recharging stations where

necessary and possible, in a similar manner as in the electrical route insertion. The key difference

is that here no customers will be removed in case the time constraints are violated due to the

addition of a recharging station. For such cases the insertion at this position is seen as infeasible.

Strategy 3: best customer change in all routes The final strategy combines strategies

1 and 2 by searching for the maximal cost saving by moving a customer from any route to any

other route. In case the customer is moving to an electrical route and the battery constraints are

violated, it uses the previously mentioned route repairing algorithm to obtain a feasible route,

where possible.

4.2.2 Penalty function

In case an infeasible solution is generated by the SIH, the improvement heuristic is modified to

ensure a feasible solution is found. In particular, as the emission constraint has been relaxed in

this case, it is necessary to obtain a solution with feasible emissions. The objective function is

modified to

z′(η) = z(η) + θe(η), (13)

where θ is the penalty factor and e(η) denotes the penalty function, defined as

e(η) = max

0,
∑

(i,j)∈A

ε(uCi)dijx
C
ij − UB

 . (14)

Penalty factor θ is initialized at 1, but increases with 10% at each iteration until the emission

constraint is satisfied. Starting from the infeasible solution, the approach described in 4.2.1

is applied with the alternative objective function. This efficiently searches for a high-quality

solution that is feasible.

5 Adaptive large neighborhood search (ALNS) heuristic

In this section, the ALNS will be described. The general structure of the ALNS is described in

Algorithm 4. The ALNS begins with the same initial solution as the ILS, described in Section

4.1. From this initial solution, the search procedure starts. Within each iteration, it selects

destroy and repair neighborhoods based on a roulette wheel selection. This selection process is

described in Section 5.2. A new solution is generated by applying the selected neighborhood

heuristics to the current solution. The probability of acceptance of the new solution is described

in Section 5.1. If the new solution is accepted, it becomes the current solution and if its objective

function value is better than the best solution, the current global minimum is updated. Based

on the new solution’s results, the scores of the neighborhoods are updated. The temperature,

which regulates the acceptance probability is also adjusted after each iteration. In case the

initial solution is violating the emission constraint, perturbation is applied first. This process is

12

described in Section 5.3. The neighborhoods are described in Section 5.4. The loop continues

until the stop criteria are satisfied, which are described in Section 6.2.3.

Algorithm 4 Adaptive large neighborhood search (ALNS)

1: Generate the initial solution ηinit (same as in the ILS)
2: set η, the current solution, and η∗, the current best solution, to ηinit

3: while Stop criteria not met do
4: select destroy neighborhood N− and repair neighborhood N+ using roulette wheel se-

lection, based on {πj}
5: generate a new solution η′ from current solution η using the heuristics corresponding to

chosen destroy and repair neighborhoods
6: determine whether new solution η′ is accepted using current temperature T
7: if new solution η′ is accepted then
8: set current solution to new solution, η = η′

9: if z(η) < z(η∗) then
10: set current best to current solution, η∗ = η
11: end if
12: end if
13: update scores πj of N− and N+

14: update temperature T
15: end while
16: return: the best solution η∗

5.1 Solution acceptance

Simulated annealing is used as the master search framework. After each iteration, first we check

whether the new solution η′ satisfies all constraints. If this is not the case, η′ is automatically

rejected. If all constraints are satisfied, the probability to accept η′, and replace current solution

η is computed with the following formula

P (accept x′ at iteration i) = min

{
e

z(η)−z(η′)
Ti , 1

}
. (15)

From this formula, it can be seen that when z(η) > z(η′), i.e., new solution η′ has lower costs

than current solution η, η′ is always accepted. The temperature mechanism plays a crucial role

in guiding the search process. The temperature, denoted by Ti, with i the iteration number, is

updated after each iteration. Higher temperatures increase the probability of accepting solutions

that are worse than the current solution. To simulate an annealing process, the temperature

gradually decreases over time. This decrement is controlled by the cooling rate hyperparameter

c, which takes a value in the range (0, 1). The temperature at iteration i is determined using

the recursive formula

Ti = Ti−1 · c. (16)

The starting temperature T0 is selected, such that in the first iteration, a solution with

increase in objective value of w times the initial solutions objective value z(ηinit) has a 50%

chance to get accepted. Here, w represents a hyperparameter that influences the acceptance

13

probability threshold, in the range (0, 1). The starting temperature is obtained by rewriting this

condition of the starting temperature

e
z(ηinit)−(1+w)z(ηinit)

T0 = 0.5, (17)

to

T0 = −w · z(ηinit)
ln (0.5)

. (18)

5.2 Neighborhood selection

Roulette wheel selection is used at each iteration to select the destroy and repair mechanisms.

After each iteration, the probabilities to select these neighborhoods are updated.

For each destroy and repair neighborhood the probability to be selected is initially equal.

Afterwards, the probabilities to select a neighborhood are updated based on their successes in

creating good solutions. Each neighborhood has a score, which is updated after it has been

selected in an iteration. Specifically, the score is incremented by the following values after the

corresponding results:

1. The score of neighborhood j is incremented by σ1 if solution η′, generated using neighbor-

hood j, is accepted.

2. The score of neighborhood j is incremented by σ2 if the objective value of solution η′,

generated using neighborhood j, is better than the current solution, i.e., z(η′) < z(η).

3. The score of neighborhood j is incremented by σ3 if the objective value of solution η′,

generated using neighborhood j, is better than the all-time best solution, i.e., z(η′) < z(η∗).

Note that event 3 implies events 2 and 1, and that event 2 implies event 1. These events are

similar to the events used in Pisinger and Røpke (2007), with the exception that they include

the condition that a solution needs to be original in criteria 1 and 2. Furthermore, in Pisinger

and Røpke (2007) the criteria are formulated such that they are mutually exclusive.

The probability to select destroy neighborhood j, denoted by π−
j , is recomputed after each

iteration by dividing the score of neighborhood j by the sum of all destroy neighborhood scores.

This is done similarly for the probabilities of the repair neighborhoods, denoted with π+
j . The

scores of all neighborhoods are initialized at 10 · (σ1 + σ2 + σ3) at the start. This ensures that

successes in the first iterations do not skew the probability distribution too much. This is done

as an alternative to the smoothened score calculations used in Pisinger and Røpke (2007).

5.3 Dealing with infeasible initial solutions

In the case that initial solution ηinit is infeasible, i.e., does not satisfy the emission constraint,

the acceptance criteria are loosened in order to obtain a feasible solution as soon as possible.

Firstly, in this case a new solution can be accepted while violating the emission constraints,

as long as the emissions of η′ are lower than those of the current solution η. Furthermore, to

maximize the perturbation speed, z(η) in (15) is set to infinity as long as the current solution

does not satisfy the emission constraints. In practice, this means that any solution that produces

14

lower emissions than the current solution will be accepted in the perturbation phase.

Additionally, in order to increase the neighborhood space, the maximum number of customers

that will be removed by the destroy neighborhoods, qMax, which will be described in Section

5.4.1, is enlarged to the total number of customers.

After any feasible solution is found, the original acceptance criteria is used from that point

onward. This means that from that point on only feasible solutions will be accepted and with

the probability of the original formula in 15. qMax will also return to its original value.

5.4 Destroy and repair neighborhoods

In this subsection, the search neighborhoods are described. First, in Section 5.4.1 the destroy

neighborhoods are explained. Then, in Section 5.4.2 the repair neighborhoods are described.

Finally, in Section 5.4.3 is explained how noise is introduced to certain neighborhoods.

5.4.1 Destroy neighborhoods

For all destroy heuristics except the route removal, first, the number of customers to be removed,

q, needs to be selected. q is a randomly generated integer on the interval qMin and qMax, all

with equal probability.

1: Route removal Randomly select a route and delete this route. All routes have equal

probability to be selected.

2: Random customer removal Randomly select q customers and remove them from their

respective routes.

3: Removal of q worst customers Compute the removal score for each customer. This

means the difference in the costs of the route with and without this customer. For the com-

putation of the score without this customer, in case the route is served by an electric vehicle,

all recharging stations will be reevaluated and removed if redundant. The worst customer is

removed. Repeat q times.

4: Removal of q worst customers with noise The same algorithm as the previous one is

used with an adjustment. After computing the removal score for each customer, noise is added

to the removal score function, after which the maximum is chosen. The noise generation process

is further described in Section 5.4.3.

