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Abstract

Are technical indicators the missing ingredient to timing commodity prices? Our paper seeks to

answer the question by applying a total of 18 models generated from six predictive methods and

three forecast combination approaches. We believe forecast combination to lead to better predictions

of commodity index log price changes and we use various performance criteria to check the validity

of this claim. Moreover, we simulate a simple portfolio strategy to see whether our models amass

to monetary gains for the individual investor. We make use of the variables mentioned in Wang,

Liu, and Wu (2020) and conduct our analysis over the sample, January 1982 - April 2023, where the

period from January 1991 on-wards is used as our out-of-sample set. We find that our models lead

to both financial gain and more forecasting power, especially those robust to overfitting, combined

using equal-weights.
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1 Introduction

In light of post-Covid financial volatility and the spikes in energy prices, market participants want to

hedge their portfolio risk. As shown by Junttila, Pesonen, and Raatikainen (2018), investing in gold pro-

vides a good diversification against the stock market risk. A similar story holds for commodity markets

as a whole, as they are up around 40% from pre-pandemic levels. Hence, the addition of commodity

investments can be beneficial to the risk-averse investor. On the other hand, commodity prices are an

indicator of the state of the economy (Groen and Pesenti, 2011), which is why they are a matter of

relevance to policy makers as well. Having trustworthy forecasts of the levels of commodity prices can

improve upon inflation targeting strategies due to their underlying relations as claimed by Gospodinov

and Ng (2013).

A plethora of papers have been dedicated to modelling and predicting commodity prices. The common

trait of most existing papers is their use of fundamental macroeconomic variables (Ahumada and Cornejo,

2016; Alquist and Kilian, 2010; Bessembinder and Chan, 1992; Chen, Rogoff, and Rossi, 2010). Small

positive linkage between real-life macroeconomic indicators and commodity prices is found only over

short-forecast horizons, when using an extensive set of fundamental variables (Gargano and Timmer-

mann, 2014). We decide to build upon the work of Wang et al. (2020) and use information coming from

technical indicators towards predicting commodity prices. We replicate the main result from their paper

in Appendix A and we improve their approach by considering several more complex models and different

weighting schemes throughout our paper. There are others who bridged the gap into the universe of

technical indicators (Shen, Szakamary, and Sharma, 2007,1), using various technical rules in commodity

futures trading. However, what we consider the most interesting is on whether the information provided

by various technical rules can be applicable in forecasting commodity spot and futures price changes

directly.

Wang et al. (2020) were the first to consider technical indicators in the context of predicting future price

changes in commodities and find evidence on their predictive ability and financial profitability, all while

using simple ordinary least squared regressions and naive forecast combinations. We decide to improve

upon the naive methods they apply, thus assessing truly how well do technical indicators predict com-

modity future changes. We employ six methods: a linear regression method(LIN), elastic net(ENET),

random forest(RF), principal component regression(PCR), partial least squares(PLS) and best subset

selection via a modernized lens(MIO); over three combination approaches: equally-weighted(EW), min-

imizing mean squared prediction error(SUM) and partially-egalitarian LASSO(pLASSO); for a total of

18 models, which we motivate in Section 2.

We contribute to existing literature in two ways. Firstly, we employ complex methods and weighting

schemes on the context of predicting commodity price changes, which to our knowledge, has not been

done before in relevant literature. We asses the forecasting abilities of said models individually against
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the historical mean as a benchmark over an out-of-sample setting, using R2
oos and CSSED, plus in a

multi-forecast environment using the model confidence set of Hansen, Lunde, and Nason (2011) where

we provide a ranking of each forecasting model for each commodity type. Furthermore, we evaluate

the financial benefits of the model and whether they are exploitable from a mean-variance optimizing

investor. Secondly, our paper serves as an empirical comparison between different forecast combination

techniques, while also weighing more complex machine learning regressions against simpler one-variable

regressions again on the context of commodity price change forecasting.

Our data consists of eight different commodity indices and 105 technical variables generated in the same

manner as in Wang et al. (2020), but over a longer sample, January 1982 up to April 2023. We set the

period from January 1991 until April 2023 as our out-of-sample set to perform one-step ahead expanding

window forecasts over. We find that their simple model is outperformed by the models we propose, with

the exception of MIO, suggesting that including all 105 technical indicators enhances predictive power.

The RF and dimension reduction(PCR and PLS) variants provide the most consistent forecasts, as shown

by them being ranked the highest the most often by our comparison measure, MCS. When regarding dif-

ferent combination methods, pLASSO predicts the worst implying the importance of considering all five

technical rule, while EW performs the best (Claeskens, Magnus, Vasnev, and Wang, 2016) for almost all

commodity indices, followed closely by SUM. From a financial point of view, Ew loses its advantage over

SUM and they give akin risk-adjusted returns and guaranteed utility, which are considerably positive and

of use by the individual investor. On the other hand, pLASSO falls short again and fails to outperform

a simpler portfolio using knowledge of only the risk premium and the historical average.

The remainder of the paper is organized in the following manner. In Section 2, we provide the relevant

literature connected to the topic at hand and the motivation behind the techniques we apply. Section

3 goes over the methodology, starting with the different models and combinations, continuing with the

predictive performance measures, ending with the portfolio creation and financial benefit criteria. We

provide our main findings in Section 5 before concluding in Section 6. Appendices A through G contain

useful supporting information such as Figures, Tables, plus other tests and measurements.

2 Literature Review

As mentioned, Gargano and Timmermann (2014) find only a small linkage between macoreconomic in-

dicators and commodity prices. In addition, Wang et al. (2020) show that technical indicators dominate

fundamental ones on both predictive power and financial profitability, hence we choose to focus solely on

technical indicators in our analysis. We test the short-term forecasting ability of our models and assume

it will generalize to longer-horizons as shown by Wang et al. (2020). The set of 105 technical variables

from five rules is rather large so we do not see much merit in increasing the number of variables, but

rather opt for a longer sample period.
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The empirical (Rapach, Strauss, and Zhou, 2009a; Wang, Liu, and Wu, 2017) and theoretical (Tim-

merman, 2006) advantages of using the equally-weighted averaging are known and are the norm when

conducting forecast combinations. Stock and Watson (1999, 2003) claim the existence of the so-called

forecast combination puzzle, where the naive average empirically outperforms the more complex, ”op-

timal” weighting schemes. Claeskens et al. (2016) provide various intuitive explanations behind the

phenomena, one of which is associated with the error that comes from finding optimal weights. For that

reason, we suggest finding weights as to minimize the prediction error associated with the set of forecasts

as done in Hsiao and Wan (2014). We implement the conventional normalization condition of weights

that sum up to one, by Markowitz (1952). We also consider the alternative constraint of Hsiao and Wan

(2014), where they set the dot product of the weight vector with itself to be equal to 1, and provide the

results in Appendix G. We believe that with combinations that specifically target the prediction errors,

we can outperform the naive weights. However, these combination approaches would lead to subpar

results in the cases when some of the forecasts to be combined are better off as discarded, as Diebold

and Shin (2019) argue is often the case. To avoid that unpleasant result, we propose using their pLASSO

approach, to check if the information of certain technical rules damages the overall predictability of ln

commodity price changes.

The OLS estimation is known for its benefits, but also the various shortcomings it suffers from, explicitly

its failure in dealing with correlated regressors and inefficiency when modelling non-normal data. To

avoid the multicolinearity pitfall, we choose to run multiple one variable regressions and aggregate over

the forecasts of the same technical rule instead of including the all at once or running one regression per

rule type. We denote this method as LIN. An argument can be made for using other weighting schemes,

but we believe this to be the nicest approach to deal with indicators of the same family as it retains the

predictive abilities of each variable. We believe the forecasting capabilities to vary more across technical

rules than within and that is why we focus our different combination approaches on handling forecast

series from different families and end up with five forecast series to be combined, for LIN and all the

other methods.

Including the regressors one-by-one is not ideal and leads to omitted-variable bias (Heij, de Boer, Franses,

Kloek, van Dijk, et al., 2004). Hence, we propose two models that perform well in correlated environ-

ments, the elastic net of Zou and Hastie (2005) and the random forest of Breiman (2001). The other

route to take when dealing with a large number of regressors is dimensionality reduction. To that extent,

we introduce principal component regression (PCR) as done by Massy (1965) and partial least squares

(PLS) regression created by Gerlach, Kowalski, and Wold (1979). While we suspect all indicators to

have some explanatory power, on which we motivate the construction of our models, we want to allow

the possibility of removing indicators that are not deemed as that important. To that extent, the last

method we employ is the best subset selection method via a modernized optimization lens (MIO) from

the paper of Bertsimas, King, and Mazumder (2016).
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Our goal is to determine both forecasting ability and possible financial exploits and our paper tackles

both issues. In both cases we choose to use the historical mean as our benchmark comparison following

the remarks of Campbell and Thompson (2008). As measures of forecasting ability, we use R2
oos and

CSSED, following Wang et al. (2020). Furthermore, we employ model confidence set (MCS) procedure

of Hansen et al. (2011), since we have various models to be compared. To asses possible financial gains

we consider the mean-variance optimizing investor of Rapach, Strauss, and Zhou (2009b). We create a

simple portfolio managing strategy as done by Wang et al. (2020) and rely on SR% and CER to measure

profitability of each model, following Rapach et al. (2009b).

