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Abstract

This thesis includes the effects of road gradient on CO2 emission and energy consumption

in the proposed Green-Vehicle Routing Problem with Steep Routes, time windows, partial

battery recharge and a mixed fleet of conventional and electrical vehicles. We investigate

at which levels of road gradients we should include road gradients the model. We use test

instances that consist of a large number of customers. Furthermore, we use an iterated local

search metaheuristic to solve the problem, where we make use of inter local search techniques.

The results show significant cost reductions, especially when the height differences between

customers are greater than 100 meters.

1 Introduction

CO2 emissions are a significant problem in the transport industry. According to the International

Energy Agency, global transport still accounts for 24% of total CO2 emissions and 29.4% of the

global transport emissions are caused by trucks (Agency, 2018). It is therefore important to

reduce these CO2 emissions in the transport industry. The amount of CO2 that a vehicle emits

per kilometer mainly depends on the speed of the vehicle, the total weight of the vehicle and

the differences in altitude that the vehicle has to climb or descend. So, it is important to take

these factors into account when designing efficient transport and distribution systems. The aim

of this thesis is to present the Vehicle Routing Problem (VRP), this is an optimization problem

that finds the optimal set of routes for a fleet of vehicles, with a green perspective with a mixed

fleet of vehicles, conventional vehicles and electrical vehicles, where we include partial battery

recharging for electrical vehicles and time windows. The VRP with time windows is a frequently

faced problem by several transport companies where customers must be served within a given

time interval. Transport companies aim to reduce the costs and on the one hand, electric vehicles

do not emit CO2 and conventional vehicles emit CO2, but on the other hand electrical vehicles

are more expensive than conventional vehicles. So, we will include a mixed fleet to make an

optimal balanced decision. Furthermore, because the battery capacities of electrical vehicles

are very low and distances can be very large, we allow partial battery recharging to travel

routes with large distances. However, recent papers on these topics omit the altitude differences

between customers when calculating CO2 emissions and energy consumption. However, this

can be important for areas with high altitude differences as the CO2 emission per km kan vary.

Energy consumption per kilometer can vary between close to 0 kWh per kilometer travelled and

1.5 kWh per kilometer in areas with high road gradients (Liu et al., 2017). Furthermore, for

fuel consumption, in areas with very steep routes, fuel consumption can very between 0.1 liter

fuel used per kilometer and 1 liter fuel used per kilometer (Zhang et al., 2015). So with large
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distances between customers in areas with very steep routes, it is important to incorporate these

factors. We will investigate from what level of altitude difference between all customers it is

significant to include altitude differences.

We call this problem the G-VRP with Steep Routes (G-VRPSR), we will use the test in-

stances from Macrina et al. (2019), which we will adapt by associating uniform randomly gen-

erated elevation information on the nodes.

The remainder of this thesis is structured as follows. In Section 2, we will give a short

review of the related scientific literature. Section 3 provides a detailed description of the G-

VRPSR. Solution algorithms for the G-VRP and G-VRPSR are described in Section 4. The

computational experiments are reported Section 5. Finally, Section 6 discusses the outcomes

and potential future research.

2 Literature review

The Vehicle Routing Problem (VRP) is a well-known optimization problem that optimizes the

costs for the routes for multiple vehicles in order to deliver a given set of customers. Dantzig

and Ramser (1959) were the first to introduce this problem are made. Nowadays, many exten-

sions for this problem. For example, Solomon (1987) introduced the Vehicle Routing Problem

with Time Windows (VRP-TW) and Min (1989) introduced the Vehicle Routing Problem with

simultaneous delivery and pick-up points. However, in recent years, there has been an increased

interest in the pollution and sustainability aspects of the VRP, and thus the Green VRPs (G-

VRPs) were introduced. G-VRPs are special in the fact that they include limiting CO2 emission

in minimizing the route costs by minimizing including CO2 emission in the objective or by

setting an upper bound on CO2 emission emitted. The first that studied the G-VRP were

Bektaş and Laporte (2011), who modelled the energy consumption of conventional vehicles and

their polluting impact in the Pollution-Routing Problem (PRP), where different parameters for

load capacity and vehicle speed where taken into account for computing emissions. As min-

imizing carbon emissions increases driving time, Demir et al. (2014) introduced a bi-objective

PRP for minimizing costs and minimizing carbon emissions. Jabali et al. (2012) solved a Time-

Dependent VRP (T-DVRP) by tabu search considering the maximum achievable speed as part

of the optimization and showed that reducing CO2 emissions also leads to reducing operating

costs. Tajik et al. (2014) solved the Time Dependent PRP (TDPRP) with uncertain data and

with simultaneous delivery and pick-up points. The Electric-Vehicle Routing Problem (E-VRP)

was introduced by Lin et al. (2016), this VRP considered the vehicle load effect on battery

consumption and included recharge station visits for charging the battery of vehicles. Following
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this, Montoya et al. (2016) modelled the charging time as an exponential function instead of a

linear function. Sassi et al. (2014) introduced a Heterogenous Electric Vehicle Routing Problem

with Time Dependent Charging Costs and a Mixed Fleet (HEVRP-TDMF), where customers

could be served by either an electrical vehicle (EV), having different battery capacities and

operating costs, or a conventional vehicle (CV). Furthermore, it included recharging with time

dependent costs. Macrina et al. (2019) extended the G-VRP with a mixed fleet of vehicles, CVs

and EVs, with partial recharge stations for EVs. In addition, they incorporated time windows

and considered a limit on polluting emissions. They solved the problem by an iterative local

search metaheuristic. Yu et al. (2021) developed an adaptive neighborhood search for the green

mixed fleet vehicle routing problem of Macrina et al. (2019) with realistic energy consumption

and partial recharges.

However, these papers assumed that CO2 emissions only depended on the distance travelled

or vehicle speed, whereas in reality CO2 emission depend on several more factors. The grade of

the road has been included in the calculation of the CO2 emission (Suzuki, 2011), the vehicle

speed (Demir et al., 2012), traffic congestion (Franceschetti et al., 2013) and the driver’s driv-

ing habit (Bandeira et al., 2013). Brunner et al. (2021) applied the VRP in urban areas with

significant altitude differences in a VRP with Steep Routes (VRP-SR). They modelled routing

decisions including the impact of road gradients in a fuel consumption cost model. Palmer

(2007) presented an integrated routing and CO2 emission model for freight vehicles and high-

lighted the role of speed in reducing CO2 emissions. L. Liu and Lai (2021) studied the Low

Carbon Routing Problem (L-CRP) and proposed a Multi Depot VRP (MDVRP) considering

fuel consumption optimization under the condition of the latest receiving time of consumers and

developed a multi-population fruit fly algorithm to solve the problem. Zhang et al. (2015) incor-

porated fuel cost, CO2 emission cost, and vehicle usage cost into the traditional VRP problem

and established a L-CRP and developed a tabu search algorithm. Lai et al. (2021) considers

a joint pollution-routing and speed optimization problem (PRP-SO) where fuel costs and CO2

emissions depend on the vehicle speed, arc payloads, and road grades. They pre-calculated the

CO2 emission factors for every arc such that the total CO2 emission of an arc is only dependent

on the vehicle load and vehicle speed at the moment of using that particular arc. Table 1 gives a

summary of the main papers that contribute to the G-VRP with steep routes, where * indicates

whether a paper includes the specified parameter.
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Table 1: Summary of the literature on the G-VRP and its variants

Reference Time Time Mixed Partial battery Steep

windows dependency fleet recharge routes

(Bektaş & Laporte, 2011) *

(Demir et al., 2012) * *

(Suzuki, 2011) * *

(Franceschetti et al., 2013) *

(Jabali et al., 2012) *

(Demir et al., 2014) *

(Macrina et al., 2019) * * *

(Lai et al., 2021) * * *

(Brunner et al., 2021) *

(Sassi et al., 2014) * * *

(Yu et al., 2021) * *

This thesis * * * *

3 Problem description

In this section, we will provide a formal description of the problem. We introduce the mixed-

integer linear programming formulations in Section 3.1. We formulate the emission of CO2 using

a the comprehensive emission model (CMEM) in Section 3.2 and we will formulate the energy

consumption model in Section 3.3.

3.1 Mathematical model

We will describe two different mixed-integer linear programming formulations in this section.

One that is the same as in Macrina et al. (2019) and that omits the road gradient of routes

between customers, which we describe in Section 3.1.1. The modifications on Macrina et al.

(2019), for taking road grade in routes into account are described in Section 3.1.2. The main

difference between these two models is in defining the fuel consumption for conventional vehicles

and energy consumption for electrical vehicles.
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3.1.1 The Green Mixed Vehicle Routing Problem With Partial Battery Recharging

and Time Windows

The problem is defined based on on the directed completed graph G(V ′,A), where V ′ is the set

of customers and recharge stations. Let N be the set of locations and R the set of recharge

stations and V = N ∪ R. Furthermore, the depot is also in the set of recharge stations and

is denoted by s for the start depot and t for the end depot. For allowing multiple visits for

each recharge station, we introduce σ copies of the recharge stations so that a recharge station

can be visited (1 + σ) times. Here, |R′ | = (1 + σ)|R|, and so V ′
= R′ ∪ N . For every arc

(i, j) ∈ A, i ̸= j, dij is the distance between the customers and tij is the travel time between the

nodes. Each customer i ∈ N has a opening time ei and a closing time li, where the vehicle needs

to have arrived between these two times and each customer i ∈ N has a service time si. Each

recharge station i ∈ R′
has a recharging time ρ that is linear to the energy charged at the station

and assumed the same for all recharge stations. The mixed fleet consist of conventional vehicles

denoted by C and electrical vehicles denoted by E. We assume that there are infinite number of

vehicles for both types. Each type of vehicle has a max load capacity, denoted by QC and QE .

