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Abstract

The stochastic lot sizing problem allows for the modeling and optimization of delivery

schedules and quantities for goods which have stochastic demand. Given the quantity and

diversity of actors who require such optimization, a generalized and time efficient solution

is necessary. Thus, in this paper I replicate the methods of Tunc, Kilic, Tarim and Rossi

(2018), who have created a generalized formulation for this problem, and solved it with an

approximation and dynamic cut method. Their formulation treats continuous goods which

have normal demand distributions. I extend their formulation and solution methods to the

optimization of discrete items with arbitrary demand distributions.

1 Introduction

The stochastic lot sizing problem describes the problem which arises from a warehouse, store,

or other entity deciding the quantity and timing of a resupply. We assume demand to be the

realization of a known data generating process (DGP), positive holding costs for storing the

good in question, a penalty for not being able to meet the demand of a customer immediately,

and a positive fixed cost per resupply. Importantly, we assume that the DGP for demand in

each time period is known before the first period. In this problem, a company incurs (and thus

wishes to minimize) costs in three ways. The first comes from the amount of product in storage

at any given time multiplied by the holding cost per unit. Accordingly, the amount of goods

in storage should be kept to a minimum. Secondly, a cost is incurred when consumers wish to

purchase a product and are either turned away or forced to wait for a restock, necessitating

that stocks run out as infrequently as possible. Finally, because resupplying incurs a fixed cost,

companies wish to minimize the number of times a reorder is called. Any two of these goals are

trivially achievable, but when trying to achieve all three, tradeoffs must be made depending on

firm specific factors such as the cost of missing or delaying a sale, the fixed costs of delivery, etc.

The stochastic lot sizing problem is the mathematical formulation which models and solves this

problem. The problem is distinct from the deterministic lot sizing problem because in a given

time period demand is not known, and is instead the realization of a random variable.

The general formulation proposed by Tunc et al. (2018) assumes that the item being supplied

and sold is continuous and infinitely divisible. This can be seen in the choice of continuous

distributions for demand, as well as the lack of an integer restriction for resupply quantity (qi,j).

For many products (such as petroleum) this is true, but it is not possible to purchase half of

a lego set, or three quarters of an SUV. Thus, in addition to replicating the results of Tunc et

al. (2018), I adapt the formulation to work with discrete products, for which a user specifies

probability mass functions (PMF’s). This is helpful because it allows users to input empirical

data (easily transformed into a PMF) instead of assuming a distribution. In addition, this

method will work with any distribution, and is not limited to the normal distribution as the

solution of Tunc et al. (2018) is. It is thus more realistic for many goods, as well as much more

flexible in terms of which demand distributions can be incorporated.

It is immediately apparent that this problem is relevant to the efficient supply of stores,

warehouses, gas stations, and more. Thus, the stochastic lot sizing problem is well studied,

and solutions are widely applied. For this reason a general formulation such as that proposed
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by Tunc et al. (2018) is necessary, and for this reason I ensure its accuracy and replicability,

as well as that of their dynamic cut solution. The research question I investigate beyond the

replication of their paper is whether this formulation can be modified and applied to the case in

which products are discrete. This extension raises three subquestions, which are: How widely

applicable and adaptable is this discrete formulation? Where and under what conditions can

this new formulation can be solved in a feasible amount of time? Can the dynamic cut method

be extended to this new formulation?

The paper is organized as follows: Section 2 describes other approaches to the stochastic lot

sizing problem, the contribution of Tunc et al. (2018), the methods of dealing with this problem

in a discrete context, and the contribution to the literature I make in this paper. Section 3

details the methods introduced by Tunc et al. (2018) and how this approach can be adapted to

discrete products with arbitrary demand distributions. Finally, Section 4 presents the results

from the replication and extension with a focus on the accuracy and computational feasibility

of the methods discussed.

2 Literature Review

2.1 Background On Stochastic Lot Sizing Problem Solutions

To solve the static dynamic stochastic lot sizing problem one needs a reorder strategy which

defines when to reorder and how much. There are many reorder policies and rules possible.

For example, one can use an (s,q) reorder policy in which when supply falls to s one reorders

q. an (r,s) policy is also possible, in which inventory is reviewed over a period r and reordered

up to point s. Finally, one could follow an (s,S) policy, in which when supply falls below s one

would reorder up to point S. The reorder policy of this paper (and that of Tunc et al. (2018))

works thusly; Before the start of the time periods in question, one determines when to order

resupplies, and an order up to quantity. For example, if you have five widgets and an order up

to quantity of ten, then you would order five additional widgets. This is the approach I use in

this paper, and thus the problem addressed is how to create these resupply schedules and order

up to quantities in an efficient and optimal manner.

As described by Tunc et al. (2018), previous solutions to the stochastic lot sizing problem

have all required a custom optimization algorithm, or were limited in computation time, ac-

curacy, or the types of problems they can solve. Many instances of the more specialized and

complicated solutions are simply extensions on the heuristic provided by Silver and Meal (1973).

Other solution methods include constraint programming, filtering techniques, and preprocessing

methods (Tunc et al., 2018). These types of solutions are limited in how widely they can be

applied because they require custom optimization algorithms which can be difficult to imple-

ment. Of the solutions which do not require specialized algorithms, some authors approximated

the loss function with a single or even multiple linear functions. This is similar to the a-priori

approximation methods discussed later on in this paper (Tunc et al., 2018). However, as shown

by Tunc et al. (2018), and in 4, this method can be computationally inefficient/infeasible as the

time horizon increases and as such is not always a valid method. Thus, the paper by Tunc et al.