3 Data

Our data consists of two main parts, the commodity prices and the technical indicators we use as our

explanatory variables. We briefly mentioned the 3-month Treasury Bill rate used as our aprproximate

for the risk-free rate.

3.1 Commodity prices

We make use of monthly data from the World Bank’s Website1 on eight different commodity indices.

The indices we use in our analysis are: energy, non-energy, food, beverages, agriculture, metals&minerals,

precious metals and raw materials. This indices are weighted averages of the commodities included in

the respective category. For more detailed information, we refer you to the World Bank’s Website. When

computing the technical indicators we use the prices of the commodity indices as given in the website,

however, for the predictive regressions we opt for using ln price changes as the dependent variable to

remove the non-stationarity that is present on the original prices. We denote the dependent variable as

yt for each type of commodity index and compute it as:

yt = ln(Pt+1) − ln(Pt). (1)

Our sample ranges from January 1982 until April 2023, where we make a distinction between an in-sample

and an out-of-sample period. The former takes place from January 1982 until December 1990, meaning

that the latter takes place over the remainder of the total dataset. In Appendix B we provide in Table

6 the summary statistics of the eight commodity index prices and in Table 7 the summary statistics

for their log price changes alongside their historical graphs, 2a and 2b. Moreover, we use the 3-month

Treasury Bill rate obtained from the FRED’s Website2 as our proxy for the risk-free rate motivated by

Dolatabaldi, Narayan, Nielsen, and Xu (2018). The rate from the website is in annualized percentage

points, hence we divide by 1200 to turn it into a monthly decimal format.

1http://www.worldbank.org/en/research/commodity-markets
2https://fred.stlouisfed.org/series/DTB3
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3.2 Technical Indicators

We follow the work of Wang et al. (2020) and use the technical indicators they propose as our potential

regressors. We refer you to their paper to understand the formulas used to generate the technical indica-

tors and only provide the precise formulas in Appendix C. There is a total of 105 variables, generated by

five different famous technical rules, momentum, moving average, filter, oscillator and support-resistance.

Each rule leads to 5, 20, 10, 20 and 50 technical indicators respectively, which are used as the exogeneous

parameters that go into the models. The predictors are all made into binary variables. The momentum

rule compares the current price to the k period lagged price, where we pick several values for k as ex-

plained in Appendix C. The filter rule stacks up the current price against the most recent maximum and

minimum. The moving average rule compares the short-term moving average versus the long-term one.

Furthermore, the oscillator rule generates buying and selling signals if the price movements have been

too quick. Lastly, the support-resistance rule also compares the current price with the most recent local

minima and maxima, but provides buying/selling signals in an opposite manner to the filter rule.

4 Methodology

4.1 Models

We suggest several models for modelling log price changes using various technical indicators. In our

approach, we try to estimate one forecast per technical rule: moving average, momentum, filter, oscillator

and support-resistance, using the technical indicators generated by each rule as potential predictors. We

estimate our models over an expanding window, starting with the in-sample period and making one-step

ahead forecasts for each period of our out-of-sample set.

LIN In our paper we model the log change in returns as displayed in Equation 2:

rt+1 = α + βxt + ϵt+1, (2)

where ϵ N(0, σ2
ϵ ). The explanatory variable, xt, takes values from the set of different technical indicators

we employ and lastly, the ϵt+1 denotes the error terms which are assumes to be identically and indepen-

dently distributed through time. We estimate forecasts over the out-of-sample period from January 1991

to April 2023 using OLS regressions in R.

In total we obtain 105 OLS estimators and 105 matching forecasts, which we average into five forecast

series, one for each originating technical rule. We find the approach of grouping predictors as an intuitive

approach that should lead to better estimates, as forecast combination is known to surpass individual

forecasts in performance (Timmerman, 2006). Additionally, it has the added benefit of avoiding the

multicolinearity pitfall of OLS regressions.

ENET The elastic net is a machine learning method that performs penalized regressions, first suggested

by Zou and Hastie (2005). It performs regressions in a linear model, with the penalty α∥β∥1+(1−α)∥β∥
2
2,
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meaning that as α approaches 0, the elastic net estimates approach those of the ridge (Hoerl and Kennard,

1970) and when it approach 1, it resembles LASSO (Tibshirani, 1996). The solution of the elastic net is

found after performing the optimization problem in Equation 3:

min
1

2n
∥yi −Xjβ∥

2

2
+ λ((1 − α

2
)∥β∥22 + α∥β∥1), (3)

where y corresponds to the vector containing the i-th commodity log price changes and Xj is the matrix

containing all the technical indicators generate by the j-th rule, since ENET can deal with correlated

regressors at once. This way we obtain five forecast series, one for each technical rule, and we follow the

same route for the other methods as well. The elastic net retains good performance in an environment

where multicolinearity is present, plus it combines both the penalization of ridge with the variable selec-

tion of LASSO.

As there is no closed form solution to Equation 3, the elastic net is solved via numerical methods for

which we use the ’glmnet’ package and its extension ’glmnetUtils’ in R. To solve the problem we need to

know the values of the exogenous parameters, α and λ. To that extent we emphasize the validity of using

cross-validation as proven by Picard and Cook (1984) and we settle for using 10-fold cross-validation

as it is a good average; less biased than 5-fold, smaller variance than leave-one-out in our not so small

dataset, less computationally expensive than bootstrapping and bagging (Breiman, 1996). The series of

α’s we search over is user-specified3, while the series of λ’is chosen by the method itself as to improve the

convergence rate4.

RF The random forest is built upon several decision trees, where each new observation is categorized

on the basis of its characteristics. We provide a visualization of such a tree in the Appendix B, Figure

3, adapted from Murphy (2012) and we refer you to their book for further explanation. However, the

random forest is not useful for just classification, but it also provides forecasts of a dependent variable

by taking the mean of the required characteristic over all the observations belonging to the same final

node that the new observation is placed into. For a more detailed explanation, see Hastie, Tibshirani,

and Friedman (2009).

The RF has the benefits of dealing with multicolinearity, plus being less susceptible to outliers (Breiman,

2001). Moreover, to reduce the high variance associated with a single decision tree (Hastie et al., 2009),

the random forest is built using bagging (Breiman, 1996) where a number of separate bootstrap samples

is taken from the original data to train the trees and finally an average is taken across the trees. Ad-

ditionally, the random forest adds a randomness feature in variable selection to reduce the underlying

correlation between the trees and the number of variables subsetted can be seen as a tuning parameter,

making RF less prone to overfitting.

3We test 10 values for α ranging from 0 to 1 in equal intervals
4See ’cva.glmnet’ in the package manual found in https://cran.r-project.org/web/packages/glmnet/index.html
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We train one random forest model for each technical rule containing as regressors all of the technical

indicators built from said rule and then provide forecasts over the out-of-sample period. To estimate the

random forests, we use the ’ranger’ package in R, with the default values for the bootstrapped trees(500),

for the maximum tree depth(infinite), for the spit rule(variance), for the minimum node size(5), for the

number of variables to use in each split(rounded down square root of the total number of regressors), etc.

PCR Principal Component Regression (PCR) (Massy, 1965) is a regression method that utilizes the

benefits of principal component analysis. Applying PCR is a three step approach. Initially we perform

PCA (Wold, Esbensen, and Gelaldi, 1987) over the set of p predictor variables. Next, we keep a number

k of the principal components we find with usually k << p. Lastly, we perform a simple linear regression

using the k principal components as the regressors. PCR does well when the regressors are correlated as

it captures most of the total variance with the extra advantage of retaining the same set of final regressors

(the principal components) for each commodity type, making it more resilient to overfitting.

We use the package ’caret’ to estimate the principal component regressions. We compute one forecast for

each technical rule using the indicators created by that rule as predictors. We use 10 fold-cross validation

based on random selection for selecting p where the model that produces the smallest RMSE in-sample

is used. The number of generated samples for each tested value of p is pre-select at 10 (similar reason as

for using 10-fold cross-validation) while the other parameters are used at default values.

PLS Partial least squares (PLS) Gerlach et al. (1979) is another regression method that aims to trans-

form the set of explanatory variables into a new set with smaller cardinality, but that still retains most

of the variation in the variables. The general model that PLS assumes is displayed by Equations 4 and 5:

X = TPT +E, (4)

Y = UQT + F. (5)

X and Y denote the matrix of predictors and dependent variables (in our case a vector) respectively,

while T and U are their projections into a subspace with fewer final variables. Consequently, P and

T are the loading matrices while E and F are the associated errors, assumed to be independently and

identically distributed. The decomposition is done in such a way to maximize the pairwise covariance

between T and U. Differently from PCA, orthogonality is implied onto the scores, not the loadings. PLS

performs supervised regressions, where the final predictors are chosen to also capture the variability in

the dependent variable. As a result, the models found by PLS often have a higher fit with fewer regressor

and guarantee better in-sample performance, but they have a higher tendency to overfit when compared

to PCA.