The costs for traveling at every arc (i, j) ∈ A, i ̸= j are cCij and cEij for conventional vehicles and

electrical vehicles respectively. The costs per kWh recharged at a recharge station is denoted by

wr and is assumed to be the same for every recharge station and wa is denoted as the costs of a

full battery that is charged when a electrical vehicle leaves the depot, so wa = BEwr, where BE

is the max battery capacity. The coefficient of energy consumption (in kWh/km) is denoted by

π and assumed equal for each arc (i, j) ∈ A, i ̸= j. The modelling of the fuel consumption per

kilometer and thereby the CO2 emission ϵ(uCi ) per kilometer for each load uCi , that depends on

the road gradient is explained in Section 3.2.

In order to model the G-VRP and G-VRPSR we define the following decision variables:

• xCij =


1 if the CV travels from i to j, (i, j) ∈ A

0 otherwise

• xEij =


1 if the EV travels from i to j, (i, j) ∈ A

0 otherwise

• zij , the amount of energy available when arriving at node j from the node i (kWh),

(i, j) ∈ A

• gij , the amount of energy recharged by the EV at node i from traveling to node j (kWh),

i ∈ R′
, j ∈ V ′
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• τj , the arrival time of the vehicle to the node j (h), j ∈ V ′

• uCi , the amount of load left in the vehicle after visiting node i (kg), i ∈ V ′

• uEi , the amount of load left in the vehicle after visiting node i (kg), i ∈ V ′

A formulation of the G-VRP is given in (1) - (24):

Minimize wr
∑
i∈R′

∑
j∈V ′

gij + wa
∑
j∈V ′

xEsj +
∑

(i,j)∈A

cEijdijx
E
ij +

∑
(i,j)∈A

cCijdijx
C
ij (1)

subject to
∑
j∈V ′

(xEij + xCij) = 1 i ∈ N (2)

∑
j∈V ′

xEij ≤ 1 i ∈ R′
(3)

∑
j∈V ′\s

xEij −
∑

j∈V ′\t

xEji = 0 i ∈ V ′
(4)

∑
j∈V ′\s

xCij −
∑

j∈V ′\t

xCji = 0 i ∈ V ′
(5)

∑
i∈V ′ ,i ̸=s\s

xEsi −
∑

j∈V ′ ,j ̸=t

xEjt = 0 (6)

∑
i∈V ′ ,i ̸=s\s

xCsi −
∑

j∈V ′ ,j ̸=t

xCjt = 0 (7)

uEj ≥ uEi + qjx
E
ij −QE(1− xEij) i ∈ V ′ \ {s, t}, j ∈ V ′ \ {s} (8)

uCj ≥ uCi + qjx
C
ij −QC(1− xCij) i ∈ V ′ \ {s, t}, j ∈ V ′ \ {s} (9)

uEj ≤ QE j ∈ V ′
(10)

uCj ≤ QC j ∈ V ′
(11)

uEs = 0 (12)

uCs = 0 (13)

τj ≥ τi + (tij + si)x
E
ij −M(1− xEij) i ∈ N , j ∈ V ′

(14)

τj ≥ τi + (tij + si)x
C
ij −M(1− xCij) i ∈ N , j ∈ V ′

(15)

τj ≥ τi + tijx
E
ij +

1

ρi
gij −M(1− xEij) i ∈ R′

, j ∈ V ′
(16)

ej ≤ τj ≤ lj j ∈ V ′
(17)
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zij ≤(zhi + gij)− πdijx
E
ij +M(1− xEij) +M(1− xEhi)

h ∈ V ′
, i ∈ V ′ \ s, j ∈ V ′

,

i ̸= j, i ̸= h, j ̸= h

(18)

zsj ≤BE − πdsjx
E
sj +M(1− xEsj) j ∈ V ′

(19)

gij ≤BE − zhi +M(1− xEij) +M(1− xEhi) i ∈ R′ \ s, h ∈ V ′
, j ∈ V ′

(20)

zij ≥0.1BE i ∈ R
′
, j ∈ V ′

(21)

gij ≤0.9BE i ∈ R
′
, j ∈ V ′

(22)∑
(i,j)∈A

ϵ(uCi )dijx
C
ij ≤UB (23)

xEij , x
C
ij ∈ {0, 1}, i ∈ V ′

, j ∈ V ′
;uEi , u

C
i , τi ≥ 0, i ∈ V ′

; gij , zij ≥ 0, i ∈ R′
, j ∈ V ′

. (24)

In this formulation, the objective is to minimize travel costs and recharging costs. Constraint

(2) ensures that all customers are visited once by a vehicle. Constraint (3) means that every

recharge station can be visited at most once. Furthermore, Constraint (4) and (5) ensure that the

inflow of vehicles for every customer and recharge station is the same as the outflow of vehicles

and Constraint (6) and (7) ensure this for the depot, where M is the Big-M notation which

ensures that the constraint holds. Constraints (8)-(13) ensure that load capacity constraints

hold. Time window constraints will be ensured by Constraint (14) - (17) and define variable τ .

Constraints (18) - (20) define the variables zij and gij and that the capacity of the battery is

not exceeded. Constraints (21) and (22) define the state of the charging of the battery. Finally,

Constraint (23) ensures that the emission of the conventional vehicles is below the upper bound

of emission and Constraint (24) makes sure that the domain of the decision variables.

3.1.2 The Green Vehicle Routing Problem with Steep Routes, Partial Battery

Recharging and Time Windows

For the mathematical model, we will adjust the model that is covered in Macrina et al. (2019).

First, we will modify the coefficient of energy consumption π used in Macrina et al. (2019) for the

electric vehicles (EVs) in a way that it includes the road gradient and vehicle weight. Secondly,
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Table 2: Estimation of emission factors for the G-VRP
Load of the vehicle Weight laden (%) Emission factor (kg CO2/ km)

Empty 0 0.77
Low loaded 25 0.83
Half loaded 50 0.90
High loaded 75 0.95
Full load 100 1.01

we will modify the CO2 emission ϵ(uCi for conventional vehicles (CVs) in a way that it takes

road gradient into account. All other aspects in this model will be the same as formulated in

Constraints (1) - (24).

3.2 Modelling CO2 emission

For estimating the CO2 emission, we need to have an emission factor ϵ that can calculate the

emissions per kilometer. We assume that CO2 emissions are only dependent on the type of

vehicle and the quantity consumed by the vehicle. Furthermore, in the G-VRP we assume that

the emission factor only depends on the mass of the vehicle and the load carried. For the G-

VRPSR, the emission factor will also be dependent on the road gradient of the route. In order

to calculate the emission factor we need to know the fuel conversion factor. Following Macrina

et al. (2019), this factor will be 2.62 CO2/ liter of diesel. Now, the estimated emission factor ϵ is

equal to the consumption of diesel multiplied by the fuel conversion factor. Using the fact that

the consumption of liter of diesel depends on the load of the vehicle for the G-VRP, we have

summarized the emission factor for the G-VRP for different load in Table 2. In order to estimate

the emission factor for the G-VRPSR, we need to include the road gradient in the consumption

of a liter diesel. We will estimate this using the Comprehensive Modal Emission Model from

Lai et al. (2021). The parameters used are defined in such a way that when the road gradient

is zero, the emission factor will be the same as it would have been in the G-VRP. Furthermore,

these parameters are summarized in Table 3 and are used for estimating the fuel consumption

on an arc (i, j) ∈ A. The fuel consumption (FC) in liters of at arc (i, j) ∈ A can be determined

by formula 25

FCij(ui) = αij
1

v
+ βij(w + ui) + γijv

2 (25)

where

αij = ξ
1000FNV dij

κψ
, βij = ξ

dij(r + gsinϕij + gCr)cosϕij
ϵωκψ

, γij = ξ
0.5CdAρdij

ϵωκψ
(26)
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Table 3: Parameters for the Comprehensive Modal Emissions Model (CMEM) for estimating
fuel consumption

Symbol Description Value

F Engine friction factor (kJ/rev/liter) 0.13
N Engine speed (rev/s) 30
V Engine displacement (liters) 5
A Frontal surface area of a vehicle (m2) 5
Cd Aerodynamic drag coefficients 0.35
Cr Rolling resistance coefficients 0.005
r Vehicle acceleration (m/s2) 0
w Curb weight (kg) 10000
κ Heating value for diesel fuel (kJ/g) 42
ϵ Vehicle drive train efficiency 0.3
ω Efficiency parameter for diesel engines 0.6
ξ Fuel-to-air mass ratio 1
ψ Conversion factor from grams to liters 737
ρ Air density (kg/m3) 12041
g Gravity (m/s2) 9.81

Here, v is the vehicle speed, which we assume the same for all vehicles, for simplicity. ui the

payload (in kg) on a route and ϕ the road angle.

3.3 Modelling energy consumption

We model the energy consumption using Liu et al. (2017) for the G-VRPSR. In the G-VRP, we

assume that the coefficient of energy consumption π is a constant factor and proportional to the

distance travelled by the vehicle. However, for the G-VRPSR, we assume that the coefficient of

energy consumption π is also proportional to the road gradient of the route. Liu et al. (2017)

provided us with a regression formula of the energy consumption per km travelled, taking into

account the distance of the route, the average speed of the route, whether airconditiong (A/C)

is on or off, whether heater usage is on or off, whether the vehicle travels at night or at day and

at last, it has for every road gradient a different dummy variable. We assume that A/C and

heater usage are off and that the vehicle does not travel at night. Now, the road gradient is only

dependent on the road gradient the distance of the road and the average speed. The regressions

for different road gradients are summarized in Table 4.

