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Abstract

The stochastic lot-sizing problem deals with designing an inventory plan that
minimises costs under random demand. This thesis studies this problem first by
employing a mixed-integer programming formulation developed by Tunc et al.
(2018), that uses a piece-wise linear approximation of the cost function, as de-
fined in Rossi, S. A. Tarim, et al. (2014). After, this thesis develops a heuristic in
order to incorporate a receding horizon into the model, which means the length
of the horizon gradually shrinks. It finds that the mixed-integer programming
formulation is computationally efficient, but displays some errors when simulat-
ing demand, raising some small doubts about its reliability. Furthermore, the
heuristic has limited cost saving potential, as the degree to which it is effective
largely depends on the parameter settings.
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1 Introduction and literature review

The topic of this thesis is the lot-sizing problem. There are multiple types of
costs that are involved in this problem, namely set-up costs, holding costs and
direct item costs. The objective of the problem is then to minimise all those
costs, while still meeting demand at a satisfactory level. Alternatively, unmet
demand can also be penalised through a penalty cost and incorporated into
the cost function. The stochastic lot-sizing problem was first discussed by the
seminal paper Wagner and Whitin (1958), and since then this topic has been
studied mostly in a deterministic setting. However, this research will focus on
the stochastic lot-sizing problem, meaning demands are random and not known
in advance. This means a certain order-policy must be designed that minimises
the expected costs, rather than an exact solution which would be possible in
the deterministic case.

Over the years, a large number of different types of order policies for stochas-
tic lot-sizing problems have been developed, of which Bookbinder and Tan
(1988) outlines three. All three models differ in terms of how much of the
order policy is determined at the start of the cycle and how much is determined
during the cycle.

The first of these three is the static uncertainty model. Here, the full set of
decision variables, including when to order and how much to order, is determined
at the start. This is beneficial if much preparation is needed beforehand and
computationally equivalent to the deterministic problem, but is not able to
adjust when demand fluctuates heavily from expected demand.

The second model, in a way the opposite of the static uncertainty model, is
the dynamic uncertainty model (Bookbinder and Tan 1988). In this case, the
order policy is updated every period by taking the information about realised
demand into account. Then, the decision whether to place an order and how
much to order is made based on the inventory level.

The third and last model strikes a balance between the two and is called
the static-dynamic uncertainty model (Bookbinder and Tan 1988). Here, the
periods in which to place an order are determined at the start, but the order
quantities are not. Rather a base-stock level is determined, which specifies up to
which level should be ordered. Then during the cycle, the actual order quantity
depends on the inventory at that point. As this strategy specifies a policy at
the start, it makes coordination with other supply chain players easier, meaning
this approach has attracted a lot of research into which computational methods
are most efficient. Bookbinder and Tan (1988) argues that this policy is the
most straight-forward to use in many cases.

The period between the placing of two successive orders is called a replen-
ishment cycle, with all cycles together making up the replenishment schedule.
A key result here from Özen, Doğrub, and S. A. Tarim (2012) is that once a
replenishment schedule has been found, the optimal order quantity in each re-
plenishment period follows a base-stock policy. However, finding these schedules
and base-stock levels has proven to be challenging and currently the literature
suggests using heuristics for this purpose, depending on the variant of the prob-
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lem.
The underlying problem can be approached through tailor-made algorithms,

which work well for specific cases, or through mathematical programming mod-
els. The latter models are more accessible as they work for a wider variety of
cases, but a major challenge concerns how to incorporate the non-linear costs
into the model, since the randomness of the demands means the total cost func-
tion is not linear. In the literature, several ways have been suggested, such as
just using a linear approximation or employing a piece-wise linear function.

When the cost function is linearly approximated, the problem can be solved
using a mixed integer programming formulation. Research in this area has
developed a lot in recent years, with papers such as Rossi, Kilic, and S. Tarim
(2015) demonstrating the value by incorporating several service level constraints.
These service level constraints specify a minimum of demand that must be met,
often 90%.

However, a lot of these models were not computationally efficient, requiring
the contribution by Tunc et al. (2018), where the authors use the dynamic-
static uncertainty strategy. They consider two new formulations that included
new ways of approaching the cost function. Their first method, the extended
formulation, is a mixed integer programming (MIP), already majorly decreased
computation times as a result of using a network flow formulation, while still
solving to optimality. Secondly, they also developed a dynamic cut generation
approach, where constraints are added during solving in order to approximate
the non-linear cost function. This approach both allows for more precision and
reduces compared to the MIP-formulation.

Building on this model, Tunc (2021) incorporates compression costs into the
model, which are incurred when processing times are decreased. Even with this
addition, both the MIP-model and dynamic cut generation still achieve a con-
siderably better computational efficiency than other formulations. Other recent
papers within the context of the stochastic lot-sizing problem have considered
a two-stage process Gruson, Cordeau, and Jans (2021) and multi-item contexts
with wait-and-see structure Seyfi et al. (2022), demonstrating the range of re-
search possible.

Recently, research has also been done on more applied contexts of lot-sizing
problems. For example, Wang et al. (2022) looked at the aerospace industry,
which is characterised by a very complex cost structure. In that paper, the
authors use dynamic programming, like Tunc et al. (2018) to create a multi-
agent simulation that creates an inventory replenishment strategy.