5.4.2 Repair neighborhoods

The following four heuristics are used to obtain full solutions from the partial solutions obtained

by executing one of the destroy neighborhoods. For all repair neighborhoods it is possible that

from a given partial solution, no feasible solution can be obtained. In that case, the partial

solution will be discarded. The current solution will not be updated and will again be used in

the next iteration.

15

1: Electric routes first, conventional second Insert one or multiple electric routes in

the same way as in the construction heuristic, until none of the unserved customers can be

feasibly added to these new routes. If unserved customers remain, serve them by initializing

new conventional vehicles, until no customers can be added without violating the emission

constraint. In case there are remaining customers unserved, insert them into current routes

using the greedy algorithm (see repair neighborhood 3).

2: Conventional routes first, electrical second Insert one or multiple conventional routes

in the same way as in the construction heuristic, until none of the unserved customers can be

feasibly added to these new routes. If there remain customers that are unserved, serve them by

initializing new electrical vehicles, until no customers can be feasibly added. In case there are

remaining customers unserved, insert them into current routes using the greedy heuristic.

3: Greedy algorithm Insert customers using the greedy algorithm as described. For all

customers that have been removed in the destroy algorithm, compute the added costs to add

this customer for all routes and all positions. Select the cheapest customer and insert it at its

best possible place. Repeat this process until all customers are served. The pseudocode is given

in Appendix A.3.

4: Regret-2 heuristic The regret-2 heuristic is similar to the greedy algorithm, but instead

of selecting the cheapest customer, the customer with the highest difference in added costs

between its cheapest and second-cheapest position is selected and inserted at its cheapest place.

The pseudocode is again given in Appendix A.3.

5.4.3 Noise introduction

In order to make the heuristics less deterministic, noise is added in the following cases. For

destroy neighborhood 4, noise is always introduced. Furthermore, all repair neighborhoods can

be executed with or without noise. The selection whether repair neighborhoods will be executed

with or without noise is done using similar roulette wheel selection as previously described in

Section 5.2. Separate scores are kept track of for the case with and the case without noise.

The noise is generated by drawing a number from a uniform distribution between 0 and the

distance between the depot and the customer furthest from the depot. The noise is generated

for and added to each comparison score. This means that it will be added to the costs of

each customer for each position of each route, after which the comparison as mentioned in the

heuristics will take place.

6 Numerical experiments

In this section, the numerical experiments will be described and their results will be given. First,

in Section 6.1 the problem instances are introduced and explained. Subsequently, in Section 6.2

the parameter selection is described. Finally, Section 6.3 shows the results of the experiments.

16

6.1 Problem instances

For the numerical experiments, the instances created by Schneider et al. (2014) will be used as

in Macrina et al. (2019). These are derived from the well-known instances of Solomon (1987),

with the addition of recharging stations. These instances provide the sets of customers (N),

recharging stations (R), the depot (s, t), demands (qi,∀i ∈ N), service times (si, ∀i ∈ N) time

windows (ei, li,∀i ∈ V), and coordinates of all nodes, from which the distances (dij , ∀(i, j) ∈ A)

will be computed using Euclidian distance. The costs are assumed to be unitary (1 e/ km),

for all vehicles and all routes. The travel times are established by computing tij =
dij
v , with

v the constant velocity, specified in each instance. The velocity is assumed to be the same

for ICCVs and EVs. Furthermore, all problem instances specify the battery capacity for the

EVs, BC , the vehicle loading capacities, which are assumed to be equal for QE and QC . The

parameters defining the coefficient of energy consumption, π, and the recharging speed, ρ, are

also defined for each problem instance. Because of the artificial nature of the instances, the

emission coefficient function ε(uCi) is used as introduced in Section 3, regardless of the value of

QC , as provided in the instance. For example, if the vehicle capacity is specified at 200 kg for

a specific instance, and the load at a given node is 160 kg, or 0.8 QC , ε(uCi) will take a value of

0.95 kg CO2 / km.

Upper bound emissions The upper bound will be computed by taking α · UBmax, for α ∈
{0.25, 0.5, 0.75}. Here, UBmax is computed by constructing an initial solution with only ICCVs,

without maximum emissions, using the ICCV insertion heuristic described in Section 4.1.2.

Instances In total, there are 81 instances used in this thesis. The instances are subdivided

in clustered (denoted with C), random (R) and partially random and partially clustered (RC)

customer sets. Furthermore, the instances are divided in short (denoted by a 1) and long time

windows (2). The instances are of small sizes (with n = 5, 10, 15), medium sizes (n = 25, 30)

and large sizes (n = 100). The small and large sizes are obtained from Goeke (2019). The

medium size instances are constructed by taking the first 25 and 30 customers from the large

instances while keeping all recharging stations. For all instances, there are three possible emission

upper bounds, bringing the total instances to 243. The instances are identified by codes that

provide this information about their customer spread, scheduling horizon, customer size, and

emission bounds. Let’s consider the code C102C15 0.25. Here, “C” indicates that it is a clustered

instance. The “1” represents short scheduling, Then, “02” is the instance number. Subsequently

“C15” denotes 15 customers, and the emission upper bound is calculated using α = 0.25.

6.2 Model parameters

This subsection will explain the model parameters chosen. In Section 6.2.1 we explain the

parameter tuning done to obtain the optimal λ used in the initial solution. Next, in Section

6.2.2 we provide the parameters used in the ALNS. Finally, in Section 6.2.3 the termination

criteria are given.

17

0 0.2 0.4 0.6 0.8 1

1.46

1.48

1.5

1.52

·105

λ

T
o
ta
l
co
st
s
(e

)

Total costs

0

2

4

6

8

10

N
u
m
b
er

of
in
fe
as
ib
le

so
lu
ti
on

s

Number of infeasible solutions

Figure 1: Graph plotting the total costs for all instances after performing the ILS, and the
number of ILS solutions violating the emission constraint, for a range of values of λ

6.2.1 Lambda

To optimize the λ hyperparameter, the iterated local search (ILS) algorithm is executed on the

full set of 243 problems (comprising 81 instances for each of the 3 specified α values). Parameter

λ, defined on the interval [0, 1], is incremented in steps of 0.1. Figure 1 illustrates the results of

the ILS, specifically the number of infeasible solutions violating the emission constraint, as well

as the sum of the objective values of these solutions, for different lambda values. During lambda

selection, the primary criterion is the number of feasible solutions, while total costs serve as

a secondary criterion. However, total costs do not account for penalties incurred by solutions

exceeding emission limits and are significantly influenced by the largest instances.

Based on the findings, a λ value of 0.3 is chosen since it yields the fewest infeasible solutions

(3). Furthermore, in terms of objective value, only three other λ values perform better than

0.3. It is worth noting that relying on the initial solutions provided by the Sequential Iterated

Heuristic (SIH), before the ILS application, is inadequate for lambda selection. These initial

solutions exhibit a higher number of infeasible solutions, ranging from 79 (for λ = 1.0) to 51 (for

λ = 0.1). Additionally, the λ value that performs best before perturbation does not necessarily

perform best after perturbation, indicating that these values are unreliable predictors of the

number of feasible solutions after perturbation.

In the case of the Adaptive Large Neighborhood Search (ALNS), the initial solution’s im-

portance diminishes due to its extensive neighborhood search. To ensure a fair comparison, the

same λ value as the one selected for the ILS (λ = 0.3) is used

6.2.2 ALNS parameters

Sigmas To stimulate neighborhoods that obtain a new best solution, σ3 is given double the

value of σ1 and σ2, which are given the same value. In practice σ1 = σ2 = 5, and σ3 = 10 are

used, but these exact values are arbitrary, only their relative size is important. These scores

differ from Røpke and Pisinger (2006b), as the computations of the scores also differ.

18

Temperature parameters The starting temperature is initialized using w = 0.05. The

cooling rate is set at c = 0.998. Both of these values are taken from Røpke and Pisinger

(2006b).

Settings of qMin and qMax The minimum number of customers to be removed in an

iteration, qMin, is set to 1, to ensure the algorithm can find small changes in the routes to

optimize the solution, the maximum number of customers to be removed, qMax, is set at

40% of the customers in the instance. In case of a solution violating the emission constraint,

qMax is set to 100% of the customers, to increase the change per iteration in the phase seeking a

feasible solution. The general maximum of 40% stems from Røpke and Pisinger (2006a), whereas

the maximum in case of an infeasible solution, and the minimum are adjusted to this specific

problem.