4 Methodology

In this section, we will explain the methodologies that we will use. I will explain the algorithms

used for the Green Vehicle Routing Problem in Section 4.1. Furthermore, I will explain the

adjustments made in the algorithm of Section 4.1 for the Green Vehicle Routing Problem with
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Table 4: Energy consumption per Km with road gradient
Road gradient Energy consumption (per Km)

≤ -9% 0.040 - 0.003dij - 0.076v
-9% to -7% 0.155 - 0.003dij - 0.076v
-7% to -5% 0.224 - 0.003dij - 0.076v
-5% to -3% 0.251 - 0.003dij - 0.076v
-3% to -1% 0.299 - 0.003dij - 0.076v
-1% to 1% 0.372 - 0.003dij - 0.076v
1% to 3% 0.457 - 0.003dij - 0.076v
3% to 5% 0.524 - 0.003dij - 0.076v
5% to 7% 0.575 - 0.003dij - 0.076v
7% to 9% 0.678 - 0.003dij - 0.076v
9% to 11% 0.730 - 0.003dij - 0.076v
11% ≥ 0.924 - 0.003dij - 0.076v

Steep Routes in Section 4.2.

4.1 The green vehicle routing problem

The proposed metaheuristic is based on the same iterated local search (ILS) used in Macrina

et al. (2019). The algorithm used is summarized in Algorithm 1. Given the set of N customers

that need to be served, we will first cluster the customers in two sets, the first set of customers

are served by electrical vehicles (EVs) and the second set by conventional vehicles (CVs). After

the clustering, we establish the initial routes for each vehicle. This will result in the initial

solution. Then, we will apply local search and a perturbation on each iteration till the stopping

criterion is met. Here, the stop criteria will be after 200 iterations. When the stopping criterion

is satisfied, the best solution of all the solutions after an iteration is returned.

Algorithm 1 Iterated local search (ILS)

Generate the initial solution η0
Apply the local search procedure
while Stop criterion is not verified do

Perturbation
Local search

end while
return best solution η∗

Constructing the initial solution In order to construct an initial solution, we first apply

a clustering algorithm, then we will use insertion strategies for constructing feasible routes given

the clusters for each type of vehicle. Let S be the set of all unserved customers. Furthermore,

let C′ be the set of all customers that will be served by a CV and E ′ the set of all customers

served by an EV. That is, S = N \ (C′ ∪ E ′). We initialize C′ and E ′ by inserting the depot s

in both sets. Then, for every iteration, till all customers are divided over the clusters, we will
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decide which customer is inserted in a cluster by the scores pCi and pEi , where the scores vary

between 1 and 10. The score for the EVs pEi is calculated as follows:

pEi = 11−
(
1 +

dEi − dEmin

dEmax − dEmin

· 9
)

(27)

Here, dEi is the Euclidean distance from customer i to the barycentre of cluster E , be, dEmin

the Euclidean distance of the nearest customer i, where i ∈ S, to be and dEmax the Euclidean

distance of the furthest customer i, where i ∈ S. The score for the is calculated as follows:

pCi = λ

(
11−

(
1 +

dCi − dCmin

dCmax − dCmin

· 9
))

+ (1− λ)

(
1 +

qCi − qCmin

qCmax − qCmin

· 9
)

(28)

where dCi is the Euclidean distance from customer i to the barycentre of cluster E bc, d
C
min

the Euclidean distance of the nearest customer i, where i ∈ S, to bc and dCmax the distance of

the farthest customer i, where i ∈ S. Here, λ is set equal to 0.5. Furthermore, qCi is the demand

of customer i, qCmin the lowest customer demand of all served and unserved customers and qCmax

the largest customer demand of all served and unserved customers.

When all scores are calculated, we will assign the customer with the highest score in the

corresponding cluster, so i∗E = argmaxi∈S{pEi } and i∗C = argmaxi∈S{pCi }. If i∗E ̸= i∗C , i
∗
E will

be assigned to cluster E ′
, and i∗C to C′

. Otherwise, if pEi∗ > pCi∗ , customer i∗ will be assigned to

cluster E ′
, otherwise to cluster C′

. Finally, the depot s will be removed from both clusters.

Insertion strategy for conventional vehicles The aim of the insertion strategy is to

construct feasible routes for conventional vehicles, by selecting the best unserved customer u∗,

until the emission constraint is exceeded or till no customers are left in the cluster. If the emission

constraint is exceeded but there are still customers unserved, the insertion strategy will stop and

all unserved customers will be assigned to cluster E ′
. We construct a route (s, i1, i2, ..., im, t) by

starting with an initial route (s, i, t), where s and t denote the depot and ip the p-th customers

in the route. The first customer in the initial route is the customer with the lowest closing time

li. If the route is still feasible, this means that capacity constraints, emission constraints and

time windows are still feasible, a new unserved customer u∗ ∈ C′
will be added to the route. The

best customer u∗ is chosen as follows. Calculate for every unserved customer the best position

in the route by formula 29.

f1(i(u), u, j(u)) = min
p∈{1,...,m}

cp−1,u + cu,p − cp−1,p (29)

where i(u) and j(u) are two adjacent customers in the current route. Finally, the customer

will be decided by (30).
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f2(i(u
∗), u∗, j(u∗)) = max

u
cs,u − f1(i(u), u, j(u)) (30)

Before the insertion of u∗, the time window constraints, capacity constraints and emission

constraints will be tested. If one or more of the time window constraints or capacity constraints

are unsatisfied, u∗ will not be inserted in the current route and a new route will be initialized.

However, if the emission constraint is exceeded, u∗ will also not be inserted, and all unserved

customers will be served by an EV.

Insertion strategy for electrical vehicles The aim for this insertion strategy is to con-

struct feasible routes for electrical vehicles, by selecting the best unserved customer u∗ till no

feasible solution is possible or till no customers are left in the cluster. We construct a route

{s, i1, i2, ..., im, s} with the same strategy used as with the conventional vehicles. However, be-

fore the insertion of the best customer u∗, only time window and capacity constraints are tested.

When one or more constraints are exceeded before the insertion of the best customer u∗, en-

ergy capacity constraints of the route will be checked and recharge stations could possibly be

added. If a recharge station should be added to the route, the recharge station that will be

added is determined in the same manner as deciding the next customer in (30) and is not yet

visited. Furthermore, time window constraints should be checked again and the route should be

repaired if one or more time window constraints will not hold. We repair the route by iteratively

removing the customer with the smallest time span ei − li. In every iteration we also remove all

recharge stations and check whether new recharge station should be added, after that we check

time windows again, till the current route is feasible. If no feasible route can be constructed, all

unserved customers will be assigned to a conventional vehicle. These new conventional routes

will be constructed with the insertion strategy for conventional vehicles. However, the emission

constraint can be violated. When the emission constraint is violated, we apply improvement

heuristics with penalty function in the local search and perturbation.

Local search and perturbation In order to explore new feasible solutions, we intro-

duce improvement heuristics based on the local search procedures. We distinguish between

improvement heuristics for feasible solutions and improvement heuristics with penalty function

for infeasible solutions. The improvement heuristic without penalty function has three different

improvement strategies which are described as follows:

• Change of nodes in conventional routes For each conventional route, search for each

customer the best feasible position in every other conventional route. The best position

means the position with the largest cost reduction. The customer with the largest cost

reduction will be relocated to his best other route.
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• Change of nodes in electrical routes For each electrical route, search for each customer

the best feasible position in every other electrical route. Here, the best position also means

the position with the largest cost reduction, where new costs for possible new recharge

station visits, removals of recharge stations and more battery charge are included. The

customer with the largest cost reduction will be relocated to his best other electrical route.

For both electrical routes, energy capacity constraints will be checked again and recharge

stations could possibly be inserted/removed in the route. For deciding whether a recharge

station should be removed, we remove all the recharge stations and allocate the current

recharge stations till the battery capacity constraint is met.

• Change of nodes in conventional and electrical routes For each conventional and

electrical route, search for the best feasible position in every other conventional or electrical

route. If a relocation occurred where an electrical route is involved, the energy capacity

constraints will be checked again and recharge stations could possibly be inserted/removed

in the route.

For the improvement heuristic with penalty function, the same strategies as the improvement

heuristic without penalty function will be used. However, the emission constraint is relaxed and

the objective function will be defined as follows:

z′(η) = z(η) + θϵ(η) (31)

where z′(η) is the objective without a penalty function, θ the emission penalty and ϵ(η) the

emission in the current solution. The value of θ is set equal to 1. After every iteration, this

value will increase by 10% till the emission constraint is not longer violated. If the emission

constraint is met, the improvement strategies without penalty function will be used.

4.2 The Green Vehicle Routing Problem with Steep Routes

For the Green Vehicle Routing Problem with Steep, the sequence of the route is a more important

factor. This is because it is for example more efficient to drive down a vehicle with high capacity

instead of driving upwards. For this purpose we add the Intra-route local search procedure,

that was proposed in Brunner et al. (2021). We only apply this for routes carried out by

conventional vehicles because energy consumption for electrical vehicles is not dependent on the

load carried by the vehicle. This algorithm searches for improvements for a given route using

three improvement strategies, where we only use two. Firstly, all possible two-arc exchanges

within route r (2-opt), and secondly all possible swaps between two nodes in the route. The
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algorithm of the Iterated Local Search procedure for Steep Routes (ILSSR) is described in

Algorithm 2.

Algorithm 2 Iterated Local Search for Steep Routes (ILSSR)

Generate the initial solution η0
Apply the local search procedure
while Stop criterion is not verified do

Perturbation
Local search
Inter-route local search
Vehicle swap

end while
return best solution η∗

Here, the constructing of the initial solution will be done the same as in the ILS. However,

the height difference between the customers will also be taken into account for calculating the

distances between customers. Besides, the Local Search and Perturbation procedures are also

the same as in the ILS. Furthermore, a vehicle swap improvement heuristic is added to the

algorithm. This is a heuristic that swaps the electrical vehicle with a conventional vehicle for

one route travelled by an electrical vehicle. The route that is chosen is the route that, when

travelled by a conventional vehicle instead of an electrical vehicle, emits the least CO2 in his

route. Furthermore, the vehicle only switches if the new emission is below the upper bound of

CO2 emissions.