(2018) provides a much more efficient dynamic cut method (RM-cut) to dramatically increase
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the size of problems which can be feasibly solved.

To do this, Tunc et al. (2018) first introduce a unified mixed integer programming formulation

for the stochastic lot sizing problem. The authors take the approach of setting the dates and

setting a base-stock level for each of these reorder dates. Their formulation can include many

different variations of the problem, thus making it a flexible general formulation of the stochastic

lot sizing problem (Tunc et al., 2018). Due to their formulation being a mixed integer linear

programming formulation, it is solvable with off the shelf solvers such as Cplex and Gurobi in

reasonable time when using the RM-cut method (Tunc et al., 2018), or the a-priori approximation

method given that the problem is not too large. The ability to solve a stochastic lot sizing

problem with off the shelf solvers is very helpful, as the lack of specialized algorithms make this

solution method easy to apply for practitioners, as well as to researchers who may wish to solve

the stochastic lot sizing problem as a subproblem.

2.2 Extensions From the Literature

The generalized formulation of the stochastic lot sizing problem has been extended in several

ways. A few characterizing examples will be quickly addressed here. Most of these papers, as

stated directly by Bindewald, Dunke and Nickel (2023), use the formulation from Tunc et al.

(2018) as a ”unified modeling framework” on which one can build new features or compare new

methods. This is to be expected for a model which claims to provide a generalized framework,

and the fact that others are using it as one shows its success and validity as such. Notably,

this formulation has been extended for use with multilevel problems Gruson, Cordeau and

Jans (2021) and for controllable processing times (Tunc, 2021). We thus see that the general

formulation is being used as intended as a basis for further research, and therefore improving this

general formulation will be more helpful to the field than designing a single model or algorithm.

2.3 Discrete Products

Finally, my extension regards modeling discrete products instead of continuous ones. By this

I mean that the units being studied cannot be divided and sold/shipped in arbitrarily small

portions. This is the difference between oil, which can be divided into quarters, eighths, and

sixteenths of a gallon, and a car, which cannot be shipped to a dealership or sold to a consumer

in parts. I now review some of the ways the stochastic lot sizing problem has been modeled with

discrete products, and the extent to which researchers have used the formulation by Tunc et al.

(2018) for this purpose.

Huang and Küçükyavuz (2008) include discrete random variables in a lot sizing problem, but

do not use the formulation from Tunc et al. (2018), and instead use a scenario tree and a custom

dynamic programming algorithm to find an optimal solution. Their solution method is likely

more complex because it is intended to solve a problem in which ”the stochastic process is very

general, i.e., cost, demand and lead time distributions are non-stationary and are correlated”

(Huang & Küçükyavuz, 2008). In addition, their method was unsuitable for larger instances,

variations, and had to be solved with a specialized and complicated algorithm. This shows the

academic interest in the problem, as well as the lack of a generalized MILP (Mixed Integer

Linear Programming) formulation.
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Ma, Rossi and Archibald (2022) quickly examine this problem, but solve it with an (s,Q)

policy with poisson demands and make no claims about whether or not their results can be

generalized, or whether or not they compare favorably to other methods. An (s,Q) policy sets

a reorder point and a reorder quantity such that whenever supplies dip below s, one reorders

quantity Q. While the problem is the same, this policy is different than the one used in the

general formulation from Tunc et al. (2018), in which order dates are established ahead of time

and a base-stock level is established for each of those dates.

Finally, Gutierrez-Alcoba, Rossi, Martin-Barragan and Embley (2023) deal with a problem

which contains the stochastic lot sizing problem as a subpart of their problem. They discretize

their variables for their numerical experiments, but not within their model itself. Their results

show a gap of a few percentage points between their results and optimal, although it is very

difficult to say exactly where this comes from (Gutierrez-Alcoba et al., 2023). Note how the

authors did not apply the more correct (though very complicated) formulation from Huang and

Küçükyavuz (2008), but instead chose to simply discretize continuous units at the testing phase.

This paper in particular shows the need to incorporate discrete products in the generalized

formulation to provide researchers a general formulation for the discrete instance.

3 Methodology

3.1 Stochastic Lot Sizing Problem General Formulation

The notation for the formulation introduced by Tunc et al. (2018) is maintained for ease of

reading and such that this paper may be integrated into the general literature. All notation

used in this paper (unless mentioned otherwise) was created by Tunc et al. (2018), and credit

should be extended accordingly.

The parameters of the formulation include: K as the fixed cost of resupply, h as the holding

cost per unit per time period, p as the shortfall penalty, Di,j as realized demand between times

i and j, and M is an arbitrarily large real number. The decision variables for this problem are

as follows: xi,j is a variable which takes value 1 if [i, j) is a replenishment cycle (restocks made

directly before time i and directly before time j) and 0 if not, qi,j is the cumulative quantity

expected to be ordered up to and including i if [i, j) is a replenishment cycle and 0 if not, and

finally Hi,j,t is the approximated loss value function at period t during replenishment cycle [i, j).