We use the package ’caret’ to estimate the partial least squares regression. We compute the forecasts

in the same manner as for the previous methods, one per technical rule. We tune the number of final

predictors to be kep in the same manner as we do for the PCR and the other values are left at default

values.
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MIO The last method we propose, is the best feature selection approach via a modernized optimization

lens (MIO) (Bertsimas et al., 2016). It aims to select the best k predictors from an initial set of p variables

by solving a revamped mixed integer optimization problem. The formal formulation of their approach

can be found below:

min
β,z

1

2
∥y −XB∥22 (6)

s.t −MUzi ≤ βi ≤ MUzi, i = 1, ..., p (7)

zi ∈ 0,1, i = 1, ..., p (8)

p

∑
i=1

zi ≤ k. (9)

MU is picked such that MU ≥ ∥β̂∥∞ and z ∈ {0,1}p. This formulation basically means that if zi = 1,
then ∣βi∣ ≤MU and otherwise βi = 0, hence ∥zi∥1 corresponds with the number of predictors in the final

model. To understand howMU is picked and the related propositions we refer you to the original paper

of Bertsimas et al. (2016). To put it simply, MIO minimizes the objcetive function of Equation 6, while

restricting the final weights to be lower than a pre-selectMU in absolute value.

In the context of our research, it provides near optimal solutions to the feature selection problem in

reasonable running time and overcomes the drawback of convex-based optimization methods. To solve

the MIO models we use the ’bestsubset’ R package, which makes use of the Gurobi 10.0 solver, applied to

a R environment. We compute forecasts over the out-of-sample period for each technical rule by passing

down its corresponding indicators as the set of potential predictors. Due to the non-polynomial running

time of the algorithm, tuning is not a favourable option hence we hand-picked the number of features to

be selected in the final model and we setting it equal to the square root of available predictors rounded

up, following the approach of Bertsimas et al. (2016). Additionally, solving to optimality could take up

to several hours, hence we set an artificial timer limit of 120 seconds5.

4.2 Forecast Combinations

By construction, we generate, using the various models, five series of forecast for each commodity type.

Now, we explain the forecast combination methods we apply to join the five series into one final, better

prediction.

EW One of the combinations we consider, is the simple 1
N

average. Timmerman (2006) shows that

equal weights are optimal in situations when the individual forecast errors have the same variance and

identical pair-wise correlations, which not need be the case, but provides a decent benchmark. We

generate the equally-weighted forecasts (EW) using the formula in Equation 10:

ŷj EW
t = 1

N

N

∑
i=1

ŷji,t, (10)

5The parameters set in the R function do not correspond to the actual running time, but they just ensure that a forecast

is made within two minutes on each iteration
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where i denotes the technical rule and j denotes the method used.

SUM Another combination method we suggest is designed to minimize the mean squared prediction

error (MSPE) of our predictions. We generate prediction errors of N × 1 (N = 5), where each element of

the vector is computed as shown in Equation 11:

vji,t = yt − ŷ
j
i,t (11)

Having computed the prediction vectors, we minimize the expression in Equation 12, corresponding to

the MSPE of the forecasts:

min wTΣw, (12)

where wj is the vector containing the weights assigned to the forecasts of each technical rule and Σ is the

covariance matrix of the prediction errors. To avoid data snooping, the covariance matrix of each period

t in our out-of-sample set is computed using all the information available up to time t-1, according to

the formula in Equation 13:

Σt = vji,t−1v
jT

i,t . (13)

As argued by Hsiao and Wan (2014), we need a normalization condition to solve the minimization problem

of Equation 12. We choose to use the conventional condition of Markowitz (1952), also explained by

Timmerman (2006) and Newbold and Granger (1974). The normalization criteria is that of weights

summing up to 1, displayed in Equation 14:

eTwj =
N

∑
i=1

wj
i = 1. (14)

Minimizing 12 with respect to 14 leads to the optimal weights shown in Equation 15:

wj∗ = (eTΣe)−1(Σ−1e), (15)

where e is a N×1 vector of ones. Having computed the optimal weights for each method, the final forecast

(SUM) is as shown in Equation 16:

ŷj SUM
t =

N

∑
i=1

wj∗
i ŷji,t. (16)

pLASSO The last combination method we implement is the partially-egalitarian LASSO (pLASSO).

Diebold and Shin (2019) argue that from the intial set of forecasts, it is often the case that some are

better off being discarded, and the final optimal weights should be shrunk towards the simple average.

To that avail, they come up with the pLASSO, a two-step method that combines variable selection

with shrinkage towards simple average weights. Mathematically, it aims to solve the double penalization

problem of Equation 17:

β̂j
pLASSO = arg min

βj
(∥yi − F jβj∥

2

2
+ λ1∥βj∥

1
+ λ2∥βj − 1

p(βj) ∥), (17)

where p(βj) denotes the number of non-zero elements in βj . The first penalty is the standard LASSO

penalty, which shrinks to zero and performs variable selection, while the second penalty shrinks towards
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the mean of the remaining coefficients. The authors do not provide a clear-form solution6, but provide a

simple two-step implementation.

1. Using a normal LASSO regression, as in Equation 18, select k forecasts out of the five forecasts

of each technical rule. Then before moving to Step 2, we filter our βj and F j to contain only the

forecast that were not discarded by the LASSO.

2. Using egalitarian Ridge (eRidge) shrink the forecasts with a non-zero coefficient estimate towards

1
k
. eRidge can be computed using the formula of Equation 19, which is essentially a normal Ridge

regression, but the dependent variable is no longer yt, but (yt − ¯
f j
t ) with

¯
f j
t ) being the mean of the

N ×1 vector of technical forecasts. We refer you to Figure 5 in Appendix G (adapted from Diebold

and Shin (2019)) as to why this substitution is equivalent to eRidge.

To avoid the look-ahead bias, we estimate the coefficient at each period t in our out-of-sample set using

the information available only at time t-1, similar to an expanding window, but where the forecasts from

our models are treated as the actuals.

β̂j
LASSO,T = arg min

βj
(∥yi − F jβj∥

2

2
+ λ1∥βj∥

1
) (18)

β̂j
pLASSO,T = arg min

βj
((∥yi − F̄ j − F jβj∥

2

2
+ λ2∥βj − 1

p(βj) ∥) (19)

After computing the pLASSO, we estimate the one-step ahead forecasts as depicted by Equation 20,

where the final coefficients function as weights:

ŷj pLASSO
t =

p(βj

pLASSO,T )

∑
i=1

βj
pLASSO,T,i ŷ

j
i,t. (20)

4.3 Comparison Measures

We want to compare the forecasting performance of the various models we propose. To that extent we use

three methods, the out-of-sample R squared, the cumulative sum of squared predictive error difference

and the model confidence set.

R2
oos We follow suit the literature of Wang et al. (2020) and Campbell and Thompson (2008) and use

the percentage out-of-sample R2 (R2
oos) as one of our measures for validating forecasting performance.

It gives a direct comparison between forecasting models and assigns a value to the difference in their

effectiveness. The metric is calculated using the formula in Equation 21, making use of the MSPE (given

at Equation 22):

R2
oos = 100 × (1 −

MSPEj

MSPEbench
), , (21)

MSPEj = 1

T −M
T

∑
t=M+1

(ŷjt − yt)2, (22)

where j denotes the method used and T-M is the number of observations in the out-of-sample period. As

our benchmark we take the historical average of price changes, ŷbencht+1 = 1
t ∑

t
i=1 ri due to its good empirical

6The objective function is not continuous at points where the coefficient estimate is 0
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performance, as displayed by Campbell and Thompson (2008). Hence, a positive R2
oos would imply that

the model outperforms the benchmark and a negative one would imply the opposite, but despite its

clear interpretation, the R2
oos suffers in giving a visual perspective on how the forecasts from the model

differentiate from those of the benchmark.

To test the statistical significance of the R2
oos’s we utilize the method of Clark and West (2007) (CW),

which is an adaption of Diebold and Mariano (1995) for when dealing with nested models. They compute

a series of L statistics as shown in Equation 23, and regress it on a constant where the estimate for the

constant is the CW statistic. A significant CW statistic indicates that the MSPE’s of the two models are

not the same.

Lt = (yt − ŷbencht )2 − (yt − ŷjt )2 + (ŷbencht − ŷjt )2 (23)

CSSED The cumulative squared predictive error difference (CSSED) is a measure for evaluating fore-

casting performance over time. Differently from R2
oos, it provides a visual interpretation of how the

forecasting ability of two models changes over time. We use the formula of Equation 24 to compute the

CSSED at time t for each of our 18 models, against the benchmark:

CSSEDj
T =

T

∑
t=M+1

(e2bench,t − e2j,t). (24)

An increase in CSSED from time t-1 to t, implies that the model gives more precise forecasts than the

benchmark at time t and vice-versa.]