For comparing the costs of the routes of the G-VRP with the G-VRPSR, we will use the

routes of the best solution that is generated from the ILS and recalculate the costs of the solution

with new emissions and new energy consumption. If the new total emission exceeds the max

emission, the conventional route with the lowest emissions will be converted to an electrical

route and possible new recharge stations will be assigned. This continues till the total emission

is below the max emission.

5 Results

We now initialize the results of the Iterated Local Search and the Iterated Local Search with

Steep Routes. We carried out our tests on an Intel(R) Core(TM) I5-8250U CPU at 1.8 GHz

having 8 GB of RAM using a Windows 10 operating system. The adjusted instances used in

analysing the results are introduced in (Schneider et al., 2014) and are obtained from (Goeke,

2019). The instances are adjusted from the instances in (Solomon, 1987). The instances include

for every customer and recharge station the coordinates, demand, opening and closing time and

service time. The instances do not include the geographical height of the customers ad recharge
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stations, so we will generate those distances using a uniform random distribution. Furthermore,

the instances are divided into three groups, C, RC and R and are different in their geographical

distributions. Group C has a clustered distribution, R has a random distribution and RC has

a combination of clustered and random distributions. Furthermore, 21 recharge stations are

included in the instances. In the computational study, we first evaluate the Iterated Local

Search (ILS) metaheuristic. Then we will compare the results obtained by ILS with the results

obtained by the Iterated Local Search with the new improvement heuristics, where we assume

zero height differences, to evaluate the proposed metaheuristic. After this, we compare the

results obtained when we exclude steep routes with the results obtained when we include steep

routes. We cover four different height differences. For altitudes differences between 0 and 10

meters, 0 and 50 meters, 0 and 100 meters and 0 and 250 meters.

5.1 Parameter setting

In order to analyse the results we need to clarify the parameters used in the ILS and ILSSR.

The load capacity, battery capacity and refueling rate are stated in the instances. Here Macrina

et al. (2019) used different values for these variables. Load capacity, in Macrina et al. (2019),

was fixed at 500 kg, battery capacity at 20 KWh and the refueling rate was fixed at 20,000

kWh/h. However, we use for this the parameters given in Schneider et al. (2014), where the

parameters differ per instance. The fuel consumption rate, only for the ILS, is equal to 1 and

so is the velocity. The number of visits for recharge stations is 2, so σ equals 1 , because

|R| = (σ+1)R. For establishing the value of the upper bound (UB) on CO2 emissions, we first

need to calculate the value of the emissions in the worst case scenario UBmax, as in Macrina et

al. (2019). The emission of the worst case is the emission that is emitted if every vehicle visited

only one customer in the route and did not go back to the depot. Now, the parameter UB is set

equal to α ∗ UBmax, where α is either 0.25, 0.50 or 0.75.

5.2 Analysing the ILS

Here, we investigate the generated initial solution with the ILS. As our ILS is very dependent on

which improvement strategies are chosen in the first iterations, we will apply the ILS 20 times

on every combination of the instance, α, and customer size. The reported solution is the best

solution of the obtained 20 best solutions. The computation time is the average computation

time of the 20 ILS metaheuristics.

To assess the performance of the ILS, we carried out a computational testing with the aim of

comparing the quality of the solutions yielded by the proposed heuristic with the initial solution.
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Specific results for the ILS for all customer sizes are shown in the Appendix, where we report, for

each test instance and every value for α, the computation time, the costs of the initial solution

and the cost of the best solution. The results are summarized in Table 5. Here the percentage

gap in cost gc is reported, where gc is defined as 100 ∗ gc = −(cB − cI)/cI and cB is the cost

that was generated from the ILS and cI the cost of the initial solution. With averages varying

between 30% and 59% for all values for α we clearly see that the ILS works and that we have

obtained significantly better solutions. It is worth observing that some initial solutions were not

feasible, so we did not consider those instances in the table.

Table 5: Summary results for ILS
α = 0.25 α = 0.50 α = 0.75

gc Run time (s) gc Run time (s) gc Run time (s)

|N | = 10 Average 32% 0,3 30% 0,1 43% 0,09
St. dev 21% 27% 25%

Minimum 2,3% -50,9% -9,7%
Maximum 66,2% 60,7% 80,8%

|N | = 25 Average 42% 2,2 54% 1,0 59% 0,7
St. dev 17% 16% 14%

Minimum 14,6% 30,4% 31,3%
Maximum 73,2% 79,3% 80,3%

|N | = 50 Average 45% 10,8 53% 5,8 50% 5,1
St. dev 20% 15% 29%

Minimum 1,3% 16,2% -72,4%
Maximum 73,0% 73,6% 70,8%

|N | = 100 Average 52% 47,2 51% 26,2 52% 24,2
St. dev 17% 19% 18%

Minimum 21,2% 0,0% 0,0%
Maximum 69,9% 71,0% 69,4%

5.3 Investigating height differences in instances

The development of our algorithm requires, besides the parameters introduced in Section 5.1,

the setting of the energy consumption and fuel consumption. First, we investigate the energy

consumption per kilometer travelled in kWh. Summary statistics are given in Table 6 for areas

with different maximum heights H, where customers can be located between 0 and 10 meter,

0 and 50 meter, 0 and 100 meter, and 0 and 250 meter. The table shows that for all different

height ranges between 0 and H the average energy consumption is around 0.293, however the

standard deviation, the minimum value and the maximum value do change when the height

ranges become higher. Because the average energy consumption is 0.293 per kilometer, and we

assumed an energy consumption of 1.0 per kilometer in the ILS, we have multiplied the energy

consumption in the ILSSR by 1.0/0.293.
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Table 6: Summary statistics for energy consumption per kilometer
H = 10 H = 50 H = 100 H = 250

Mean 0.293 0.2932 0.293 0.293
St. dev 0 0.003 0.009 0.022
Minimum 0.219 0.145 -0.039 -0.039
Maximum 0.378 4.030 0.845 0.845

For investigating the CO2 emissions, the summary statistics of the CO2 emission per kilo-

meter are shown in Table 7 for different height ranges H. It clearly shows more variation in CO2

emissions between customers when the height range increases.

Table 7: Summary statistics for CO2 emission per kilometer
H = 10 H = 50 H = 100 H = 250

Mean 0.837 0.841 0.853 0.922
St. dev 0.042 0.189 0.357 0.828
Minimum 0.005 0.002 0.002 0.002
Maximum 2.777 10.519 20.102 47.381

5.4 Analysing ILSSR in flat areas

To asses the performance of the ILSSR, we first investigate whether the metaheuristic obtains

better results than the ILS in flat areas. And so, we investigate whether the implementation of

the inter route search and the route swap improvement heuristic lead to better results. Summary

statistics are given in Table 8, where the run time percentage gap tc is defined as 100 ∗ tc =

(rA−rB)/rB and rB is the run time for the ILS and rA the run time for the ILSSR. Furthermore,

the cost percentage gap gc is defined as 100 ∗ gc = −(cA − cB)/cB and cB is the cost that was

generated from the ILS and cA the cost obtained from the ILSSR. Specific results for the ILSSR

without steep routes are shown in the Appendix. Looking at Table 8, it is evident that when we

use the ILSSR cost will decrease with on average 10%. However, in some cases we still observe a

cost increase for the ILSSR. The computational results clearly show an advantage for the ILSSR

in flat areas in terms of efficiency. This advantage becomes more evident for instances with

50 customers, where the ILSSR is on average 17% faster than the ILS. However, for smaller

instances the ILSSR is slower.

5.5 Analysing the ILSSR with height differences

In this section, we investigate the impact of height differences on the obtained results. We

compare the obtained results for different height ranges with both the ILS and the ILSSR

without height differences, because the cost improvement or increment can also be caused by
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Table 8: Summary statistics for comparing ILSSR with ILS in flat areas
α = 0.25 α = 0.50 α = 0.75

gc tc gc tc gc tc
|N | = 10 Average 9,4% 18,3% 9,5% 20,1% 18,1% 36,6%

St. dev 11% 18% 21%
Minimum 1% -7% -3%
Maximum 40% 75% 64%

|N | = 25 Average 7,2% 7,3% 12,5% 10,3% 2,4% 40,6%
St. dev 9% 12% 16%
Minimum -10% -6% -40%
Maximum 26% 31% 43%

|N | = 50 Average 11,1% -2,4% 13,2% -18,8% 14,9% -31,8%
St. dev 21% 13% 13%
Minimum -7% -20% -18%
Maximum 98% 28% 39%

the implementation of the inter route search or the vehicle swap improvement heuristic.

