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Abstract

In this research, we investigate the effect of different functions for charging time and

pollution rate in the Mixed Fleet Green Vehicle Routing Problem with Partial Charging

and Time Windows with an upper bound on pollution emission. We use the Iterated Local

Search metaheuristic to examine the effect of these different functions in terms of feasibility.

The mixed fleet consists of electrical and conventional vehicles and recharging on the route

is allowed for electrical vehicles. For the charging time, we examine a function that is linear

and one that is non-linear in the amount recharged. When linear is assumed but non-

linear holds, we see that 27.5% of the feasible solutions become infeasible. Furthermore, for

small instances, assuming the non-linear function leads to a decrease in distance of 11.4% in

comparison to assuming the linear function. For the pollution rate, we compare a function

that is piecewise constant in the load of the vehicle and a linear one. We find that the total

pollution is lower for the linear function than for the piecewise constant function, which

means that assuming the piecewise constant function does not cause infeasibility for our test

instances.

1 Introduction

Almost 21% of all pollution is caused by road transport (Zhang & Batterman, 2010). In order to

reduce these pollution emissions, transport strategies must be chosen more sustainably instead

of just as cheaply as possible, which changes routing problems.

This research aims to investigate how the travelled distance can be minimized while reducing

pollution. In particular, we aim to keep the total pollution below a certain level, as in Macrina

et al. (2019). The problem is called a Green Vehicle Routing Problem (G-VRP), where we

minimize the total distance travelled to serve customers from a depot with either conventional

(ICCVs) or electrical (ECVs) vehicles, of which the last one can be recharged throughout the

route. Furthermore, we want to keep the pollution emissions below a certain level.

ICCVs produce pollution, so ECVs are needed to make the problem feasible when the upper

bound constraint is binding. Because ECVs have a low range, these vehicles can charge on

the route. Therefore, they take longer to travel and they drive more kilometres if the charging

station is not right on the route. In contrast, ECVs do not emit any pollution. We thus want

to find a good balance between using ICCVs and ECVs. We do allow for partial recharging.

Furthermore, time windows are taken into account, such that all customers are helped within

their desired time interval.

We investigate the effect of using different functions for the charging time. Therefore, we
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investigate two functions, one that is linear and one that is non-linear in the amount of recharged

energy. We study if the solution remains feasible when the linear function is assumed, but the

non-linear function holds. When this is the case we also look at the effect on the distance when

this solution is compared to the solution when non-linear charging is assumed.

Furthermore, we study the effect of using different functions on the pollution rate. Here, we

focus on a function that is piecewise constant in the load percentage and a function that is linear

in this percentage. We again investigate the effect of assuming the piecewise constant function

when the linear function holds on the feasibility of the solution.

To generate a solution to this problem, we use the iterated local search (ILS) metaheuristic of

Macrina et al. (2019), because they state that solving the problem to optimality is not possible

between reasonable computation time. In this metaheuristic, we generate an initial solution, and

then we iteratively apply a certain perturbation and the local search procedure, where customers

are moved from one route to another in the best way possible.

This paper proceeds as follows. In Section 3, we describe the problem of this research clearly.

In Section 2, an overview of previous research on this subject is given. The methodology and

associated mathematical formulations are described in Section 5. In Section 6, the test instances

for the problem and the results are given and lastly, a conclusion is drawn in Section 7.

2 Literature review

A lot of research has already been done on how Vehicle Routing Problems (VRPs) change when

environmental pollution is included in the model.

The problem in this study is based on the Vehicle Routing Problem (VRP) as described

in the literature. It is stated by Toth & Vigo (2002) that a VRP is a problem in which the

goal is to find an optimal set of routes to be driven to serve particular customers. Optimality

can be different among different goals of research, for instance, the costs can be minimized, the

distance driven can be minimized or the satisfaction of customers can be maximized. Because

environmental friendliness has become an increasingly important aspect in society, Bektaş &

Laporte (2011) investigated how, in addition to minimizing the distance travelled, gas emissions

can be included in the VRP. They created a model in which minimal pollution is balanced

against minimal costs. They call this problem, in which only conventional vehicles are used, the

Pollution Routing Problem (PRP). Through a collaboration with Emrah Demir, it became clear

how difficult it is to solve a problem like the PRP to optimality. Demir et al. (2012) proposed
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an Effective Adaptive Large Neighborhood Search (ALNS) heuristic, with which they solve the

problem following an iterative process.

Erdoğan & Miller-Hooks (2012) formulate a Green-VRP (G-VRP), in which only electric

vehicles are used in the fleet. They minimize the total distance travelled through two heuristics

and prove the usefulness of these heuristics. In the first heuristic, the Modified Clarke andWright

Savings (MCWS) Heuristic, a solution is generated from routes that go to a single customer and

back. The second heuristic called the Density-Based Clustering Algorithm (DBCA), is based on

the number of customers within certain areas. These heuristics are especially useful when few

charging stations are available, charging times are assumed to be linear and only full recharging

is possible.

Koç et al. (2014) investigated and proved the utility of introducing a heterogeneous fleet con-

sisting of conventional vehicles with different sizes, by solving the Fleet Size and Mix Pollution-

Routing problem, which is an extension of the PRP by considering this heterogeneous vehicle

fleet. It is clearly shown in this study that the use of different types of vehicles can be beneficial

compared to using a single type.

Felipe et al. (2014) investigate the effect on the G-VRP when partial charging is introduced

and when different charging technologies, so faster, more expensive or slower, cheaper charging,

are examined. They conclude that partial recharging provides significantly lower costs and

energy savings. Furthermore, none of the different charging technologies performed better for

all instances, which emphasizes the utility to use several charging technologies.

Sassi et al. (2014) investigate the use of both conventional and electric vehicles on the G-

VRP. In addition, they use time and location-dependent charging costs. They first try to use

as few vehicles as possible, after which they want to minimize the kilometres driven by these

vehicles. They develop a Charging Routing Heuristic, to create an initial solution that uses as

few vehicles as possible. In addition, they design an Inject-Eject-Based Local Search heuristic

to best solve problems of this type, in which customers are iteratively moved in a random way.

To be able to use a charging station several times, dummy nodes are often required. Koç &

Karaoglan (2016) introduce new decision variables, eliminating the need for dummy nodes in

the G-VRP.

Also Montoya et al. (2016) did additional research following the G-VRP. By creating a

multi-space sampling heuristic, they show that this heuristic is the best and easiest method to

solve the G-VRP with constant refuelling time and a homogeneous fleet of only electric vehicles.

Montoya et al. (2017) state that vehicle charging is non-linear, and that assuming linearity can
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lead to expensive and even infeasible outcomes. Macrina et al. (2019) examined the G-VRP

with a fleet of both conventional and electrical vehicles in which they introduce a limit on the

total pollution. They provide a metaheuristic in which they assume a linear charging function

and a piecewise constant pollution rate per km. Lastly, Kancharla & Ramadurai (2020) provide

a model in which both recharging and the consumption of energy is approached non-linearly.

They provide a mixed-integer linear program (MILP) formulation and an ALNS heuristic to

determine the best route and charging strategy.

3 Problem description

In this section, we describe the Mixed Fleet Green Vehicle Routing Problem with Partial Re-

charging and Time Windows of Macrina et al. (2019). The problem consists of a depot s, a

set of customers N and a set of charging stations R. All elements in both sets and the depot,

have certain coordinates (xi, yi). Because we have a mixed fleet, consisting of conventional and

electrical vehicles, ICCVs and ECVs respectively, there are two different kinds of routes: routes

that are served by an ICCV and routes that are served by an ECV, which can be recharged on

the route. We want to minimize the total distance d travelled.

A feasible solution consists of two sets of routes: the set C, the set of routes driven by an

ICCV, and the set E, the set of routes driven by an ECV. All routes have to start and end at

the depot and all customers have to be served exactly once. All customers have a demand qi

that must be met and there is a constraint on the capacity Q of the vehicle. The total demand

of the customers in a route can not be higher than the total capacity of the vehicle.

Each customer has a certain time window [ei, li]. Here, ei indicates when that particular

customer is ready to be served. From this time and later, the customer can be visited. If the

vehicle is too early, it must wait until ei to serve the customer. li indicates the end time, which

is the last moment for a service to start. Furthermore, all customers have a service time si, the

time it takes to serve the customer.

In addition to customers having a time window, the problem also has a time window [es, ls].

Vehicles may only be on the road within this time. Charging stations do have a service time

dependent on the amount recharged. The recharging time can be calculated via a formula τ .

When charging ECVs, it must be taken into account that the energy in the vehicle is enough

to complete the route or reach the next charging station. In addition, the vehicle has a certain

maximum energy capacity B, which may not be exceeded. Charging is required at the depot to
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start the route.

Finally, we set an upper bound UB on the total pollution Φ that can be caused by the

problem. Φ is the sum of all pollution caused on arcs in the route, which can be calculated

separately with a formula ϕ,

4 Different functions for charging time and pollution rate

To indicate the effect of different charging and pollution functions, we need to define these

functions. In Section 4.1 two functions for the charging time τ are defined: a linear and a

non-linear function. Furthermore, Section 4.2 defines a piecewise constant and a linear function

ϕ for the pollution rate.

4.1 Charging time: Linear vs non-linear

As in Macrina et al. (2019), the first charging function τ is linear. Each problem has its inverse

charging rate that indicates how much time it takes to charge one unit of energy.

Montoya et al. (2017) argue that the assumption of linear charging times can lead to expensive

or even infeasible solutions to the problem. The speed of charging may be different when the

battery is almost empty than if it is almost full. They state that there are linear segments in the

charging function, but the slope differs for each segment in a convex way. In particular, a better,

non-linear charging function can often be allocated into three different segments: the first has

the flattest slope and the last has the steepest slope. This holds when the battery level (on the

x-axis) is plotted against the time (on the y-axis). It means that charging happens faster in the

beginning than in the end. This is the second proposed charging function τ .

To test the effect of the different functions in the most extreme way, we assume that the linear

charging function used in Macrina et al. (2019) is the most optimistic charging time possible,

because, in this way, the effect in the worst case is examined. As in Montoya et al. (2017), the

non-linear function consists of three linear functions, separated by segments, where the function

in the first segment is similar to the completely linear function. In the second segment, charging

takes twice as much time per unit, so the slope is half of what it was in the first segment. Lastly,

in the third segment, the time to charge one unit of energy is three times as large as in the first,

so the third slope is one-third of the first slope.

The segments are dependent on the total energy capacity of the vehicle. Again, following

Montoya et al. (2017), charging the vehicle up to 70% of its full capacity follows the linear
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function in the first segment, so charging small values is similar to what is used in the linear

approach. After that, between 70 and 85%, the recharging follows the function in the second

segment. Furthermore, between 85 and 100%, the function used in the one in the third segment.

Both functions are visible in Figure 1. The inverse charging rate is assumed to be 3.47 for

this figure, but it may differ for different test instances.

Figure 1: The linear and piecewise linear charging functions τ

For the charging times, we compare the results of the linear charging function to the non-

linear charging function. To perform this comparison, we generate the solution using the linear

charging function. After that, we verify if the solution is still feasible when using the non-linear

function. The infeasibility of the solution can only be caused by exceeding the time window

constraints, as the different charging function is only affecting that part.

For the solutions that remain feasible, we generate a new solution using the non-linear

charging function and investigate the effect this had on the obtained distance of the best solution.