1.1 Receding Horizon

Some of the literature on stochastic lot-sizing model makes use of either rolling
or receding horizons (Jans and Degraeve 2008). In both settings, the model
is gradually evaluated at later points in time. In rolling horizon settings, the
length of the horizon remains the same, while in a receding horizon the ending
period remains the same, but the length of the horizon recedes. Using such
a horizon also makes sense from a forecasting point of view, as generally fore-
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casts about events more in the future are less accurate (Bookbinder and Tan
1988). However, when information about the distribution of demands is per-
fect, a rolling horizon makes less sense. As this thesis assumes a known normal
distribution for demands, a rolling horizon is not considered.

However, this thesis will in fact consider a rolling horizon, as this approach
has been shown to have cost-saving potential (Dural-Selcuk et al. 2020). This
paper also further makes the case for dynamic-static uncertainty models, as it
shows applying a receding horizon brings the dynamic-static uncertainty models
closer to the dynamic uncertainty models. The receding horizon has also shown
to be efficient in a setting with multiple products (Sereshti, Adulyasak, and Jans
2021).

Despite its cost-saving potential, the receding horizon remains understudied
in the literature, and hence this thesis will study it using the MIP-formulation
provided by Tunc et al. (2018).

This thesis is relevant in a multitude of ways. First of all, the receding
horizon environment remains understudied, especially in the specific context of
stochastic lot-sizing. Furthermore, this thesis will developed a novel heuristic,
that has cost-saving potential under some parameter settings, while only causing
minor changes to the order policy. Moreover, the heuristic implements changes
that are very intuitive, making it more likely to be applied to real-world settings.
Lastly, this thesis contributes by affirming the computational efficiency of the
MIP-formulation developed in Tunc et al. (2018).

1.2 Thesis outline

The remainder of this thesis is organised as follows. First, I present some eco-
nomic background to this problem. After, I present the notation and then the
model formulation for the stochastic lot-sizing problem, adapted from Tunc et
al. (2018), where I use the linear approximation proposed by Rossi, S. A. Tarim,
et al. (2014). Afterwards, I adapt the model to a receding horizon environment,
by developing a novel heuristic.

In the first part of the results, I show that the MIP-formulation is compu-
tationally efficient, and that the derived solutions are the same as Tunc et al.
(2018). Next, I assess the reliability of the model by first computing the ap-
proximation errors and then the simulation errors. The approximation errors
are all small, but the simulation errors are larger, raising doubts about the re-
liability of the model. Furthermore, the simulation errors are a lot larger than
those in Tunc et al. (2018). The results section ends with the receding horizon
heuristic. Here I find that the heuristic has cost-saving potential, but only under
specific parameter settings. The cost saving-potential is higher under parame-
ter settings where the heuristic is less likely to be triggered. I end this thesis
by giving a conclusion and discussing the limitations and possible avenues for
future research.
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2 Economic Background

Over the years, a lot of economic theory has been developed in the field of
inventory management, which includes the stochastic lot-sizing problem, the
topic of this thesis. In order to place this research in a wider context, this
section will give a brief outline of the economic background.

As there exists a range of business and production processes, there are also
different ways of inventory management that have been developed in the liter-
ature. The base-stock model, characterised by random demand and continuous
replenishment, is covered in this thesis. Still, there are also other models, such
as the closely related news-vendor problem, also with random demand but just
one replenishment (Qin et al. 2011).

Another classic, and perhaps most famous model, is the economic order
quantity model, first developed back in 1913 by Ford Whitman Harris (Er-
lenkotter 1990). This model assumes demand is constant over time and tries to
determine the optimal order quantity, taking into consideration holding costs,
production or purchase costs and ordering costs. As this model in its base form
boils down to one formula, it is very easy to use (Cárdenas-Barrón, Chung, and
Treviño-Garza 2014). There are also many extensions possible to this model,
such as considering deterioration of inventory (Yang et al. 2020).

These theoretical models are useful in real-life inventory management to
varying degrees. One criticism of the literature articulated by Rumyantsev and
Netessine (2007) is that inventory managers care about about a macroscopic
view of the entire inventory management, rather than more microscopic views
of the inventory management of single products. Furthermore, models do not
take a wide range of external factors, such as business cycles, into account,
Rumyantsev and Netessine write.

3 Preliminaries

First, I will outline the model used by Tunc et al. (2018). They employ a mixed
integer formulation, which I refer to as MIP. In their model they assume N
discrete time periods. I will start by explaining the notation, which is adapted
from Tunc et al. (2018).

• Dij : Demand in period i until and including j

• Lij : Loss function associated with Dij

• Fij : Cumulative distribution function associated with Dij

• K: fixed cost for every order

• h: holding cost, cost of holding one unit from one period to the next

• p: back-order cost, extra cost for every unit that needs to be back-order
when inventory is insufficient to meet the demand
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• T1, ....Tm: replenishment periods

As per the static-dynamic uncertainty strategy, the model produces an or-
der policy, that specifies both the replenishment cycles and the replenishment
quantities. A replenishment cycle is defined as the interval between two succes-
sive replenishment periods, so [Tn, Tn+1). For simplicity, I assume T1 = 1 and
Tm = N + 1 such that there are m disjoint replenishment cycles.