5.5.1 Comparing with ILS

For comparing the results of the ILS, we focus on three different height ranges, an area with

height differences between 0 and 10 meters, 0 and 50 meters, and 0 and 100 meters. We use the

same instances for every different height range, however only the height where the customers

and recharge stations are located are different. We compare the solutions generated by the

ILSSR, where road gradient were taken into account, with the solutions generated by the ILS,

were we neglect the road gradient. As mentioned before, the costs of the best solution of the ILS

were recalculated with new battery use for electrical routes, and were conventional routes could

be assigned as electrical routes if the new emission exceeds the maximal emission. We have

summarized the percentage cost gain gc of every instance and for every height difference H in

Tables 9 - 11, where gc = 100∗(cS−cB)/cB and cS is the cost generated by the ILSSR and cB the

adjusted cost generated by the ILS. It is worth observing that for every height range the average

cost gain is positive. So the ILSSR obtains better results for all height differences. Furthermore,

especially for the results when the height range is set equal to 10 meters, the average run time

is also faster for the ILSSR. However, it is worth observing that the cost gain can be dependent

from the implementation of the inter route local search and vehicle swap improvement heuristic

rather than taking steep routes into account for defining the energy consumption and CO2

emission. Furthermore, it is also worth observing that the ILSSR does not obtains the best

solution for every instance.
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Table 9: Summary statistics for comparing ILSSR with ILS with H = 10
α = 0.25 α = 0.50 α = 0.75

gc tc gc tc gc tc
|N | = 10 Average 9,2% -9,1% 4,0% -17,2% 17,6% 4,9%

St. dev 17% 7% 17%
Minimum -14% -12% -6%
Maximum 53% 18% 48%

|N | = 25 Average 2,0% -15,1% 12,6% -9,3% 4,5% 6,2%
St. dev 8% 12% 12%
Minimum -8% -6% -7%
Maximum 23% 30% 41%

|N | = 50 Average 3,8% -14,9% 13,0% -27,5% 12,8% -41,6%
St. dev 8% 13% 12%
Minimum -15% -28% -13%
Maximum 18% 29% 27%

Table 10: Summary statistics for comparing ILSSR with ILS with H = 50
α = 0.25 α = 0.50 α = 0.75

gc tc gc tc gc tc
|N | = 10 Average 12,8% 11,1% 4,0% 28,5% 17,5% 18,8%

St. dev 17% 7% 17%
Minimum -7% -12% -2%
Maximum 53% 18% 48%

|N | = 25 Average 1,8% 6,0% 11,4% 2,3% 4,3% 72,9%
St. dev 10% 11% 12%
Minimum -25% -6% -15%
Maximum 23% 30% 34%

|N | = 50 Average 3,4% -6,6% 12,2% -16,4% 13,0% -33,8%
St. dev 8% 13% 12%
Minimum -13% -23% -19%
Maximum 16% 31% 27%

Table 11: Summary statistics for comparing ILSSR with ILS with H = 100
α = 0.25 α = 0.50 α = 0.75

gc tc gc tc gc tc
|N | = 10 Average 11,5% 10,8% 7,3% -7,9% 18,1% 50,1%

St. dev 19% 15% 18%
Minimum -27% -12% -6%
Maximum 53% 62% 64%

|N | = 25 Average 1,4% 6,8% 7,0% 27,6% 3,7% 37,9%
St. dev 5% 10% 12%
Minimum -7% -9% -22%
Maximum 12% 30% 33%

|N | = 50 Average 3,7% 0,8% 12,0% -5,2% 18,0% -34,6%
St. dev 8% 12% 21%
Minimum -13% -12% -12%
Maximum 25% 30% 100%
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5.5.2 Comparing with ILSSR without height differences

We finally evaluate the results obtained by the ILSSR for different height ranges H, an area

with height differences between 0 and 10 meters, 0 and 50 meters, 0 and 100 meters, and 0

and 250 meters. We use the same instances for every different height range, however only the

height where the customers and recharge stations are located are different. We compare the

ILSSR where we set the height range on a specific height with the ILSSR where we assumed no

height differences when traveling between customers. The reported values of the ILSSR where

we set the height range equal to zero, are the adjusted results described in Section 4.2. Table 12

presents the cost percentage gap gc defined as 100 ∗ gc = −(cA− cB)/cB, for every customer size

N and height range H, where cC is the cost that was generated from the ILSSR including the

height of every customer and cA the cost obtained from the ILSSR where we assumed flat areas.

Furthermore, rc is defined as the percentage of instances where including height differences

between customers lead to a cost decrease. If rc is below 50%, the excluding height differences

between customers in the ILSSR obtains better results. The values for rc clearly demonstrates

that around a height range of 100, but especially from a height range of 250, including height

differences between customers for defining CO2 emission and energy consumption obtains better

results.

Table 12: Average cost decrease for including steep routes
α = 0.25 α = 0.50 α = 0.75

gc rc gc rc gc rc
H = 10 |N | = 10 -1,8% 42% -0,2% 83% -2,5% 75%

|N | = 25 -3,0% 29% 0,3% 54% -1,3% 38%
|N | = 50 -0,5% 33% -0,1% 42% 0,6% 58%

H = 50 |N | = 10 2,8% 50% -0,2% 83% -2,6% 71%
|N | = 25 -0,9% 42% -1,0% 33% -1,1% 50%
|N | = 50 -0,1% 50% -0,6% 38% 0,8% 58%

H = 100 |N | = 10 2,9% 50% 2,9% 83% -6,3% 71%
|N | = 25 -0,1% 46% 1,4% 38% -1,6% 38%
|N | = 50 1,4% 54% 2,4% 63% 1.4% 58%

H = 250 |N | = 10 1,6% 58% 6,7% 79% -2,4% 67%
|N | = 25 3,9% 75% 11,6% 75% 2,2% 54%
|N | = 50 4,4% 79% 10,4% 92% 3,0% 71%

The cost percentage gap for N is shown in Figure 1 for every value of α. It clearly demon-

strates an increase in the cost percentage gap when the height differences between customers

becomes larger.

20



010 50 100 250
−10

−5

0

5

10

15

Customer size N

H
ei
gh

t
ra
n
g
e
(H

)

α = 0.25
α = 0.50
α = 0.75

Figure 1: Average cost decrease for including steep routes

6 Conclusions

In this thesis, we have introduced the Green Vehicle Routing Problem with partial battery re-

charging, time windows and a mixed fleet of conventional vehicles and electrical vehicles with

and without steep routes. We first analysed the performances of the iterated local search where

we neglect the road gradients. Secondly, we proposed an iterated local search metaheuristic

where we include the road gradients to estimate the CO2 emissions and energy consumption

more precise. Furthermore, we implemented an inter route search and a vehicle swap improve-

ment heuristic. We tested this for four height differences, between 0 and 10 meters, 0 and 50

meters, 0 and 100 meters, and 0 and 250 meters, to analyse at what level of height differences it

is important to include the road gradient. Our test results have shown on one hand that when

we compare the proposed metaheuristic with the original metaheuristic, that for all height dif-

ferences we can decrease costs by including the road gradients in the estimation of CO2 emission

and energy consumption. However, on the other hand when we compare the proposed metaheur-

istic where we set the height differences to the real height differences with the same proposed

metaheuristic where we set the height differences equal to zero, we see that we only obtain a

cost decrease from 100 meters. Furthermore, the proposed metaheuristic shows that finding

solutions does not take much longer to generate. This entails that the ILSSR metaheuristic is

efficient and recommended to use, especially when height differences between locations increase.

For future research, it could be interesting to investigate whether for other vehicles with

other characteristics, the road gradient should be included for lower height differences or for

higher height differences. So, to research what impact the vehicle has for deciding when to

include road gradients. Furthermore, it is interesting to investigate whether varying recharging
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costs for different recharge stations are important to include and to investigate how the proposed

metaheuristic behaves when we have multiple depots.
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Montoya, A., Guéret, C., Mendoza, J. E. & Villegas, J. G. (2016). A multi-space sampling

heuristic for the green vehicle routing problem. Transportation Research Part C: Emerging

Technologies, 70 , 113-128.

Palmer, A. (2007). The development of an integrated routing and carbon dioxide emissions

model for goods vehicles.

Sassi, O., Ramdane Cherif-Khettaf, W. & Oulamara, A. (2014, 10). Vehicle routing problem

with mixed fleet of conventional and heterogenous electric vehicles and time dependent

charging costs.

Schneider, M., Stenger, A. & Goeke, D. (2014). The electric vehicle-routing problem with time

windows and recharging stations. Transportation Science, 48 , 500-520.

Solomon, M. M. (1987). Algorithms for the vehicle routing and scheduling problems with time

window constraints. Operations Research, 35 (2), 254–265.

Suzuki, Y. (2011). A new truck-routing approach for reducing fuel consumption and pollutants

emission. Transportation Research Part D: Transport and Environment , 16 (1), 73-77.

Tajik, N., Tavakkoli-Moghaddam, R., Vahdani, B. & Meysam Mousavi, S. (2014). A robust

optimization approach for pollution routing problem with pickup and delivery under un-

certainty. Journal of Manufacturing Systems, 33 (2), 277-286.

Yu, V. F., Jodiawan, P. & Gunawan, A. (2021). An adaptive large neighborhood search for the

green mixed fleet vehicle routing problem with realistic energy consumption and partial

recharges. Applied Soft Computing , 105 , 107251.

Zhang, J., Zhao, Y., Xue, W. & Li, J. (2015). Vehicle routing problem with fuel consumption

and carbon emission. International Journal of Production Economics, 170 , 234-242.

23



A Results for ILS

Table 13: Results for ILS for the instances with |N | = 10

α = 0.25 α = 0.50 α = 0.75

Instance Time(ms) Cost IS Cost Time(ms) Cost IS Cost Time(ms) Cost IS Cost

C101C10 139 516 249 91 429 169 65 466 89.5

C102 47 509 172 144 429 169 98 359 91

C103 51 401 169 50 430 169 38 360 169

C104 41 297 * 145** 43 297 168 42 297 168

C105 47 414 174 54 329 168 42 330 88.8

C106 49 402 281 50 330 168 62 330 88.8

C107 49 414 174 52 330 168 44 330 88.8

C108 38 402 169 54 330 169 57 330 88.8

R101 454 653 591 209 591 540 165 528 451

R102 555 581 521 222 519 451 116 519 436

R103 502 265* 476 206 265* 400 121 288 316

R104 1221 433 460 122 433 366 89 433 333

R105 418 588 541 291 398 462 196 398 384

R106 330 583 512 177 401 423 134 401 324

R107 1048 449 459 337 449 365 220 472 284

R108 315 434 424 92 434 325 58 434 282

RC101 270 582 412 107 657 318 74 657 318

RC102 335 398 398 74 398 287 66 398 287

RC103 171 398 283 49 398 284 62 398 284

RC104 161 407 282 47 407 288 53 407 288

RC105 145 457 410 75 550 250 66 550 216

RC106 161 439 410 73 500 319 73 500 177

RC107 305 472 296 180 472 298 234 472 212

RC108 344 398 278 107 398 287 75 398 284

IS = initial solution

* = initial solution is not feasible
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Table 14: Results for ILS for the instances with |N | = 25