The objective function is as follows,

min
N∑
i=1

{
N+1∑
j=i+1

[Kxi,j +

j−i∑
t=i

{(h(qi,j − E[D1,txi,j ]) + (h+ p)Hi,j,t)}]} (1)

and the constraints for the penalty cost model are as such:

t−1∑
i=1

xi,t =

N+1∑
j=t+1

xt,j , t ∈ [2, N ], (2)

N+1∑
j=2

x1,j = 1, (3)
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N∑
i=1

xi,N+1 = 1, (4)

qi,j ≤ Mxi,j , i ∈ [1, N ], j ∈ [i+ 1, N + 1], (5)

t−1∑
i=1

qi,t ≤
N+1∑
j=t+1

qt,j , t ∈ [2, N ], (6)

Hi,j,t ≥ axi,j + b(qi,j − E[D1,i−1xi,j ]), i ∈ [1, N ], j ∈ [i+ 1, N + 1], t ∈ [i, j − 1], (a, b) ∈ Wi,t (7)

Hi,j,t ≥ 0, i ∈ [1, N ], j ∈ [i+ 1, N + 1], t ∈ [i, j − 1], (8)

qi,j ≥ 0, i ∈ [1, N ], j ∈ [i+ 1, N + 1], (9)

xi,j ∈ 0, 1, i ∈ [1, N ], j ∈ [i+ 1, N + 1]. (10)

The first part of the objective function is the fixed cost per replenishment. The second part

is the cost of having too much or too little product stocked at any given time period. Equation

(2) is a flow constraint which ensures that when one replenishment period ends another begins,

and that one cannot begin or end alone. This of course exempts the first and the last period,

in which a period begins or ends without a partner. Equation (3) ensures that a replenishment

period begins at time 1. Equation (4) forces the last replenishment period to end during the last

time period. The combination of the above three equations ensures that all periods are covered

by one and only one replenishment period. Equation (5) forces qi,j to be zero when xi,j is zero,

but because M is sufficiently large there is no effective constraint when xi,j is one. Equation

(6) forces q to be monotonically increasing over all time period t′s. Equation (7) forces Hi,j,t

to be greater than our linear approximations for the loss function. By generating a piecewise

linear approximation of the loss function and then forcing Hi,j,t to be greater than or equal to

all of these pieces we approximate the nonlinear part of our objective function. Equations (9)

and (10) simply define the x and q variables on the relevant indices.

3.2 Solving the Generalized Formulation

3.2.1 A-priori Approximation

In Equation (1), the variable Hi,j,t is an approximation of a nonlinear function. One of the

approaches to do this (as shown in constraint (7)) is to model the function through a-priori

piecewise approximation (also referred to as PM). The a-priori piecewise approximation of the

loss functions is based on the previous work by Rossi, Tarim, Prestwich and Hnich (2014) which

seeks to create accurate upper and lower bounds for normal loss functions. These techniques

were used to create a piecewise lower bound approximation from 11 linear pieces. While Rossi et

al. (2014) effectively approximate lower and upper bounds for the normal distribution, the fact

that a whole paper is required for this task hints at a problem: Every time someone wants to

include a new distribution in this generalized model, they will be required to do a large amount

of analytical research to estimate loss functions. This is particularly troubling, because one of

the key contributions of Tunc et al. (2018) is that their formulation is generalized and easy to

adapt. A generalized formulation that is highly restricted in the distributions it can model is a
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clear limitation, and thus there is need for a more general approximation method.

The mechanics of the approximation work thusly: New decision variables are created for each

function one wants to replicate. Here, that would be the H variables. The objective function is

directly and obviously minimized when these variables take on the smallest value possible and

will take the value of whatever lower bounds one sets. Thus, we set a lower bound through

piecewise linear functions which take roughly the shape of the function we want to approximate.

Thus, in the context of the problem as a whole, these H variables approximate the function. The

equations for a and b used in Constraint (7) are given in the paper by Rossi et al. (2014), and

provide all we need to determine Equation(7). The addition of x to the simple linear function

is to ensure that when xi,j is zero the equation is nonbinding.

3.2.2 Dynamic Cut Method

As an alternative to approximating so many nonlinear functions, Tunc et al. (2018) introduce

a cut generation approach that dramatically increases the speed and accuracy with which a

general solver can solve this problem. The first step in the cut method is to create a relaxation

of the original problem, referred to as RM. This is done by substituting constraint (9) with the

constraint

Hi,j,t ≥ −(qi,j − E[D1,txi,j ]), i ∈ [1, N ], j ∈ [i+ 1, N + 1], t ∈ [i, j − 1]. (11)

It is important to notice that this is essentially relaxing the accuracy with which each Hi,j,t

is being approximated. The more relaxed this constraint, the less accurate (and lower) the

total objective function. Thus, we can solve the RM to optimality, and achieve a solution

which underestimates the true objective function. We then evaluate the difference between this

underestimation and the real value which we determine with our x and q variables. If this

difference exceeds some value ϵ, then we include a new set of cuts. A single constraint is added

to each Hi,j,t that is underestimated. The new cut is a tangent line to the real cost function,

perfectly estimating the cost at our temporary optimum, and doing a relatively good job in its

proximity. Equation (14) is the final cut added to RM for each inaccurate Hi,j,t

b = Fi,t(qi,j − E[D1,i−1])− 1 (12)

a = Li,t(qi,j − E[D1,i−1])− b(qi,j − E[D1,i−1]) (13)