6.2.3 Termination criteria

ILS The ILS is executed for at most ∆ = 1000 iterations, or if no improvement in the solution

has been found for 100 iterations. These two parameters are chosen as arbitrarily large numbers,

as in practice the algorithm will find a local minimum faster. As the algorithm still operates in a

very small computation time, we do not decrease these values. The number 100 is a safe choice

for the improvement condition, as the only randomness in the model is the strategy selection,

and all three strategies are deterministic, as seen in Section 4.2.

We want the model to terminate if all three strategies do not lead to an improvement, as that

means the ILS is not able to provide any better solution. As the probability that any strategy is

not chosen in subsequent 100 iterations is of the order 10−18, we assume that this is sufficiently

small and that in practice the ILS will only terminate under these conditions if the best solution

possible by the ILS is found.

ALNS The ALNS will be executed for at most ∆ = 25000 iterations and will terminate earlier

if one of the following two termination conditions is satisfied:

1. for 250 subsequent iterations, no new solution has been accepted

2. for 500 subsequent iterations, no new global minimum has been found

These criteria will ensure that the algorithm will automatically ensure a trade-off between com-

putation time and results.

6.3 Results

In this subsection, we will provide the results of the numerical experiments. First, in Section

6.3.1 we compare the performance of the ILS and the ALNS, based on their solution quality and

computational times. Next, in Section 6.3.2, the convergence to the optimal solutions is analysed

for both heuristics. Then, in Section 6.3.3, we analyze the performance of the destroy and repair

neighborhoods used in the ALNS. Finally, in Section 6.3.4 we will analyze visualizations of the

solutions for a specific instance.

19

Table 2: Comparison performance ALNS vs ILS

Metric ILS ALNS

Instances with the best solution 8 / 243 222 / 243
Average percentage improvement from initial solution 23.84% 34.03%
Successful feasibility reparation attempts 55 / 58 58 / 58
Average running time small instances (n = 5, 10, 15) 0.01 s 0.08 s
Average running time medium instances (n = 25, 30) 0.06 s 0.57 s
Average running time large instances (n = 100) 1.40 s 38.75 s

6.3.1 Comparison performance ILS and ALNS

The key comparison metrics are presented in Table 2. Among the total of 243 instances, the

Adaptive Large Neighborhood Search (ALNS) yields a superior solution in 222 cases (91%),

while the Iterated Local Search (ILS) outperforms in 8 cases (3%), and both heuristics achieve

the same objective value in 13 cases (5%).

On average, the ILS demonstrates a 23.84% improvement over the initial solution, whereas

the ALNS achieves an average improvement of 34.03%.

Regarding the emission constraint, all 58 initial solutions that violated it are successfully

perturbed to feasible solutions by the ALNS. However, the ILS fails to produce a feasible solution

in three of these cases.

In terms of efficiency, the ILS proves to be a faster algorithm, particularly for large instances

(n = 100). For these instances, the ALNS has an average running time of 38.75 seconds. The

ILS terminates, on average, after 1.40 seconds.

Similarly, for small (n = 5, 10, 15) and medium (n = 25, 30) instances, the ILS exhibits

faster performance. However, for these instances, both algorithms provide solutions almost

instantaneously, as the average running time of both the ILS and the ALNS is below 1 second.

Table 3 shows the percentage improvements of the ILS and ALNS compared to the initial

solutions for small instances, grouped by the emission limit and the instance customer spread

type. Table 4 shows the same information for medium and large instances.

From these tables, it can be concluded that the ILS is able to find larger improvements for

instances with clustered customers than for instances with random customers. For the ALNS

the same is the case for instances larger than 10 customers. Both algorithms have varying

performances on the mixed instances.

This does not necessarily mean that the algorithms lead to better performance for these

instances, as it could also be that the initial solution is of poorer quality for the instances with

random customers. To properly assess this, it is necessary to compare the results to those of

exact solutions.

Another trend is that the improvement for both heuristics highly increases with an increasing

customer size and looser emission limits. These findings are highlighted by Table 5.

This table also shows that the difference in performance between the ILS and the ALNS

is the lowest for instances with 10 customers and loosely restricted emissions (α = 0.75), with

a percentage point difference of 5.67%. This difference is the highest for instances with 15

customers and medium emission restrictions (α = 0.5), where the percentage point difference is

20

Table 3: Average improvement % compared to the initial solution, for small instances

n = 5 n = 10 n = 15

Instance type ILS ALNS ILS ALNS ILS ALNS

Clustered
α = 0.25 10.80% 13.64% 16.27% 23.54% 19.65% 31.37%
α = 0.50 9.28% 16.68% 11.05% 16.20% 15.08% 35.98%
α = 0.75 13.02% 18.51% 9.03% 13.18% 27.76% 37.28%

Average 11.03% 16.28% 12.12% 17.64% 20.83% 34.88%

Random
α = 0.25 4.22% 15.83% 9.99% 20.84% 8.37% 18.88%
α = 0.50 12.25% 16.01% 8.74% 18.22% 20.70% 28.01%
α = 0.75 9.93% 21.96% 9.74% 15.60% 25.15% 33.98%

Average 8.80% 17.93% 9.49% 18.22% 18.07% 26.96%

Random/Clustered
α = 0.25 7.24% 17.59% 9.70% 17.62% 5.51% 21.92%
α = 0.50 3.54% 14.10% 11.17% 21.22% 15.76% 26.70%
α = 0.75 12.92% 16.99% 18.16% 25.16% 24.98% 30.09%

Average 7.90% 16.23% 13.01% 21.33% 15.41% 26.24%

Overall Average 9.24% 16.81% 11.54% 19.07% 18.11% 29.36%

Table 4: Average improvement % compared to the initial solution, for medium and large in-
stances

n = 25 n = 30 n = 100

Instance type ILS ALNS ILS ALNS ILS ALNS

Clustered
α = 0.25 32.68% 45.07% 35.32% 47.57% 42.22% 52.71%
α = 0.5 38.41% 53.77% 31.55% 45.58% 49.28% 58.31%
α = 0.75 43.85% 53.02% 38.82% 45.78% 43.53% 59.78%

Average 38.31% 50.62% 35.23% 46.31% 45.01% 56.94%

Random
α = 0.25 22.02% 30.38% 15.80% 23.51% 27.73% 34.00%
α = 0.5 21.19% 27.04% 19.80% 24.76% 38.10% 44.31%
α = 0.75 25.39% 33.95% 23.24% 33.58% 35.68% 42.31%

Average 22.87% 30.46% 19.61% 27.29% 33.84% 40.21%

Random/Clustered
α = 0.25 31.14% 44.32% 27.65% 44.43% 30.70% 38.17%
α = 0.5 34.59% 51.35% 29.92% 48.60% 32.59% 46.39%
α = 0.75 33.58% 53.36% 35.88% 53.92% 37.94% 48.07%

Average 33.10% 49.68% 31.15% 48.98% 33.74% 44.21%

Overall average 31.43% 43.58% 28.66% 40.86% 37.53% 47.12%

21

Table 5: Average improvement % compared to the initial solution, for each emission limit and
customer size

α = 0.25 α = 0.50 α = 0.75

Instance size ILS ALNS ILS ALNS ILS ALNS

n = 5 7.42% 15.69% 8.36% 15.60% 11.96% 19.16%
n = 10 11.99% 20.67% 10.32% 18.55% 12.31% 17.98%
n = 15 11.18% 24.06% 17.18% 30.23% 25.96% 33.78%
n = 25 28.61% 39.92% 31.40% 44.05% 34.27% 46.78%
n = 30 26.25% 38.50% 27.09% 39.65% 32.64% 44.43%
n = 100 33.55% 41.63% 39.99% 49.67% 39.05% 50.06%

13.05%. In general, for larger instances, the gap tends to increase, with an interesting exemption

at n = 100. Furthermore, for smaller instances, the gap tends to be higher in the case of tighter

emission restrictions, while for the largest instances, a reverse effect can be seen.

Detailed results for each individual instance can be found in Appendix B.

6.3.2 Convergence to optimal solution in ILS and ALNS

Figure 2 illustrates a plot of the objective value for solutions obtained at each iteration of the

Adaptive Large Neighborhood Search (ALNS) and Iterated Local Search (ILS) algorithms.