4.2 Pollution rate: Piecewise constant vs linear

The first function ϕ for pollution is piecewise constant as in Macrina et al. (2019). The pollution

per km is dependent on the load percentage of the vehicle, which is defined as the load divided

by the total capacity of the vehicle, the values for the pollution rate per km are given in Table

1.
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Weight laden (%) Pollution rate (kg CO2/km)

0 - 25 0.77
26 - 50 0.83
51 - 75 0.90
76 - 99 0.95
100 1.01

Table 1: Pollution rates for different vehicle loads

In this piecewise constant structure, it happens to be that the pollution of a vehicle with a

load that takes 25% of the total load capacity has the same pollution rate per km as a vehicle

that is empty, while this rate does differ a lot when comparing a 25% load to a 26% load. In the

linear function we propose, the difference between 0 and 25% is seen as larger than between 25

and 26%. The second function of ϕ follows from formulating the function as the linear trendline

of the values of the piecewise constant function used before, this function is equal to (1). Both

functions, piecewise constant and linear, are visible in Figure 2.

y = 0.0023x+ 0.7458 (1)

Figure 2: The piecewise constant and linear pollution functions ϕ

To indicate the effect of this function on total pollution, we generate a solution using the

piecewise constant function. Based on this solution, we recalculate the total pollution and we

perform another feasibility test, this time we check if the total pollution is still lower than our

desired upper bound.
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5 Methodology

We solve our problem with the Iterated Local Search metaheuristic as proposed by Macrina et

al. (2019), where an upper bound on the best solution is generated. This is done via multiple

components, which are all described in this section. In Section 5.1, we describe the general

metaheuristic. Furthermore, in Section ?? and ??, the two components, the initialization and

the local search procedure, of the metaheuristic are expressed as separate heuristics.

5.1 Iterated local search metaheuristic

As Macrina et al. (2019) states, solving the full mathematical problem to optimization is not

possible within decent computation time. Therefore, we use their proposed metaheuristic to

solve the problem. Via this heuristic, the problem is not necessarily solved to optimality, but

it will find a feasible solution that is acceptable. The metaheuristic is based on iterated local

search (ILS), where we first generate an initial solution, whereafter we apply a particular local

search (LS) procedure to it. We address a certain perturbation and this local search procedure

until a stop criterion is met. This general algorithm for the ILS is shown in Algorithm 1.

Algorithm 1 iteratedLocalSearch

Output: A best solution to the problem: η∗

η0 ← generateInitial ▷ Algorithm 2
η1 ← localSearch ▷ Algorithm 6
while Stop criterion not satisfied do

perturbation

localSearch → ηk
if ηk is better than η∗ then

η∗ ← ηk
end if

end while

In this case, the stop criterion is set to a fixed number of iterations, namely 1,000,000.

Furthermore, a worsening of the solution is used as the perturbation. The perturbation involves

choosing a random customer and a random route, whereafter the customer is removed from

its current route and added to the randomly chosen route on another random position. The

resulting solution does not need to be feasible, as the local search heuristic takes care of that.

In the end, as the solution to our problem, we choose the solution in which the lowest distance

is obtained η∗. Furthermore, when we cannot find any feasible solution, we choose the solution

in which the pollution violation is as low as possible.
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5.1.1 Initialization

To generate an initial solution, we use the sequential insertion heuristic (SIH) as in Macrina et

al. (2019). The general algorithm of the SIH is given in Algorithm 2.

Algorithm 2 generateInitial

Output: An initial solution for the ILS: η0
cluster −→ E′, C ′ ▷ Algorithm 3
insertionConventional −→ ηC ▷ Algorithm 4
if There are customers left in C ′ then

Update E′ = E′ ∪N−, where N− are all unrouted customers
end if
insertionElectrical −→ ηE ▷ Algorithm 5
if There are customers left in E′ then

Update C ′ = C ′ ∪ N−, where N− are all unrouted customers and relax the upper bound
on pollution

insertionConventional without the upper bound −→ ηC
end if
η0 = ηC ∪ ηE

Here, all customers inN are divided into two groups, a group C ′ that is served by ICCVs, and

a group E′ that is served by ECVs. This division is made on the basis of a clustering algorithm,

described in the paragraphs later in this section. When these groups, or clusters, are known,

we use the insertion heuristics to insert all customers that are not allocated to a route yet, to a

route. We start with the conventional cluster C ′ and use the insertion heuristic for conventional

routes to insert all customers into a route. Sometimes insertion will cause infeasibility while

creating a whole new route is not profitable with eyes on the option of using an ECV instead.

All customers for whom this is the case are added to the electrical cluster E′. After this, we

use the insertion heuristic for all customers in E′ to allocate all other customers to a route.

We end with the wanted initial solution. If it is not possible to add all these customers to an

electrical route, we allow the pollution upper bound to be exceeded and add the customer to a

conventional route anyway. For routes driven by an ICCV, a different heuristic is used than for

the routes driven by ECVs. These heuristics are described later in this section.

Clustering algorithm As said before, we need two clusters of customers to create an initial

solution for our heuristic, one consisting of customers that will be served by ICCVs (C ′) and one

consisting of customers served by ECVs (E′). The clusters have to be formed in a way such that

all customers are divided along sets C ′ and E′. To create these sets, we start with two sets E

and C both initialized as the set of only the starting node s, so E = s en C = s. To choose which

9



customer is added to which set, we calculate some scores 1 ≤ pEi ≤ 10 and 1 ≤ pCi ≤ 10. For

the set of vertices visited by ECVs, we calculate pEi as in Macrina et al. (2019), as given in (2).

Here, dEi denotes the distance from the barycentre of E (bE) to customer i. This barycentre is

based on the locations of all customers that are already in E at that certain time. Furthermore,

dEmin and dEmax denote the Euclidean distance from bE to the nearest and furthest customer out

of all customers, respectively.

pEi = 11−
(
1 +

dEi − dEmin

dEmax − dEmin

× 9

)
(2)

For the set of customers that are served by an ICCV, we use the formula in (3). In this

formula, λ is a constant between 0 and 1, we use λ = 0.5. Furthermore, pDistCi = 11 −(
1 +

dCi −dCmin

dCmax−dCmin
× 9

)
, and pQC

i = 11−
(
1 + qi−qmin

qmax−qmin
× 9

)
. The distance dCi , d

C
min and dCmax are

now the distances from the barycentre of C (bC), computed in the same way as bE . Furthermore,

qi, qmin and qmax denote the demand of customer i, the smallest customer demand and the largest

customer demand of all customers in N respectively, even when a customer is already allocated

to a route.

pCi = λ(pDistCi ) + (1− λ)(pQC
i ) (3)

When these scores are known, we can choose which customers we add to which cluster.

For every iteration, we look at the customer with the largest score to each cluster, i.e. i∗E =

argmaxi∈N\C′∪E′{pEi } and i∗C = argmaxi∈N\C′∪E′{pCi }. When the customer with the highest

score is different, i.e. i∗E ̸= i∗C , we can add both customers to the cluster of which they obtained

the highest score. However, if the highest score for both of the clusters is obtained for the same

customer, we assign the customer to E if pEi∗E
> pCi∗C

and to C otherwise. When this allocation is

done, we can recalculate the barycentre and all scores. We do this until all customers are in a

cluster. When this is the case, we remove the starting node s and we have our desired clusters

E and C. A pseudocode for this algorithm is given in Algorithm 3.
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Algorithm 3 cluster

Input: All customers in N
Output: all customers divided into two clusters: E′ and C ′

Initialize E = {s} and C = {s}
while There are customers left do

Calculate barycentres bE and bC
Calculate pEi and pCi for all customers that are not allocated ▷ (2) and (3)
Define i∗E = argmaxi∈N\C′∪E′{pEi } and i∗C = argmaxi∈N\C′∪E′{pCi }
if i∗E ̸= i∗C then

Add i∗E to E and i∗C to C
else if pEi∗E

> pCi∗C
then

Add i∗E to E
else

Add i∗E to C
end if

end while
Remove s from both sets E and C

Insertion heuristic for conventional routes The strategy to insert customers in routes

driven by ICCVs starts with initializing a route ZC
0 from the starting node of the depot, then to

the customer i′ ∈ C ′ with the lowest end time li′ in the time window and closing with the end

node of the depot. After initializing, we can add other customers to the route. Let us take the

current route ZC
k = (s, i1, i2, ..., im, s) and assume that we want to add a customer to this route.

To choose which customer is added, we calculate the best position f1(i(u), u, j(u)) in terms of

distance for every unrouted customer u ∈ C ′. The best position is the position which causes the

least extra distance to add the customer, see (4). Here, i(u) and j(u) are two adjacent vertices

in the route, and f((ip−1, u, ip) is the added distance when u is inserted between node ip−1 and

ip.

f1(i(u), u, j(u)) = minp=1,...,m{f1(ip−1, u, ip)} (4)

For every unrouted node, we then compare the costs of adding the customer to a new route

to the costs of adding the customer to the existing route. We do this by subtracting these two

values as in (5). Here cCs,u is the cost, in terms of distance, of travelling from s to u.

f2(i(u), u, j(u)) = cCs,u − f1(i(u), u, j(u)) (5)

The unrouted customer for which the value of f2 is the greatest is the customer that is

potentially added to the route, see (6). We take the maximum here because then the cost of
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adding the customer is the lowest.

f2(i(u
∗), u∗, j(u∗)) = maxu{f2(i(u), u, j(u))} (6)

Before adding the customer to the route, we have to verify that adding is feasible in terms of

pollution and time windows. When it is feasible, the customer is added to the route. Else, when

adding the customer to a new route, create a new route and add the customer to it. When both

are not the case, we add the customer to E′ and let it be served by an ECV. The full algorithm

is summarized in Algorithm 4.

Algorithm 4 insertionConventional

Input: All customers in C ′

Output: Routes for ICCVs
Initialize ZC

0 = (s, i′, s) with i′ ∈ C ′ the unserved customer with the smallest end time li′

while There are customers in C ′ left do
Calculate f1(i(u), u, j(u)) for every unserved customer u ∈ C ′

Calculate f2(i(u
∗), u∗, j(u∗))

if Adding u∗ between i(u∗) and j(u∗) is feasible then
Add u∗ on that position in the route

else if Adding u∗ to a new route is feasible then
Add u∗ to a new route Zk+1

else
Add u∗ to E′

end if
end while

Insertion heuristic for electrical routes The strategy of inserting a customer into an elec-

trical route starts the same as for conventional routes. We initialize a route ZE
0 = (s, i′, s),

with i′ the unserved customer in E′ with the smallest end time. After that we calculate

f2(i(u
∗), u∗, j(u∗)) using formulas (4), (5) and (6), but now with the costs of ECVs, cEi,j , which

are again similar to distance.

Inserting customers into a route is a bit more difficult than in conventional routes, as energy

is an extra factor in the problem. Namely, when the energy capacity constraint is exceeded in

a route, a charging station has to be added. We do this by checking if all the customers can be

reached with the remaining energy in the vehicle. For this, we start at the depot and go through

all the customers in the route one by one. When a customer cannot be reached, we check if the

closest charging station from the previous customer can be reached. When this is the case, we

add this charging station to the route and recharge the vehicle to its full capacity. When this

charging station cannot be reached, we try to reach the closest station from the customer before
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and so on. When the route is feasible in energy again, we lower the amount of charged energy to

the minimum that is needed, so the amount of energy needed to reach the next charging station

in the route or the depot. This algorithm to add charging stations is the same every time it is

needed to add one.