α = 0.25 α = 0.50 α = 0.75

Instance Time(s) Cost IS Cost Time(s) Cost IS Cost Time(s) Cost IS Cost

C101 2.6 1268 443 0.6 1222 316 0.5 1047 238

C102 1.0 1407 377 0.5 1240 303 0.5 1108 224

C103 0.8 1157 375 0.4 1020 302 0.5 1085 214

C104 0.8 655 357 0.5 796 208 0.1 437 197

C105 1.7 1255 456 0.8 1222 316 0.5 1062 238

C106 1.3 961 415 0.5 939 233 0.5 915 227

C107 1.7 1242 452 0.5 1209 250 0.5 959 247

C108 1.7 959 419 0.6 877 314 0.1 570 169

R101 2.3 1462 1062 1.3 1297 903 0.9 1165 730

R102 3.0 1282 964 1.3 1158 781 0.6 1086 567

R103 2.6 1230 858 1.5 962 619 0.7 960 433

R104 4.1 1001 767 1.6 1052 612 1.0 1052 414

R105 6.0 1338 948 2.4 1259 740 1.3 1165 563

R106 2.7 1336 852 1.4 1058 638 0.7 1101 511

R107 4.6 1178 740 2.2 1144 509 1.1 916 385

R108 2.4 1066 707 1.3 973 500 0.5 1130 385

RC101 1.5 1559 911 0.8 1424 702 0.8 1289 702

RC102 1.3 1255 695 0.8 959 568 0.7 959 412

RC103 1.7 1007 554 0.9 997 428 0.9 997 376

RC104 1.4 922 566 1.0 772 321 1.0 772 319

RC105 1.4 1381 914 0.8 1043 717 0.8 1043 717

RC106 1.5 1126 769 0.8 873 576 0.7 873 581

RC107 2.2 678 579 1.3 678 344 1.3 678 353

RC108 1.6 678 568 0.7 678 324 0.6 678 300

IS = initial solution

* = initial solution is not feasible
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Table 15: Results for ILS for the instances with |N | = 50

α = 0.25 α = 0.50 α = 0.75

Instance Time(s) Cost IS Cost Time(s) Cost IS Cost Time(s) Cost IS Cost

C101 10.58 2622 753 5.98 2286 604 6.83 2047 622

C102 13.58 2135 712 6.12 1645 612 4.60 1645 604

C103 10.63 1673 718 4.18 1342 622 3.91 1342 596

C104 6.53 1441 684 5.06 1275 595 4.87 1275 580

C105 8.3 2529 684 3.46 1903 604 3.46 2062 603

C106 9.29 2325 714 4.07 1829 605 4.69 1829 608

C107 9.11 2512 683 4.45 2182 604 3.73 2022 603

C108 5.12 2049 687 4.19 1698 649 5.12 1633 650

R101 11.2 1748* 1928 6.20 1804 1511 3.25 1801 1187

R102 11.51 1641* 1691 5.25 1665 1226 3.28 971 1674

R103 13.51 2553 1302 8.78 2280 965 4.41 2196 859

R104 12.7 2102 1268 7.74 1823 1010 8.24 1823 927

R105 22.71 1628 1607 10.65 1639 1210 6.10 1627 893

R106 12.28 1568 1451 5.12 1559 1052 4.00 1533 899

R107 25.03 1925 1196 13.85 1775 821 11.28 1775 796

R108 12.42 1903 1074 7.64 1782 737 6.64 1782 683

RC101 7.58 2509 1643 3.95 3034 1175 4.37 3034 1176

RC102 8.55 2294 1413 3.58 2400 1121 3.05 2400 1005

RC103 6.94 1750 1239 3.55 1960 730 3.21 1960 726

RC104 8.04 2007 1170 4.39 1848 570 5.03 1848 621

RC105 9.14 2805 1539 4.35 2356 1176 3.86 2356 1203

RC106 5.99 2420 1603 4.23 2462 1113 4.69 2462 1316

RC107 14.54 1485 1192 7.62 1485 877 9.49 1185 931

RC108 5.87 1755 999 4.25 1638 901 4.05 1638 898

IS = initial solution

* = initial solution is not feasible
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Table 16: Results for ILS for the instances with |N | = 100

a = 0.25 a= 0.50 a = 0.75

Instance Time(s) Cost IS Cost Time(s) Cost IS Cost Time(s) Cost IS Cost

C101 44.5 5509 1723 28.8 4933 1431 28.04 4839 1483

C102 45.63 5121 1603 32.1 4026 1439 29.4 4026 1436

C103 35.5 4195 1594 28.6 3480 1435 29.2 3480 1514

C104 33.2 3516 1565 22.9 2851 1181 21.2 2851 1309

C105 46.2 5563 1672 26.3 4743 1503 27.4 4707 1452

C106 41.2 4737 1679 30.9 4399 1375 31.2 4410 1379

C107 42.9 5404 1747 25.9 4550 1397 25.4 4513 1410

C108 43.8 4268 1709 27.9 3960 1491 30.1 3960 1427

R101 50.4 3112* 2913 23.9 3105 2122 15.3 3131 1643

R102 52.4 2746* 2505 19.9 2876 1695 16.4 2862 1578

R103 40.9 2687* 2091 31.2 3621 1647 27.3 3621 1571

R104 61.5 3238 1734 43.7 2737 1407 36.7 2737 1409

R105 62.8 2611* 2261 21.8 3206 1634 20.5 3213 1528

R106 62.3 2905* 2156 20.9 2957* 1395 35.5 3087 1376

R107 72.2 3592 1871 51.5 3198 1286 32.1 3198 1367

R108 64.7 1819* 1593 15.4 1934 1045 15.3 1934 1052

RC101 47.3 3851 2941 17.4 3726 1922 18.9 3726 1846

RC102 46.4 3195 2517 21.4 3751 1795 19.0 3751 1726

RC103 42.8 3672* 2199 21.4 3698 1590 21.9 3698 1464

RC104 49.0 2524* 1834 17.8 2559 1343 14.7 2559 1271

RC105 44.4 3596* 2445 20.2 3631 1674 16.3 3631 1521

RC106 51.3 3606 2298 23.6 3312 1436 18.9 3312 1495

RC107 47.9 3046* 1975 21.3 3377 3377 21.6 3377 3377

RC108 49.2 2839 1824 27.9 3346 3346 28.7 3346 3346

IS = initial solution

* = initial solution is not feasible
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B Results for ILSSR with flat areas

Table 17: Results for ILSSR without height differences for the instances with |N | = 10

Run time Cost Run time Cost Run time Cost

C101 188 171 74 169 88 89

C102 166 171 102 169 110 89

C103 228 168 111 168 184 89

C104 57 141 34 168 57 61

C105 50 168 39 168 52 88

C106 42 168 39 168 54 88

C107 51 168 67 168 70 88

C108 45 168 61 168 58 88

R101 449 557 486 267 428 179

R102 555 474 285 424 179 352

R103 426 678 550 375 230 325

R104 447 399 108 354 122 287

R105 277 475 218 401 172 384

R106 455 464 205 389 102 313

R107 912 398 352 353 243 285

R108 565 400 155 348 158 280

RC101 257 395 96 317 70 237

RC102 157 391 78 281 61 201

RC103 186 267 43 258 56 169

RC104 152 267 51 261 63 169

RC105 159 392 249 63 54 169

RC106 148 273 41 260 46 169

RC107 150 280 67 249 51 169

RC108 166 262 42 248 66 166
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Table 18: Results for ILSSR without height differences for the instances with |N | = 25

Run time Cost Run time Cost Run time Cost

C101 0,9 438 0,6 237 0,4 237,0

C102 2,1 415 1,0 224 1,0 226,0

C103 2,3 375 1,4 216 1,5 219,0

C104 0,7 283 0,4 194 0,5 212,0

C105 1,2 429 0,6 235 0,5 235,0

C106 1,4 410 0,5 227 0,4 228,0

C107 1,2 432 0,6 238 0,5 235,0

C108 1,6 408 0,7 232 0,6 236,0

R101 2,6 1023 1,7 885 1,3 744,0

R102 3,3 889 2,0 763 1,3 578,0

R103 3,1 797 1,8 618 0,8 498,0

R104 2,8 733 1,2 571 0,6 403,0

R105 3 891 1,6 721 0,8 580,0

R106 3,3 811 2,1 618 0,9 514,0

R107 4,7 682 2,0 489 0,8 385,0

R108 5,1 667 2,2 489 0,8 385,0

RC101 1,1 842 0,6 604 0,4 478,0

RC102 1,4 707 0,5 409 0,4 385,0

RC103 1,5 418 0,5 309 0,5 317,0

RC104 1,5 418 0,5 305 0,5 313,0

RC105 1,2 837 0,7 531 0,4 410,0

RC106 1,6 731 0,8 397 0,5 396,0

RC107 1,3 558 0,6 366 0,5 372,0

RC108 1,4 424 0,5 307 0,5 308,0
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Table 19: Results for ILSSR without height differences for the instances with |N | = 50

Run time Cost Run time Cost Run time Cost

C101 9,5 622 2,7 462 2,5 466,0

C102 19,4 621 7,9 443 7,7 461,0

C103 17 729 2,9 464 3,1 483,0

C104 5,7 568 2,8 435 2,6 422,0

C105 7,6 622 3,3 449 2,6 453,0

C106 6,3 721 2,8 462 2,9 469,0

C107 7,6 621 3,4 464 3,4 463,0

C108 9,1 627 3,2 488 2,9 487,0

R101 13,6 1710 8,5 1441 4,3 1171,0

R102 13,1 1611 10,8 1239 3,8 1013,0

R103 14,4 1259 6,9 925 3,1 788,0

R104 10,5 1214 5,1 805 2,7 708,0

R105 13,2 1542 8,9 1199 4,0 895,0

R106 14,8 1301 7,3 1046 3,4 806,0

R107 17 1137 7,7 794 2,9 723,0

R108 17,7 17,7 6,5 739 3,6 680,0

RC101 7,1 1707 2,7 1049 2,1 973,0

RC102 6,8 1405 2,7 1021 2,3 961,0

RC103 6 1159 2,6 717 2,4 774,0

RC104 6,6 788 2,6 686 2,4 733,0

RC105 6,9 1367 2,5 875 2,3 937,0

RC106 6,3 1434 2,5 929 2,3 934,0

RC107 7,2 1230 2,4 721 2,4 805,0

RC108 5,7 1067 2,3 707 2,2 787,0
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C Results for ILSSR with height differences