The graph highlights the substantial disparity in convergence speed between the two al-

gorithms. The ILS achieves termination in under 200 iterations, while the ALNS requires nearly

1300 iterations to reach termination. During the initial iterations, the ILS consistently attains

superior solutions compared to the slower ALNS. It is only around the 600th iteration that the

ALNS approaches the ILS optimum and finally surpasses the ILS solution around the 800th

iteration.

This plot provides insight into why the ILS is faster but less effective in discovering optimal

solutions. The ILS rapidly converges to a local minimum, while the ALNS, due to its exploration

of a larger neighborhood, proceeds at a slower pace. Although the ALNS process is slower, it

ultimately leads to superior solutions.

The scatter plot of the solutions reveals additional interesting observations. Only feasible

solutions are depicted, resulting in a relatively sparse representation with solutions shown in blue

for acceptance and in red for rejection. The broad range of objective values displayed reflects

the extensive exploration undertaken by the ALNS across a wide neighborhood.

By examining the accepted and rejected solutions, the solution acceptance criteria become

apparent. Notably, all solutions that improve upon the current solution are accepted, and

slightly inferior solutions may also be accepted, with random effects involved. The influence of

temperature can be observed, as earlier iterations accept significantly poorer solutions compared

to the current solution, while the acceptance of such solutions diminishes in later iterations.

After an initial exploration around the minimum discovered near the 800th iteration, the

current solution diverges from this minimum and fails to find solutions near the optimum there-

after. This could indicate that there is room for improvement in the final part of the process,

by focusing on a local search starting from the last found optimum.

22

0 200 400 600 800 1,000 1,200

2,000

2,500

3,000

Iteration

O
b
je
c
ti
v
e
v
a
lu

e

Not accepted (ALNS)

Accepted (ALNS)

Best solution (ALNS)

ILS solution

Figure 2: Plot of the objective values of the current and optimal solutions at each iteration for
the ALNS and ILS for instance R101 0.25

Table 6: Overview of average values of π after termination

Neighborhood π

Mean value πnoise 0.43

For j = 1 2 3 4

Mean value π−
j 0.19 0.27 0.27 0.27

Mean value π+
j 0.12 0.13 0.39 0.36

6.3.3 Analysis of π-values

Let us revisit the neighborhoods described in Section 5.4. An overview of the average π-values

after the termination of the Adaptive Large Neighborhood Search (ALNS) is presented in Table

6.

Based on the results, it can be seen that repair neighborhoods without noise outperform

those with noise, as πnoise < 0.5. However, the difference in performance is not large, suggesting

that both the repair neighborhoods with and without noise lead to successful solutions. Fur-

thermore, it can be concluded that destroy neighborhoods 2 (random removal of q customers),

3 (removal of worst q customers), and 4 (removal of worst q customers with noise) demonstrate

comparable performance. On the other hand, the route removal neighborhood exhibits notably

worse performance. Lastly, repair neighborhoods 3 (greedy insertion) and 4 (regret-2 insertion)

vastly outperform repair neighborhoods 1 (electrical route insertion) and 2 (conventional route

insertion).

23

0 200 400 600 800 1,000 1,200
0

0.2

0.4

0.6

Iteration

P
i-
V
a
lu

e

πnoise

π−
1

π−
2

π−
3

π−
4

π+
1

π+
2

π+
3

π+
4

Figure 3: Plot of the pi-values for each neighborhood at each iteration for the ALNS for instance
R101 0.25

Figure 3 presents the progression of the pi values for each iteration of instance R101 0.25.

Destroy neighborhood 1 (route removal) performs exceptionally well for this instance, despite

its overall poorer average performance across all instances. Among the repair neighborhoods,

regret-2 insertion stands out as it achieves strong performance, consistent with its average per-

formance across all instances. The noise score demonstrates comparable performance to the

average score of this π-value.

The π-values exhibit a slower initial movement due to the initialization of all scores at

10 · (σ1+σ2+σ3). However, following this initial sluggish phase, most π-values rapidly converge

to their final values and experience minimal change beyond approximately the 600th iteration.

6.3.4 Solution visualisations

In this subsection, we will analyze the solutions provided by the algorithms for a specific instance

(RC108C15 0.25) to give an illustration of these solutions. For this instance, the initial solution

is unable to generate a feasible solution. This initial solution, which violates the emission

constraint, is visualized in Figure 4. The ILS is able to construct a feasible solution from

this solution, visualized in Figure 5. Due to the penalty function for the excess emissions,

the ILS effectively moves customers from conventional routes to electric routes, leading to a

solution with permitted emissions. This new solution does lead to higher costs than the original

infeasible solution. It can be seen that the ALNS solution, in Figure 6 has changed much more

compared to the initial solution. In this case, all customers served by conventional vehicles in the

initial solution have been moved to electric routes. Furthermore, the large neighborhood search

24

0 20 40 60 80 100
0

20

40

60

80

100

x

y

Customers
Recharging stations
Depot
Electrical routes
Conventional routes

Figure 4: The initial solution for instance RC108C15 0.25

has led to a much more efficient solution, using only three vehicles. This example illustrates

the capacities of both algorithms to deal with infeasible solutions and accentuates the larger

neighborhood search used in the ALNS.

7 Conclusion

This thesis has covered the Green Mixed Fleet Vehicle Routing Problem with Partial Recharging

and Time Windows. In this version of the vehicle routing problem, both electrical and conven-

tional vehicles are used to serve a set of customers. The total travel costs are minimized while

adhering to a limit on the CO2 emissions and respecting the time windows of all customers.

Electric vehicles have a limited battery capacity and can recharge during their routes.

Both an iterated local search heuristic, and an adaptive large neighborhood search heuristic

have been implemented to obtain solutions to instances of this problem. Both heuristics use

the same initial solution as a starting point of their search. Subsequently, the results of these

heuristics have been compared to each other on solution quality and computational speed.

In conclusion, the ALNS outperforms the ILS algorithm with major improvements in results.

The ALNS achieves better outcomes in 91% of instances and, on average, exhibits a 10 percentage

point improvement over the initial solution compared to the ILS.

Moreover, the ALNS demonstrates superior capability in obtaining feasible solutions from

infeasible initial starting points. It has successfully obtained feasible solutions for all instances.

In contrast, the ILS fails to produce feasible solutions in three instances, and its feasibility

reparation performance worsens as the quality of the initial solutions declines. This has been

seen in the λ parameter tuning in Section 6.2.1.

While the ALNS does have longer computational times, particularly for instances with a

size of n = 100, the average running time remains below one minute. Therefore, the extended

25

0 20 40 60 80 100
0

20

40

60

80

100

x

y

Customers
Recharging stations
Depot
Electrical routes
Conventional routes

Figure 5: The ILS solution for instance RC108C15 0.25

0 20 40 60 80 100
0

20

40

60

80

100

x

y

Customers
Recharging stations
Depot
Electrical routes

Figure 6: The ALNS solution for instance RC108C15 0.25

26

running time is only a minor drawback for instances up to this size. However, in practice,

there are scenarios where much larger customer sets exist. Because of exponentially increasing

computation times, these running times could become infeasible for practical implementation in

these cases. Then, the ALNS’ efficiency needs to be reevaluated.

Examining the neighborhood success scores obtained during the ALNS process, it is clear

that the greedy and regret-2 insertion heuristics excel in generating high-quality feasible solutions

from partial solutions. Furthermore, the relatively similar scores for the destroy neighborhoods

suggest that all utilized destroy neighborhoods contribute value to the search process. Lastly,

the score for noise introduction, which does not differ much from 0.5, indicates that employing

repair neighborhoods both with and without noise yields favorable performance.

Future research could focus on conducting additional analysis to identify the optimal hy-

perparameters for the ALNS, aiming to improve its performance. Moreover, enhancing the

termination conditions for the ALNS could lead to performance improvement. A potential ap-

proach could involve selecting the current global minimum as a starting point after a period of

not reaching a new global minimum. Another possibility to achieve this goal is executing the ILS

using the optimal solution found by the ALNS. Such a method has been implemented by Goeke

and Schneider (2015). This strategy could particularly be interesting, considering that the ILS

outperformed the ALNS in 8 instances. It suggests that there is potential for improvement by

placing more emphasis on discovering solutions close to the current best solution, especially in

the final stage of the process.