MCS The model confidence set (MCS) is an approach with the advantage that it can compare the

statistical significance of several forecasting methods at once. It creates a set of models that are the best

from the total set of model with a certain probability. The steps of MCS are complex and explained in

detail in Hansen et al. (2011), however we give a brief overview of the general idea and algorithm. The

MCS starts by setting a set of superior models as in Equation 25:

M∗ ∶= {i ∈M0 ∶ E(dij,t) ≤ 0,∀j ∈M0}, (25)

where dij,t is the loss differential between model i and j, at time t and M0 is the set containing all models.

The algorithm for the method is a series of consecutive tests where the null hypothesis of Equation 26 is

considered:

H0,M ∶ E(dij,t) = 0 ∀i, j ∈M. (26)

The algorithm starts with the full set M0 and tests hypothesis 26 recursively to determine which models

are kept and which are discarded from the superior set at a confidence level of α. MCS also provides a

p-value associated with each model in the set where the higher the p-value, the more likely the model is

part of the superior set.

We use the ’MCS’ R package for conducting the MCS procedure. We set the significance level at 15%

following Hansen et al. (2011) and use the maximum as the t-statistics of dij,t as our test statistic, plus
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we implement 5000 bootstrap samples to overcome the non-standard distribution of our chosen statistic.

We use the squared error terms as our loss function and set the other parameters at their default values.

4.4 Financial Gain

We go into a lot of detail analyzing the forecasting performance of the model, but with that alone we

cannot say whether these strategies are financially beneficial for the individual investor. That is why we

propose a simple portfolio strategy to determine whether the models do lead to higher returns than the

historical average benchmark.

4.4.1 Portfolio Creation

We imagine an investor with a mean-variance preference who allocates his wealth between the risk-free

asset and the commodity index. The utility of such an investor would be:

Ut = E(wtRt + rf,t) −
1

2
γvar(wtRt + rf,t), (27)

where wt is the weight given to the commodity index, Rt is the commodity excess returns at time

discounted by the risk-free rate, rf,t (approximated by the 3-month T-Bill) all at time t. The investors

aversion to risky assets is given by γ, which we set at 27 following Wang et al. (2020). Using our log

commodity price change forecasts ex-ante and volatility estimates over a 5-year rolling window, we obtain

the optimal weights in Equation 28:

wj∗
t =

1

γ
( R̂

j
t+1

σ̂2
t+1
). (28)

Having computed the optimal portfolio weights, we can compute each period’s returns over our out-

of-sample set with the exception of the last observation, April 2023, because the weights at time t are

computed using forecasts of time t+1. The portfolio returns are determined using Equation 29:

Rj
p,t+1 = w

j∗
t Rt+1 + rf,t+1 − τ ∣wj∗

t+1 −w
j∗
t ∣, (29)

where τ denotes the transaction costs. We set the transaction costs at 0.033% as done by Locke and

Venkatesh (1997).

4.4.2 Portfolio Evaluation

The measures we rely on to compute the financial gain of our portfolios are the sharpe ratio gain (SR%)

and the certainty equivalent returns gains (CER). The SR% captures the extra risk-adjusted returns that

a strategy based on the commodity type prices can earn when compared to a strategy focused around the

historical benchmark. On the other hand, it fails to distinguish between the benefits of using the forecasts

to invest on commodities versus depending on the risk-free asset alone. To avoid over-relying on SR%,

we make use of the CER, since it manages to capture the utility gains on top of the risk premium for an

individual investor. We compute SR% as the difference in SR (Sharpe, 1966) multiplied by a factor of
√
12 to get the annualized value. Similarly, we report the CER as the difference in the investor’s utility

7Rapach et al. (2009b) show that results remain qualitatively similar despite the value of γ

15



(U) multiplied by a factor of 1200 to get the annualized percentage value. We compute the SR and SR%

in Equations 30 and 31 respectively, while for the investor’s utility we use the formula of Rapach et al.

(2009b), Equation 32 and for CER we use the formula in Equation 33.

SRj =
R̄j

p

σRj
p

, (30)

SRj
%
=
√
12(SRj − SRbench), (31)

Uj = R̄j
p −

1

2
γσ2

Rj
p
, (32)

CERj
%
= 1200(U j −U bench). (33)

5 Results

5.1 Predictive ability comparisons

5.1.1 The out-of-sample R squares

We display the R2
oos’s that we obtain in Table 1. We see that all models provide positive R2

oss’s, statisti-

cally significant in most cases, with the exception of the MIO and several pLASSO combinations. MIO

is the only feature selection approach that discards some of the predictors we pass it. An obvious insight

from the occurrence is that all technical indicators add explanatory value when included in the regressions

and discarding them could worsen the forecasts to the point where the historical average benchmark is

a better alternative (as it did). While including more or all indicators could lead to over-fitting wor-

ries, again we show that methods robust to over-fitting, like RF and PCR perform well. In fact, the

methods we suggest outperform the already outperforming combination of Wang et al. (2020). Their

model, denoted by LIN EW , gets dominated in terms of R2
oos, by one or more complex models, for each

commodity index and for each combination approach with the exception of pLASSO. We can safely say

that forecast combinations considerably improve upon the single forecasts of the historical benchmark,

supporting the claims of Timmerman (2006).

Our results show that the MSPE minimizing forecast combination and the equally-weighted combinations

have similar forecasting results across all methods for most of the commodity indices, with the energy

index being captured better by EW models, while the food index is better predicted by the SUM models.

Considering that their performance is similar and that EW is a lot less computationally-demanding, then

the naive average is to be preferred. We reach the same so-called ”forecast combination puzzle”, analyzed

by Claeskens et al. (2016), where the naive combination seems like the best alternative. Nevertheless, the

highest R2
oos of 14.41 is attained by RF SUM . It seems that the nature of the approach to minimize the

forecast-related errors, leads to its good performance, but is suffers from the estimation error that comes

from the recursive computation of the covariance matrix of errors.
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Table 1: The R2
oos forecasting results

Panel A: Equally-weighted forecast combinations

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN EW 2.16∗∗ 6.34∗∗ 5.06∗∗ 3.09∗ 3.93∗ 6.37∗∗ 4.97∗∗ 1.25

ENET EW 3.89∗∗ 10.33∗∗ 10.52∗∗ 4.22∗∗ 7.74∗∗ 11.68∗∗ 7.85∗∗ 1.65∗

RF EW 3.76∗∗ 11.13∗∗ 11.94∗∗ 3.22∗∗ 7.58∗∗ 12.28∗∗ 9.51∗∗ 2.42∗∗

PCR EW 4.26∗∗ 11.44∗∗ 11.49∗∗ 3.73∗∗ 7.22∗∗ 12.38∗∗ 7.27∗∗ 2.86∗∗

PLS EW 4.79∗∗ 9.87∗∗ 10.99∗∗ 3.46∗∗ 7.98∗∗ 11.69∗∗ 9∗∗ 2.6∗∗

MIO EW 3.7∗∗ 7.56∗∗ 3.86∗∗ -0.35∗ 1.2∗ 5.76∗∗ 4.09∗∗ -0.08

Panel B: MSPE minimizing weights combination

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN SUM 1.19 7.6∗∗ 11.7∗∗ 1.15∗ 7.75∗∗ 10.33∗∗ 7.14∗∗ -0.85

ENET SUM -1.68∗∗ 7.21∗∗ 9.07∗ 0.93∗ 11.23∗∗ 9.24∗∗ 4.76∗∗ -6.88

RF SUM 1.72∗∗ 6.16∗∗ 14.41∗∗ 1.31∗∗ 6.96∗∗ 12.05∗∗ 6.58∗∗ 0.056

PCR SUM 1.79∗∗ 14.66∗∗ 11.71∗∗ 1.61∗∗ 9.42∗∗ 11.41∗∗ 6.98∗∗ 0.77∗

PLS SUM 2.23∗∗ 4.77∗∗ 10.09∗∗ 2.06∗∗ 6.49∗∗ 7.43∗∗ 8.24∗∗ -1.11∗

MIO SUM 2.38∗∗ 2.79∗ 0.52∗∗ -4.51 -0.83∗ 3.4∗∗ 2.86∗∗ -1.87∗

Panel C: Partially-egalitarian LASSO combination

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN pLASSO 0.11∗ 6.34∗∗ 10.88∗∗ 2.69∗ 7.94∗∗ 10.17∗∗ 6.17∗∗ -0.26

ENET pLASSO -1.15 1.57 6.20∗∗ 1.27 6.90∗∗ 7.05∗ 2.77∗∗ -14.19

RF pLASSO -3.98∗ -3.08∗ 2.89∗ -2.20 -4.59 -1.05 -2.13∗ -16.20∗

PCR pLASSO -0.30 3.83 5.99∗∗ 0.46 1.66∗ 4.54∗∗ 1.94∗∗ -0.33

PLS pLASSO 0.83∗ 1.80 3.10∗ 0.76 -0.85 2.01 0.22 -0.67

MIO pLASSO 1.61∗∗ -3.02 0.49 0.70 -1.24 1.57 2.66∗ -0.39

Notes: The table contains the R2
oos’s computed over the out-of-sample period beginning from January 1991

until April 2023. The portfolio names are constructed as the forecasting method plus the forecast combination

approach and are categorized into panels depending on said combination approach. The R2
oos’s are computed

using Equation 21 against the historical average benchmark. Lastly, we use the Clark and West (2007) method

to test statistical significance and * denotes significance at the 5% significance level and ** at the 1% level. A

significant, positive R2
oos, means that the model is statistically better than the benchmark and vice-versa.