I will now start defining the cost function. First, consider the replenishment
cycle [i, j) and assume the inventory level at the start of the cycle is y. The
total expected cost for that cycle is then given by:

K +

j−1∑
t=i

(hE(y −Dit)
+ + pE(y −Dit)

−) (1)

Here, x+ and x− stand for max{0, x} and max{0,−x} respectively. The
cost function will include a loss function, which has the following properties.

1. if z is a random variable and x is a scalar variable then its loss function is
given by E[max(z − x), 0] Rossi, S. A. Tarim, et al. 2014

2. E(y − z)− is the loss function evaluated at y

3. E(z) = E z+ − E z−

Following these properties, the cost function transforms into:

K +

j−1∑
t=1

(h ∗ (y − EDit) + (h+ p) ∗ Lit(y)) (2)

3.1 Linear Approximation

Since the aim is to build a mixed integer formulation and the loss function above
is non-linear, I will apply linear approximation to the loss function. Keeping in
line with Tunc et al. (2018), I will follow the approach outlined in Rossi, S. A.
Tarim, et al. (2014).

To explain how the approximation works, I will first define σi as the standard
deviation for the demand in period i. Then, for the period [i, j] the mean
demand is µij = EDij and then the standard deviation for that period is σij =√∑j

k=i σ
2
k, according to the properties of the normal distribution.

Next, I will use the values for the 11-piece lower bound approximation from
table 1 of Rossi, S. A. Tarim, et al. 2014. For k ∈ [1, 11] this table specifies values
for the intervals of the the 11 line segments, given by E[ω|Ωk]. For k ∈ [2, 11]
it also denotes values for pk, which is related to the slope of the loss function.
I then adjust the interval values for the mean and standard deviation of the
period considered: Êk = µij + σij ∗ E[ω|Ωk].

Then I calculate the 11 intercept-slope [âk, b̂k] pairs as follows:
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b̂k =


−1, if k = 1

−1 +

k∑
j=2

pj , if k ∈ [2, 11]

âk =

{
µij , if k = 1

âk−1 + b̂k−1Êk − Êk−1), if k ∈ [2, 11]

These together give the set Wij of intercept-slope pairs to approximate the
loss function Lij .

4 Model

4.1 MIP model

I will now start with the formulation of the model. The solution of the problem
should be an order strategy, that specifies both the replenishment cycles and
quantities. The following decision variable capture this policy:

• xij indicator variables that is equal to 1 if [i, j) is a replenishment cycle
and 0 if it is not

• qij the expected cumulative order quantity up-to and including period i if
[i, j) is a replenishment cycle

• Hijt the approximation of loss function at period t ∈ [i, j)

The xij variables specify what periods form replenishment cycles, while from
the qij variables the base-stock level can be derived, which is the level of inven-
tory that a replenishment cycle starts with. Lastly, the Hijt variables indicate
the value of the loss function linearly approximated using the method specified
earlier.

Now circling back to the cost function from equation 2, the inventory at the
beginning of each replenishment cycle can be written as qij − E(D1i−1. Then
the cost function for replenishment cycle [i, j) becomes:

K +

j−1∑
t=i

(h(qij − ED1t) + (h+ p) ∗Hijt) (3)

As all the replenishment cycles are disjoint, the sum of the cost function of
every cycle gives the total cost function:

min

N∑
i=1

N+1∑
j=i+1

(
Kxij +

j−1∑
t=i

(h(qij − ED1txij) + (h+ p) ∗Hijt)

)
(4)

This assumes that xij = 0 implies both qij = 0 and Hijt, a condition that
will be imposed by the constraints that are specified after this. That means, if
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xij = 0 the summands are zero and therefore only the costs belonging to the
replenishment cycles, where xij = 1, are summed.

For every replenishment cycle the base-stock level is given by qij−E(D1i−1),
which is level to which inventory is filled at the start of every replenishment
cycle. Implicitly, the model assumes that the inventory that is carried over
from the previous replenishment cycles is never higher than this base-stock level.
This could of course happen as demand is random, but the associated costs are
assumed to be small and hence ignored, in line with the literature (S. A. Tarim
and Kingsman 2004). However, this does mean the solutions are technically not
completely optimal.

Next, by means of network flow constraints, it is ensured that the order
policy consists of disjoint replenishment cycles.

t−1∑
i=1

xit =

N∑
t+1

t ∈ [2, N ] (5)

N∑
j=2

x1j = 1 (6)

N−1∑
i=1

xiN = 1 (7)

Constraint (5) ensures that all the replenishment cycles follow each other,
while constraints (6) and (7) make sure that the first replenishment cycle starts
in the firt period of the horizon and the last one ends in the final period, re-
spectively.

The next two constraints concern the qij variables. First I make sure xij = 0
implies qij by imposing the following constraints:

qij ≤ M ∗ xiji ∈ [1, N ], j ∈ [i+ 1, N + 1] (8)

Here, M is a sufficiently large value. A potential value could be the cumula-
tive demand over the entire horizon times 10, although a lower bound is likely
possible.