Additionally, expanding the range of destroy and repair neighborhoods is crucial to enhance

the ALNS’s effectiveness. The current selection of neighborhoods is relatively limited, and

incorporating a broader variety would likely yield better results.

Furthermore, the ALNS could benefit from the implementation of a more advanced scoring

mechanism to compute the probabilities to select neighborhoods. Currently, there is no mech-

anism in place to reward original solutions. If all three scoring measures include the requirement

for a solution to be original, it is likely to accelerate the ALNS and improve its results since

finding original solutions is crucial for its search performance.

27

References

Bektaş, T. & Laporte, G. (2011). The pollution-routing problem. Transportation Research Part

B: Methodological , 45 (8), 1232–1250.

Clarke, G. & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of

delivery points. Operations research, 12 (4), 568–581.

Dantzig, G. B. & Ramser, J. H. (1959). The truck dispatching problem. Management science,

6 (1), 80–91.

Erdoğan, S. & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation research

part E: logistics and transportation review , 48 (1), 100–114.

Fernández Gil, A., Lalla-Ruiz, E., Gómez Sánchez, M., Castro, C. et al. (2022). A review of

heuristics and hybrid methods for green vehicle routing problems considering emissions.

Journal of Advanced Transportation, 2022 .

Figliozzi, M. A. (2011). The impacts of congestion on time-definitive urban freight distribution

networks CO2 emission levels: Results from a case study in Portland, Oregon. Transport-

ation Research Part C: Emerging Technologies, 19 (5), 766–778.

Goeke, D. (2019). E-VRPTW instances. Mendeley Data. doi: 10.17632/h3mrm5dhxw.1

Goeke, D. & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles.

European Journal of Operational Research, 245 (1), 81–99.

Macrina, G., Di Puglia Pugliese, L., Guerriero, F. & Laporte, G. (2019). The green mixed fleet

vehicle routing problem with partial battery recharging and time windows. Computers &

Operations Research, 101 , 183-199. doi: https://doi.org/10.1016/j.cor.2018.07.012

Pisinger, D. & Røpke, S. (2007). A general heuristic for vehicle routing problems. Computers

& operations research, 34 (8), 2403–2435.

Røpke, S. & Pisinger, D. (2006a). An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation science, 40 (4), 455–472.

Røpke, S. & Pisinger, D. (2006b). A unified heuristic for a large class of vehicle routing problems

with backhauls. European Journal of Operational Research, 171 (3), 750–775.

Schneider, M., Stenger, A. & Goeke, D. (2014). The electric vehicle-routing problem with time

windows and recharging stations. Transportation science, 48 (4), 500–520.

Solomon, M. (1987). Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations research, 35 (2), 254–265.

Zelasky, S. E. & Buonocore, J. J. (2021). The social costs of health-and climate-related on-

road vehicle emissions in the continental united states from 2008 to 2017. Environmental

Research Letters, 16 (6), 065009.

28

A Pseudocode algorithms

A.1 Initial solution insertion algorithms

Algorithm 5 Insertion algorithm conventional routes (IAC)

1: Initialize k = 1, the vehicle number
2: Initialize C∗, the set of customers already served by ICCVs, as ∅
3: while C ′\C∗ ̸= ∅ and algorithm termination condition not activated do
4: Define i′ = argmini∈C′\C∗{li}
5: Initialize new route ZC

k = (s, i′, t)
6: while C ′\(C∗ ∪ ZC

k) ̸= ∅ and route termination condition not activated do
7: Let ZC

k = (s, i1, , i2, ..., im, t) be the current route
8: for each unserved customer u ∈ C ′\(C∗ ∪ ZC

k) do
9: for each position n ∈ {1, ...,m,m+ 1} in current route ZC

k do
10: Compute f1(u, n) = cCin−1,u

din−1,u + cCu,indu,in − cCin−1,in
din−1,in ▷

This computes the added cost of inserting customer u at position n. Adding u at position n means
adding it between customers in−1 and in, where i0 = s and im+1 = t

11: end for
12: Compute n∗

u = argminn∈{1,...,m,m+1}{f1(u, n)}, the optimal position for u.

13: Compute f2(u, n
∗
u) = cCs,uds,u + cCu,tdu,t − f1(u, n

∗
u) ▷ This formula computes the difference

in costs between serving u on this route versus serving u from the depot.
14: end for
15: Compute u∗ = argmaxu∈C′\(C∗∪ZC

k){f2(u, n∗
u)}

16: Compute feasibility of adding u∗ on route ZC
k at n∗

u∗ by checking: load and time constraints
for this route, and total emission constraints

17: if all constraints verified then
18: Add u∗ to route ZC

k at position n∗
u∗

19: else
20: Activate route termination condition ▷ This route will not be extended further. The last

customer will not be added.
21: end if
22: end while
23: if all constraints verified then ▷ Extra check needed for the case where the route only contains

the initialization
24: Add route ZC

k to solution ηC

25: Add customers from ZC
k to C∗

26: Update k (+1)
27: else
28: Activate algorithm termination condition ▷ This part will be reached when adding

a route containing only the initialization is infeasible, in this case the insertion algorithm should be
terminated.

29: end if
30: end while
31: if there exist customers in C ′ unserved by ηC then
32: Move these customers from C ′ to E′

33: end if
34: return: ηC and updated C ′ and E′

29

Algorithm 6 Route repairing algorithm for electrical vehicles

1: input: a route ZE
k = (s, i1, i2, ..., im, t) which does not satisfy the battery constraints

2: Check for all customers in, whether battery is empty before arrival, i.e., zin−1,in < 0
3: Let n′ denote the lowest n for which this is the case
4: Find the closest recharging station (RS) u′, by computing for which RS the added cost at

position n′ (between in′−1 and in′ is minimal, i.e., minimize f1(u, n
′) (see 11) over all u ∈ R′

holding n′ constant
5: Check whether inserting u′ at n′ satisfies zin′−1,iu′ ≥ 0
6: while feasible RS not found do
7: Update RS position n′ = n′ − 1
8: Find RS u′ for the updated position
9: Recheck the battery constraint zin′−1,u

′ ≥ 0 for the new RS and position
10: end while
11: Compute the necessary charge needed to reach t from u′ using the route.
12: Compute maximum recharge available at u′: BC − zin′−1,u

′

13: if necessary charge is higher than BC − zin′−1,u
′ then

14: Set gu′,in′ = BC − zin′−1,u
′ and search for a new recharging station by going back to line

2.
15: else
16: Set gu′,in′ equal to the necessary charge ▷ Now all battery charge constraints hold
17: end if
18: Recheck all time window (TW) constraints
19: while TW constraints do not hold do
20: if there are unnecessary RSs on the route then ▷ The route with this RS deleted can

satisfy battery constraints
21: Delete the first unnecessary RS on the route
22: else
23: Delete the first customer on the route for which TW do not hold
24: end if
25: Recheck all TW constraints
26: end while
27: return: the repaired route

30

Algorithm 7 Insertion algorithm electrical routes (IAE)

1: Initialize k = 1, the vehicle number
2: Initialize E∗, the set of customers already served by EVs, as ∅
3: while E′\E∗ ̸= ∅ and algorithm termination condition not activated do
4: Define i′ = argmini∈E′\E∗{li}
5: Initialize new route ZE

k = {s, i′, t}
6: while E′\(E∗ ∪ ZE

k) ̸= ∅ and route termination condition not activated do
7: Let ZE

k = (s, i1, , i2, ..., im, t) be the current route
8: for each unserved customer u ∈ E′\(E∗ ∪ ZE

k) do
9: for each position n ∈ {1, ...,m,m+ 1} in current route ZE

k do
10: Compute f1(u, n) = cEin−1,u

din−1,u + cEu,indu,in − cEin−1,in
din−1,in ▷

This computes the added cost of inserting customer u at position n. Adding u at position
n means adding it between customers in−1 and in, where i0 = s and im+1 = t

11: end for
12: Compute n∗

u = argminn∈{1,...,m,m+1}{f1(u, n)}, the optimal position for u.