On the other hand, the partially-egalitarian LASSO combination is dominated by the other two combina-

tions, also being the only combination that gives negative R2
oos’s. Our suspicion as to why that happens

is similar to the explanation behind MIO’s poor performance. We argue that the initial step where some

of the forecasts are discarded by the initial LASSO, inevitably leads to the loss of valuable information.

Each forecast that is passed to the first step of the method, contains all the information associated by a

given technical rule. Thus, we claim the poor performance of the pLASSO as proof that all five technical

indicators contain high explanatory power towards modelling the log price changes of commodity prices,

affirming the initial result of Wang et al. (2020). In addition, we provide the MSPE values, which lead
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to the R2
oos’s, as computed in Table 1, in Appendix D.

5.1.2 The out-of-sample cumulative sum of squared predictive error difference

For each commodity type, we depict the CSSEDj for each model j over our out-of-sample period in one

graph. One of these graphs can be found in Figure 1 corresponding to the agriculture index. We put

the graphs for the other commodity types in the Appendix G (Figures 4a, 4b, 4c, 4d, 4e, 4f and 4g),

but the main conclusions represent those obtained by looking at the R2
oos’s. The pLASSO combinations

are more often than not in the bottom bunch, sometimes in the negative meaning that the historical

benchmark is a better alternative. In the agriculture case, MIO pLASSO displays performance basically

on par with the historical mean. We can see the pattern of the models generated by SUM and EW

mixed near the top, with RF SUM performing the best over time. This model and its equally-weighted

equivalent, RF EW , perform the best over time for most commodity indices. In the categories where this

models do not perform that well, PCR and PLS variants have the highest CCSED’s. A common pattern

that can be seen through the different models is a sudden jump in performance around the 2008 financial

crisis and the 2019 Covid outbreak, implying that these complex models greatly exceed the benchmark

in foreseeing the unforeseeable.

Figure 1: The CSSED computed over-time against the historical average benchmark for the Agriculture com-

modity index

5.1.3 The model confidence set results

The model confidence set procedure further affirms our beliefs, see Table 2. The SUM generated moels

have a few ”podium” positions across the different commodity indices with RF SUM and PLS SUM

in particular being in the top three for 4 of the commodity indices. However, the EW combinations

capture the most top three positions across the board. In particular RF SUM has the most number

one postions, while PCR EW is on the ”podium” in all, but two commodity types. The naive LIN EW

combination of Wang et al. (2020) performs average at best, being dominated by the more complex

methods. Additionally, the two dimension reduction techniques, have very similar performance despite

the combination method. The added supervision that comes as benfit of PLS does not visibly lead to

better results, suggesting that the principal components that capture the most variability manage to
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capture the variance of the dependent variables as well. Moreover, we provide the results of the MCS

when employed in the context of each combination type in Appendix E.

Table 2: The MCS procedure results

Panel A: Equally-weighted forecast combinations

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN EW - 5(0.99) 8(0.74) 10(0.3) 9(0.77) 11(0.18) 12(0.35) -

ENET EW 7(0.87) 5(0.97) 3(1) 6(0.59) 6(0.95) 3(0.92) 6(0.78) 7(0.96)

RF EW 6(0.91) 4(1) 6(0.95) 9(0.32) 1(1) 4(0.92) 2(1) 1(1)

PCR EW 3(0.95) 3(1) 2(1) 8(0.32) 8(0.83) 2(0.98) 1(1) 2(1)

PLS EW 5(0.92) 2(1) 1(1) 7(0.56) 2(1) 5(0.89) 3(1) 6(1)

MIO EW - 12(0.36) 4(1) - - 9(0.4) 15(0.22) -

Panel B: MSPE minimizing weights combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN SUM 2(0.95) 11(0.6) 12(0.22) 4(0.72) 5(0.95) 7(0.55) - 5(1)

ENET SUM 11(0.31) 14(0.29) - 1(1) 12(0.53) 6(0.74) 14(0.26) 9(0.63)

RF SUM 1(1) 8(0.73) 13(0.16) 12(0.27) 11(0.6) - 5(0.79) 3(1)

PCR SUM 4(0.93) 9(0.66) 11(0.38) 2(0.84) 4(0.96) 1(1) 13(0.29) 4(1)

PLS SUM 9(0.79) 7(0.92) 7(0.91) 11(0.28) 3(1) 8(0.51) 16(0.22) 10(0.26)

MIO SUM - - 5(1) - 10(0.73) - 11(0.36) -

Panel C: Partially-egalitarian LASSO combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN pLASSO 8(0.86) 6(0.97) - 3(0.82) 7(0.93) - 9(0.48) 8(0.9)

ENET pLASSO - 13(0.34) - 5(0.72) 12(0.45) - 4(0.94) 11(0.2)

RF pLASSO - 15(0.2) - - - - - -

PCR pLASSO 10(0.39) - - 13(0.24) 13(0.48) 10(0.2) 7(0.65) -

PLS pLASSO - 10(0.6) 10(0.46) - - - 10(0.48) -

MIO pLASSO - - 9(0.74) - 15(0.37) - 8(0.59) -

Notes: The table contains the results from the MCS procedure of Hansen et al. (2011) over our 18 models. Each

entry in the table indicates the ranking the methods were given by the MCS procedure alongside its associated

p-value in brackets. A ’-’ shows that the model is not in the set of superior models at α = 15%. We use the

differential to all other models leading to the null hypothesis of Equation 26. One can also use a different null

hypothesis using the average differential to every other model in the confidence set, agin suggested in Hansen

et al. (2011). That approach would lead to similar results, but not necessarily the exact same.

The pLASSO models perform the worst with them not being included in most superior sets, because

of the information discarding behaviour we mention. Out of the pLASSO models, only the LIN variant

displays ”superior” predictive ability and even on those cases it is on the bottom end of the sets. On

the contrary, SUM models showcase average superior performance. They take the middle spots for most

indices, but RF SUM and PCR SUM are above the rest as they manage to secure high-ranking spots for

4 of the 8 commodity price changes. A noteworthy observation is in regards to the poor performance
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of the model of Wang et al. (2020) (LIN EW) that gets always dominated by all other equally-weighted

combinations besides the MIO.

Table 3: The SR% financial gains

Panel A: Equally-weighted forecast combinations

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN EW 0.38 -0.79 0.36 0.21 0.37 0.57 0.01 0.6

ENET EW 0.54 -0.79 0.26 0.34 0.33 0.62 0.07 0.71

RF EW 0.54 -0.82 0.26 0.26 0.49 0.64 0.21 0.75

PCR EW 0.53 -0.77 0.34 0.31 0.36 0.65 0.21 0.7

PLS EW 0.51 -0.8 0.3 0.28 0.39 0.66 0.18 0.73

MIO EW 0.14 -0.95 0.07 0.05 0.2 0.4 0.09 0.43

Panel B: MSPE minimizing weights combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN SUM 0.57 -0.97 -0.05 0.39 0.52 0.57 -0.1 0.67

ENET SUM 0.42 -0.82 0.15 0.39 0.42 0.63 0.18 0.5

RF SUM 0.61 -0.84 0.32 0.35 0.48 0.64 0.21 0.73

PCR SUM 0.5 -0.86 0.26 0.39 0.42 0.66 0.25 0.67

PLS SUM 0.5 -0.86 0.26 0.39 0.42 0.66 0.25 0.67

MIO SUM 0.19 -1.03 0.04 -0.04 0.22 0.37 0.05 0.47

Panel C: Partially-egalitarian LASSO combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN pLASSO 0.45 -0.85 0.05 0.34 0.42 0.53 0.12 0.62

ENET pLASSO 0.41 -0.94 -0.06 0.42 0.28 0.59 -0.11 0.39

RF pLASSO 0.4 -1.07 -0.65 -0.51 -0.1 0.52 -0.29 0.28

PCR pLASSO 0.41 0.01 -0.02 0.29 0.58 0.52 1.9 0.34

PLS pLASSO 0.35 -0.98 0.12 0.19 0.43 0.74 0.39 0.35

MIO pLASSO 0.18 -0.99 0.01 -0.06 0.26 0.46 0.45 0.21

Notes: The table displays the SR%’s for the different models over the out-of-sample period from January 1991

until March 2023 (the last month does not have a t+1 forecast). The SR%’s are computed using Equation 31 and

then multiplied by
√
12 to obtain the annualized Sharpe ratio values.