When the route is completely feasible, we add it to the solution. When the route is only feas-

ible in capacity and time, but not in energy, we add charging stations to the route. When after

this the time constraint is not satisfied anymore, we remove random customers and reallocate

the charging stations on the route until the route is completely feasible. We choose the customer

that has to be removed randomly out of all customers in the route and reallocate the charging

stations on the route. The removed customers in this state are added to the conventional cluster

C, which indicates that the pollution emission constraint is relaxed in the initialisation. How-

ever, when the route is feasible in energy, we check if there are still customers left in E and

initialize a new route in the same way we did before.

When the heuristic cannot find a feasible solution, we add all unserved customers to C ′ again

and allow the emission constraint to be violated. The initial solution is not feasible in that case,

but that infeasibility is fixed in the LS procedure. A summary of the insertion heuristic for

electrical route can be found in Algorithm 5.

13



Algorithm 5 insertionElectrical

Input: All customers in E′

Output: Routes for ECVs
Initialize ZE

0 = (s, i′, s) with i′ ∈ E′ the unserved customer with the smallest end time li′

while There are customers in E′ left do
Calculate f1(i(u), u, j(u)) for every unserved customer u ∈ E′

Calculate f2(i(u
∗), u∗, j(u∗))

if Adding u∗ between i(u∗) and j(u∗) in the current route is feasible in capacity and time
then

if Route is infeasible in energy then
Add the nearest charging stations to the route and recharge the vehicle
if Time window constraint is satisfied but some customers are unserved then

Add customer u∗ to the current route between i(u∗) and j(u∗)
end if

else if There are unserved customers left then
Add u∗ to the route
Initialise a new route with the customer with the smallest end time left in the

cluster
Add current route to solution and take the new route as the current

end if
else if Adding u∗ to a new route is feasible then

Add u∗ to a new route
Add current route to solution and take the new route as the current

else
Add u∗ to C ′ and violate pollution constraint

end if
end while

5.1.2 Local search procedure

The main procedure of the ILS metaheuristic is the local search procedure (LS). This procedure

is intended to improve an initial solution to make it more optimal. The procedure is based on two

different improvement heuristics. When the initial solution is already feasible, we apply a basic

improvement heuristic and when the initial solution is not feasible we apply an improvement

heuristic with a penalty function.

Algorithm 6 localSearch

Input: A starting solution η′

Output: A solution ηk
if η′ is feasible then

Apply improvement heuristic −→ ηk
else

Apply improvement heuristic with penalty −→ ηk
end if
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Improvement heuristic In the improvement heuristic, we relocate some customers. There

are three possibilities, a change that affects two conventional routes, two electrical routes or

one conventional and one electrical route. In every situation, we consider every customer and

check if they can be feasibly inserted into another route. We consider every possible position of

insertion and examine which of these positions is the best for that certain customer. When this

insertion is feasible, we relocate the customer to that new position. It is worth mentioning that

if electrical routes are involved, the insertion can cause the need for an extra charging station.

The other way around, removing a customer from an electrical route can cause the possibility to

remove a charging station from the route. Therefore, after each improvement, we reallocate the

charging stations to the route. We perform this heuristic until no better insertions are feasibly

possible.

Improvement heuristic with penalty function In the improvement heuristic with pen-

alty function is infeasibility allowed in the initialization. As follows from previous sections, an

infeasible initial solution means that the pollution emission constraints are not satisfied. In

this heuristic, the objective function is amended to the function in (7). Here, z(η) is the cost

function, in our case the total Euclidean distance of the solution, θ is the penalty coefficient,

which is initially set to 1, and e(η) is the violation of polluting emissions, as stated in (8).

z′(η) = z(η) + θe(η) (7)

e(η) = max

0,
∑

(i,j)∈A

Φ− UB

 (8)

As said, initially the penalty coefficient θ is set to 1, but it can change in every iteration.

When after the improvement the solution is not feasible yet, we increase the coefficient by 10%

and do the improvement with a penalty again, until a feasible solution is found. To get there,

we use the improvement heuristic as it is described in the previous paragraph.

6 Results

In this section, we first explain which instances we will use for the numerical study, and explain

how they are defined in Section 6.1. We then carry out the numerical investigation and report

and analyze the values obtained in Section 6.2.
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6.1 Test instances

To test the metaheuristic and the different functions for pollution and charging times, we use the

EVRPTW benchmark instances as in Macrina et al. (2019). These benchmark instances are from

Schneider et al. (2014), who have adjusted the benchmarks of Solomon (1987). These instances

are generated in three different ways: using a clustered distribution of the geographical customer

locations, a random distribution or a combination of both. These distributions are referred to

as c, r and rc, respectively. Furthermore, we test the instances where 5, 10, 15, 25, 30, 50 or

100 customers have to be served. Here the instances with 25, 30 or 50 customers are generated

ourselves by removing the first 75, 70 or 50 customers respectively from the instances with

100 customers. All instances specify the customers and charging stations and their locations.

Furthermore, they specify the time windows for all locations, the service time and the desired

demand.

We determine the maximum pollution upper bound (UBmax) separately for each instance.

We do this by first running the program without an upper bound, and then equating UBmax

to the obtained pollution value, rounded up to the nearest integer. Then, we run the program

three more times for this instance with three different upper bound values. In concrete terms,

this means that the upper bound is set equal to 0.75 · UBmax, 0.50 · UBmax and 0.25 · UBmax.

The instances (type of distribution and their number), their associated value for the number

of customers (|N |), and their version of the pollution upper bound factor (α) are referred to

as ”TypeNumberC|N | α”. For example, r101C5 0.75 denotes the 101st random distributed

instance with 5 customers, with the pollution upper bound equal to 0.75 · UBmax.

Furthermore, each instance specifies the energy and vehicle capacity and the inverse refuelling

rate. The energy capacity is the amount of energy that fits into the vehicle at most. The vehicle

capacity is the maximum load of units of demand, and the inverse refuelling rate is the time

it takes to charge one unit of energy in the linear function. These values are all different for

different instances. The inverse refuelling rate does not only affect the linear charging function

but also the non-linear charging function as the three sectors in the non-linear function depend

on the value as well. For every charging station in the problem, the charging function is equal.

This means that charging can be done at the same speed at every charging station.

Moreover, a value for the energy consumption rate and the average velocity is given for all

instances, but these are equal to 1 in all cases of this study.
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6.2 Numerical results

In total, we have 80 instances: 12 with 5 customers, 12 with 10, 9 with 15, 12 with 25, 11 with

30, 12 with 50 and 12 with 100 customers. For the numerical results, we run the Iterated Local

Search for each instance three times. Which means that 240 solutions are generated using the

ILS. Table 2 shows the total number of feasible results for different types. The first row indicates

how many of the initial solutions were feasible, the second row indicates how many solutions

were feasible after running the ILS. Furthermore, the third and fourth rows indicate whether

the linear and non-linear time, respectively, is feasible in the solution. Finally, the fifth and

sixth rows indicate whether the piecewise constant and linear pollution rate, respectively, are

feasible in the solution. The full results for each instance separately can be found in Appendix A

until G. All these solutions are based on the linear charging function and the piecewise constant

function for the pollution rate.

|N | = 5 |N | = 10 |N | = 15 |N | = 25 |N | = 30 |N | = 50 |N | = 100 Total
# Feasible initial solutions 10 3 1 1 0 0 0 15
# Feasible ILS solution 30 29 17 16 10 6 8 116
# Feasible linear ILS times 36 36 27 33 30 30 25 217
# Feasible non-linear ILS times 36 28 16 20 29 24 21 174
# Feasible piecewise constant ILS pollution 35 27 19 16 10 6 6 119
# Feasible linear ILS pollution 35 27 20 16 10 6 6 120
Total generated solutions 36 36 27 36 33 36 36 240

Table 2: Feasibility results

We see that in total only 15 of the generated solutions are already feasible in the initial

solution, which is about 6.3% of the generated initial solutions. Remarkable is that none of

these feasible initial solutions is drawn from the large instances with more than 25 customers.

After applying the ILS to these initial solutions, 48% of all solutions is feasible. Again, we see

more feasibility for small instances than for large ones, as we see the number of feasible solutions

drop when the number of customers increases.

When we only look at the feasibility in time for linear charging times, we see that 90.0% of

the solutions are feasible in all time windows, and for the small instances with the number of

customers less or equal to 15 all solutions are even feasible in the time windows. When we look

at the direct effect of introducing the non-linear charging time, we see that less of our generated

solutions are feasible, only 72.5%. We see that for |N | = 5, the non-linear charging time has no

impact on the feasibility of our instances. However, for instances with more customers, we see

that there is an increasing impact as the instances get bigger. For example, when looking at the

instances with |N | = 15, the feasibility in time drops from 100% to only 59% when the linear

charging time is assumed but non-linear charging time holds in reality.

17



When looking at the different functions for the pollution rate, we see that if the piecewise

constant function is assumed, but the linear function holds, the solution remains feasible in the

pollution rate in 100% of our cases. It even happens that one solution becomes feasible while it

was not feasible with the piecewise constant function.

We now know how the ILS affects the overall feasibility from the initial to the best solution,

and how the different functions for charging times and pollution affect the feasibility of a single

component, so time and pollution, respectively. Table 3 provides some mean values to investigate

how the solutions change numerically. Here, the mean values of the distances, times and pollution

are given.

|N | = 5 |N | = 10 |N | = 15 |N | = 25 |N | = 30 |N | = 50 |N | = 100 Total
Initial distance 256.50 475.79 750.63 1022.30 1347.10 2156.19 4688.77 1559.60
ILS distance 202.31 342.94 440.42 480.19 597.73 1006.21 2372.21 790.78
Initial time 737.76 1471.69 2509.40 3556.64 4877.12 7627.95 18 025.61 5665.86
Linear ILS time 881.95 1739.21 2315.45 2349.87 2912.14 5087.33 10 304.07 3715.27
Non-linear ILS time 898.23 1772.40 2353.34 2369.90 2923.36 5099.64 10 319.07 3735.60
Initial pollution 86.13 193.02 319.43 390.34 472.20 902.78 2114.95 653.95
Piecewise constant ILS pollution 54.19 85.29 134.79 180.75 262.36 548.45 1478.43 403.30
Linear pollution 52.29 82.26 129.75 171.00 247.11 519.85 1396.21 381.86

Table 3: Mean results

We see that on average the distance is lowered by 49.3%, which is due to the ILS. Here we see

that this percentage gets higher for larger sizes of the problem. For the instances of size |N | = 5,

the value is 21.1%, while for |N | = 100, it is equal to 49.4%. We see a decrease in the mean time

from the initial to the ILS solution. However, when we look at the solutions separately, it does

not hold that all times decrease. Yet, by how the non-linear charging formula is generated, all

non-linear times are greater or equal to the linear charging times. On average, the non-linear

function takes about 0.5% extra time. This does not seem a lot, but as seen earlier in Table 2,

this does have an impact on the feasibility of the time windows when the assumption of linear

charging times is made, while the non-linear function holds.

For pollution, we see that the pollution value after the ILS is mostly lower than the pollution

value in the initial solution. On average, this decrease is 38.3%. For the values |N | = 5, 10 and

15, the decrease is higher for the larger problems. However, for |N | = 100 the decrease is

only 30.1%. When comparing the piecewise constant function for pollution against the linear

function, we see that the linear value is always less or equal to the piecewise linear value. For

our instances, it even turns out that the pollution is always lower for the linear function, except

when no conventional vehicles are used and the pollution value is therefore 0.

To go even deeper into it, we look at some interesting instances for which |N | = 15 and

α = 0.75, with corresponding Tables 4 and 5. In the first table, ‘dist’ denotes the distance,
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values with ‘(I)’ are initial values, ‘(ILS)’ is for the best solution found by the ILS assuming

linear charging times, Time ‘(NL)’ denotes the time the solution generated when assuming linear

charging but non-linear charging holds and ‘FNL’ denotes if the time is feasible in this case.