13: Compute f2(u, n
∗
u) = cEs,uds,u + cEu,tdu,t − f1(u, n

∗
u) ▷ This formula computes the

difference in costs between serving u on this route versus serving u from the depot.
14: end for
15: Compute u∗ = argmaxu∈C′\(E∗∪ZE

k){f2(u, n∗
u)}

16: Compute feasibility of adding u∗ on route ZE
k at n∗

u∗ by checking: load and time
constraints for this route

17: if both constraints verified then
18: Add u∗ to route ZE

k at position n∗
u∗

19: else
20: Activate route termination condition ▷ This route will not be extended further.

The last customer will not be added.
21: end if
22: Check battery constraints, if they are not verified, use algorithm 6 to repair the route
23: end while
24: if all constraints verified then ▷ Extra check needed for the case where the route only

contains the initialization
25: Add route ZE

k to solution ηC

26: Add customers from ZE
k to E∗

27: Update k (+1)
28: else
29: Activate algorithm termination condition ▷ This part will be

reached when adding a route containing only the initialization is infeasible, in this case the
insertion algorithm should be terminated.

30: end if
31: end while
32: if there exist customers in E′ unserved by ηE then
33: Move these customers from E′ to C ′

34: Create new routes for these customers by violating the emission constraint
35: end if
36: return: ηE

31

A.2 Local search improvement heuristics

Algorithm 8 Customer change conventional routes (CCC)

1: Initialize with temporary solution ηC a set of routes ZC
k

2: for each route ZC
k ∈ ηC do

3: for each customer u ∈ ZC
k do

4: Compute added cost of u in its current route (vs dropping u)
5: for each route ZC

l ∈ ηC\ZC
k do

6: for each position n ∈ ZC
l do

7: Compute cost of adding u at position n
8: Check feasibility load and TW
9: end for

10: Store cheapest feasible position n to add u on route ZC
l

11: end for
12: Store cheapest route to feasibly move u to
13: Compare costs of the new route to the current route
14: end for
15: Store customer with biggest cost decrease on route ZC

k

16: end for
17: Store customer with the biggest cost decrease among all routes
18: If the cost decrease is positive, move the customer to the new route

Algorithm 9 Customer change electrical routes (CCE)

1: Initialize with temporary solution ηC a set of routes ZC
k

2: for each route ZE
k ∈ ηE do

3: for each customer u ∈ ZE
k do

4: Compute added cost of u in its current route (vs dropping u) ▷ In the case of dropping u,
check if there exist unnecessary recharging stations (RSs)

5: for each route ZE
l ∈ ηC\ZE

k do
6: for each position n ∈ ZE

l do
7: Compute cost of adding u at position n
8: Check feasibility of load, TW and battery capacity constraints
9: If battery capacity infeasible: construct a feasible route by inserting a recharging station,

if possible, and compute total added costs
10: end for
11: Store cheapest feasible position n to add u on route ZE

l

12: end for
13: Store cheapest route to feasibly move u to
14: Compare costs of new route to current route
15: end for
16: Store customer with biggest cost decrease on route ZC

k

17: end for
18: Store customer with biggest cost decrease among all routes
19: If the cost decrease is positive, move the customer to the new route

32

A.3 ALNS neighborhood heuristics

Algorithm 10 Greedy insertion algorithm

1: while There exist unserved customers do
2: for each unserved customer do
3: for each existing route, at each position, compute the feasibility and added costs of

inserting the current customer.
4: in case the current route is electric, reevaluate all recharging stations and if necessary

add a new one
5: keep track of the cheapest route and position to insert this customer
6: end for
7: insert the cheapest customer to the cheapest possible route at the cheapest position
8: end while

Algorithm 11 Regret-2 insertion algorithm

1: while There exist unserved customers do
2: for each unserved customer do
3: for each existing route, at each position, compute the feasibility and added costs of

inserting the current customer.
4: in case the current route is electric, reevaluate all recharging stations and if necessary

add a new one
5: keep track of the cheapest and second-cheapest route and position to insert this

customer
6: store the regret-2 score of this customer: the difference between the first and second-

cheapest positions to insert this customer
7: end for
8: insert the customer with the highest regret-2 score to the cheapest possible route at the

cheapest position
9: end while

B Results for each instance

In the following tables, the results of each individual instance are shown. For each instance, the

costs of the initial solution, the costs of the ILS solution, and the costs of the ALNS are shown,

as well as the running times of the ILS and the ALNS.

33

Table 7: Results for α = 0.25

Instance Costs Init. (e) Costs ILS (e) RT ILS (s) Costs ALNS (e) RT ALNS (s)

n = 5
C101C5 0.25 250.04 250.04 0.03 250.04 0.07
C103C5 0.25 185.73 165.73 0.01 165.67 0.01
C206C5 0.25 265.97 249.83 0.00 236.58 0.03
C208C5 0.25 244.20* 179.86 0.00 164.34 0.02
R104C5 0.25 168.40 139.95 0.01 136.69 0.01
R105C5 0.25 202.98* 202.63* 0.00 156.08 0.01
R202C5 0.25 143.39 143.39 0.00 128.88 0.01
R203C5 0.25 201.77 201.77 0.00 179.06 0.05
RC105C5 0.25 256.97 239.46 0.00 238.05 0.04
RC108C5 0.25 294.52* 258.75 0.01 253.93 0.03
RC204C5 0.25 247.19 243.63 0.00 185.44 0.04
RC208C5 0.25 221.72 202.76 0.00 167.98 0.02

n = 10
C101C10 0.25 480.18* 412.51 0.02 392.10 0.11
C104C10 0.25 343.16 322.28 0.02 273.93 0.08
C202C10 0.25 326.21 243.20 0.02 243.20 0.05
C205C10 0.25 327.06 263.42 0.03 228.28 0.04
R102C10 0.25 326.85 269.18 0.03 249.19 0.05
R103C10 0.25 225.22 217.05 0.02 203.94 0.04
R201C10 0.25 267.77 217.68 0.02 217.68 0.04
R203C10 0.25 339.46* 336.00* 0.01 232.68 0.13
RC102C10 0.25 515.73* 470.51* 0.02 456.23 0.07
RC108C10 0.25 483.01* 412.53 0.02 388.79 0.05
RC201C10 0.25 395.26 348.08 0.01 310.06 0.03
RC205C10 0.25 427.22 374.85 0.02 350.75 0.05

n = 15
C103C15 0.25 563.37 394.73 0.03 399.82 0.16
C106C15 0.25 484.16 387.98 0.02 271.09 0.19
C202C15 0.25 461.29 440.55 0.03 369.56 0.14
C208C15 0.25 445.75 337.33 0.03 300.55 0.11
R102C15 0.25 522.13* 425.89 0.06 413.97 0.15
R105C15 0.25 405.03 362.22 0.03 336.08 0.06
R202C15 0.25 444.80* 454.55 0.03 358.00 0.24
R209C15 0.25 378.18* 352.94 0.01 309.15 0.23
RC103C15 0.25 405.41 400.18 0.03 393.88 0.05
RC108C15 0.25 553.51* 594.93 0.03 389.13 0.08
RC202C15 0.25 545.60 444.43 0.05 405.44 0.17
RC204C15 0.25 440.67* 397.95 0.01 310.81 0.21

n = 25
C101C25 0.25 594.22 287.14 0.07 266.56 0.34
C102C25 0.25 477.05 296.52 0.05 251.17 0.23
C103C25 0.25 399.25 330.44 0.05 220.38 0.34
C104C25 0.25 250.52 220.23 0.07 200.16 0.26
C105C25 0.25 566.06 313.99 0.08 238.02 0.25
R101C25 0.25 803.69 648.21 0.09 595.60 0.20
R102C25 0.25 715.35 584.35 0.07 517.90 0.66
R103C25 0.25 741.70* 501.08 0.11 457.57 0.38
R104C25 0.25 559.40* 451.77 0.07 404.83 0.84
R105C25 0.25 774.01 613.33 0.07 522.85 0.28
RC101C25 0.25 1003.58 607.84 0.05 552.78 0.24
RC102C25 0.25 819.16 544.97 0.07 393.98 0.61
RC103C25 0.25 646.05* 407.71 0.09 326.39 0.37
RC104C25 0.25 571.37* 402.34 0.05 320.82 0.26
RC105C25 0.25 708.23 592.61 0.05 485.50 0.39