5.2 Financial Gains

5.2.1 Sharpe ratio gains over the out-of-sample period

We can see from the SR%’s depicted in Table 3, that our models generate considerable risk-adjusted

returns to the historical average benchmark with the beverages commodity being the single exception.

The EW and SUM models give very similar positive returns ranging between 0.01-0.73 hinting towards

the fact that MSPE minimizing weights do not necessarily provide financial gains to the simple equal-
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weighting scheme.

A similar remark can be made for the older model, LIN EW. At the same time as it gets outperformed

slightly in most cases, the difference is not as considerable as it was in terms of predictive power. A

surprising result is the decent performance of the pLasso combinations. While the gap to the other com-

binations is clear in terms of out-of-sample predictive power, it seems that the risk-free adjusted returns

generated by this combination type are similar to those of EW and and SUM. It is the only combination

approach that leads to negative SR%’s for other commodities than beverages, but, simultaneously, it

reaches the highest sharpe ratio gain of 1.9. An explanation for this occurrence, is that the risk-free rate

dominates the forecasts from these methods. That means that the weights on the index are often set

to 0 and it opts often to invest only on the risk-free asset leading to the idea that it generates positive

risk-adjusted returns relative to the benchmark.

5.2.2 Certainty equivalent returns over the out-of-sample period

In Table 4 we provide the CER’s over the out-of-sample period. The first thing we point out is that

we were right in assuming that the SR%’s of the pLASSO models were misleading. We show that when

accounting for the risk-free returns, the appeal of these portfolios drops tremendously. The additional

value of the information from only the forecasts of the pLasso methods is below average at best when

compared to EW and SUM. The other two combinations lead to high positive returns, ranging from 19

basis points to as high as 982. The MIO methods lead to the smallest CER, despite the combination

method, again emphasizing the importance of keeping the information provided by each technical indi-

cator. Furthermore, LIN EW gets outperformed for almost all indices by the more complex methods like

RF, PCR and PLS. To distinguish between EW and SUM in terms of more financial profitability, the dif-

ferences in CER’s do not occur frequently enough or at big enough amplitudes to draw a conclusion. The

only conclusive remark we make is that the benefits of basing financial decisions on technical indicators

do exist and are quite significant at that.
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Table 4: The CER financial gains

Panel A: Equally-weighted forecast combinations

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN EW 3.67 3.62 2.86 3.83 6.73 5.4 1.09 4.46

ENET EW 5.79 5.22 5.84 5.94 6.72 6.03 1.7 5.74

RF EW 5.88 5.13 6.79 5.4 9.45 6.33 4.69 5.93

PCR EW 5.88 5.94 7.87 6 7.31 6.32 4.29 5.7

PLS EW 5.7 5.26 7.58 5.91 8 6.54 4.21 5.93

MIO EW 2.52 3.05 3.67 3.32 4.73 4.55 2.68 3.54

Panel B: MSPE minimizing weights combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN SUM 5.77 2.67 1.26 6.52 9.82 6.09 0.19 5.52

ENET SUM 4.72 4.27 4.94 6.22 8.44 6.03 4 4.03

RF SUM 5.75 5.01 7.96 6.08 9.24 6.31 4.41 5.76

PCR SUM 5.57 4.2 6.9 6.48 8.17 6.38 4.86 5.43

PLS SUM 4.98 4.85 8.96 5.39 8.81 5.85 3.2 4.43

MIO SUM 2.65 1.78 3.24 2.34 5.07 4.28 2.16 3.67

Panel C: Partially-egalitarian LASSO combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN pLASSO 4.35 3.45 1.69 4.59 7.35 4.81 -0.51 4.92

ENET pLASSO 3.5 1.22 1.02 4.38 3.36 2.85 -0.66 2.44

RF pLASSO 2 -0.7 -6.75 -2.67 -0.88 -1.09 -1.94 -0.98

PCR pLASSO 3.32 -0.4 1.07 0.86 2.34 1.46 -0.29 2.25

PLS pLASSO 2.79 0.14 2.89 -0.23 0.09 1.63 -0.37 1.73

MIO pLASSO -0.01 0.89 1.39 -1.47 2.85 -0.39 -0.08 0.77

Notes: The table displays the CER’s for the different models over the out-of-sample period from January 1991

until March 2023 (the last month does not have a t+1 forecast). The CER’s are computed using 33 and then

multiplied by 1200 to obtain the annualized certainty equivalent returns in percentage points.

6 Conclusions

In this paper we construct 18 forecasting models combining six methods and three forecast combination

approaches. We train our models over our training set, from January 1982 until December 1990, using a

set 105 technical indicators as potential explanatory variables. We asses how they compare out-of-sample

against the historical average in terms of forecasting ability and possible financial profitability. The

criteria we base our comparison upon are R2
oos and CSSED for predictive prowess, plus SR% and CER

for monetary gains. We also compare the forecasts of the models altogether, using the MCS procedure,

giving an ordered ranking of the superior models for each commodity index.
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We conclude that the EW combinations provide the most accurate forecasts when using the R2
oos as the

evaluating measure, followed closely by the SUM. The pLASSO performs considerably worse than the

other two, falling behind the benchmark at times for certain commodities, implying that all five tech-

nical rules are useful for predicting the dependent variables. The best forecasting models are RF EW,

PCR EW and PLS EW which obtain consistently the highest R2
oos’s and are ranked in the top three

by the MCS procedure, for most indices. In addition, we claim that the simple model of Wang et al.

(2020) retains its positive performance, however, it considerably falls behind more complex methods and

combinations.

In terms of financial gain, almost all models give positive SR% and lead to significant risk-adjusted re-

turns. The difference between EW and SUM combinations is no longer detectable as they both provide

similar SR%’s and CER’s. It goes to show that using the error minimizing weights ex-ante, does not

directly impact future portfolio returns and a investor would get similar returns just by a simple forecast

average. On the other hand, pLASSO gives the highest SR%’s, but the lowest CER’s, often smaller than

zero. This means that the portfolios created by these methods are dominated by the risk-free rate and the

investor does not obtain much useful information by the addition of the pLASSO forecasting knowledge

in terms of increasing individual utility.

One possibility for extending our paper is to test the novelty of our approach on different datasets, moving

on to the field of cryptocurrencies or back at the realm of stock and/or bonds. The CSSED indicates that

our models heavily outperform the benchmark during times of financial crises and higher market volatility

and we want to see whether it is still applicable when using other, riskier datasets. It is interesting to

consider the idea of creating forecasts for the eight commodity prices at once, making it smart to use

a model that generates well to multi-dimensional spaces such as the support vector regression (SVR)

deriven from the classification method of Vapnik and Chervonenkis (1974). The SVR gives the flexibility

to define how much error is acceptable in the model, making it very useful for the individual risk-averse

investor who has a stop-loss preference. Furthermore, we intuitively group the indicators variables into

five groups based on their similarities, but one can rely on using deep learning to choose which variables

to use per each regression. One alternative we provide is neural networks (NN) of Rosenblatt (1958),

models that learn from the data itself, seeing patterns invisible to the naked eye. Lastly, other combination

approaches can be tested, like the regression of Granger and Ramanathan (1984), and see if they lead to

better forecasting accuracy or are more financially exploitable.
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Appendices

A Replication of Wang et al. (2020)

In this section we replicate one of the main results from the paper of Wang et al. (2020). We restrict

ourselves to the same sample period as used by them, January 1982 until December 2017 with the out-

of-sample starting from January 1991. We depict the R2
oos’s for each commodity index forecast generated

by the five technical rules and the equally-weighted technical forecast in Table 5. We see some changes

in the values obtained by specific technical rules, however, the equally-weighted portfolio is within a 0.5

value for each commodity index. We speculate the changes originate from a change in the base-year used

in the World Bank’s Website and we prove our claim when comparing the summary statistics of our

dataset with the one used by Wang et al. (2020). Despite being restricted to the same sample period,

the summary statistics change drastically especially in terms of non-normality. The summary statistics

for the original paper’s dataset are in their online Appendix 8, while for our paper we do not report the

summary statistics for the restricted sample, but they resemble closely the values in Table 6.

Table 5: The replications

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

MOM 5.19∗∗ 3.34∗∗ 1.97∗∗ 3.70∗∗ 5.08∗∗ 6.24∗∗ 1.50∗∗ 6.64∗∗

FR 3.10∗∗ 3.02∗∗ 2.00∗∗ 2.92∗∗ 6.11∗∗ 5.38∗∗ 0.65∗ 3.61∗∗

MV 3.78∗∗ 2.45∗∗ 1.07∗ 1.36∗ 4.19∗∗ 5.65∗∗ 0.91∗ 4.87∗∗

OSLT 6.06∗∗ 3.89∗∗ 1.77∗∗ 4.16∗∗ 5.10∗∗ 6.99∗∗ 1.57∗∗ 6.96∗∗

SR 5.50∗∗ 3.90∗∗ 1.89∗∗ 4.74∗∗ 5.66∗∗ 6.26∗∗ 0.84∗ 8.21∗∗

EW-T 5.00∗∗ 3.52∗∗ 1.82∗∗ 3.61∗∗ 5.45∗∗ 6.51∗∗ 1.16∗ 6.46∗∗

Notes: The table contains the R2
oos’s computed over the out-of-sample of Wang et al. (2020), from January

1991 until December 2017. The first five portfolio names are constructed as the technical rule abbreviation and

are constructed in the same manner as in the original paper, while EW-T corresponds to the equally-weighted

average of all five technical rule portfolios. The R2
oos’s are computed using Equation 21 against the historical

average benchmark. Lastly, we use the Clark and West (2007) method to test statistical significance and * denotes

significance at the 5% significance level and ** at the 1% level.