Furthermore, as qij specifies the cumulative order quantity, it must be non-
decreasing. This is imposed by the following constraint:

t−1∑
i=1

qit ≤
N+1∑
j=t+1

qtj , t ∈ [2, N ] (9)

The following constraint concerns the Hijt variables, which are approxima-
tions of the loss function. Using the approach described earlier in section 3.1,
I obtain intercept pairs (a, b) ∈ Wit associated with loss function Lit. Then,
as Lit(qij − E(D1i−1)) ≈ max(a,b)∈Wit

{axij + b(qij − E(D1i−1))}. I incorporate
this as follows:

Hijt ≥ axij+b(qij−E(D1i−1)), i ∈ [1, N ], j ∈ [i+1, N+1], t ∈ [i, j−1], (a, b) ∈ Wit

(10)
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For completeness, below I specify the entire model:

min (4)

subject to (5)-(10

Hijt ≥ 0, i ∈ [1, N ]j ∈ [i+ 1, N + 1], t ∈ [i, j − 1]

qij ≥ 0, i ∈ [1, N ], j ∈ [i+ 1, N + 1]

xij ∈ {0, 1}, i ∈ [1, N ], j ∈ [i+ 1, N + 1]

4.2 Receding Horizon

Next, I will extend the MIP-model by incorporating a receding horizon. A
receding horizon means that the program will be evaluated for different horizons,
where the horizon length keeps decreasing, while the ending period remains
the same. Generally, the main benefit of using a receding horizon in lot-sizing
problems is that information about the realised demands in the previous periods
can be used to come up with an adapted order policy. However, this does come
at the cost of the possibility of the order policy changing during the horizon.

Next, I will introduce two algorithms, but I will first introduce some new
notation:

• Xk: matrix containing order policy for time horizon [k,N ], where Xk
ij=1

if replenishment cycle [i, j) is part of the order policy

• X∗: the final result containing all the order cycles after completing algo-
rithm

• Qk: cumulative order quantities for order policy for time horizon [k,N ]

• D̂ij : the realised demand in period [i, j]

I will incorporate the receding horizon by first developing a naive algorithm
that reevaluates the order policy at the start of every new replenishment cycle.
First, I will solve the model for the complete horizon. From, this solution, I
save the starting and ending index of the first replenishment cycle to matrix
X∗. Then I update k by adding the ending index and the algorithm resolves the
model, now with time horizon [k,N +1] . The algorithm continues this process
until period N + 1 is reached. Like with the MIP model I assume the full cycle
is given by [1, N + 1].

Important to note here is that the model is reevaluated at the start of every
new replenishment cycle, and not at every single period across the time horizon.
There are two reasons for this, the first being that current literature on receding
horizon also does this (Dural-Selcuk et al. 2020). The second reason is that
reevaluating at every period would would require a completely new formulation,
as the current network flow formulation requires a replenishment cycle to start
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in the first period of the time horizon considered. Ultimately, the matrix X∗

contains the final cycles for the order policy.
I will now introduce provide pseudocode for this naive algorithm to illustrate

its workings.

Algorithm 1 Naive algorithm

1: k = 1
2: while k < N + 1 do
3: X = Xk

4: Q = Qk

5: for p ∈ [0, N + 1− k] do
6: if X0p = 1 then
7: X∗

k,k+p = 1
8: k = k + p
9: break

10: end if
11: end for
12: end while

This naive algorithm still has several limitations. The first one is that it
is unable to incorporate information about demands in the preceding periods,
despite having access to them. This means it is unable to benefit from the main
advantage of using a receding horizon. Secondly, the costs from this algorithm
are not comparable to that of the original MIP model. This is because the
model implicitly assumes that every new replenishment cycle is started with
zero inventory. These limitations therefore still require an algorithm that does
make use of information about realised demands.

4.2.1 Heuristic

Hence, I will develop a heuristic that both incorporates the receding horizon
and also makes potential adjustments to the order policy based on the realised
demands. The structure of this algorithm is similar to algorithm 1, but the
algorithm also keeps track of the inventory level throughout by generating the
actual demands and subtracting them from the starting inventory level, derived
from the order-up to level.

The algorithm works by iterating over all replenishment cycles of the total
horizon, until it reaches the final periodN+1. For every period, it first computes
the order policy where the first replenishment cycle is given by [1, p). Then, the
algorithm updates the inventory by first setting it equal to the base-stock level
and then subtracting the realised demand from period [k, k+ p), of the original
demand horizon. Then the algorithm checks whether the inventory would be
large enough to meet expected demand for period p. Here I do not compare
the inventory to the expected demand but make an adjustment to account for
uncertainty and compare it to EDii+σii∗C, where σii is the standard deviation
associated with the demand in period i and C is the value for the confidence
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level, with C ≥ 0. The higher this value, the less likely it is for inventory to be
unable to meet the demand from the following period.

If the inventory is larger, the current replenishment cycle is extended by one
period to now include the period which demand would likely be able to be met
by the current inventory and this replenishment cycle [k, k + p) is added to the
final order policy X∗. In this case, k is updated to k+ p+1. If inventory is not
sufficiently large, k is updated to k = k+p and the original cycle [k, p) is added
to X∗.

When inventory is large enough to meet that criterion, it intuitively makes
sense to postpone an order, as one does not generally order when inventory is
large enough to meet demand in the next period.

Lastly, the variable numberEdits keeps track of the number of times the
order policy is changed and is incremented whenever the inventory is sufficiently
large. This also allows for a maximum number of edits to be imposed.

One important note is that at the start of every run of the algorithm the
horizon [1, N + 1 − k] is considered. This means the first cycle in every new
solution always start at index 1. The X∗ matrix then has the purpose of keeping
track of the replenishment cycles over the full horizon.