n = 30
C101C30 0.25 636.28 341.11 0.06 259.48 0.30
C102C30 0.25 567.47 351.62 0.06 250.40 0.58
C103C30 0.25 565.10 381.60 0.06 246.04 0.44
C104C30 0.25 288.97 245.36 0.09 254.45 0.80
C105C30 0.25 577.33 319.89 0.08 263.64 0.30
R101C30 0.25 796.04 710.45 0.09 685.58 0.63
R102C30 0.25 784.04 614.71 0.09 639.62 0.24
R103C30 0.25 717.24 619.31 0.08 478.35 1.49
R104C30 0.25 640.70 497.61 0.12 429.60 1.17
R105C30 0.25 731.94 654.03 0.07 592.87 0.28
RC101C30 0.25 1306.61* 923.31 0.11 728.11 0.43
RC102C30 0.25 987.30* 725.10 0.08 538.47 0.95
RC103C30 0.25 967.38* 614.27 0.15 514.45 0.52
RC104C30 0.25 740.56* 556.69 0.08 393.03 0.77
RC105C30 0.25 981.98* 775.57 0.09 602.10 0.75

n = 100
C101 0.25 2857.65 1527.06 2.36 1042.12 57.09
C102 0.25 2823.62 1265.52 1.91 1092.93 74.08
C103 0.25 2201.71 1454.70 1.87 1062.73 43.42
C104 0.25 1830.87* 1165.35 2.14 1282.61 14.06
C105 0.25 2535.34 1544.14 1.64 1088.57 67.77
R101 0.25 2858.86* 1823.64 1.61 1779.37 18.93
R102 0.25 2433.93* 1686.48 1.86 1508.94 75.10
R103 0.25 1969.11* 1388.95 2.26 1486.69 20.49
R104 0.25 1609.13* 1531.34 0.92 1114.45 115.46
R105 0.25 2462.45* 1540.86 2.25 1502.42 37.83
RC101 0.25 3369.67* 1958.01 1.59 2007.89 17.73
RC102 0.25 2686.25* 1864.62 1.69 1566.85 59.45
RC103 0.25 2574.74* 1656.89 2.00 1426.83 36.33
RC104 0.25 1744.40* 1529.02 1.39 1255.64 173.03
RC105 0.25 2764.39* 1851.51 2.19 1764.99 12.01

Note: * denotes that a solution violates the emission constraint

34

Table 8: Results for α = 0.5

Instance Costs Init. (e) Costs ILS (e) RT ILS (s) Costs ALNS (e) RT ALNS (s)

n = 5
C101C5 0.5 249.93 249.93 0.02 234.82 0.07
C103C5 0.5 185.73 165.73 0.01 165.67 0.02
C206C5 0.5 267.99 267.99 0.01 221.98 0.03
C208C5 0.5 244.20* 179.86 0.01 164.34 0.03
R104C5 0.5 166.50 136.45 0.00 136.45 0.02
R105C5 0.5 197.19 156.08 0.01 156.08 0.02
R202C5 0.5 143.39 128.88 0.00 128.78 0.01
R203C5 0.5 210.58 210.58 0.00 179.06 0.02
RC105C5 0.5 255.20 244.57 0.00 235.67 0.02
RC108C5 0.5 249.87 249.87 0.00 249.87 0.01
RC204C5 0.5 247.19 243.63 0.00 176.00 0.03
RC208C5 0.5 221.72 202.76 0.01 177.47 0.17

n = 10
C101C10 0.5 446.84* 405.44 0.01 376.90 0.07
C104C10 0.5 370.80 298.59 0.01 271.20 0.09
C202C10 0.5 312.90 264.47 0.02 243.15 0.12
C205C10 0.5 226.02 226.02 0.01 226.02 0.04
R102C10 0.5 304.56 264.74 0.01 244.75 0.05
R103C10 0.5 225.22 217.05 0.01 195.26 0.08
R201C10 0.5 244.63 213.99 0.01 208.63 0.08
R203C10 0.5 311.14 293.29 0.01 232.68 0.16
RC102C10 0.5 495.98* 430.00 0.02 406.86 0.04
RC108C10 0.5 438.43* 400.63 0.02 345.33 0.03
RC201C10 0.5 377.31 320.69 0.01 315.28 0.19
RC205C10 0.5 467.06 430.95 0.04 330.55 0.04

n = 15
C103C15 0.5 522.41 438.07 0.05 342.00 0.14
C106C15 0.5 497.89 387.98 0.06 270.44 0.11
C202C15 0.5 494.90 415.49 0.04 367.00 0.19
C208C15 0.5 490.62 460.86 0.07 304.83 0.22
R102C15 0.5 533.49 447.04 0.02 391.90 0.15
R105C15 0.5 454.55 368.61 0.01 335.88 0.16
R202C15 0.5 469.94* 375.99 0.02 357.21 0.12
R209C15 0.5 434.93 314.46 0.03 280.93 0.19
RC103C15 0.5 454.95 400.18 0.02 388.11 0.11
RC108C15 0.5 552.49* 533.12 0.02 389.04 0.16
RC202C15 0.5 607.28 491.31 0.03 386.30 0.13
RC204C15 0.5 458.27 328.21 0.01 338.54 0.14

n = 25
C101C25 0.5 612.69 351.55 0.04 241.42 0.37
C102C25 0.5 520.20 351.79 0.05 218.30 0.32
C103C25 0.5 456.04 257.78 0.03 218.31 0.50
C104C25 0.5 308.98 221.62 0.05 193.13 0.51
C105C25 0.5 612.69 335.15 0.07 241.42 0.21
R101C25 0.5 775.95 615.45 0.06 585.08 0.32
R102C25 0.5 661.62 547.26 0.05 501.32 0.52
R103C25 0.5 595.53* 469.50 0.06 442.20 0.30
R104C25 0.5 556.04* 434.53 0.05 404.81 0.38
R105C25 0.5 757.11 568.06 0.05 503.95 0.25
RC101C25 0.5 1054.05 684.57 0.05 489.72 0.31
RC102C25 0.5 798.79 466.29 0.07 393.58 0.28
RC103C25 0.5 901.35 379.69 0.06 330.49 0.90
RC104C25 0.5 574.91 492.68 0.04 326.96 1.47
RC105C25 0.5 770.32 584.70 0.03 415.87 0.51

n = 30
C101C30 0.5 620.15 374.48 0.07 256.77 0.75
C102C30 0.5 410.15 305.10 0.04 244.09 0.55
C103C30 0.5 459.16 306.31 0.06 238.25 0.96
C104C30 0.5 310.95 261.30 0.06 241.83 1.35
C105C30 0.5 620.15 351.83 0.09 257.50 2.06
R101C30 0.5 797.31 680.72 0.07 678.39 0.79
R102C30 0.5 810.25 611.71 0.06 596.08 1.24
R103C30 0.5 671.98 519.00 0.05 467.46 1.79
R104C30 0.5 679.18 531.20 0.06 454.84 1.00
R105C30 0.5 699.08 591.85 0.06 566.27 1.96
RC101C30 0.5 1265.16* 863.92 0.06 703.82 0.89
RC102C30 0.5 1078.69* 720.87 0.07 528.99 0.48
RC103C30 0.5 998.82* 750.12 0.08 449.05 0.88
RC104C30 0.5 740.56* 538.88 0.05 439.64 1.53
RC105C30 0.5 1126.22* 759.27 0.05 540.92 0.53

n = 100
C101 0.5 2697.31 1382.89 1.42 1037.91 42.01
C102 0.5 2724.44 1278.39 1.63 994.54 32.45
C103 0.5 2252.80 1165.45 1.37 1047.90 22.00
C104 0.5 2188.83 1202.73 1.44 1131.80 26.69
C105 0.5 2847.84 1387.17 1.47 1003.35 40.21
R101 0.5 2960.45* 1808.88 1.02 1632.74 46.40
R102 0.5 2566.17* 1553.35 0.96 1430.16 41.94
R103 0.5 2178.72 1345.43 1.60 1194.75 85.68
R104 0.5 1827.79 1211.18 1.24 1065.68 50.40
R105 0.5 2418.98 1447.96 1.12 1316.14 39.77
RC101 0.5 3496.65* 2894.89 0.86 1755.67 22.27
RC102 0.5 2923.32* 1833.75 1.34 1613.35 23.85
RC103 0.5 2528.95* 1660.74 1.61 1371.91 28.61
RC104 0.5 2101.77* 1422.31 1.13 1201.22 57.18
RC105 0.5 2760.72 1606.70 1.02 1414.28 54.67