B Summary Statistics for commodity prices and Log price changes

Figures 2a and 2b depict the historical movements of commodity prices and ln price changes respectively.

We see a similar increasing trend throughout time with certain peaks and troughs, but when taking the ln

difference transformation, the series becomes stationary with a mean of almost 0, as shown in Table 7. In

particular, the agriculture, non-energy and food indices display very similar movements and lead to some

of the highest R2
oos’s. Additionally, we see the correlation between a commodity’s standard deviation

8Appendix A in https://www.sciencedirect.com/science/article/pii/S0169207019302286?casa token=

pNKEqCkLRIkAAAAA:Bc85z-TN1ZRQ13U2SrfWtTC6kL9iJUdp5fIoTEGKwzJj0e1rN95g2AGD4c6L9K6h87SG4bndkLjk#appSB
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and its predictability, e.g raw materials has the lowest standard deviation leading to high R2
oos’s, while

precious metals is the most volatile and hence it consistently has the lowest R2
oos’s across all 18 models.

The standard deviations and other summary statistics of each commodity types are depicted in Table 6

and 7 for prices and ln price changes correspondingly.

Figure 2: Historical Movements of commodity prices and ln price changes

(a) Prices (b) Ln price changes

Table 6: Summary Statistics for commodity price indices

Series Mean Median Max Min St.Dev. Skewness Kurtosis JB

Agriculture 72.86 63.98 134.078 44.87 22.68 0.79 2.44 59.87

Beverages 71.65 72.47 124.81 34.77 20.58 0.13 2.23 14

Energy 59.86 43.41 173.48 15.2 39.35 0.98 2.88 81.12

Food 74.79 63.2 159.04 39.65 26.85 0.93 2.85 73.24

Metals&Minerals 59.97 48 141.28 26.05 29.25 0.74 2.27 57.28

Non-energy 68.65 57.91 141.07 38.97 24.94 0.8 2.44 60.3

Precious Metals 60.14 35.33 153.29 21.84 40.81 0.86 2.24 74.87

Raw Materials 68.82 71.39 134.56 37.69 18.94 0.55 3.12 26.11

Notes: The table contains summary statistics for the price each commodity index as given in the World Bank’s

Website. The statistics are computed over the sample January 1982 until April 2023.
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Table 7: Summary Statistics for commodity price indices

Series Mean Median Max Min St.Dev. Skewness Kurtosis JB

Agriculture 0.00 0.00 0.09 -0.15 0.02 -0.23 6.84 316.65

Beverages 0.00 0.00 0.29 -0.16 0.04 0.68 7.65 499.78

Energy 0.00 0.00 0.35 -0.44 0.08 -0.56 6.66 309.9

Food 0.00 -0.00 0.15 -0.18 0.03 0.11 6.54 266.65

Metals&Minerals 0.00 0.00 0.16 -0.3 0.05 -0.75 7.64 504.5

Non-energy 0.00 0.00 0.1 -0.18 0.03 -0.71 8.69 727.18

Precious Metals 0.00 -0.00 0.19 -0.19 0.04 -0.03 5.01 85.58

Raw Materials 0.00 0.00 0.11 -0.09 0.02 0.28 6.02 199.62

Notes: The table contains summary statistics for the ln price changes, using Equarion 1, for each commodity

index. The statistics are computed over the sample January 1982 until April 2023.

C Technical indicator computation

We compute 105 indicators from five technical rules: momentum(MOM), filter(FR), moving average(MV),

oscillator(OSC), support-resistance(SR); and explain how each of them are obtained.

MOM The momentum rule compares the current price with a k-period lagged price, according to

Equation 34:

St,MOM =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Pt ≥ Pt−k

0, if Pt < Pt−k,
(34)

where k is the look-back period. We use values of k equal to 1, 3, 6, 9 and 12 resulting in five momentum

indicators.

FR The filter rule compares the current price with the most recent local minima and maxima. It gives

a buying/selling signal when the price is above/below a given percentage of the most recent low/high,

given respectively in Equations 35 and 36:

Sbuy
t,FR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Pt ≥ (1 + η
100
) ∗min(Pt−1, Pt−1, ..., Pt−k)

0, otherwise,

(35)

Ssell
t,FR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Pt ≤ (1 − η
100
) ∗max(Pt−1, Pt−1, ..., Pt−k)

0, otherwise,

(36)

where we choose the same values for the look-back period k (1,3,6,9,12) and the threshold, η, we set to

5 and 10, making for a total of 20 filter indicators.

MV The moving average rule gives buying/selling signals based on the short-term moving average over

the last s days, MAs,t = 1
s ∑

s−1
i=0 Pt−i and the long-term moving average over the last l days, MAl,t =
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1
l ∑

l−1
i=0 Pt−i. The buying signal is computed using the formula in Equation 37:

St,MA =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if MAs,t ≥ MAl,t

0, otherwise,

(37)

where we let s,l = 1,3,6,9,12 with s¡l leading to a total of 10 moving average indicators.

OSLT The oscillator rule generates buying and selling signals if the price movements have been too

rapid, based on the relative strength indicator (RSI) of Levy (1967), denoted in Equation 38:

RSI(k) = 100 ( Ut(k)
Ut(k) +Dt(k)

), (38)

where Ut(k) and Dt(k) are the upwards and downward price movements. We compute them using

Equations 39 and 40:

Ut(k) =
k−1
∑
j=0

1(Pt−j − Pt−j−1 ≥ 0)(Pt−j − Pt−j−1), (39)

Dt(k) =
k−1
∑
j=0

1(Pt−j − Pt−j−1 < 0)∣Pt−j − Pt−j−1∣. (40)

The oscillator indicators expect a reversal in trend, and are given in Equations 41 and 42:

Sbuy
t,OSLT =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if RSI ≤ 50 + η

0, otherwise,

(41)

Ssell
t,OSLT =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if RSI ¿ 50 + η

0, otherwise,

(42)

where we try the values 1,3,6,9,12 for k and 5, 10 for η making for a total of 20 oscillator indicators.

SR The final support-resistance rule generates buying/selling indicators by comparing the current price

withe the local maxima/minima over the last k days. The buying and selling signals are as given in

Equations 43 and 44 correspondingly:

Sbuy
t,SR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Pt ≥ (1 + η
100
) ∗max(Pt−1, Pt−1, ..., Pt−k)

0, otherwise,

(43)

Ssell
t,FR =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, if Pt ≤ (1 − η
100
) ∗min(Pt−1, Pt−1, ..., Pt−k)

0, otherwise,

(44)

where we set k = 1,3,6,9,12 and η = 1,2,3,4,5; resulting in 50 support-resistance indicators.

D The MSPE’s of the out-of-sample forecasting

In the interest of reproducibility, we provide the actual MSPE values obtained for all 18 models across

the eight commodity types. The results are given in Table 8 and obviously the match with the results

for the R2
oos, given in Table 1.
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Table 8: The MSPE forecasting results

Panel A: Equally-weighted forecast combinations

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN EW 0.0062 0.00065 0.00054 0.0019 0.00087 0.00052 0.00219 0.00138

ENET EW 0.00606 0.00062 0.00051 0.00188 0.00083 0.00049 0.00212 0.00137

RF EW 0.00606 0.00061 0.0005 0.0019 0.00083 0.00049 0.00208 0.00136

PCR EW 0.00603 0.00061 0.0005 0.00189 0.00084 0.00049 0.00213 0.00136

PLS EW 0.006 0.00062 0.0005 0.00189 0.00083 0.00049 0.00209 0.00049

MIO EW 0.00607 0.00064 0.00055 0.00197 0.00089 0.00053 0.0022 0.0014

Panel B: MSPE minimizing weights combination

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN SUM 0.00623 0.00064 0.00050 0.00194 0.00083 0.00050 0.00214 0.00141

ENET SUM 0.00641 0.00064 0.00052 0.00194 0.00080 0.00051 0.00219 0.00149

RF SUM 0.00619 0.00065 0.00049 0.00194 0.00084 0.00049 0.00215 0.00139

PCR SUM 0.00618 0.00059 0.00050 0.00193 0.00082 0.00050 0.00214 0.00138

PLS SUM 0.00616 0.00066 0.00051 0.00192 0.00084 0.00052 0.00211 0.00141

MIO SUM 0.00615 0.00067 0.00056 0.00205 0.00091 0.00054 0.00224 0.00142

Panel C: Partially-egalitarian LASSO combination

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN pLASSO 0.00629 0.00065 0.00051 0.00191 0.00083 0.00050 0.00216 0.00139