Algorithm 2 Heuristic incorporating receding horizon

1: k = 1
2: while k < N + 1 do
3: X = Xk

4: Q = Qk

5: for p ∈ [2, N + 1− k] do
6: if X1p = 1 then
7: p∗ = p
8: end if
9: inventory = Q0p − ̂Dk,k+p∗−1

10: if inventory < EDk+p∗,k+p∗ + C ∗ σk+p∗,k+p∗ ||numberEdits ≥
maxEdits then

11: X∗
k,k+p∗ = 1

12: k = k + p∗

13: else
14: numberEdits = numberEdits+ 1
15: X∗

k,k+p∗+1 = 1
16: k = k + p∗ + 1
17: end if
18: end for
19: end while

Using this heuristic, I will generate a new order policy, that is potentially
different from the original solution, as whenever the condition from line 10 holds,
at least one replenishment cycle changes.

The fact that adjustments to the replenishment periods are possible and are
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made during the horizon, means that this heuristic is no longer a static-dynamic
uncertainty model, but rather a dynamic uncertainty model.

5 Computational Experiment

Following Tunc et al. (2018), I will test the model using two sets of instances,
Set-1 and Set-2. The first set of instances, Set-1 will be used to test the models
performance against different set of parameters, while the second set will be
used to test the models scalability.

For Set-1 I will use three different values for most the parameters, which are
outlined in table 1. For the holding cost, I will just use the value 1, for both
sets of instances. The ρ variable indicates the coefficient of variation, where
σ = µ ∗ ρ.

For the demands, I assume that they are normally distributed and indepen-
dent. The means come from either the lumpy or erratic demand pattern. I
use the same demands, as Tunc et al. (2018), a link to which can be found in
their paper. Tunc et al. (2018) generate 10 random problem instances for every
combination of parameters values. However, I only use 9, as the 10th iteration
has the same exact values as the 1st iteration of the lumpy pattern with the
same horizon length. In total this means that I have 1458 different iterations
for Set-1.

For Set-2, I fix all the parameters to one value, except for the number of
periods in the planning horizon. For every horizon length, there are 10 random
problem instances. Again, I use the demands that Tunc et al. 2018 generated.

Table 1: Parameters values computational experiment

Values

Parameter Set-1 Set-2

π Erratic,Lumpy Erratic
N 20,30,40 50,60,70,80,90,100
K 225,900,2500 225
p 2,5,10 10
ρ 0.1,0.2,0.3 0.3
h 1 1

I carry out all computation using CPLEX on Java. The processor I use is
1.80 GHz Intel Core(TM) i5-8250U CPU with 8GB Ram.

5.1 Simulation

5.1.1 Approximation Error

In order to test the reliability of these policies, I perform two tests.
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First, I calculate what the actual cost would have been per the non-linear
loss function, based on the solution for each iteration. This differ from the
value of the objective cost function, because of the Hijt variables, which is an
approximation of the loss function. Therefore, for every t ∈ [i, j), where [i, j) is
a replenishment cycle, I calculate the value Lit(qij−ED1i−1) and take the sum.
The difference between the costs from the model and the actual costs, that is
the approximation error, or A-ERR are then given by equation (11) below. The
xij makes sure only the terms are considered for which [i, j) is a replenishment
cycle.

A-ERR = (h+ p)

N∑
i=1

N+1∑
j=i+1

j−1∑
t=i

xij(Hijt − Lit(qij − ED1i−1)) (11)

I calculate the loss function, Lit using the formula provided by Rossi, S. A.
Tarim, et al. (2014), which is given below.

Lit(x, ξ) = σit ∗ (ϕ(
x− µit

σit
)− (1− Φ(

x− µit

σit
))
x− µit

σit
) (12)

In this equation, ξ refers to the random variable, and x is the value at which
the loss function is evaluated. Furthermore, ϕ refers to the pdf of the standard
normal distribution, while Φ refers to the cdf.

5.1.2 Simulation Error

The second simulation is more involved. First, I generate the actual demands for
each period, using the fact they are normally distributed. Then for each of the
periods t, the algorithm checks whether a new replenishment cycle starts in this
period, denoted by [i, j). If so, the inventory level is set to qij − ED1i−1. This
is the base-stock level and the starting inventory for every replenishment cycle.
Then, for every period t, the inventory is decreased by the realised demand
from period t. When inventory is still positive, total costs are increased by
the inventory multiplied with the holding cost, as this inventory is carried over
to the next period. When inventory is negative, it means products have to
be back-ordered, which means inventory times the back-order cost is added to
the total cost. If inventory is negative, it is reset back to 0, to make sure the
same demand is not back-ordered multiple times were inventory unable to meet
demand in consecutive periods. This process repeats until the last period.

Ultimately, S-ERR denotes the difference between the difference between the
total costs derived from the MIP-formulation and the simulation.
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Algorithm 3 Simulation algorithm

1: while p < numRuns do
2: totalCostSim = 0
3: inventory = 0
4: t = 0
5: while t < N + 1 do
6: for j ∈ [t+ 1, N + 1] do
7: if xtj = 1 then
8: totalCostSim = totalCostSim+K
9: inventory = qtj − ED1t−1

10: end if
11: end for
12: inventory = inventory − D̂tt

13: if Inventory > 0 then
14: totalCostSim = totalCostSim+ inventory ∗ h
15: else
16: totalCostSim = totalCostSim+ inventory ∗ p
17: inventory = 0
18: end if
19: t = t+ 1
20: end while
21: S-ERR=costMIP − totalCostSim
22: p = p+ 1
23: end while

To illustrate how the simulation works, I have provided pseudocode above.
In line with Tunc et al. (2018) I perform 500 different simulation runs for each
iteration. I perform this simulation both for Set-1 and Set-2.