Hi,j,t ≥ axi,j + b(qi,j − E[D1,i−1xi,j ]). (14)

After these new constraints (cuts) are added, the RM can be run again, finding a new

’optimal’ solution and a new set of cuts. This repeats until the real and expected values are

acceptably close (within a prespecified ϵ). We know that no other points are significantly better

than the solution we settle on because our solution has a true objective equal to the objective

value of the relaxed problem (referred to as g) plus ϵ. Additionally, since our temporary optimal

is chosen, we know that no other feasible point has a relaxed objective less than g. While it is

possible for another point to have a true objective equal to g + 0 instead of g + ϵ, this would

mean that our chosen solution is within ϵ of the true optimal objective value. Thus, by setting
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epsilon sufficiently small we can get arbitrarily close to an optimal solution. For reasons of page

constraints, the proofs which undergird this method are omitted from this paper, but can be

seen in Tunc et al. (2018).

While showing improvements in accuracy and computational requirements, dynamic cut

generation reintroduces an old problem: One of the benefits of a general formulation is the

elimination of complicated and specialized algorithms, which make the solving of these problems

difficult in practice (Tunc et al., 2018). Thus, the inclusion of a complicated and specialized cut

generation algorithm reduces some of the progress this new formulation made in simplifying the

modeling and optimization of stochastic lot sizing problems in practice.

3.3 Formulation and Solution Methods For Discrete Items

3.3.1 Changes In The Formulation

To adapt the formulation proposed by Tunc et al. (2018) we must force all resupplies and

demands to be integers. For demands we achieve this by using a discrete distribution instead of

a continuous one. This changes the loss function and how we approximate it, as discussed below.

Forcing the resupplies to be integers is more simple in that it can be done entirely by introducing

new variables and adding constraints in the Mixed Integer Linear Programming Problem. As

defined by Tunc et al. (2018) the expression qi,j − E[D1,i−1] represents the order up to level if

one is restocking at time period i and time period j. We force this expression to be an integer

so that at every order up to level is achievable with discrete products. Crucially, neither the

expectation, nor qi,j must be an integer for this whole expression to be an integer. In fact, many

very simple discrete distributions (like the roll of a die) have non-integer expectations, and thus

it is vital that qi,j be continuous in order to compensate for this. We introduce a new variable

vi,j = qi,j − E[D1,i−1]xi,j , (15)

and constraint

vi,j ∈ Z, i ∈ [1, N ], j ∈ [i+ 1, N + 1]. (16)

By declaring an integer variable and forcing this expression to be equal to it, we effectively

force this expression to be an integer without placing any further restrictions on it. The drawback

of this strategy is that we roughly double the number of integer variables, from just xi,j to xi,j

and vi,j .

3.3.2 Approximation Method

To approximate Hi,j,t it is helpful to first observe that the definition of Hi,j,t is

Hi,j,t = Li,t(qi,j − E[D1,i−1). (17)

By Constraints (15) and (16), it is established that the argument of the loss function in

Equation (18) is forced to be an integer. Thus, we only need an accurate approximation of

the loss function for all feasible integers of the relevant distribution. The space in between the

integers is infeasible, and thus does not need to be modeled accurately. While the argument of
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the loss function is guaranteed to be an integer value, the value of the loss function (Hi,j,t) has

no such restrictions and can take on any positive real number.

To approximate Equation (18) I take a similar approach to what is done with the a-priori

approximation in Section 3.2.1. However, instead of trying to approximate a continuous function

with piecewise linear functions, I am focused only on modeling the discrete points of the loss

function exactly, with no error. We thus create a set of linear functions on whose border are the

real points of the function being modeled. One way of defining a set of linear functions like this

is to create linear functions which intersect subsequent integers. By defining each linear piece

as the line which intersects two consecutive feasible points, we can accurately model every point

with n/2 approximation lines as shown in Figure 1 in which six points are modelled exactly with

three linear functions. Normally, optimal points will be found on vertices, but this does not apply

here because the vertices fall on non-integer points, which are infeasible due to Constraint (15)

and (16). One should note that while the domain in Figure 1 is restricted to integer numbers,

the range is not, and is only done as such for the sake of readability.

Figure 1: Example of a discrete function such as Li,t(vi,j) approximated as discussed in 3.3.2

One obvious result of making the approximation function like this is that we only need the

values of (18) at each of its feasible points. We do not need to calculate derivatives, optimal

cutoff points or anything else. All we need are the realized values for the loss function, whose

equation is

Li,t(x) =

∞∑
z=x+1

pr(z)(z − x), (18)

although with bounded PMF’s this series stops when the probability of z is zero for all numbers
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above z. Like this we can fully formulate a model with only a (possibly empirical) PMF. Once

we have these approximations we can find the optimal solution through the default Cplex solver

of Mixed Integer Linear Programming Problems.

3.3.3 Dynamic Cut In Discrete Formulation

Creating a method analogous to the RM-cut method for the discrete formulation (henceforth

referred to as DRM-cut) requires a few changes from the RM-cut. Firstly, the initial, cheap,

and inaccurate approximation of the loss function must be adapted to the discrete loss func-

tions. Secondly, the constraint(s) which are added at each cut must be adapted for the discrete

formulation. A minor constraint is added for ease of computation and much of the code and

functions must be rewritten, although in a very intuitive manner which still follows the RM-cut

method specified by Tunc et al. (2018).