Table 20: Results for ILSSR with H = 10 for the instances with N = 10

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 171 159.0 169 79.0 89 76.0

C102 171 54.0 169 40.0 89 62.0

C103 168 54.0 168 38.0 89 58.0

C104 145 39.0 168 29.0 88 53.0

C105 168 39.0 168 37.0 88 51.0

C106 168 39.0 168 39.0 88 54.0

C107 168 63.0 168 44.0 88 54.0

C108 168 52.0 168 43.0 88 67.0

R101 557 396.0 486 238.0 428 155.0

R102 493 381.0 425 221.0 367 145.0

R103 426 441.0 375 210.0 323 139.0

R104 399 434.0 354 109.0 287 119.0

R105 475 480.0 401 366.0 384 206.0

R106 464 304.0 389 175.0 327 102.0

R107 398 434.0 353 165.0 286 121.0

R108 400 500.0 348 115.0 280 167.0

RC101 396 269.0 317 122.0 237 68.0

RC102 391 145.0 281 76.0 201 59.0

RC103 267 175.0 258 43.0 169 53.0

RC104 267 139.0 261 46.0 169 57.0

RC105 392 166.0 249 59.0 169 55.0

RC106 273 152.0 260 41.0 169 45.0

RC107 280 139.0 249 61.0 169 53.0

RC108 262 175.0 248 47.0 166 58.0
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Table 21: Results for ILSSR with H = 50 for the instances with N = 10

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 171 0.1 169 0.0 89 0.0

C102 171 0.0 169 0.0 89 0.0

C103 168 0.0 168 0.0 89 0.0

C104 141 0.0 168 0.0 88 0.0

C105 168 0.0 168 0.0 88 0.0

C106 169 0.0 168 0.0 88 0.0

C107 171 0.0 168 0.0 88 0.0

C108 168 0.0 168 0.0 88 0.0

R101 557 0.4 486 0.2 428 0.1

R102 475 0.3 414 0.1 381 0.1

R103 434 1.8 375 0.6 325 0.3

R104 399 1.5 354 0.4 287 0.3

R105 475 0.9 401 0.6 384 0.5

R106 437 0.4 390 0.3 313 0.1

R107 398 0.3 353 0.1 286 0.1

R108 400 0.4 348 0.1 280 0.1

RC101 395 0.2 317 0.0 237 0.0

RC102 391 0.1 281 0.0 201 0.0

RC103 267 0.1 258 0.0 169 0.0

RC104 267 0.1 261 0.0 169 0.0

RC105 392 0.1 253 0.0 173 0.0

RC106 273 0.1 260 0.0 169 0.0

RC107 280 0.1 249 0.0 169 0.0

RC108 262 0.4 248 0.3 166 0.1
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Table 22: Results for ILSSR with H = 100 for the instances with N = 10

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 171 271.0 169 134.0 89 123.0

C102 171 173 169 125 89 168

C103 168 79.0 168 49.0 89 89.0

C104 140 35.0 64 60.0 61 302.0

C105 171 49.0 168 52.0 88 108.0

C106 171 61.0 168 39.0 89 68.0

C107 172 66.0 168 42.0 88 61.0

C108 168 54.0 168 35.0 88 50.0

R101 556 505.0 488 239.0 428 156.0

R102 494 314.0 424 190.0 367 139.0

R103 426 679.0 376 239.0 323 176.0

R104 399 468.0 354 122.0 287 163.0

R105 475 257.0 401 204.0 384 157.0

R106 464 290.0 390 166.0 327 118.0

R107 398 404.0 353 143.0 285 115.0

R108 400 455.0 348 106.0 280 183.0

RC101 395 314.0 317 127.0 237 66.0

RC102 391 149.0 281 78.0 201 60.0

RC103 333 194.0 258 46.0 169 49.0

RC104 268 137.0 261 51.0 172 53.0

RC105 392 149.0 249 83.0 169 52.0

RC106 274 149.0 254 41.0 169 48.0

RC107 266 199.0 249 83.0 169 57.0

RC108 262 194.0 248 45.0 169 67.0
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Table 23: Results for ILSSR with H = 250 for the instances with N = 10

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 248 141.0 169 106.0 169 68.0

C102 248 61.0 169 43.0 169 38.0

C103 170 57.0 168 43.0 168 35.0

C104 141 40.0 141 37.0 62 53.0

C105 248 61.0 168 43.0 168 39.0

C106 248 60.0 171 43.0 168 42.0

C107 248 60.0 168 37.0 168 39.0

C108 248 76.0 170 37.0 168 32.0

R101 585 837.0 558 496.0 486 544.0

R102 473 384.0 445 208.0 367 149.0

R103 468 346.0 385 288.0 340 143.0

R104 404 432.0 354 148.0 354 99.0

R105 475 276.0 400 222.0 284 169.0

R106 472 320.0 410 239.0 368 148.0

R107 395 616.0 362 202.0 278 126.0

R108 397 488.0 376 254.0 312 200.0

RC101 396 277.0 318 163.0 317 83.0

RC102 391 144.0 281 86.0 312 65.0

RC103 266 195.0 255 47.0 172 59.0

RC104 262 154.0 256 55.0 174 61.0

RC105 392 158.0 312 103.0 174 74.0

RC106 275 144.0 256 49.0 260 47.0

RC107 283 150.0 253 64.0 176 64.0

RC108 245 176.0 250 46.0 166 60.0
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Table 24: Results for ILSSR with H = 10 for the instances with N = 25

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 438 1.0 238 0.6 237 0.4

C102 320 1.0 217 0.5 227 0.4

C103 406 0.9 216 0.5 230 0.5

C104 353 0.7 195 0.4 211 0.4

C105 429 1.0 235 0.8 254 0.5

C106 417 1.2 227 0.5 229 0.4

C107 430 1.0 235 0.6 237 0.4

C108 411 1.3 226 0.5 242 0.4

R101 1021 2.4 881 1.5 746 1.0

R102 875 2.6 706 1.7 579 1.1

R103 781 2.7 614 1.5 499 0.6

R104 708 2.5 580 1.1 403 0.6

R105 891 2.8 724 1.5 575 0.8

R106 811 2.7 609 1.7 517 0.8

R107 733 3.2 489 1.5 385 0.6

R108 663 3.9 489 1.5 390 0.5

RC101 842 1.0 604 0.6 523 0.4

RC102 708 1.3 389 0.5 385 0.4

RC103 531 1.5 308 0.8 314 0.5

RC104 422 1.5 305 0.5 320 0.4

RC105 845 1.3 531 0.7 402 0.5

RC106 714 1.4 400 0.9 400 0.5

RC107 559 1.2 366 0.5 374 0.5

RC108 425 1.2 309 0.5 308 0.5
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Table 25: Results for ILSSR with H = 50 for the instances with N = 25

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 438 1.0 238 0.5 237 0.4

C102 404 1.0 215 0.6 215 0.5

C103 374 0.7 217 0.4 246 0.4

C104 353 0.6 196 0.4 195 0.4

C105 438 1.0 239 0.6 239 0.5

C106 418 1.3 230 0.5 231 0.5

C107 429 1.0 235 0.6 235 0.5

C108 412 1.2 236 0.5 228 0.4

R101 1023 2.3 881 1.4 741 1.0

R102 874 2.7 724 1.6 578 1.0

R103 768 6.8 592 3.6 495 2.4

R104 715 6.7 583 3.2 403 1.6

R105 891 6.2 724 2.9 568 1.4

R106 823 7.8 618 2.9 511 1.3

R107 680 2.9 489 1.3 389 0.6

R108 667 3.5 489 1.5 392 6.1

RC101 842 1.0 559 0.6 524 0.4

RC102 845 1.2 387 0.5 388 0.4

RC103 418 1.6 311 0.5 313 0.5

RC104 422 2.4 305 0.5 313 0.4

RC105 844 1.2 553 0.6 454 0.5

RC106 720 1.4 536 0.8 399 0.5

RC107 556 1.3 366 0.6 372 0.5

RC108 446 1.2 314 0.4 324 0.4
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Table 26: Results for ILSSR with H = 100 for the instances with N = 25

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 432 3.9 316 1.9 238 1.7

C102 402 4.0 226 2.4 215 1.6

C103 375 0.6 220 0.5 233 0.5

C104 357 0.6 198 0.4 202 0.5

C105 428 1.2 315 0.6 235 0.5

C106 418 1.7 307 0.7 235 0.5

C107 427 1.4 318 1.5 235 0.6

C108 415 1.6 307 1.0 245 0.5

R101 1019 2.5 890 1.7 749 1.0

R102 876 2.8 732 1.7 577 1.1

R103 808 3.0 621 1.7 504 0.7

R104 708 2.9 583 1.1 410 0.6

R105 903 2.7 715 1.5 575 0.8

R106 783 2.6 624 1.5 515 0.6

R107 737 3.0 487 1.3 385 0.5

R108 665 3.5 489 1.4 390 0.5

RC101 845 1.2 684 0.7 523 0.5

RC102 716 1.2 389 0.6 389 0.6

RC103 530 1.6 316 0.6 322 0.5

RC104 547 1.7 308 0.5 309 0.5

RC105 848 1.3 599 0.7 460 0.4

RC106 724 1.4 551 0.8 405 0.4

RC107 561 1.7 374 0.8 381 0.7

RC108 544 1.5 316 0.5 365 0.4
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Table 27: Results for ILSSR with H = 250 for the instances with N = 25