Furthermore, when the values of the second to the fifth column are boldface, it means that the

solution is feasible. The way this table has been formatted has been done for all solutions found

in the appendices.

For these instances, none of the initial solutions were feasible. We can see that the best

solution found by the ILS in c106C15 0.75 and r105C15 0.75 is feasible. However, when using

the non-linear time, they become infeasible. For the second instance, the increase in time is

minimal, but enough to cause infeasibility.

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c106C15 0.75 695.3 400.79 3442.04 3673.27 3819.1 ×
r105C15 0.75 709.21 338.65 1020.5 626.35 628.24 ×
rc108C15 0.75 795.51 479.81 1015.77 704.22 716.78 ✓

Table 4: Results for some instances with |N | = 15 and α = 0.75

In Table 5, ‘FILS’ denotes if the solution of the ILS is feasible in pollution, ‘FLP’ denotes if

the solution is feasible in linear pollution, ‘(L)’ is when linear pollution holds and ‘Limit’ denotes

the pollution upper bound of the problem. The bolt values can only be found in the second

and third columns here. For rc108C15 0.75, the solution of the ILS is overall infeasible, but also

infeasible in pollution, as 228.99 is higher than the upper bound of 217.5. However, when using

the linear pollution function, the pollution value drops to 215.65, which is lower than the upper

bound, so the solution is feasible in pollution.

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c106C15 0.75 286.85 15.4 ✓ 14.92 ✓ 173.25
r105C15 0.75 327.81 191.92 ✓ 185.96 ✓ 207.75
rc108C15 0.75 477.61 228.99 × 215.65 ✓ 217.5

Table 5: Pollution results for some instances with |N | = 15 and α = 0.75

To further investigate the effect of the non-linear charging function, we look at the difference

in the distance of the best solution when it is generated using the non-linear function compared to

when it is generated using the linear charging function, as before. We can only compare distances

when the non-linear charging time is feasible when the solution is generated while assuming that

the function is linear. So there are two cases we compare. The case where non-linear charging is

assumed and the case where linear charging is assumed, but non-linear charging holds. We can
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only compare these two when non-linear charging is feasible in the solution generated where we

assume linear charging, such that we compare two feasible solutions with each other.

We compare these solutions for the small instances with |N | = 5 and |N | = 10 because

for these instances the solution often remains feasible when the non-linear function holds. All

results can be found in Appendix H and I, but some interesting results are given in Table

6. Here, the boldfaced values indicate whether the solution generated while assuming non-

linear charging is better in terms of distance than the solution generated while assuming linear

charging. All solutions are feasible, as we only compare solutions that are already feasible in case

linear charging is assumed, but non-linear charging holds. In the table, the distance, time and

piecewise constant pollution values are given for both the solutions generated while assuming

linear charging (lin) and non-linear charging (non-lin). Lastly, the pollution upper bound is

given, such that it is easy to verify that the solution is feasible in pollution and so that we

can reason why a solution is better, for example by introducing more conventional routes if the

pollution value is higher than before.

Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
c103C5 0.75 175.37 165.67 1767.31 1764.25 0.00 57.02 93.75
r202C5 0.75 143.04 143.04 228.91 228.91 53.77 53.77 81.75
r203C5 0.75 193.84 193.84 288.25 292.23 79.47 79.47 103.50

Table 6: Non-linear charging comparison for some interesting instances with |N | = 5 and
α = 0.75

In this table, we see three different cases that are possible. In the first row, we see that the

non-linear result is better than the linear result, but more pollution is used. This is fine because

it is still below the pollution upper bound. In the second row, we see that the solution has not

changed, not even if we look at the time. In the last row, we see that the solution remained the

same, but the time differs.

For all instances with |N | = 5, 20.5% of the solutions get better. We see that for the high

pollution upper bound, α = 0.75, 33.3% of the solutions get better, while for α = 0.50 and

α = 0.25 only respectively 18.2% and 9.1%.

For instances with |N | = 10, 57.1% of the solutions get better. When we break it into the

three values of α, we see that 44.4%, 71.4% and 60% of the solutions get better for α = 0.75, 0.50

and 0.25, respectively.

When looking at all better solutions, the distance is lowered by 14.1% on average for instances

with 5 customers and 7.1% for instances with 10 customers.
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7 Conclusion

In this study, we modelled and solved the Green Vehicle Routing Problem with Time Windows.

We investigate the utility of using the ILS versus only the initial solution. Furthermore, we

proposed two functions to test the effect of different functions, a non-linear charging function

and a linear function for the pollution rate per km. We compared the results of the ILS against

the initial results to investigate how good the initial solution is and what the utility of the ILS

is. We found that the initial solution is not feasible in about 90% of the cases, which means the

way the initial solution is generated is not of value to use in reality. However, after applying the

ILS, 62% of the solutions are feasible, of which we can conclude that the ILS does its work by

improving the solution, but not for every instance its solution is useful. When we take a closer

look at some instances, we see that the ready time is sometimes equal to the due date, which

makes it likely for the problem to become infeasible. Furthermore, the ILS ensures that the

solution distance decreases by an average of 45.7%. From these two points, it can be concluded

that the ILS is useful for improving the solution compared to the initial solution.

That time windows are not the only cause of infeasibility becomes clear from the fact that

90.0% of the time windows in the solutions are feasible. For the small instances, until 15

customers, all solutions are even feasible in their time window. When, however, when non-linear

charging times are used on the linear solutions, only 72.5% of the solutions are feasible in their

time window, which is quite an extreme loss. However, it is worth mentioning again that the

non-linear function used in this study is generated with the assumption that the linear function

is chosen optimistically. We can thus conclude that assuming linear charging times may, in the

worst case, cause problems when non-linear holds.

When using the non-linear charging function is still feasible in the solution generated with the

linear charging function, we can compare this solution to the solution we get when the non-linear

is used when generating the solution. For instances with 5 customers, 20.5% of the solutions get

better when assuming non-linear charging, with an average loss of 14.1% in distance. For these

instances, we see that the percentage of better solutions is higher when α is higher, so when the

upper bound is higher. For instances with 10 customers, even 57.1% of the solutions get better.

However, here the average loss in distance is only 7.1%. Furthermore, for these instances, we do

not see any pattern for the different values of the upper bound.

When using a linear expected pollution rate, we see that the values of pollution all go

down compared to the piecewise constant function. From this, we can conclude that assuming
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the pollution rate to be piecewise constant does not cause infeasibility of the problem for our

instances and when it is linear, it is only lower than expected, as a result of which the imposed

condition will always be met, but the costs may be slightly higher than would have been possible.

For further research, the speed that is driven on each arc in the problem could be examined.

In this study, an average speed has been taken, but in reality, this depends on the routes that

are driven. As a result, the energy consumption per km will also depend on which routes are

driven, which will change the use of charging stations. A different pollution rate will also arise

for conventional cars, which depends on both the load and the speed. In addition, the costs of

hiring drivers and the use of multiple vehicles can be taken into account.
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A Numerical results for |N | = 5

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C5 0.75 296.09 234.82 1417.70 1623.73 1623.73 ✓
c103C5 0.75 187.22 175.37 1043.99 1767.31 1792.25 ✓
c206C5 0.75 313.92 233.94 1569.39 2031.03 2066.95 ✓
c208C5 0.75 282.82 174.82 891.08 2029.29 2062.26 ✓
r104C5 0.75 201.46 136.45 386.3 294.12 294.12 ✓
r105C5 0.75 211.3 153.49 300.97 291.59 291.59 ✓
r202C5 0.75 190.04 143.04 530.27 228.91 235.88 ✓
r203C5 0.75 268.38 193.84 374.03 288.25 292.23 ✓
rc105C5 0.75 262.95 233.9 373.04 338.23 345.83 ✓
rc108C5 0.75 301.46 305.52 394.46 439.57 452.98 ✓
rc204C5 0.75 284.44 176 925.66 915.24 920.88 ✓
rc208C5 0.75 290.42 174.38 648.27 292.39 300.1 ✓

Table 7: Results for instances with |N | = 5 and α = 0.75

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C5 0.75 78.96 67.24 ✓ 65.15 ✓ 135.75
c103C5 0.75 53.9 0 ✓ 0 ✓ 93.75
c206C5 0.75 62.99 105.91 ✓ 102.59 ✓ 126.75
c208C5 0.75 182.66 0 ✓ 0 ✓ 0.75
r104C5 0.75 84.53 61.39 ✓ 59.47 ✓ 81.75
r105C5 0.75 100.37 78.41 ✓ 75.97 ✓ 87.75
r202C5 0.75 87.63 53.77 ✓ 52.08 ✓ 81.75
r203C5 0.75 119.19 79.47 ✓ 76.98 ✓ 111.75
rc105C5 0.75 126.68 127.05 ✓ 122.28 ✓ 135
rc108C5 0.75 147.23 69.3 ✓ 67.13 ✓ 146.25
rc204C5 0.75 61.68 65.06 ✓ 63.02 ✓ 99.75
rc208C5 0.75 23.91 0 ✓ 0 ✓ 0.75

Table 8: Pollution results for instances with |N | = 5 and α = 0.75
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Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C5 0.50 296.09 234.82 1417.7 1623.73 1623.73 ✓
c103C5 0.50 187.22 165.67 1043.99 1739.31 1764.25 ✓
c206C5 0.50 313.92 238.67 1569.39 2420.98 2458.66 ✓
c208C5 0.50 282.82 157.72 891.08 1661.27 1661.27 ✓
r104C5 0.50 191.62 137.01 320.59 334.02 339.04 ✓
r105C5 0.50 211.3 182.01 300.97 297.25 305.66 ✓
r202C5 0.50 192.2 143.04 279.55 228.91 235.88 ✓
r203C5 0.50 283.08 199.54 388.73 347.31 367.01 ✓
rc105C5 0.50 262.95 237.76 373.04 341.42 347.09 ✓
rc108C5 0.50 301.46 315.81 394.46 452.16 457.35 ✓
rc204C5 0.50 284.44 176 925.66 915.24 920.88 ✓
rc208C5 0.50 290.42 174.38 648.27 292.39 300.1 ✓

Table 9: Results for instances with |N | = 5 and α = 0.50

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C5 0.50 78.96 67.24 ✓ 65.15 ✓ 90.5
c103C5 0.50 53.9 57.02 ✓ 55.25 ✓ 62.5
c206C5 0.50 62.99 80 ✓ 77.48 ✓ 84.5
c208C5 0.50 182.66 121.44 × 117.65 × 0.5
r104C5 0.50 23.46 44.91 ✓ 42.32 ✓ 54.5
r105C5 0.50 100.37 47.84 ✓ 46.34 ✓ 58.5
r202C5 0.50 89.29 53.77 ✓ 52.08 ✓ 54.5
r203C5 0.50 130.51 0 ✓ 0 ✓ 74.5
rc105C5 0.50 126.68 77.98 ✓ 74.73 ✓ 90
rc108C5 0.50 147.23 87.24 ✓ 81.74 ✓ 97.5
rc204C5 0.50 61.68 65.06 ✓ 63.02 ✓ 66.5
rc208C5 0.50 23.91 0 ✓ 0 ✓ 0.5