5.2 Receding Horizon Heuristic

In this next section, I will explain how I will test the performance of the receding
horizon heuristic. First, for Set-1, I will perform 50 different simulations runs
for every combination of parameters and demand pattern using the same set of
randomly generated instances as I did for the MIP-model. I will keep track of
how often the heuristic is applied, meaning an adjustment to the order policy
is made, in order to assess to what combination of parameters the heuristic is
most effective.

Next to keeping track of the frequency, I will also assess the cost-saving
potential of this heuristic. I will do this by simulating costs both under the new
policy with the adjustment and under the old policy without the adjustment.
Let’s say it is true for period i that the inventory is likely large enough to meet
demand, see line 10 of algorithm 2. Then for the simulation, I use algorithm 3,
for the period [i,N ], where N is the last period of the original horizon. However,
there is one difference as in this case the simulation does not start with inventory
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being equal to zero, but rather with the inventory left after the previous periods.
This means I will first add the inventory multiplied with the holding costs.

Under the old policy, the first replenishment cycle will start in period i,
while under the new policy the replenishment cycle will start in period i + 1.
This means that for the cost calculation under the new policy, the inventory
will be decreased by D̂ii and based on the inventory left the total costs will be
updated. Then moving to the next period, the inventory is set to qi+1j , where
xi+1j = 1 with [i+ 1, j) being the first replenishment cycle. Meanwhile, under
the old policy, the inventory is immediately set to qij .

For every adjustment, I will do 500 simulation runs, where I generate all the
demands for the horizon [i,N ]. For every run, I record the total costs under both
the old and new policy and then calculate the mean and standard deviation for
both and record those. This will allow me to look at the average cost difference
per parameter type. During each simulation run, I use the same set of generated
demands for the cost calculation under the old and new policy.

For the value for C I use 1.96, derived from the 95% confidence interval of
the normal distribution. Furhtermore, I set maxEdits equal to 1, meaning per
simulation run I will make a maximum of one adjustment. Because of running
time considerations, I will only use the heuristic on Set-1.

6 Results

6.1 MIP Model

In the first part of this results section, I present the results of the MIP model to
both assess its computational performance and to compare it to the results of
Tunc et al. (2018). I first present the results for Set-1 in table 2 to assess how
the model performs under different parameters settings, while table 3 reports
results from Set-2 in order to assess scalability. In both tables, E-Gap refers to
the relative optimality gap, while Tunc-Gap refers to the relative in the value
of the objective function between my solutions and those of Tunc et al. (2018).
Both gaps are denoted in percentages. Lastly, for both tables I present the
number of explored nodes and the solution time in seconds. I should note that I
did not impose a maximum solving time, unlike Tunc et al. (2018), who imposed
a maximum solving time of 30 minutes. Every entries in the table are calculated
by taking the average of that solution statistic for one specific parameter.
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Table 2: Results MIP Model Set-1

Parameters E-Gap Tunc-Gap Nodes Time

π
Erratic 0.00 0.07 0.01 5.69
Lumpy 0.00 0.06 0.00 5.25

N
20 0.00 0.00 0.00 0.86
30 0.00 0.19 0.00 4.15
40 0.00 0.00 0.01 11.78

ρ
0.1 0.00 0.04 0.00 5.44
0.2 0.00 0.07 0.00 5.45
0.3 0.00 0.09 0.01 5.53

K
225 0.00 0.10 0.01 5.32
900 0.00 0.06 0.00 5.63
1500 0.00 0.04 0.00 5.48

p
2 0.00 0.04 0.00 5.6
5 0.00 0.06 0.01 5.52

10 0.00 0.10 0.00 5.3

Average 0.00 0.06 0.00 5.5

Table 2 first shows that both the optimality and the gap with Tunc et al.
(2018) are practically zero, showing that solutions I derived are optimal. The
average number of nodes explored are also all either zero or 0.01. The average
running times only differ between the different horizon lengths, which was to be
expected. There are no clear differences in the average solution times, between
different values of the other parameters. On the whole, the model shows no
difference in performance across different parameter settings.

Table 3 displays a similar pattern, with the optimality gap, the gap with
Tunc and the number of explored nodes all being zero for all six horizon lengths,
showing the MIP model can still solve to optimality for larger horizon lengths.
Compared to Set-1 the solving times are significantly larger and even go up to
an average of 17 minutes for N = 100.

For both sets of instances, my running times are nominally higher than
those of Tunc et al. (2018), which can be caused a range of issues that includes
a different processor. However, my solution times do show a similar patterns as
those in Tunc et al. (2018).
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Table 3: Results MIP Model Set-2

MIP Model

Parameters E-Gap Tunc-Gap Nodes Time

N
50 0.00 0.00 0.00 24.82
60 0.00 0.00 0.00 59.17
70 0.00 0.00 0.00 146.65
80 0.00 0.00 0.00 308.75
90 0.00 0.00 0.00 576.53
100 0.00 0.00 0.00 1181.97

Average 0.00 0.00 0.00 382.98

6.2 Simulation

In the following part, I assess the reliability of the MIP formulation by simulating
demand, according to the process outlined in section 5.1. I assess the reliability
in multiple ways. Firstly, I compute the approximation error, caused by the
linear approximation of the loss function. Specifically, A-ERR refers to the
absolute difference between the value from the objective function based on the
optimal order policy and the actual total costs, as outlined in equation 11.
Following on that A-ERR∗ refers to the relative gap between the two.