Note: * denotes that a solution violates the emission constraint

35

Table 9: Results for α = 0.75

Instance Costs Init. (e) Costs ILS (e) RT ILS (s) Costs ALNS (e) RT ALNS (s)

n = 5
C101C5 0.75 249.93 249.93 0.01 234.82 0.05
C103C5 0.75 161.26 161.26 0.00 161.26 0.02
C206C5 0.75 267.99 233.92 0.00 221.98 0.04
C208C5 0.75 334.32* 202.68 0.00 164.34 0.01
R104C5 0.75 200.28 136.45 0.00 136.45 0.02
R105C5 0.75 203.15 202.57 0.00 153.49 0.02
R202C5 0.75 154.35 154.35 0.00 128.78 0.02
R203C5 0.75 210.58 194.68 0.00 179.06 0.02
RC105C5 0.75 248.91 233.90 0.01 231.64 0.01
RC108C5 0.75 266.41 249.87 0.00 249.87 0.01
RC204C5 0.75 263.89* 184.13 0.00 176.00 0.02
RC208C5 0.75 213.99 194.27 0.00 167.98 0.03

n = 10
C101C10 0.75 451.32 392.05 0.01 366.52 0.07
C104C10 0.75 305.82 270.16 0.01 270.16 0.05
C202C10 0.75 241.09 239.89 0.01 239.89 0.06
C205C10 0.75 288.96 257.63 0.01 226.02 0.04
R102C10 0.75 304.56 264.74 0.01 245.58 0.02
R103C10 0.75 212.27 204.10 0.01 191.33 0.05
R201C10 0.75 234.16 213.99 0.01 208.63 0.07
R203C10 0.75 301.15 260.70 0.01 234.13 0.15
RC102C10 0.75 479.14 407.55 0.01 388.01 0.02
RC108C10 0.75 473.23 400.91 0.01 345.33 0.03
RC201C10 0.75 384.46 304.33 0.01 304.33 0.10
RC205C10 0.75 485.20 380.51 0.01 321.39 0.03

n = 15
C103C15 0.75 547.30 435.62 0.03 343.98 0.08
C106C15 0.75 458.81 333.97 0.02 266.40 0.12
C202C15 0.75 433.07 381.57 0.01 363.38 0.15
C208C15 0.75 644.49 312.30 0.02 296.85 0.15
R102C15 0.75 503.45 441.42 0.01 377.76 0.06
R105C15 0.75 505.15* 370.63 0.01 312.44 0.08
R202C15 0.75 519.77* 385.23 0.01 357.07 0.10
R209C15 0.75 461.02 296.17 0.01 269.65 0.14
RC103C15 0.75 473.50 390.76 0.01 386.94 0.06
RC108C15 0.75 507.60 368.60 0.01 366.70 0.07
RC202C15 0.75 679.10 497.98 0.01 399.42 0.24
RC204C15 0.75 458.27 328.21 0.01 306.42 0.14

n = 25
C101C25 0.75 579.72 308.77 0.03 242.64 0.30
C102C25 0.75 462.44 256.57 0.03 213.97 0.24
C103C25 0.75 459.59 240.33 0.03 211.99 0.20
C104C25 0.75 335.40 235.25 0.05 193.13 0.35
C105C25 0.75 554.05 274.58 0.04 238.50 0.06
R101C25 0.75 841.22 627.11 0.04 582.75 0.20
R102C25 0.75 672.67 536.74 0.04 499.83 0.20
R103C25 0.75 688.50 510.78 0.04 419.05 0.35
R104C25 0.75 622.34 468.07 0.05 404.99 0.39
R105C25 0.75 825.12 572.10 0.04 500.94 0.20
RC101C25 0.75 995.33 682.74 0.06 478.75 0.11
RC102C25 0.75 747.88 506.17 0.04 384.41 0.34
RC103C25 0.75 809.03 446.40 0.09 308.53 0.22
RC104C25 0.75 584.42 409.41 0.03 305.21 0.23
RC105C25 0.75 828.24 584.70 0.03 359.06 0.13

n = 30
C101C30 0.75 564.26 274.48 0.04 259.02 0.22
C102C30 0.75 451.30 305.10 0.03 244.09 0.49
C103C30 0.75 462.71 280.47 0.04 238.25 0.24
C104C30 0.75 377.59 272.59 0.04 250.67 0.65
C105C30 0.75 535.68 304.60 0.04 285.06 0.47
R101C30 0.75 896.68 711.70 0.05 664.40 0.96
R102C30 0.75 852.96 660.71 0.07 578.32 1.17
R103C30 0.75 694.26 568.33 0.05 477.98 0.31
R104C30 0.75 686.09 517.89 0.05 396.20 0.61
R105C30 0.75 846.22 589.37 0.05 538.12 0.91
RC101C30 0.75 1252.61 854.54 0.05 701.36 0.75
RC102C30 0.75 1066.14 695.50 0.05 517.32 0.73
RC103C30 0.75 1112.52* 655.18 0.06 441.45 0.44
RC104C30 0.75 994.67 632.70 0.06 383.06 0.38
RC105C30 0.75 1018.64 658.55 0.04 485.66 0.55

n = 100
C101 0.75 2682.59 1403.87 1.17 1037.91 27.01
C102 0.75 2554.23 1188.10 1.11 1016.28 13.55
C103 0.75 2369.72 1874.64 1.26 993.59 7.12
C104 0.75 2070.19* 1170.76 1.46 889.48 36.20
C105 0.75 2653.50 1268.82 1.27 1000.61 27.61
R101 0.75 2946.34 1813.17 0.85 1588.58 32.05
R102 0.75 2570.54 1659.00 1.03 1467.97 8.02
R103 0.75 2140.67 1412.72 1.01 1167.32 32.95
R104 0.75 1726.62* 1226.51 1.03 1241.54 16.44
R105 0.75 2535.47 1483.08 1.00 1292.51 23.55
RC101 0.75 3630.02 2061.73 0.78 1685.57 23.21
RC102 0.75 2915.79 1892.63 1.19 1558.95 10.41
RC103 0.75 2663.98 1600.57 1.05 1305.49 24.18
RC104 0.75 2047.24 1439.98 0.87 1176.08 12.46
RC105 0.75 2760.72 1606.70 0.97 1471.06 12.06

Note: * denotes that a solution violates the emission constraint

36

Table 10: Overview of attached code files

File name Description

Main.java The main class that executes the program
Coordinate.java The Coordinate class, providing x and y coordinates
Node.java The Node class, extending the Coordinate class,

used as the basis for all nodes
Customer.java The Customer class, extending the Node class,

used to model customers
RechargingStation.java The RechargingStation class, extending the Node class,

used to model recharging stations
Instance.java The Instance class, contains all information of a specific instance
Route.java The Route class, used to model finished routes and routes in progress
Clustering.java Class that executes the clustering process
ConventionalRoutes.java Class that executes the conventional routes insertion algorithm
ElectricRoutes.java Class that executes the electrical routes insertion algorithm
ImprovementHeuristic.java Class that executes the ILS improvement heuristic
AdaptiveLargeNeighbourhoodSearch.java Class that implements the ALNS improvement heuristic
SolutionVisualisation.java Class that can be used to visualize solutions

C Code

Table 10 describes the code files that are attached to this thesis in a zip-file.

37

	Introduction
	Literature review
	Problem definition
	Iterated local search (ILS) heuristic
	Initial solution generation
	Clustering algorithm
	Insertion algorithm conventional routes
	Insertion algorithm electrical routes

	Local search
	Improvement heuristic
	Penalty function

	Adaptive large neighborhood search (ALNS) heuristic
	Solution acceptance
	Neighborhood selection
	Dealing with infeasible initial solutions
	Destroy and repair neighborhoods
	Destroy neighborhoods
	Repair neighborhoods
	Noise introduction

	Numerical experiments
	Problem instances
	Model parameters
	Lambda
	ALNS parameters
	Termination criteria

	Results
	Comparison performance ILS and ALNS
	Convergence to optimal solution in ILS and ALNS
	Analysis of -values
	Solution visualisations

	Conclusion
	References
	Pseudocode algorithms
	Initial solution insertion algorithms
	Local search improvement heuristics
	ALNS neighborhood heuristics

	Results for each instance
	Code