Table 10: Pollution results for instances with |N | = 5 and α = 0.50

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C5 0.25 296.09 278.47 1624.04 1556.62 1749.84 ✓
c103C5 0.25 187.22 175.37 1043.99 1678.44 1703.37 ✓
c206C5 0.25 299.57 242.56 1679.36 1823.14 1971.17 ✓
c208C5 0.25 282.82 174.82 891.08 2029.29 2062.26 ✓
r104C5 0.25 191.62 137.01 320.59 334.02 339.04 ✓
r105C5 0.25 211.3 195.31 300.97 347.52 357.85 ✓
r202C5 0.25 170.85 143.13 269.77 415.98 415.98 ✓
r203C5 0.25 241.5 199.54 660.51 347.31 367.01 ✓
rc105C5 0.25 280.89 239.46 395.86 382.85 400.52 ✓
rc108C5 0.25 307.76 337.48 400.75 488.45 493.98 ✓
rc204C5 0.25 285.79 185.16 915.66 307.37 322.25 ✓
rc208C5 0.25 290.42 174.38 648.27 292.39 300.1 ✓

Table 11: Results for instances with |N | = 5 and α = 0.25
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C5 0.25 33.17 33.17 ✓ 32.13 ✓ 45.25
c103C5 0.25 53.9 19.72 ✓ 19.1 ✓ 31.25
c206C5 0.25 24.35 24.35 ✓ 23.59 ✓ 42.25
c208C5 0.25 182.66 0 ✓ 0 ✓ 0.25
r104C5 0.25 23.46 0 ✓ 0 ✓ 27.25
r105C5 0.25 100.37 0 ✓ 0 ✓ 29.25
r202C5 0.25 54.68 0 ✓ 0 ✓ 27.25
r203C5 0.25 91.16 0 ✓ 0 ✓ 37.25
rc105C5 0.25 88.02 0 ✓ 0 ✓ 45
rc108C5 0.25 152.08 60.51 × 58.62 × 48.75
rc204C5 0.25 61.68 0 ✓ 0 ✓ 33.25
rc208C5 0.25 23.91 0 ✓ 0 ✓ 0.25

Table 12: Pollution results for instances with |N | = 5 and α = 0.25

B Numerical results for |N | = 10

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C10 0.75 567.77 486.27 2685.27 2928.9 2928.9 ×
c104C10 0.75 438.69 317.55 2072.33 2207.55 2400.07 ✓
c202C10 0.75 443.34 282.38 2837.42 5399.01 5400.93 ✓
c205C10 0.75 545.65 322.93 3668.74 4212.52 4212.52 ✓
r102C10 0.75 429.84 314.67 808.53 581.29 583.45 ✓
r103C10 0.75 286.46 193.9 552.66 443.38 443.38 ✓
r201C10 0.75 317.13 245.89 664.4 890.47 896.24 ✓
r203C10 0.75 397.97 222.64 1421.09 704.68 704.68 ✓
rc102C10 0.75 589.17 463.55 794 717.44 737.44 ×
rc108C10 0.75 531.9 346.25 677.16 561.95 573.83 ✓
rc201C10 0.75 487.21 416.77 1017.23 1164.19 1165.71 ✓
rc205C10 0.75 538.95 349.16 1154.49 1093.69 1093.69 ✓

Table 13: Results for instances with |N | = 10 and α = 0.75
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C10 0.75 170.18 196.47 ✓ 190.34 ✓ 222
c104C10 0.75 180.48 24.83 ✓ 24.05 ✓ 153.75
c202C10 0.75 171.62 72.62 ✓ 70.36 ✓ 138.75
c205C10 0.75 315.24 131.38 × 127.27 ✓ 131.25
r102C10 0.75 200.73 106.24 ✓ 100.84 ✓ 143.25
r103C10 0.75 74.08 100.85 ✓ 97.07 ✓ 113.25
r201C10 0.75 113.3 90.38 ✓ 87.54 ✓ 118.5
r203C10 0.75 177.21 0 ✓ 0 ✓ 126
rc102C10 0.75 293.97 223.27 ✓ 214.77 ✓ 227.25
rc108C10 0.75 327.02 172.1 ✓ 163.87 ✓ 195.75
rc201C10 0.75 154.54 95.9 ✓ 92.89 ✓ 176.25
rc205C10 0.75 175.26 116.54 ✓ 112.89 ✓ 190.5

Table 14: Pollution results for instances with |N | = 10 and α = 0.75

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C10 0.50 567.77 366.33 2685.27 2609.19 2609.19 ✓
c104C10 0.50 438.69 302.68 2072.33 2252.98 2487.23 ×
c202C10 0.50 443.34 282.38 2837.42 5399.01 5400.93 ✓
c205C10 0.50 550.3 425.93 2776.35 4570.38 4614.78 ✓
r102C10 0.50 429.84 319.06 808.53 580.2 580.99 ✓
r103C10 0.50 286.46 199.31 552.66 475.74 475.74 ✓
r201C10 0.50 317.13 235.13 664.4 1044.38 1044.38 ✓
r203C10 0.50 420.32 233.21 842.12 757.8 758.27 ✓
rc102C10 0.50 589.17 484.19 794 754.76 795.76 ×
rc108C10 0.50 531.9 437.15 677.16 642.43 660.76 ✓
rc201C10 0.50 487.21 360.35 1017.23 1204.13 1211.73 ✓
rc205C10 0.50 579.34 351.2 1091.74 1132.33 1132.33 ✓

Table 15: Results for instances with |N | = 10 and α = 0.50

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C10 0.50 170.18 289.21 × 273.36 × 148
c104C10 0.50 180.48 0 ✓ 0 ✓ 102.5
c202C10 0.50 171.62 72.62 ✓ 70.36 ✓ 92.5
c205C10 0.50 318.83 124.88 × 120.97 × 87.5
r102C10 0.50 200.73 49.99 ✓ 48.43 ✓ 95.5
r103C10 0.50 74.08 48.91 ✓ 47.38 ✓ 75.5
r201C10 0.50 113.3 73.25 ✓ 70.96 ✓ 79
r203C10 0.50 194.43 0 ✓ 0 ✓ 84
rc102C10 0.50 293.97 50.5 ✓ 48.92 ✓ 151.5
rc108C10 0.50 327.02 132.37 × 124.77 ✓ 130.5
rc201C10 0.50 154.54 116.38 ✓ 112.73 ✓ 117.5
rc205C10 0.50 206.36 0 ✓ 0 ✓ 127

Table 16: Pollution results for instances with |N | = 10 and α = 0.50
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Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C10 0.25 605.76 482.6 2722.61 3073.52 3180.25 ×
c104C10 0.25 508.02 307.48 2141.65 2274.41 2541.56 ×
c202C10 0.25 445.27 283.59 3731.22 3931.79 3931.79 ✓
c205C10 0.25 486.44 267.06 2109.43 3939.67 4022.46 ×
r102C10 0.25 401.45 241.14 705.2 555.19 555.19 ✓
r103C10 0.25 304.93 216.52 571.13 448.1 456.12 ✓
r201C10 0.25 353.13 278.55 742.4 1010.72 1010.72 ✓
r203C10 0.25 506.97 222.64 1408.53 704.68 704.68 ✓
rc102C10 0.25 569.73 384.82 763.74 557.29 557.29 ✓
rc108C10 0.25 558.36 510.01 739.61 754.47 773.15 ✓
rc201C10 0.25 492.8 362.01 1016.26 1548.21 1568.22 ✓
rc205C10 0.25 636.3 349.18 1241.75 1105.8 1105.8 ✓

Table 17: Results for instances with |N | = 10 and α = 0.25

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C10 0.25 196.41 107.95 × 102.82 × 74
c104C10 0.25 228.38 0 ✓ 0 ✓ 51.25
c202C10 0.25 173.11 65.56 × 63.51 × 46.25
c205C10 0.25 214.13 0 ✓ 0 ✓ 43.75
r102C10 0.25 181.5 189.08 × 179.93 × 47.75
r103C10 0.25 85.09 18.26 ✓ 17.69 ✓ 37.75
r201C10 0.25 141.03 0 ✓ 0 ✓ 39.5
r203C10 0.25 50.48 0 ✓ 0 ✓ 42
rc102C10 0.25 276.98 300.06 × 287.13 × 75.75
rc108C10 0.25 342.83 107.48 × 104.13 × 65.25
rc201C10 0.25 158.85 0 ✓ 0 ✓ 58.75
rc205C10 0.25 158.44 0 ✓ 0 ✓ 63.5

Table 18: Pollution results for instances with |N | = 10 and α = 0.25

C Numerical results for |N | = 15

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c106C15 0.75 695.3 400.79 3442.04 3673.27 3819.1 ×
c202C15 0.75 872.84 514.12 5607.33 6355.72 6440.17 ✓
c208C15 0.75 736.38 306.25 5320.55 3437.54 3437.54 ✓
r105C15 0.75 709.21 338.65 1020.5 626.35 628.24 ×
r202C15 0.75 646.96 491.62 2374.31 1903.4 1907.65 ✓
rc103C15 0.75 691.32 515.15 1051.62 810.22 813.69 ✓
rc108C15 0.75 795.51 479.81 1015.77 704.22 716.78 ✓
rc202C15 0.75 730.69 513.54 1828.17 1844.32 1844.32 ✓
rc204C15 0.75 668.78 326.22 1506.09 1173.81 1175.18 ✓

Table 19: Results for instances with |N | = 15 and α = 0.75
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c106C15 0.75 286.85 15.4 ✓ 14.92 ✓ 173.25
c202C15 0.75 276.27 225.72 × 218.66 × 213.75
c208C15 0.75 218.51 24.35 ✓ 23.59 ✓ 171.75
r105C15 0.75 327.81 191.92 ✓ 185.96 ✓ 207.75
r202C15 0.75 278.87 112.47 ✓ 108.95 ✓ 118.5
rc103C15 0.75 421.72 211.34 ✓ 202.05 ✓ 226.5
rc108C15 0.75 477.61 228.99 × 215.65 ✓ 217.5
rc202C15 0.75 238.94 71.68 ✓ 69.43 ✓ 235.5
rc204C15 0.75 245.67 86.05 ✓ 83.36 ✓ 176.25

Table 20: Pollution results for instances with |N | = 15 and α = 0.75

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c106C15 0.50 695.3 493.57 3442.04 3851.42 4015.74 ✓
c202C15 0.50 933.02 434.27 6513.26 5929.23 5929.23 ×
c208C15 0.50 817.65 759.91 5617.41 4754.97 4856.17 ×
r105C15 0.50 709.21 394.72 1020.5 662.23 677.19 ×
r202C15 0.50 766.64 442.75 2109.85 1698.35 1701.95 ✓
rc103C15 0.50 691.32 545.47 1051.62 856.72 860.74 ✓
rc108C15 0.50 795.51 481.13 1015.77 761.68 792.27 ×
rc202C15 0.50 730.69 513.79 1828.17 2096.1 2108.03 ✓
rc204C15 0.50 636.84 326.22 1566.37 1173.81 1175.18 ✓

Table 21: Results for instances with |N | = 15 and α = 0.50

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c106C15 0.50 286.85 63.63 ✓ 61.64 ✓ 115.5
c202C15 0.50 322.61 91.55 ✓ 88.68 ✓ 142.5
c208C15 0.50 281.1 213.75 × 207.05 × 114.5
r105C15 0.50 327.81 168.23 × 162.99 × 138.5
r202C15 0.50 371.03 70.92 ✓ 68.7 ✓ 79
rc103C15 0.50 421.72 201.12 × 193.71 × 151
rc108C15 0.50 477.61 117.56 ✓ 109.28 ✓ 145
rc202C15 0.50 238.94 122.25 ✓ 118.41 ✓ 157
rc204C15 0.50 221.08 86.05 ✓ 83.36 ✓ 117.5