Next to assess the reliability, I calculate the simulation error. This is the
difference between the value of the objective function under the optimal order
policy and the actual cost value of the cost function based on simulated demands.
Similar to above, S-ERR refers to the absolute simulation error, while S-ERR∗

refers to the relative error. I also denote the average standard deviation of the
simulation runs.

Both relative gaps are given as percentages. First, table 4 gives the results
for Set-1 while 5 does so for Set-2.

To start with A-ERR, it clearly fluctuates for different parameters settings.
This is perhaps unsurprising seeing the way of linearly approximating the loss
function from Rossi, S. A. Tarim, et al. 2014 is independent of the parameters
settings, save for ρ. The A-ERR is higher on average for the erratic demand
patterns and also shows a positive correlation for the horizon length, variation
coefficient and penalty cost. It also does so for the fixed costs, but the increase
is less pronounced. For all parameter settings, the relative gap is very close to
zero and does not seem significant anywhere.

The simulation error is much larger than the approximation error, raising
some small doubts about the reliability. The relative simulation error is constant
across horizon lengths, increases with the variation coefficient, fixed cost and
decreases with the penalty cost.
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Table 5 shows a different pattern, with both the absolute and relative sim-
ulation errors being a lot lower. Furthermore, the absolute error does not even
fluctuate too much depending with increasing horizon length. However, the
absolute approximation error is positively correlated with the horizon length.

Table 4: Error rates Set-1 Simulation

Simulation MIP Model

Parameters A-ERR A-ERR∗ S-ERR S-ERR∗ stdDev

π
Erratic 18.84 0.21 -317.49 -2.33 319.45
Lumpy 15.9 0.24 -407.48 -5.29 419.1

N
20 10.83 0.22 -241.74 -3.72 273.74
30 17.71 0.23 -355.47 -3.77 383.96
40 23.56 0.23 -490.25 -3.93 450.11

ρ
0.1 8.39 0.14 -237.48 -2.86 190.61
0.2 17.51 0.24 -372.31 -4.01 379.17
0.3 26.2 0.31 -477.67 -4.55 538.03

K
225 16.11 0.36 -78.16 -2.3 226.66
900 17.68 0.2 -311.58 -4 364.15
2500 18.32 0.12 -697.72 -5.13 517

p
2 8.09 0.12 -589.18 -6.55 293.36
5 15.92 0.21 -291.4 -2.99 365.19

10 28.09 0.34 -206.88 -1.89 449.26

Average 17.37 0.23 -362.49 -3.81 369.27
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Table 5: Error rates Set-2 Simulation

Simulation MIP Model

Parameters A-ERR A-ERR∗ S-ERR S-ERR∗ stdDev

N
50 92.1 0.83 -11.38 -0.11 642.16
60 113.02 0.85 -40.11 -0.31 654.95
70 125.98 0.84 -37.9 -0.26 721.72
80 147.3 0.84 -31.51 -0.19 775.25
90 162.37 0.83 -66.18 -0.34 815.29
100 182.41 0.85 -31.63 -0.15 848.01

Average 136.38 0.84 -35.86 -0.22 742.9

6.3 Receding Horizon Heuristic

The final part of the results section is dedicated to the receding horizon heuristic.
First, I report the percentage of times for a specific parameter that the heuristic
is triggered, which I call the average hit rate. As there can only be 1 adjustment
per simulation run, the maximum hit rate is 1.00. Then for all simulation runs
under both the old policy and the new policy with the adjustment, I report
the average standard deviation. I also report the average difference between
the total costs under both order policies in both absolute and relative terms,
denoted by DIFF and DIFF∗ respectively. Following the equations below, a
negative value for DIFF and DIFF∗ means that the heuristic caused a cost
decrease.

DIFF = Average(CostsOldPolicy − CostsNewPolicy) (13)

DIFF∗ = Average(DIFF/CostsOldPolicy) (14)

Table 6 below first shows stark differences in the hit rate, with the average
being 13.72%. This hit rate depends partly on the value used for the confidence
level used, which in this case is 1.96. The hit rate is much larger for the lumpy
pattern than for the erratic pattern and also positively correlated with the coeffi-
cient of variation, the penalty costs and the horizon length, while it is negatively
correlated with the fixed cost. The emerging patterns seems to be that the more
uncertainty in the model and the more total number of replenishment cycles,
the higher the chance of the heuristic being triggered. The latter part makes
sense as with more replenishment cycles, there are more opportunities for the
heuristic to be triggered.