ENET pLASSO 0.00637 0.00068 0.00053 0.00194 0.00083 0.00052 0.00224 0.00159

RF pLASSO 0.00655 0.00071 0.00055 0.00200 0.00094 0.00057 0.00235 0.00162

PCR pLASSO 0.00632 0.00066 0.00053 0.00195 0.00089 0.00053 0.00226 0.00140

PLS pLASSO 0.00624 0.00068 0.00055 0.00195 0.00091 0.00055 0.00230 0.00140

MIO pLASSO 0.00620 0.00071 0.00056 0.00195 0.00091 0.00055 0.00224 0.00140

Notes: The table contains the MSPE computed over the out-of-sample period beginning from January 1991

until April 2023. The portfolio names are constructed as the forecasting method plus the forecast combination

approach and are categorized into panels depending on said combination approach. The MSPE’s are computed

using Equation 22 against the actual values and we round up to five decimal places.
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Table 9: The MCS procedure results within each combination method

Panel A: Equally-weighted forecast combinations

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN EW - 5(0.77) 6(0.34) - 5(0.26) - - -

ENET EW 4(0.29) 1(1) 3(0.93) 2(0.98) 3(0.57) 4(0.63) 4 (0.16) 3(0.7)

RF EW 1(1) 4(0.8) 5(0.63) 3(0.92) 1(1) 2(1) 2(0.99) 1(1)

PCR EW 2(0.97) 2(0.95) 2(0.98) 4(0.28) 4(0.31) 1(1) 1(1) 2(1)

PLS EW 3(0.88) 3(0.95) 1(1) 1(1) 2(1)

3(0.65)

3(0.97) 4(0.65)

MIO EW - - 4(0.89) - - 5(0.6) - -

Panel B: MSPE minimizing weights combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN SUM 2(0.71) 4(0.99) 5(1) 3(0.34) 2(0.98) 2(0.69) 4(0.68) 3(0.8)

ENET SUM - 5(0.99) 6(0.31) 1(1) 6(0.46) 3(0.58) 6(0.16) 4(0.38)

RF SUM 1(1) 3(1) 4(1) - 4(0.93) 5(0.22) 2(1) 1(1)

PCR SUM 3(0.56) 1(1) 3(1) 2(0.58) 3(0.97) 1(1) 1(1) 2(1)

PLS SUM 4(0.41) 2(1) 2(1) - 1(1) 4(0.36) 3(0.87) -

MIO SUM - - 1(1) - 5(0.77) - 5(0.68) -

Panel C: Partially-egalitarian LASSO combination

Agric Bev Eng Food Met&Min Non-en Prec.Met Raw.Mats

LIN pLASSO 1(1) 1(1) 3(0.82) 1(1) 1(1) 1(1) 1(1) 1(1)

ENET pLASSO - - 5(0.33) 2(0.41) 3(0.21) 4(0.16) 5(0.58) -

RF pLASSO - - - - - 3(0.47) - -

PCR pLASSO - - 4(0.52) - 4(0.16) 2(0.82) 2(1) -

PLS pLASSO - 2(0.38) 2(0.94) - - 3(0.47) 4(0.9) -

MIO pLASSO - - 1(1) - 2(0.26) - 3(1) -

Notes: The table contain the results from the MCS procedure of Hansen et al. (2011) of the six forecasting

methods within each forecast combination type. Each entry in the table indicates the ranking the methods was

given by the MCS procedure alongside its associated p-value in brackets. A ’-’ shows that the model is not in the

set of superior models at α = 15%. We use the differential to all other models leading to the null hypothesis 26.

One can also use a different null hypothesis using the average differential to every other model in the confidence

set, also suggested by Hansen et al. (2011). That approach would lead to similar results, but not necessarily the

exact same.

E The MCS approach implemented within each forecast com-

bination type

We implement the MCS approach of Hansen et al. (2011) within each combination approach to compare

the different methods. The results are in Table 9. We clearly see the LIN EW model of Wang et al.
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(2020) being dominated throughout the eight commodities by all, but the MIO methods. In particular the

RF EW model is most consistently the best, followed closely by PCR EW and PLS EW. When moving

to the SUM and pLASSO combinations, the linear regression method holds its own more, in fact it is

the best out of all pLASSO methods. Within the SUM models, we see a similar story as with the EW,

in regards to the best performing methods, but in a slightly different order. To be precise, PCR EW

is most often the best model, followed by PLS EW and RF EW. On the other hand, it seems that the

benefits of more complex methods get undermined when combined with pLASSO as the usually better

performing methods, RF, PCR and PLS, are more often not in the superior set rather than in. It goes

to show that allowing for the possibility of discarding information from certain technical rules leads to

worse forecasting ability in general and since LIN pLASSO makes use of the most forecast series (by

construction), it is the least affected.

F Another combination: Minimum eigenvector approach(MIN)

We choose to also implement the MIN combination approach, suggested by Hsiao and Wan (2014). Their

approach is similar in estimation to the SUM approach we implement, but there is a clear difference. They

do not compute the weights using the restriction of Markowitz (1952), given in Equation 14. Instead,

they place the restriction on the dot product of the weight vector, as seen in Equation 45:

wjTwj =
N

∑
i=1

wj2

i = 1, (45)

where wj is the weight vector corresponding to the j-th method. We refer you to the paper of Hsiao and

Wan (2014) to see the benefits of this approach and why they hold, but summarized the constraint of

Equation 45 is less restrictive on the set feasible solutions than that of Equation 14.

The downside of the approach is that it inherently assumes equal predictive accuracy across the

forecast series to be combined. Table 5 gives an indication towards that not being the case, as different

rules obtain different R2
oos’s. The forecasting results for the MIN approach are given in Table 10 from

where we see underwhelming performance for each commodity type, with most models being outperformed

by the benchmark. We opt to not conduct the CW test as most values are very close to 0 or negative

and as such we do not expect to find proof of significant predictive ability. For the same reason we do

not build any portfolios based on the MIN combination models.
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Table 10: The results for the minimum eigenvector combination approach

Panel A: The out-of-sample R2

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN MIN 0.41 -0.98 -0.41 0.12 -0.19 0.27 0.26 -0.56

ENET MIN -0.18 -1.68 -2.34 -0.97 -1.54 -0.15 -0.47 -0.43

RF MIN -2.88 -6.33 -4.41 -4.85 -3.59 -0.91 -2.73 -2.90

PCR MIN -0.26 -3.83 -2.36 -1.94 -1.03 -0.73 -1.37 0.07

PLS MIN -0.62 -2.78 -3.14 -3.14 1.71 0.70 -2.01 -0.91

MIO MIN 0.71 -3.80 -3.07 -2.66 -3.21 -0.70 -2.68 -1.76

Panel B: The out-of-sample MSPE

Eng Non-en Agrc Bev Food Raw.Mats Met&Min Prec.Met

LIN MIN 0.00628 0.00070 0.00057 0.00196 0.00090 0.00056 0.00230 0.00140

ENET MIN 0.00631 0.00070 0.00058 0.00198 0.00092 0.00056 0.00231 0.00140

RF MIN 0.00648 0.00073 0.00059 0.00206 0.00093 0.00056 0.00236 0.00144

PCR MIN 0.00632 0.00072 0.00058 0.00200 0.00091 0.00056 0.00233 0.00139

PLS MIN 0.00634 0.00071 0.00058 0.00202 0.00089 0.00056 0.00235 0.00141

MIO MIN 0.00626 0.00072 0.00058 0.00201 0.00093 0.00056 0.00236 0.00142

Notes: The table contains the R2
oos and MSPE computed over the out-of-sample period beginning from January

1991 until April 2023 for the MIN combination portfolios. The portfolio names are constructed as the forecasting

method plus the forecast combination approach. The R2
oos’s are computed using Equation 21 against the historical

average benchmark ,while the MSPE’s are computed using Equation 22 against using the actual values and

rounded up to five decimal places.

G Graphs and Figures

Figure 3: Graphical representation of a decision tree
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Figure 4: The CSSED computed over-time against the historical average benchmark for the different commodity
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Figure 5: Derivation of the relationship between LASSO and eLASSO, taken from Diebold and Shin (2019)

H Code Documentation

The code consists of several R files, which conduct different parts of the analysis. Initially, we compute

the 105 technical indicators using the data from the World Bank’s Website. Furthermore, we compute

the out-of-sample forecasts for each method and the equally-weighted combination while reporting the

corresponding out-of-sample R squared ands MSPE’s. Then, we compute the SUM, pLASSO and MIN

combinations, again with the respective out-of-sample R squared and MSPE’s. Next, we conduct the

MCS procedure across the eight commodity types for all 18 models and also within each combination

type seperately. We follow up by constructing the portfolios and ginding the sharpe ratio gains plus

certainty equivalent returns. We also find the cumulative sum of squared prediction error difference for

all models across the eight commodity types, before, finally estimating the CW statistic and the statistical

significance of each model’s forecasting power relative to the historical average benchmark.
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