Table 22: Pollution results for instances with |N | = 15 and α = 0.50
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Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c106C15 0.25 722.92 466.86 3282.94 3854.07 4018.39 ✓
c202C15 0.25 875.37 553.24 4364.42 7668.28 7671.27 ✓
c208C15 0.25 805.22 413.03 4965.23 5241.58 5241.58 ✓
r105C15 0.25 709.21 342.15 1020.5 617.28 632.24 ×
r202C15 0.25 887.68 356.09 1803.91 1309.27 1309.27 ✓
rc103C15 0.25 670.46 844.99 944.33 1238.4 1250.44 ✓
rc108C15 0.25 784.94 506.94 1005.2 782.54 803.99 ✓
rc202C15 0.25 737.23 529.02 1610.77 2223.93 2244.54 ✓
rc204C15 0.25 764.6 354.96 1445.37 1152.17 1153.54 ✓

Table 23: Results for instances with |N | = 15 and α = 0.25

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c106C15 0.25 308.11 70.24 × 68.04 × 57.75
c202C15 0.25 278.22 141.27 × 136.84 × 71.25
c208C15 0.25 271.52 144.91 × 140.38 × 57.25
r105C15 0.25 327.81 180.17 × 174.56 × 69.25
r202C15 0.25 277.66 274.19 × 265.63 × 39.5
rc103C15 0.25 405.66 170.06 × 164.73 × 75.5
rc108C15 0.25 465.68 175.46 × 168.07 × 72.5
rc202C15 0.25 243.98 118.87 × 115.15 × 78.5
rc204C15 0.25 319.46 0 ✓ 0 ✓ 58.75

Table 24: Pollution results for instances with |N | = 15 and α = 0.25

D Numerical results for |N | = 25

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C25 0.75 1376.08 707.2 5829.02 3653.65 3653.65 ×
c103C25 0.75 851.15 333.59 6241.39 2668.25 2668.25 ✓
c206C25 0.75 1092.65 384.48 6906.57 3443.79 3484.83 ×
c208C25 0.75 1146.04 272.57 6414.94 3215.4 3325.06 ×
r104C25 0.75 751.54 366.98 1352.6 824.81 841.79 ×
r105C25 0.75 979.19 515.98 1544.57 1056.07 1058.27 ×
r202C25 0.75 789 404.37 2545.36 2815.79 2815.79 ✓
r203C25 0.75 804.97 418.33 4007.45 2822.28 2822.28 ✓
rc105C25 0.75 1156.46 658.68 1814.49 1296.46 1296.46 ×
rc108C25 0.75 945.95 530.15 1371.55 950.62 953.9 ✓
rc204C25 0.75 1003.8 376.33 2565.61 2029.28 2029.28 ✓
rc208C25 0.75 816.53 371.78 1645.77 1063.73 1063.73 ✓

Table 25: Results for instances with |N | = 25 and α = 0.75
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C25 0.75 672.37 566.61 × 527.78 × 418.5
c103C25 0.75 241.84 274.39 × 249.02 × 206.25
c206C25 0.75 349.66 91.29 ✓ 86.36 ✓ 146.25
c208C25 0.75 390.77 0 ✓ 0 ✓ 146.25
r104C25 0.75 298 148.54 ✓ 140.65 ✓ 176.25
r105C25 0.75 325.36 193.05 × 184.93 × 153.75
r202C25 0.75 211.3 93.76 ✓ 90.81 ✓ 228.75
r203C25 0.75 277.85 125.66 ✓ 121.72 ✓ 195.75
rc105C25 0.75 660.53 406.34 × 386 × 352.5
rc108C25 0.75 536.23 271.49 × 253.3 × 235.5
rc204C25 0.75 418.96 0 ✓ 0 ✓ 75
rc208C25 0.75 314.14 0 ✓ 0 ✓ 202.5

Table 26: Pollution results for instances with |N | = 25 and α = 0.75

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C25 0.50 1376.08 702.84 5829.02 4103.75 4103.75 ×
c103C25 0.50 991.51 544.74 6660.79 4406.97 4513.75 ✓
c206C25 0.50 1242.7 554.05 6775.5 4705.03 4705.03 ×
c208C25 0.50 1146.04 460.48 6414.94 3953.76 4063.02 ×
r104C25 0.50 769.31 343.83 1344.13 767.39 771.85 ✓
r105C25 0.50 979.19 604.08 1544.57 1165.22 1178.18 ✓
r202C25 0.50 789 421.63 2545.36 3360.12 3360.12 ✓
r203C25 0.50 804.97 360.65 4007.45 1784.06 1784.06 ✓
rc105C25 0.50 1156.46 676.52 1814.49 1330.87 1330.87 ×
rc108C25 0.50 945.95 466.97 1371.55 859.98 859.98 ✓
rc204C25 0.50 967.31 381.21 2453.35 1519.71 1519.71 ✓
rc208C25 0.50 800.55 401.36 1330.27 1249.79 1249.79 ✓

Table 27: Results for instances with |N | = 25 and α = 0.50

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C25 0.50 672.37 554.24 × 524.48 × 279
c103C25 0.50 351.78 199.4 × 189.34 × 137.5
c206C25 0.50 465.19 129.63 × 125.58 × 97.5
c208C25 0.50 390.77 152.44 × 147.68 × 97.5
r104C25 0.50 309.43 138.91 × 132.2 × 117.5
r105C25 0.50 325.36 195.13 × 186.93 × 102.5
r202C25 0.50 211.3 93.76 ✓ 90.81 ✓ 152.5
r203C25 0.50 277.85 77.5 ✓ 75.07 ✓ 130.5
rc105C25 0.50 660.53 421.43 × 400.36 × 235
rc108C25 0.50 536.23 267.21 × 247.1 × 157
rc204C25 0.50 237.7 37.65 ✓ 36.47 ✓ 50
rc208C25 0.50 301.84 65.69 ✓ 63.63 ✓ 135

Table 28: Pollution results for instances with |N | = 25 and α = 0.50
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Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C25 0.25 1376.08 704.77 5829.02 3523.67 3523.67 ×
c103C25 0.25 1210.62 498.99 7364.85 4401.26 4503.54 ×
c206C25 0.25 1456.32 653.94 7318.07 5408.92 5437.01 ×
c208C25 0.25 1402.78 489.6 7456.36 4121.99 4276.3 ×
r104C25 0.25 810.79 423.69 1407.69 987.85 998.87 ✓
r105C25 0.25 1030.05 530.15 1572.62 1158.61 1168.57 ×
r202C25 0.25 927.88 460.52 2472.35 2496.19 2496.19 ✓
r203C25 0.25 783.88 361.71 3160.82 2557.01 2557.01 ✓
rc105C25 0.25 1156.46 644.18 1814.49 1211.6 1220.22 ×
rc108C25 0.25 928.86 412.16 1374.34 775.27 775.27 ✓
rc204C25 0.25 1022.5 405.84 2230.71 1633.23 1633.23 ✓
rc208C25 0.25 1014.13 442.46 1706.86 1273.14 1273.14 ✓

Table 29: Results for instances with |N | = 25 and α = 0.25

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C25 0.25 672.37 556.43 × 525.93 × 139.5
c103C25 0.25 508.65 255.29 × 241.44 × 68.75
c206C25 0.25 274.08 0 ✓ 0 ✓ 48.75
c208C25 0.25 219.63 47.44 ✓ 45.95 ✓ 48.75
r104C25 0.25 339.31 165.91 × 158.53 × 58.75
r105C25 0.25 364.51 126.51 × 120.96 × 51.25
r202C25 0.25 318.24 88.22 × 85.45 × 76.25
r203C25 0.25 261.61 50.14 ✓ 48.57 ✓ 65.25
rc105C25 0.25 660.53 344.75 × 328.62 × 117.5
rc108C25 0.25 521.34 334.59 × 307.63 × 78.5
rc204C25 0.25 127.86 0 ✓ 0 ✓ 25
rc208C25 0.25 346.68 33.57 ✓ 32.51 ✓ 67.5

Table 30: Pollution results for instances with |N | = 25 and α = 0.25
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E Numerical results for |N | = 30

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C30 0.75 1696.99 897.71 6830.62 4228.23 4228.23 ×
c103C30 0.75 1382.76 424.56 8720.29 3668.69 3668.69 ✓
c206C30 0.75 1536.11 537.17 10 286.64 4928.6 4961.13 ✓
c208C30 0.75 1446.55 685.04 8950.66 5083.93 5108.33 ✓
r105C30 0.75 1189.19 674.89 1875.18 1256.17 1268.22 ✓
r202C30 0.75 1108.53 591.42 4484.91 3654.04 3654.04 ✓
r203C30 0.75 978.35 409.73 2771.49 2539.63 2539.63 ✓
rc105C30 0.75 1486.31 727.75 2109.08 1239.17 1239.17 ✓
rc108C30 0.75 1302.3 514.29 1843.38 858.2 858.2 ✓
rc204C30 0.75 1278.73 413.06 2840.62 1867.48 1867.48 ✓
rc208C30 0.75 1207.09 486.1 1988.73 1205.63 1209.06 ✓

Table 31: Results for instances with |N | = 30 and α = 0.75

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C30 0.75 832.09 716.17 × 669.91 × 543
c103C30 0.75 566.51 349.22 × 316.95 × 277.5
c206C30 0.75 592.84 229.45 × 220.74 × 162
c208C30 0.75 537.42 210.34 × 203.76 × 165.75
r105C30 0.75 438.1 312.96 × 292.14 × 279.75
r202C30 0.75 312.27 115.95 ✓ 112.31 ✓ 250.5
r203C30 0.75 281.58 37.61 ✓ 36.43 ✓ 211.5
rc105C30 0.75 789.92 476.31 × 453.16 × 433.5
rc108C30 0.75 677.89 413.27 × 383.82 × 324.75
rc204C30 0.75 59.24 0 ✓ 0 ✓ 0.75
rc208C30 0.75 478.92 96.24 ✓ 93.22 ✓ 100.5

Table 32: Pollution results for instances with |N | = 30 and α = 0.75

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C30 0.50 1696.99 873.38 6830.62 4830.98 4830.98 ×
c103C30 0.50 1382.76 423.3 8720.29 3347.95 3347.95 ✓
c206C30 0.50 1421.99 564.99 9522.52 4812.73 4841 ✓
c208C30 0.50 1404.39 528.31 9437.61 4426.19 4446.69 ✓
r105C30 0.50 1189.19 701.97 1875.18 1406.16 1411.1 ✓
r202C30 0.50 1108.53 640.15 4484.91 3996.52 3996.52 ✓
r203C30 0.50 978.35 639.77 2771.49 2386.96 2386.96 ✓
rc105C30 0.50 1486.31 727.75 2109.08 1239.17 1239.17 ✓
rc108C30 0.50 1302.3 494.98 1843.38 888.57 888.57 ✓
rc204C30 0.50 1278.73 434.49 2840.62 1937.65 1937.65 ✓
rc208C30 0.50 1281.36 628.77 2568.67 1531.09 1531.09 ✓

Table 33: Results for instances with |N | = 30 and α = 0.50
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C30 0.50 832.09 694.29 × 651.74 × 362
c103C30 0.50 566.51 349.03 × 315.98 × 185
c206C30 0.50 504.96 230.28 × 223.09 × 108
c208C30 0.50 504.96 152.95 × 145.51 × 110.5
r105C30 0.50 438.1 317.95 × 295.13 × 186.5
r202C30 0.50 312.27 110.19 ✓ 106.73 ✓ 167
r203C30 0.50 281.58 109.83 ✓ 106.38 ✓ 141
rc105C30 0.50 789.92 476.31 × 453.16 × 289
rc108C30 0.50 677.89 395.46 × 369.4 × 216.5
rc204C30 0.50 59.24 0 ✓ 0 ✓ 0.5
rc208C30 0.50 422.78 111.19 × 107.71 × 67