Instead of Equation (11), I include four constraints on Hi,j,t for the cheap and inaccurate

initial approximation. These constraints are generated as described in Section 3.3.2, but instead

of including every single constraint, I include only those constraints which fall on the 20th,

40th, 60th, and 80th percentile. Thus I include only four constraints instead of hundreds while

maintaining reasonable accuracy throughout the range of the function. The other advantage

of these constraints is that we know they are valid, and that they never overestimate Hi,j,t.

Because they never overestimate H, we know that in the worst case scenario we can add one

constraint for every point in the range of the loss function being estimated and have a valid

formulation. It is easy to imagine constraints that whilst more accurate with fewer pieces, result

in invalid approximations of H because of occasional overestimation.

Naturally, this leads to the topic of how to include new constraints. Similarly to RM-cut, a

feasible point is investigated, and if the accuracy is insufficient, than new constraints are added.

At every Hi,j,t I add two constraints so that the optimum can shift slightly without needing

to add more cuts and thus repeat the process. These constraints are similar to those used in

previous parts, and are

Hi,j,t ≥ axi,j + b(qi,j − E[D1,i−1xi,j ]), i ∈ [1, N ], j ∈ [i+ 1, N + 1], t ∈ [i, j − 1]. (19)

It is important to remember that due to Equation (15), Constraint (19) is equivalent to

Hi,j,t ≥ axi,j + bvi,j , i ∈ [1, N ], j ∈ [i+ 1, N + 1], t ∈ [i, j − 1]. (20)

The big difference between the way constraints are added in the RM-cut and DRM-cut is

the number of constraints being added, as well as the generation of a and b. In accordance with

the RM-cut method, constraints are only added if both xi,j is greater than one half and Hi,j,t

is sufficiently inaccurate, however in the DRM-cut constraints are added two at a time with

two a and b variables per Hi,j,t. As for the a and b variables, they are constructed to form the

lines which intersect three selected points along vi,j , as shown in Figure 2. These points are the

temporary optimal value of vi,j as well as the two points immediately preceding and following.

As is clear in Figure 2, the point being investigated (here two), as well as the ones dir-

ectly preceding and following are perfectly modeled, thus allowing the optimum to shift slightly
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Figure 2: Example of two new constraints placed on Hi,j,t through the DRM-cut method. Here
the feasible solution investigated is qi,j − E[D1,i−1] = 2

without necessitating more constraints.

3.3.4 Implications On Running Times In the Discrete Formulation

There are two sources for an increase in running time when compared to the continuous formu-

lation. The first is the doubling in the number of discrete variables. This is compounded by the

fact that we are adding integer variables, not just binary variables which are generally easier to

branch on. Secondly, for every Hi,j,t we include L/2 piecewise linear functions with L indicating

the number of feasible points in the PMF for Di,t. A short example follows to show why this is

an issue.

For an Hi,j,t in which t− i = 10 and the demand is distributed with equal probability over

{0, 1, 2, 3, 4, 5}, I would need 5 ∗ 10/2 = 25 pieces in the piecewise linear function. This problem

only gets worse as the distributions get wider, and as we increase the time horizon. The number

of piecewise linear functions needed for each individual H grows linearly with the range of the

demand distributions, and with the number of periods investigating (due to t − i increasing).

However, the number of complete approximations needed grows cubically - O(n3) - because

each of the three indices (i, j, and t) are limited by n, and thus the total number of linear

approximations grows by O(n4) and linearly in L. Given that there are already significant time

constraints in the generation of the approximations for the continuous problem (Tunc et al.,

2018), this could prove to be a limitation in practice. To our advantage, as the range of possible

demands increases, the need to use a discrete formulation decreases because rounding to the

nearest whole number represents less of a distortion with large numbers than it does for small
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ones. A restock level of about five implies that rounding would be a meaningful distortion, while

a restock level of about 1,000 means that rounding would be an insignificant error. Thus, we

are interested in observing where exactly this formulation becomes infeasible with respect to the

number of periods we are investigating and the size of the possible range of demands.

4 Results

4.1 Description of Code

The code which has been used to obtain these results can be found alongside the paper. The

code consists of six main parts. Firstly is the main method where one can generate or input the

demand distributions along with the settings and parameters of a problem instance. The other

five parts consist of the four solution methods discussed here (a-priori approximation, RM-

cut, discrete a-priori approximation, and DRM-cut) as well as one experimental method not

discussed in this paper. Each method can be called from the main method with the appropriate

parameters. The rest of the code consists of helper methods which calculate various points and

functions, although none of these methods need to be accessed directly to reproduce results. If

one wishes to replicate specific results, the parameters and distributions are described along with

each result presented. The only exception are the running time averages, which have parameters

of p = 5 and K = 50, K = 500, or K = 5, 000 for low, medium, and high demand respectively.

K is increased because if demand is increased while K is kept constant, the relative penalty for

resupply decreases, and solutions will eventually just resupply at every time period.

4.2 Replication Results

In this subsection I review and compare what I replicate from the paper of Tunc et al. (2018) to

ensure both that one can reproduce their paper, and so that we can proceed with the discrete

formulation knowing that our foundation is accurate. I firstly compare the objective values

achieved with both the a-priori approximation method and the RM-cut method to the results

achieved by Tunc et al. (2018). Finally, I compare relative computation times at n = 100 to

ensure that the cut method is working as intended. This is necessary because the main utility

of the RM-Cut method is the reduction in running time, not the objective value achieved, so we

must check whether or not my replication achieves this.