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 453 1.5 362 0.6 317 0.5

C102 400 1.2 293 0.5 215 0.5

C103 410 0.9 299 0.5 217 0.4

C104 362 0.8 281 0.6 206 0.4

C105 508 1.4 334 0.6 235 0.5

C106 411 1.7 307 1.2 229 1.1

C107 426 1.3 323 0.6 238 0.5

C108 408 1.1 319 0.6 248 0.5

R101 1034 8.6 923 6.2 808 0.4

R102 894 3.0 754 2.1 643 1.4

R103 837 3.2 642 1.8 522 0.8

R104 715 2.9 603 1.7 522 0.8

R105 892 2.7 742 1.7 602 0.9

R106 836 2.8 699 1.6 525 0.8

R107 744 2.9 571 1.6 472 0.8

R108 676 4.5 571 1.9 468 0.8

RC101 860 1.4 638 0.7 532 0.4

RC102 836 1.6 473 0.6 389 0.5

RC103 548 1.8 313 0.7 322 0.5

RC104 518 2.3 320 0.7 324 0.4

RC105 833 1.4 575 0.8 460 0.5

RC106 715 1.6 517 0.9 406 0.6

RC107 600 1.8 473 0.8 381 0.5

RC108 527 1.8 317 1.0 332 0.5
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Table 28: Results for ILSSR with H = 10 for the instances with N = 50

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 626 6.9 464 2.9 464 2.6

C102 618 7.1 449 2.8 460 2.7

C103 618 7.6 470 3.0 495 2.6

C104 567 5.8 410 2.5 432 2.2

C105 622 6.2 451 2.8 459 2.6

C106 643 6.4 448 2.8 458 2.6

C107 621 6.7 462 2.9 477 2.7

C108 629 8.2 498 3.0 482 2.9

R101 1710 11.7 1443 7.5 1188 3.9

R102 1562 10.6 1206 7.8 1019 3.1

R103 1249 12.3 965 9.2 799 2.7

R104 1209 10.7 841 5.4 724 2.7

R105 1536 12.1 1180 6.5 884 3.0

R106 1383 12.2 1031 6.3 795 2.6

R107 1136 13.3 793 6.3 697 3.1

R108 1067 15.1 717 4.9 677 2.9

RC101 1717 6.5 1049 2.7 970 2.2

RC102 1398 6.8 886 2.5 944 2.2

RC103 1273 6.2 747 2.5 764 2.2

RC104 909 6.5 730 2.6 704 2.4

RC105 1320 6.6 876 2.5 893 2.3

RC106 1418 6.3 931 2.5 939 2.3

RC107 1121 5.7 771 2.8 806 2.6

RC108 1009 6.1 668 2.5 731 2.4
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Table 29: Results for ILSSR with H = 50 for the instances with N = 50

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 621 6.2 459 3.0 457 2.6

C102 616 7.0 461 2.8 438 2.4

C103 638 8.6 445 2.8 511 2.6

C104 590 6.4 414 2.5 427 2.5

C105 622 6.7 452 2.8 444 2.6

C106 711 6.7 472 2.9 462 2.6

C107 621 7.3 464 3.2 452 2.6

C108 623 8.1 449 3.6 514 2.6

R101 1753 11.1 1435 6.7 1189 3.4

R102 1566 10.6 1261 7.5 979 3.3

R103 1249 25.2 947 12.5 798 6.0

R104 1112 20.4 822 11.2 728 6.7

R105 1549 2.4 1206 19.7 888 7.6

R106 1349 21.7 1063 7.1 814 2.5

R107 1148 13.5 828 5.7 706 2.7

R108 1066 14.0 715 5.7 662 3.2

RC101 1682 6.5 1064 2.9 974 2.3

RC102 1415 6.5 1013 2.9 902 2.4

RC103 1208 6.6 740 2.4 739 2.3

RC104 934 6.4 701 2.5 742 2.4

RC105 1316 6.9 827 2.5 896 2.3

RC106 1421 6.2 1015 2.6 942 2.3

RC107 1254 5.5 787 2.4 791 2.5

RC108 1027 4.9 701 2.3 773 2.3
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Table 30: Results for ILSSR with H = 100 for the instances with N = 50

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 701 19.3 554 8.7 453 8.8

C102 708 15.4 458 4.3 460 3.2

C103 701 9.2 451 4.7 458 3.2

C104 574 7.7 408 3.3 433 3.3

C105 702 8.3 444 3.6 457 2.8

C106 704 9.0 471 3.6 457 3.1

C107 702 9.2 461 3.9 477 2.5

C108 707 10.2 470 14.0 465 8.4

R101 1719 11.1 1417 7.3 1186 3.9

R102 1592 10.7 1242 8.7 1031 3.7

R103 1263 12.6 954 7.0 770 3.1

R104 1186 10.3 893 4.9 686 2.6

R105 1526 11.5 1212 6.4 885 3.2

R106 1317 10.9 1054 6.4 825 2.5

R107 1148 12.4 799 6.0 693 2.6

R108 1048 14.1 723 5.7 681 2.8

RC101 1775 7.2 1058 3.1 983 2.4

RC102 1458 8.8 1034 3.1 954 2.3

RC103 1290 7.1 769 2.5 775 2.2

RC104 918 6.5 641 2.6 695 2.4

RC105 1381 6.8 866 2.7 849 2.2

RC106 1428 6.6 1025 2.6 936 2.3

RC107 1105 6.8 817 2.5 810 2.3

RC108 1054 5.9 710 2.4 774 2.4

41



Table 31: Results for ILSSR with H = 250 for the instances with N = 50

α = 0.25 α = 0.50 α = 0.75

Instance Costs Time(ms) Costs Time(ms) Costs Time(ms)

C101 800 9.9 604 5.5 462 3.1

C102 738 10.2 528 5.0 448 2.8

C103 684 9.7 537 4.1 471 2.7

C104 686 8.2 502 3.8 430 2.6

C105 773 9.5 604 5.0 450 2.7

C106 805 11.7 535 4.7 476 2.6

C107 719 9.9 524 5.1 458 2.8

C108 788 8.7 630 4.9 464 2.8

R101 1802 37.2 1508 8.7 1275 5.3

R102 1660 12.8 1362 9.2 1094 4.2

R103 1308 16.5 1032 8.8 880 4.0

R104 1245 14.9 945 8.3 701 3.4

R105 1563 12.7 1256 7.5 1000 4.0

R106 1425 13.2 1139 7.7 902 3.4

R107 1217 14.9 864 8.9 694 3.2

R108 1150 18.8 882 8.7 676 3.0

RC101 1578 7.2 1155 3.7 990 2.2

RC102 1447 7.4 1107 3.0 937 2.3

RC103 1278 8.0 714 3.0 779 2.3

RC104 1017 7.4 717 2.8 713 2.5

RC105 1361 6.9 972 3.1 841 2.5

RC106 1497 8.6 1051 4.2 900 2.5

RC107 1223 6.4 916 2.7 806 2.4

RC108 1193 6.8 798 2.6 750 2.3
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D Programming Code

For obtaining results for the inter local search metaheuristic and the inter local search with steep

routes metaheuristic, we use Java code. The code is described below.

• replication/LocalSearchHeuristic.java This is a code for obtaining the routes and costs for

every instance for the ILS. As input the cluster is set equal to ”c”, ”r” or ”rc”. Furthermore,

the code will run for 8 instances and for every cluster size (N = 10, 15, 25, 50 and 100).

This is the main code for the ILS and it makes use of the Route class, ConventionalRoute

class, ElectricalRoute class and the Solution class. Before provide the

• replication/Route.java All information of one route is stored in the Route class in the

initialization phase of the ILS. The Route class stores all information of the customers

that are served in that route and has methods to validate feasibility, determine the best

recharge station etc.. It stores both routes for conventional vehicles as for electrical vehicles

• replication/ConventionalRoute.java For the local search phase, the routes executed by

conventional vehicles are stored in a ConventionalRoute object. It stores all information

of the customers and includes methods to validate the feasibility.

• replication/ElectricalRoute.java For the local search phase, the routes executed by elec-

trical vehicles are stored in a ElectricalRoute object. It stores all information of the

customers and includes methods to validate the feasibility.

• replication/Solution.java All ConventionalRoute objects and ElectricalRoute objects are

stored in a Solution object. Furthermore, it stores the costs of the solution and the total

emission emitted by all ConventionalRoute objects. Besides containing information about

the solution of an iteration, the Solution object includes a method for the local search and

the perturbation.

• extension/SummaryStatistics.java For obtaining information of the CO2 emission per km

and energy consumption over all instances we apply this code for each cluster ”c”, ”r” or

”rc”.

• extension/generateHeights.java This code generates the heights where each depot, recharge

station and customer is located for each instance. It stores a value between 0 and 1 in a

txt-file.

• extension/LocalSearchHeuristic.java This is the main code for obtaining the routes and

costs for every instance for the ILSSR. The heights of every location are set by multiplying
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the value of the generate height in the txt-file with the defined height range. Furthermore,

the cluster can be set equal to ”c”, ”r” or ”rc”. This is the main code for the ILSSR and

it makes use of the Route class, ConventionalRoute class, ElectricalRoute class and the

Solution class.

• extension/Route.java Same as described in replication.

• extension/ConventionalRoute.java Same as described in replication.

• extension/ElectricalRoute.java Same as described in replication.

• extension/Solution.java Same as described in replication.

• extension/NewCostWithSR For computing the new costs for the obtained routes where a

flat area was assumed we use this code to compute the costs when height differences occur

and CO2 emission and energy consumption differ. As input can the cluster type be set

equal to ”c”, ”r” or ”rc”.
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