Table 34: Pollution results for instances with |N | = 30 and α = 0.50

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C30 0.25 1696.99 898.02 6830.62 5257.96 5257.96 ×
c103C30 0.25 1470.25 420.29 8405.12 3436.68 3436.68 ✓
c206C30 0.25 1730.84 611.42 10 960.19 6193.19 6299.05 ✓
c208C30 0.25 1730.59 714.82 9758.73 6555.65 6660.21 ×
r105C30 0.25 1243.04 687.83 1869.81 1215.37 1234.33 ✓
r202C30 0.25 1136.42 458.09 4555.32 2897.97 2897.97 ✓
r203C30 0.25 1021.37 451.35 3505.72 3054.59 3054.59 ✓
rc105C30 0.25 1486.31 802.46 2109.08 1462.48 1468.02 ✓
rc108C30 0.25 1259.37 568.89 1784.76 947.5 956.72 ✓
rc204C30 0.25 1278.73 476.09 2840.62 1866.93 1866.93 ✓
rc208C30 0.25 1256.54 616.26 2619.01 1878.59 1878.59 ✓

Table 35: Results for instances with |N | = 30 and α = 0.25

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C30 0.25 832.09 713.45 × 670.15 × 181
c103C30 0.25 635.72 342.8 × 313.74 × 92.5
c206C30 0.25 186.03 66.63 × 64.56 × 54
c208C30 0.25 186.03 53.73 ✓ 52.05 ✓ 55.25
r105C30 0.25 478 288.13 × 271.54 × 93.25
r202C30 0.25 333.75 352.73 × 341.69 × 83.5
r203C30 0.25 314.7 28.43 ✓ 27.53 ✓ 70.5
rc105C30 0.25 789.92 491.19 × 466.19 × 144.5
rc108C30 0.25 640.09 375.9 × 351.41 × 108.25
rc204C30 0.25 59.24 0 ✓ 0 ✓ 0.25
rc208C30 0.25 169.95 39.79 × 38.54 × 33.5

Table 36: Pollution results for instances with |N | = 30 and α = 0.25
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F Numerical results for |N | = 50

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C50 0.75 2742.53 1773.6 12 454.24 8063.44 8063.44 ×
c103C50 0.75 2411.48 911.62 11 487.44 8679.45 8775.52 ×
c206C50 0.75 2569.95 1125.17 17 117.71 13 167.15 13 184.58 ✓
c208C50 0.75 2463.31 1188.69 16 183.59 12 291.89 12 326.88 ✓
r104C50 0.75 1772.72 713.14 2905.13 1424.7 1424.7 ✓
r105C50 0.75 2194.73 1431.13 3153.99 2477.62 2481.44 ×
r202C50 0.75 1760.23 735.38 8901.96 5825.15 5825.15 ✓
r203C50 0.75 1636.04 677.34 4960.25 3961.86 3961.86 ✓
rc105C50 0.75 2199.04 1572.06 3350.57 2200.5 2200.5 ×
rc108C50 0.75 2119.78 828.06 3075.27 1538.14 1545.02 ✓
rc204C50 0.75 1928.58 602.04 4874.62 2831.56 2843.66 ✓
rc208C50 0.75 1874.31 637.25 3320.06 1970.87 1970.87 ✓

Table 37: Results for instances with |N | = 50 and α = 0.75

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C50 0.75 1530.06 1416.34 × 1323.64 × 1085.25
c103C50 0.75 1322.08 547.14 ✓ 508.59 ✓ 877.5
c206C50 0.75 911.4 436.86 × 423.22 × 291
c208C50 0.75 819.35 478.98 × 464.02 × 161.25
r104C50 0.75 895.27 565.82 × 532.17 × 432
r105C50 0.75 1121.54 717.72 × 686.64 × 432.75
r202C50 0.75 532.09 205.93 ✓ 199.51 ✓ 235.5
r203C50 0.75 461.57 103.56 ✓ 100.31 ✓ 345.75
rc105C50 0.75 1006.57 1235.43 × 1173.08 × 882
rc108C50 0.75 1016.64 547.13 × 508.24 × 282.75
rc204C50 0.75 629.6 210.07 ✓ 203.5 ✓ 214.5
rc208C50 0.75 599.2 177.66 ✓ 172.1 ✓ 201

Table 38: Pollution results for instances with |N | = 50 and α = 0.75

35



Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C50 0.50 2742.53 1799.77 12 454.24 7677.43 7677.43 ×
c103C50 0.50 2411.48 1265.14 11 487.44 10 771.5 10 824.42 ×
c206C50 0.50 2569.95 830.19 17 117.71 9435.14 9497.17 ✓
c208C50 0.50 2583.57 1175.92 16 977.41 10 874.09 10 909.07 ✓
r104C50 0.50 1772.72 845.59 2905.13 1622.32 1622.32 ✓
r105C50 0.50 2194.73 1431.13 3153.99 2477.62 2481.44 ×
r202C50 0.50 1760.23 805.54 8901.96 6600.96 6600.96 ✓
r203C50 0.50 1636.04 637.76 4960.25 4039.46 4039.46 ✓
rc105C50 0.50 2199.04 1457.35 3350.57 2064.01 2064.01 ×
rc108C50 0.50 2119.78 755.71 3075.27 1420.78 1420.78 ✓
rc204C50 0.50 1890.08 744.16 3960.13 3046.91 3053.82 ✓
rc208C50 0.50 1979.88 702.51 3903.48 2316.37 2316.37 ✓

Table 39: Results for instances with |N | = 50 and α = 0.50

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C50 0.50 1530.06 1424.32 × 1343.03 × 723.5
c103C50 0.50 1322.08 674.65 × 632.23 × 585
c206C50 0.50 911.4 331.49 × 319.55 × 194
c208C50 0.50 911.94 475.78 × 460.93 × 107.5
r104C50 0.50 895.27 668.36 × 630.97 × 288
r105C50 0.50 1121.54 717.72 × 686.64 × 288.5
r202C50 0.50 532.09 208.16 × 201.66 × 157
r203C50 0.50 461.57 491.08 × 475.74 × 230.5
rc105C50 0.50 1006.57 1154.7 × 1087.47 × 588
rc108C50 0.50 1016.64 493.4 × 453.74 × 188.5
rc204C50 0.50 599.96 149.61 × 144.92 × 143
rc208C50 0.50 680.49 237.62 × 230.18 × 134

Table 40: Pollution results for instances with |N | = 50 and α = 0.50

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101C50 0.25 2742.53 1814.66 12 454.24 8409.24 8409.24 ×
c103C50 0.25 2411.48 828.66 11 487.44 8318.41 8425.69 ×
c206C50 0.25 2473.86 646.7 16 594.59 8806.47 8806.47 ✓
c208C50 0.25 2670.82 854.33 16 330.97 7730.48 7730.48 ✓
r104C50 0.25 1772.72 784.68 2905.13 1516.25 1516.25 ✓
r105C50 0.25 2194.73 1431.13 3153.99 2477.62 2481.44 ×
r202C50 0.25 1890.75 820.89 7511.23 6341.78 6341.78 ✓
r203C50 0.25 1667.25 698.84 5579.31 3952.68 3952.68 ✓
rc105C50 0.25 2199.04 1570.72 3350.57 2310.96 2310.96 ×
rc108C50 0.25 2089.04 727.32 2961.15 1463.79 1463.79 ✓
rc204C50 0.25 2033.6 636.98 4848.19 2254.46 2254.46 ✓
rc208C50 0.25 1944.16 762.5 3396.91 2782.79 2782.79 ✓

Table 41: Results for instances with |N | = 50 and α = 0.25
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101C50 0.25 1530.06 1437.37 × 1354.21 × 361.75
c103C50 0.25 1322.08 462.25 × 427.66 × 292.5
c206C50 0.25 837.41 261.87 × 251.82 × 97
c208C50 0.25 491.93 223.76 × 214.43 × 53.75
r104C50 0.25 895.27 621.74 × 585.51 × 144
r105C50 0.25 1121.54 717.72 × 686.64 × 144.25
r202C50 0.25 632.59 186.4 × 180.55 × 78.5
r203C50 0.25 485.61 175.72 × 170.23 × 115.25
rc105C50 0.25 1006.57 1235.66 × 1172.07 × 294
rc108C50 0.25 988.23 579.99 × 542.76 × 94.25
rc204C50 0.25 707.26 43.35 ✓ 41.99 ✓ 71.5
rc208C50 0.25 646.42 128.73 × 124.7 × 67

Table 42: Pollution results for instances with |N | = 50 and α = 0.25

G Numerical results for |N | = 100

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101 21 0.75 5159.31 3802.95 23 615.36 16 445.07 16 445.07 ×
c103 21 0.75 4263.76 3814.14 22 992.05 20 406.52 20 406.52 ×
c206 21 0.75 5044.78 1394.89 51 165.53 18 138.47 18 201.49 ×
c208 21 0.75 5008.39 1482.41 46 350.29 19209.52 19 351.48 ✓
r104 21 0.75 4060.36 3304.22 6217.58 4666.39 4666.39 ×
r105 21 0.75 4676.68 2348.54 6918.68 4573.31 4602.76 ×
r202 21 0.75 4126.77 1639.27 14 511.7 8930.56 8930.56 ✓
r203 21 0.75 3802.55 1796.76 13 035.88 9253.74 9253.74 ✓
rc105 21 0.75 6021.51 4389.36 7900.49 5610.88 5610.88 ×
rc108 21 0.75 5273.5 2518.28 6943.97 3857.72 3878.71 ✓
rc204 21 0.75 4325.76 1226.6 9808.73 5422.55 5426.1 ✓
rc208 21 0.75 4507.52 1529.16 8508.86 4386.59 4393.77 ✓

Table 43: Results for instances with |N | = 100 and α = 0.75
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Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101 21 0.75 2873.29 3079.05 × 2838.67 × 2261.25
c103 21 0.75 2618.39 3032.07 × 2846.39 × 2253
c206 21 0.75 1871.92 697.5 × 664.58 ✓ 684
c208 21 0.75 1900.23 771.84 ✓ 740.73 ✓ 824.25
r104 21 0.75 1734.61 2601.35 × 2465.59 × 1917.75
r105 21 0.75 2427.72 1268.2 ✓ 1207.02 ✓ 1926
r202 21 0.75 1369.94 454.78 × 440.54 × 415.5
r203 21 0.75 1161.65 566.35 × 548.63 × 379.5
rc105 21 0.75 3360.27 3483.08 × 3275.57 × 2079.75
rc108 21 0.75 2859.83 1722.18 × 1619.41 × 1558.5
rc204 21 0.75 1601.94 642.66 ✓ 612.86 ✓ 677.25
rc208 21 0.75 1605.37 571.66 × 552.91 × 543

Table 44: Pollution results for instances with |N | = 100 and α = 0.75

Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101 21 0.50 5159.31 3785.13 23 615.36 16 062.81 16 062.81 ×
c103 21 0.50 4263.76 3731.45 22 992.05 18 480.81 18 480.81 ×
c206 21 0.50 5044.78 2097.92 51 165.53 23 353.32 23 431.44 ×
c208 21 0.50 5008.39 2251.61 46 350.29 26 507.13 26 514.41 ✓
r104 21 0.50 4060.36 3313.14 6217.58 4756.61 4756.61 ×
r105 21 0.50 4676.68 2882.96 6918.68 4836.19 4866.8 ✓
r202 21 0.50 4126.77 1464.09 14 511.7 7509.13 7509.13 ✓
r203 21 0.50 3802.55 1796.76 13 035.88 9253.74 9253.74 ✓
rc105 21 0.50 6021.51 4407.59 7900.49 6051.91 6103.3 ×
rc108 21 0.50 5273.5 1569.15 6943.97 2704.38 2704.38 ✓
rc204 21 0.50 4325.76 1499.67 9808.73 5893.36 5893.36 ×
rc208 21 0.50 4507.52 1368.7 8508.86 4189.35 4189.35 ✓