Next, the standard deviations for both the old and the new policy do not
show stark differences. Again, it increases with the coefficient of variation and
the horizon length.
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Lastly, by looking at the DIFF column, it becomes clear that the heuristic
does not always cause a cost decrease and rather causes a cost increase in some
cases. This cost increase can also be a result of the base-stock level being higher
than the starting inventory, which the model does not account for. However, the
sign of DIFF and its magnitude are both heavily dependent on the parameters.
First, it causes a big cost decrease for the erratic pattern, while causing a small
decrease for the lumpy pattern. Also, the cost decrease is bigger for the lowest
coefficient of variation. Lastly, there are also strong patterns visible for the fixed
cost and the penalty cost. Small fixed costs and penalty cost are associated with
a cost increase, while the larger fixed costs and penalty costs demonstrate a cost
decrease, meaning the heuristic performs well.

Table 6: Simulation results heuristic

Heuristic

Parameters Avg Hitrate stdDev old stdDev new DIFF DIFF∗

π
Erratic 2.77 286.34 276.72 -131.12 -3.68
Lumpy 24.66 218.68 216.97 9.07 0.39

N
20 8.39 115.32 111.22 -12.99 -0.44
30 16.21 216.77 215.28 -1.7 0.19
40 16.56 289.89 287.18 -4.39 0.00

ρ
0.1 5.28 105.09 104.49 -24.99 -2.06
0.2 14.26 194.04 192.84 -2.5 0.08
0.3 21.62 272.6 268.78 -2.66 0.37

K
225 32.15 190.85 189.51 8.56 0.32
900 8.26 347.51 343.3 -36.51 -1
2500 0.74 322.1 295.63 -194.16 -3.03

p
2 7.44 141.86 140.63 27.82 1.66
5 13.54 207.59 206.04 1.12 -0.02

10 20.16 268.57 265.1 -20.79 -0.61

Average 13.72 225.51 223 -5.09 -0.02

Another pattern that becomes clear is that the lower the average hit rate,
the higher the cost saving realised by the heuristic. This holds true for all
parameters. The largest relative differences are also found when the average
hit rate is lowest, namely for the erratic demand pattern and K = 2500. On
average, the heuristic does cause a cost decrease.
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7 Conclusion

In this thesis, I have investigated the stochastic lot-sizing problem, first using
a MIP-formulation developed by Tunc et al. (2018). This MIP-formulation is
characterised by a linear approximation of the loss function, which is done using
a piece-wise linear approximation outlined in Rossi, S. A. Tarim, et al. (2014).
Afterwards, I have extended the MIP model by implementing a receding horizon.

The MIP-model was shown to be computationally efficient, with reasonable
running times, similar to Tunc et al. (2018). Furthermore, the gap between
the values of the objective function derived in this thesis and in Tunc (2021) is
negligible. This holds true both for Set-1, that tests a range of parameters and
Set-2, that tests scalability.

To assess the reliability of the model, I have also performed several simulation
runs, to determine both the approximation and the simulation error. For both
Set-1 and Set-2 the approximation error is very small. The simulation error,
however, is considerably large for Set-1 and also much larger than in Tunc
et al. (2018). This raises some question about the reliability of the model,
although the simulation errors are very small for Set-2. Furthermore, the average
simulation error for Set-1 is 3.83%, which one could argue is still manageable.

Next, I have developed a heuristic that solves the model within a reced-
ing horizon environment. At the start of every replenishment cycle, it checks
whether inventory is sufficiently large to meet demand the next period and if
so, updates the replenishment schedule. The possibility of updates to the re-
plenishment schedule means it is no longer a static-dynamic uncertainty model.

The cost-saving potential of the heuristic is highly dependent on the param-
eter settings. It works very well for high penalty costs, high fixed costs and
the erratic demand pattern, but does not perform well for low penalty costs,
low fixed costs and the lumpy demand pattern, even causing a cost increase at
times. What is true across all parameter settings is that the lower the chance
of the heuristic being triggered, the higher the cost saving potential.

As applying the heuristic also comes at the cost of having less uncertainty
over the order policy, since the timing of the placement of orders could change
during the time horizon. Still, the heuristic can be set to incorporate a maximum
of one adjustment to the original order policy. This means that for specific
parameter settings, but heuristic is useful to save costs.

The first limitation of my thesis is that the solutions derived using the MIP-
formulation are technically not optimal, due to the assumption that the base-
stock level at the start of ever replenishment cycle is always higher than the
inventory left after the end of the preceding replenishment cycle. Secondly, the
current parameter I have used for the confidence level I have chosen independent
of the model parameters. The heuristic could work better if this parameter is
chosen based on the ratio between the holding and penalty cost.

Another avenue for future research could be looking into allowing multiple
edits per iteration, as I have currently just allowed for one. This would come
at the cost of having less certainty over the replenishment schedule, but would
potentially save more costs. Furthermore, the heuristic could also be extended
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to variations of the MIP-formulations, such as those that employ service level
constraints instead of penalty costs.
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A Comments on code

All the programming has been done on Java, using CPLEX.
In the accompanying zip file there are three files. The first is thesisMain.

This is the code I used to run both the MIP model and the simulation for set
1. There are 6 different demand matrices, either lumpy or erratic, and either
20, 30 or 40 horizon length. I ran the code for all six. The parameters for the
model are specified in the text and I used 500 simulation runs.

The second file theisSetTwo is analagous to thesisMain but instead computes
the MIP model and simulation runs for Set-2. Here all relevant demands are
put into one matrix, so there is just the need for a single run.

The last file is called thesisExtensionHeuristic and is used to test the heuris-
tic. Again, one needs to run this for 6 different demand files.
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