4.2.1 Objective Value Comparison

Line Identifier Their PM My PM Their RM-cut My RM-cut

Backlog Lumpy 20 1 225.0 1.0 2.0 0.1 1643.17 1643.30 1645.20 1645.53

Backlog Lumpy 20 1 225.0 1.0 2.0 0.2 1957.47 1957.63 1960.90 1961.07

Backlog Lumpy 20 1 225.0 1.0 2.0 0.3 2181.44 2181.69 2185.07 2185.32

Table 1: Objective Value Comparison n=20

As one can see in Tables 1, 2, and 3, the objectives achieved by me and by Tunc et al.

(2018) are exceedingly similar. Specifically, the differences between the optimal objective values
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Line Identifier Their PM My PM Their RM-cut My RM-cut

Backlog Lumpy 30 1 900.0 1.0 2.0 0.1 5219.36 5219.59 5224.70 5224.86

Backlog Lumpy 30 1 900.0 1.0 5.0 0.1 6056.53 6056.70 6066.29 6066.48

Backlog Lumpy 30 1 900.0 1.0 10.0 0.1 6691.01 6691.14 6707.56 6707.74

Table 2: Objective Value Comparison n=30

Line Identifier Their PM My PM Their RM-cut My RM-cut

Backlog Lumpy 40 1 900.0 1.0 10.0 0.3 9182.03 9182.27 9227.25 9227.46

Backlog Lumpy 40 1 2500.0 1.0 5.0 0.1 13229.44 13229.60 13236.47 13236.53

Backlog Lumpy 40 1 2500.0 1.0 10.0 0.2 14867.75 14868.21 14894.67 14894.79

Table 3: Objective Value Comparison n=40

determined by the PM method never exceed 0.5, and generally represent a discrepancy of at

most one in ten thousand. Moreover, there is little increase in this discrepancy when comparing

Tables 1, 2, and 3. For the RM-cut method we see a similar level of accuracy, with differences

not exceeding 0.25, and relative differences again around one in ten thousand or less. We can

thus say that as far as the results, I faithfully replicate the methods discussed by Tunc et al.

(2018). The reason for these small discrepancies is likely rounding, as well as solvers not solving

to perfect optimality. Specifically, the PM and RM-cut method require some manual calculation

and copying of figures from Rossi et al. (2014). These figures are rounded after the 5th decimal

place (out of more than 20) and so this is likely the cause for differences on the scale of one in

ten thousand.

4.2.2 Time Cost Comparison

My PM My RM-cut Their PM Their RM-cut

Setup Time 498.13 484.458 NA NA

Solving Time 1268.172 129.679 401.98 29.22

Total Time 1766.302 614.137 NA NA

Table 4: Average time cost for n=100

Table 4 shows the solving time for the PM and RM-cut when n = 100. I choose n = 100

because it effectively shows behavior as n increases, and because it can be compared to the same

experiment done by Tunc et al. (2018) as shown in Table 4. I choose to report setup and solving

times separately, because the RM-cut method affects them both differently, and it is unclear

which one Tunc et al. (2018) provides, although I believe it to be the solving time. The setup

time is very high because the number of H variables scales cubically with the time horizon, and

can thus be extremely expensive when n becomes large.

What is important to observe from the table is not the absolute value, but the ratio between

the two methods. The absolute value is determined by the speed of the computer, and the ratio

is determined by the improvement in the method. What we hope to see is a similar increase

in efficiency when comparing the methods as implemented by me and them. Table 4 shows

exactly this, with the increase in efficiency achieved by Tunc et al. (2018) being about thirteen

times, and the increase in efficiency which I achieve being about ten times. Although this may
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not be exact, it is very close given the fact that both are averages of different problem sets

run on different computers using different solvers. It is worth noting that the setup time does

not change at all between the PM and RM-cut methods. This is due to the initialization of the

variables. As n grows the number of Hi,j,t variables grows by roughly O(n3), and thus initializing

all of these variables dominates the other setup costs. The cost to calculate and input all of the

constraints is negligible in comparison to the costs in initializing all of the H variables.

We can thus conclude that the RM-cut is accurately reproduced, because it achieves appro-

priate computational gains over the PM method, and reaches correct optimal points (as shown

in Section 4.2.1).

4.3 Discrete Results

4.3.1 Correctness of the Approximation Method

To demonstrate the efficacy of this new formulation I present an example problem, the optimal

solution I generate, and how this optimal solution changes as a result of different input paramet-

ers. The examples treated will have 20 to 40 periods with two types of demand distributions. In

the low demand instance, demand is a uniform distribution between 0 and x, with x uniformly

distributed between one and ten. The medium and high demand instances are similar, with x

distributed between one and 100 and one and 1,000 respectively. We assume that the PMF for

each time period is known prior to the first time period. The uniform distribution is chosen

because the lack of any thinning towards the extreme values of the distribution means we can

not make the problem computationally easier by only approximating the middle 99.9% of the

distribution as we could for the sum of many binomial distributions. This makes the uniform a

sort of worst case scenario, while the simple nature of these distributions makes it easy to un-

derstand and explain in this paper. Ultimately, the exact distribution you use does not matter

beyond its range, and whether or not a PMF is available. I run this algorithm with setup costs

(K) equal to 50 and 500, shortfall penalty (p) equal to five and 20, as well as with n = 20 and

n = 40. The remainder of this subsection is an inspection of how each solution varies depending

on the input, thus showing that each of these variables is correctly incorporated into the model.