Table 45: Results for instances with |N | = 100 and α = 0.50

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101 21 0.50 2873.29 3014.67 × 2824.9 × 1507.5
c103 21 0.50 2618.39 2963.42 × 2784.7 × 1502
c206 21 0.50 1871.92 1043.11 × 1004.35 × 456
c208 21 0.50 1900.23 1051.95 × 1013.28 × 549.5
r104 21 0.50 1734.61 2616.17 × 2472.3 × 1278.5
r105 21 0.50 2427.72 1501.85 × 1431.41 × 1284
r202 21 0.50 1369.94 357.47 × 346.28 × 277
r203 21 0.50 1161.65 566.35 × 548.63 × 253
rc105 21 0.50 3360.27 2676.31 × 2539.15 × 1386.5
rc108 21 0.50 2859.83 1234.84 × 1132.09 × 1039
rc204 21 0.50 1601.94 792.39 × 758.48 × 451.5
rc208 21 0.50 1605.37 456.57 × 442.31 × 362

Table 46: Pollution results for instances with |N | = 100 and α = 0.50
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Instance Dist (I) Dist (ILS) Time (I) Time (ILS) Time (NL) FNL

c101 21 0.25 5159.31 3716.8 23 615.36 17 127.28 17 127.28 ×
c103 21 0.25 4263.76 3774.81 22 992.05 18 714.7 18 714.7 ×
c206 21 0.25 5116.98 2163.06 48 438.08 21 940.6 22 010.95 ×
c208 21 0.25 5008.39 1519.17 46 350.29 19 248.77 19 390.73 ✓
r104 21 0.25 4060.36 3295.67 6217.58 4624.06 4624.06 ×
r105 21 0.25 4676.68 2327.09 6918.68 4091.5 4120.2 ✓
r202 21 0.25 4126.77 1625.06 14 511.7 8575.39 8575.39 ✓
r203 21 0.25 3952 1144.52 13 403.52 6861.96 6861.96 ✓
rc105 21 0.25 6021.51 4499.5 7900.49 6099.25 6163.98 ×
rc108 21 0.25 5273.5 1733.99 6943.97 3017.52 3017.52 ✓
rc204 21 0.25 4597.61 1011.99 9568.9 5133.82 5133.82 ✓
rc208 21 0.25 4880.39 1462.78 9261.68 4344.54 4357.19 ✓

Table 47: Results for instances with |N | = 100 and α = 0.25

Instance Pollution (I) Pollution (ILS) FILS Pollution (L) FLP Limit

c101 21 0.25 2873.29 2934.05 × 2773.61 × 753.75
c103 21 0.25 2618.39 3003.39 × 2817.14 × 751
c206 21 0.25 1927.52 1121.44 × 1073.45 × 228
c208 21 0.25 1900.23 799.66 × 768.14 × 274.75
r104 21 0.25 1734.61 2584.79 × 2459.08 × 639.25
r105 21 0.25 2427.72 1252.81 × 1186.18 × 642
r202 21 0.25 1369.94 446.28 × 432.31 × 138.5
r203 21 0.25 1275.86 490.96 × 475.6 × 126.5
rc105 21 0.25 3360.27 2946.81 × 2725.76 × 693.25
rc108 21 0.25 2859.83 1306.12 × 1207.51 × 519.5
rc204 21 0.25 1806.04 790.82 × 755.05 × 225.75
rc208 21 0.25 1892.48 515.4 × 499.29 × 181

Table 48: Pollution results for instances with |N | = 100 and α = 0.25

H Comparison results for non-linear charging for |N | = 5

In this and the next section, a value in bold represents that a better solution, in terms of

distance, is found for non-linear than for linear charging times. All ”linear charged” solutions

in this section were feasible and also feasible in non-linear charging.

39



Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
c101C5 0.75 234.82 234.72 1623.73 1480.66 67.24 130.73 135.75
c103C5 0.75 175.37 165.67 1767.31 1764.25 0.00 57.02 93.75
c206C5 0.75 233.94 167.99 2031.03 2102.83 105.91 73.49 126.75
c208C5 0.75 174.82 174.82 2029.29 2048.19 0.00 0.00 0.75
r104C5 0.75 136.45 136.45 294.12 294.12 61.39 61.39 81.75
r105C5 0.75 153.49 153.49 291.59 292.21 78.41 78.41 87.75
r202C5 0.75 143.04 143.04 228.91 228.91 53.77 53.77 81.75
r203C5 0.75 193.84 193.84 288.25 292.23 79.47 79.47 103.50
rc105C5 0.75 233.90 233.90 388.23 345.83 127.05 127.05 135.00
rc108C5 0.75 305.52 245.87 439.57 295.87 69.30 143.68 146.25
rc204C5 0.75 176.00 176.00 915.24 920.88 65.06 65.06 99.75
rc208C5 0.75 174.38 174.38 292.39 300.10 0.00 0.00 0.75

Table 49: Non-linear charging comparison for instances with |N | = 5 and α = 0.75

Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
c101C5 0.50 234.82 234.72 1623.73 1480.66 67.24 67.24 90.50
c103C5 0.50 165.67 165.67 1739.31 1764.25 57.02 57.02 62.50
c206C5 0.50 238.67 238.67 2420.98 2458.66 80.00 78.00 84.50
r104C5 0.50 137.01 137.01 334.02 339.04 44.91 44.91 54.50
r105C5 0.50 182.01 182.01 297.25 297.25 47.84 47.84 58.50
r202C5 0.50 143.04 143.04 228.91 235.88 53.77 53.77 54.50
r203C5 0.50 199.54 199.54 347.31 367.01 0.00 0.00 69.00
rc105C5 0.50 237.76 235.67 341.42 381.84 77.98 60.81 90.00
rc108C5 0.50 315.81 245.87 452.16 299.59 87.24 96.39 97.50
rc204C5 0.50 176.00 176.00 915.24 920.88 65.06 65.06 66.50
rc208C5 0.50 174.38 174.38 292.39 292.39 0.00 0.00 0.50

Table 50: Non-linear charging comparison for instances with |N | = 5 and α = 0.50

Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
c101C5 0.25 278.47 234.82 1556.62 1623.73 33.17 42.24 45.25
c103C5 0.25 175.37 175.37 1678.44 1703.37 19.72 19.72 31.25
c206C5 0.25 242.56 242.56 1823.14 1971.17 24.35 24.35 42.25
c208C5 0.25 174.82 174.82 2029.29 2029.29 0.00 0.00 0.25
r104C5 0.25 137.01 137.01 334.02 339.04 0.00 0.00 27.25
r105C5 0.25 195.31 195.31 347.52 357.85 0.00 0.00 29.25
r202C5 0.25 143.13 143.13 415.98 415.98 0.00 0.00 27.25
r203C5 0.25 199.54 199.54 347.31 367.01 0.00 0.00 34.50
rc105C5 0.25 239.46 239.46 382.85 400.52 0.00 0.00 45.00
rc204C5 0.25 185.16 185.16 307.37 322.25 0.00 0.00 33.25
rc208C5 0.25 174.38 174.38 292.39 300.1 0.00 0.00 0.25

Table 51: Non-linear charging comparison for instances with |N | = 5 and α = 0.25
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I Comparison results for non-linear charging for |N | = 10

Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
c104C10 0.75 317.55 271.37 2207.55 1653.1 24.83 122.53 153.75
c202C10 0.75 282.38 282.38 5399.01 5400.93 72.62 72.62 138.75
r102C10 0.75 314.67 289.81 581.29 654.87 106.24 90.82 143.25
r103C10 0.75 193.90 190.86 443.38 476.81 100.85 103 113.25
r201C10 0.75 245.89 231.30 890.47 1092.38 90.38 115.85 118.5
r203C10 0.75 222.64 222.64 704.68 704.68 0.00 0.00 126.0
rc108C10 0.75 346.25 346.25 561.95 573.83 172.10 117.48 195.75
rc201C10 0.75 416.77 416.77 1164.19 1115.51 95.90 130.59 181.50
rc205C10 0.75 349.16 349.16 1093.69 1130.26 116.54 33.07 190.50

Table 52: Non-linear charging comparison for instances with |N | = 10 and α = 0.75

Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
c202C10 0.50 282.38 282.38 5399.01 5399.01 72.62 72.62 92.50
r102C10 0.50 319.06 289.81 580.20 654.87 49.99 90.82 95.50
r103C10 0.50 199.31 198.77 475.74 405.94 48.91 51.18 75.50
r201C10 0.50 235.13 221.83 1044.38 1104.81 73.25 66.91 79.00
r203C10 0.50 233.21 222.64 757.80 704.68 0.00 0.00 84.00
rc201C10 0.50 360.35 358.03 1204.13 1544.69 116.38 52.14 121.0
rc205C10 0.50 351.20 351.20 1132.33 1132.33 0.00 0.00 127.00

Table 53: Non-linear charging comparison for instances with |N | = 10 and α = 0.50

Instance Dist (lin) Dist (non-lin) Time (lin) Time (non-lin) Pol (lin) Pol (non-lin) Pol (max)
r103C10 0.25 216.52 206.51 448.10 445.29 18.26 0.00 37.75
r201C10 0.25 278.55 204.94 1010.72 1049.32 0.00 37.8 39.5
r203C10 0.25 222.64 222.64 704.68 704.68 0.00 0.00 42.00
rc201C10 0.25 362.01 359.11 1548.21 1425.82 0.00 49.32 60.5
rc205C10 0.25 349.18 349.18 1105.80 1093.69 0.00 23.91 63.50

Table 54: Non-linear charging comparison for instances with |N | = 10 and α = 0.25

J Code explanation

In general, in both IteratedLocalSearch and IteratedLocalSearchNonLinearCharge, a solu-

tion consists of an ArrayList of ArrayLists with Integers where a number of conventional routes

follow first, where 0 is the depot and 1, 2, 3, ... is the first, second, third, etc. customer from the

list in the instance. This is followed by ‘null’ to make a distinction between conventional and

electric routes. Following are a number of electrical routes. Here a charging station is denoted

by thousands, so the first charging station is denoted by 1000, the second by 2000, etc. Fur-

thermore, when checking if the route is feasible in energy or when allocating charging stations,

we assume full charging. When we check if the time is feasible, we calculate how much there

is partially recharged by calculating the energy needed to move from a charging station to the

next charging station or the end depot.
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In IteratedLocalSearch, the time and pollution values are respectively linear and piecewise

constant. The methods with ‘realistic’ are called to get the values for the non-linear and linear

cases. However, these are not used at all in generating a solution.

In IteratedLocalSearchNonLinearCharge, we do generate the solution by calling the ‘real-

istic’ methods. For instance, when we check for feasibility, we check isFeasibleRealisticTime

instead of isFeasibleTime. The pollution function remains piecewise constant.

We applied useful comments to understand the code to IteratedLocalSearch. Furthermore,

in IteratedLocalSearchNonLinearCharge, we applied comments that denote the difference

between the two classes. All these comments start with ‘difference:’, such that they are easy to

find.
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