Firstly, we inspect the solution for the problem in which we have low demand, k = 50, and

p = 5. In Table 5 we see each resupply period, the order up to quantity enforced at the start of

that period, the expected demand in each period, and the expected total cumulative quantity

ordered after the resupply of that period. In Table 5 we verify that the order up to quantities

are whole numbers and that they make sense with respect to expected demand.

i j Order up to Quantity Expected Demand Per Interval qi,j
Interval 1 0 6 18 18 18

Interval 2 6 10 31 29 49

Interval 3 10 15 22 25 69

Interval 4 15 20 26 23 98

Table 5: K = 50, p = 5, n = 20, and low demands.

In Table 6 I dramatically increase the fixed cost of a resupply and thus incentivize fewer

resupply periods. Accordingly, we see that the optimal solution is one in which there is a single
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resupply at time zero that supplies all 20 demands.

i j Order up to Quantity Expected Demand Per Interval qi,j
Interval 1 0 20 84 95 84

Table 6: K = 500, p = 5, n = 20, and low demands.

Next, we inspect the results of dramatically increasing the costs associated with failing to

immediately meet demand. We thus dramatically increase p from 5 to 20 and observe how the

optimal reorder schedule adapts. Prior to this transformation in Table 5 we see that the order

up to quantity is about equal to the expected demand for that period. This is because in a

given period some of the demand can be treated with the next resupply without incurring too

much cost. By contrast, in Table 7, we see that the order up to quantity generally exceeds the

expected demand by a litt under 50%. This reflects the reality that fulfilling demand late is now

much more expensive, and is thus avoided by keeping more product on hand.

i j Order up to Quantity Expected Demand Per Interval qi,j
Interval 1 0 6 23 18 23

Interval 2 6 9 33 22.5 51

Interval 3 9 13 24 18 64.5

Interval 4 13 16 27 19.5 85.5

Interval 5 16 20 26 17 104

Table 7: K = 50, p = 20, n = 20, and low demands.

Table 8 is the optimal solution when demands are between one and 100 instead of one and

ten. As we can see the solution is roughly similar to Table 7 because the effect of p does not

change as demands increase, n is the same, while both demands and k are roughly ten times

as large. The reduced effects of the integrality constraints account for the difference observed

outside of resupplies and expected demand being ten times as large.

i j Order up to Quantity Expected Demand Per Interval qi,j
Interval 1 0 6 203 207 203

Interval 2 6 10 323 308 530

Interval 3 10 15 245 272.5 7060

Interval 4 15 20 283 252.5 1070.5

Table 8: K = 500, p = 5, n = 20, and medium demands.

Finally, I demonstrate that the model works for instances with different time horizons as

shown in Table 9. Notably, even with low demands and k = 500, 40 periods is a long enough

time horizon that there are multiple replenishment periods.

Thus, it is clear that the order up to quantities are integer values, and that the model can

incorporate different PMF’s, as well as different values for n, p, and k. Each time the solutions

adjust as demanded by the different inputs and remain the same in the appropriate ways. There

is no unpredicted or undesirable behavior, supporting the correctness of this formulation for

modeling the discrete stochastic lot sizing problem.
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i j Order up to Quantity Expected Demand Per Interval qi,j
Interval 1 0 13 65 58.5 65

Interval 2 13 27 67 63.5 125.5

Interval 3 27 40 78 68 200

Table 9: K = 500, p = 20, n = 40, and low demands.

4.4 Correctness Of The DRM-cut Method

The DRM-cut method must do two things to be considered successfully implemented. Firstly,

it must achieve the same optimal solution as the approximation method above, and secondly,

it must yield significant computational advantages. The latter is treated in Section 4.5 while

the accuracy of optimal solutions is treated here. I compare optimal objective values across

multiple time horizons and demand levels to determine whether or not the same optimal solution

is reached, similar to what is done in Section 4.2.1. In Table 10 it is clear that in all instances

investigated the DRM-cut solution method reaches the correct solution. Running times will be

compared in Section 4.5.

Time Horizon Demand Level A-priori Approximation DRM-cut

20 medium 4924.79 4925.12

30 medium 7253.91 7253.71

40 medium 9788.28 9788.11

50 medium 12117.39 12117.12

20 high 49384.15 49384.11

30 high 72714.49 72714.34

Table 10: Optimal Objective Comparison

4.5 Running Times

Time Horizon Low Demand Medium Demand High Demand

20 1.183 11.927 89.884

40 16.009 202.068 NA

50 47.852 723.443 NA

60 214.441 5,268.270 NA

80 398,845 NA NA

100 1655.437 NA NA

Table 11: Changing Time Cost For Discrete PM Method

In Table 11 one can see that running time increases as both n and demand increases. As

predicted, as demand increases by a factor of ten, the running time increases linearly by a factor

of ten as well. This is consistent when demands are increased from single to double digits, and

from double digits to triple digits. Additionally, increasing n results in increased time costs

consistent with n4. When n is lower other costs are important as well, and thus the cost from

increasing n does not yet make up the vast majority of time costs. This is why we see an increase

more in line with n3 for smaller time horizons before increases on the order of n4.
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Next, we investigate the running times of the DRM-cut method. In Table 12 are the running

times for different demand levels and time horizons, directly comparable to Table 11. When

applying the DRM-cut method to the discrete formulation, we succeed in reducing computation

times by between a factor of ten and fifty. Thus, we succeed in adapting the RM-cut method

to the discrete formulation, and as a result can treat instances with longer time horizons and

higher demands.

It must be noted that the high demand setting may not be used in practice due to the

adequacy of a continuous model. Rounding three or four figure reorder quantities generated

from the continuous formulation is a low cost approximation, with approximation error limited

to less than one percent. Because the rounding errors become negligible long before the problem

becomes computationally infeasible, there is always a viable solution (the discrete formulation

with low demand products and rounding with higher demand ones). Thus, the problem of a

general stochastic lot sizing formulation for discrete products is effectively treated in this paper.

Time Horizon Medium Demand Highest Demand

20 1.147 7.08

40 10.281 204.09

50 34.67 599.59

60 145.58 1,180.83

Table 12: Time Cost for DRM-cut

5 Conclusion and Future Research

In this paper I replicate and extend the solution methods to the general stochastic lot sizing

problem introduced by Tunc et al. (2018). In particular, I reproduce the approximation and

RM-cut methods successfully, showing that these solutions are accurately described, and easily

reproducible. I extend the general formulation to include the case in which discrete products

with arbitrary demand distributions are handled. This is solved using both an adaptation of

the approximation method, and the dynamic cut method from the continuous formulation.

The benefits introduced by the discrete formulation and solution methods are three-fold.

The first is the ability to create resupply and order up to quantities for discrete products. This

is important, because there are many goods (a car model at a dealership for example) which

are discrete, and demanded in small enough quantities that rounding is a significant distortion.

With this formulation, the stochastic lot sizing problem can be solved with respect to these

products.

The second benefit is more indirect. In the continuous formulation of the problem, demands

are assumed to be normally distributed. If demands are distributed along a non-normal distri-

bution, then it is impossible to model the demands accurately with the general formulation. By

contrast, the approximation and DRM-cut method developed in this paper need nothing more

than a PMF, and so can handle almost every possible discrete distribution. In particular, it can

incorporate empirical distributions, which are often all that is available in real world applica-

tions. Combined with the existence of non-normal demand distributions, it is clear that this is

a more generalized and practically useful way to model demands.
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Thirdly, my a-priori approximation of the loss function for the discrete problem results in

perfect accuracy, without any approximation error from linearizing the loss functions. The

DRM-cut method is much more efficient, accurate to within an arbitrary epsilon, and can solve

problems with high demands and long time horizons. While the DRM-cut method is better in

many respects, the a-priori approximation method is easier to implement, making it practically

useful for computationally easier instances.

In summary, the static dynamic discrete stochastic lot sizing problem can be solved for almost

all demand profiles for which rounding makes a significant difference. Whilst not computationally

feasible for all instances, instances with up to 60 time horizons and triple digit demands can

be solved easily with DRM-cut. While this is quite expansive, it is possible that a discrete

problem with an exceptionally long time horizon cannot be adequately treated. Thus, it would

be interesting for future researchers to improve the efficiency of the DRM-cut method so that

these instances can be modeled accurately.

One way to do this would be to improve the quality of the constraints added to the model

at each iteration of DRM-cut. At each iteration I include two new constraints which perfectly

model three points: the point investigated, as well as those preceding and following. With care-

ful implementation one could add a single constraint which perfectly models the investigated

point along with either the preceding or following one. Additionally, one could add two con-

straints which perfectly model the point investigated, two before and one after - or two after

and one before. Experiments could be conducted to ascertain which of these methods is most

computationally efficient under which circumstances.

Finally, it would be useful to compare the discrete and rounded continuous versions to eval-

uate at which point the difference between the two becomes insignificant. This is not currently

possible, because the continuous version of the stochastic lot sizing problem only supports de-

mands which are distributed normally. Thus, to do a proper comparison, one must first build a

formulation for the continuous stochastic lot sizing problem which supports arbitrary demand

distributions. The best way to do this would be by modifying the RM-Cut, since it requires only

a function and the first derivative. Although the first derivative is difficult to get for an arbitrary

function, the empirical derivative will suffice, and the self testing nature of the RM-Cut method

ensures an arbitrary level of accuracy. Thus, a future researcher could easily adapt the RM-

Cut method so that continuous goods with non-normal demand distributions can be modeled.

Besides its utility in testing my own extension, this generalization of demand distributions is a

worthy goal in and of itself.

17



References

Bindewald, V., Dunke, F. & Nickel, S. (2023). Comparison of different approaches to multistage

lot sizing with uncertain demand. International Transactions in Operational Research.

Gruson, M., Cordeau, J.-F. & Jans, R. (2021). Benders decomposition for a stochastic three-

level lot sizing and replenishment problem with a distribution structure. European Journal

of Operational Research, 291 (1), 206-217.

Gutierrez-Alcoba, A., Rossi, R., Martin-Barragan, B. & Embley, T. (2023). The stochastic

inventory routing problem on electric roads. European Journal of Operational Research.

doi: https://doi.org/10.1016/j.ejor.2023.02.024
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