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Abstract

This research explores the potential implementation of mobile dentistry services in rural

areas using the Mobile Dentistry Network Design Problem (MDNDP), a mixed-integer op-

timization model. By using different balances between patient-treated maximization, net

revenue maximization, and fair patient allocation, the model generates solutions containing

only back-and-forth trips to a central hub. A Montana case study demonstrates that a 5-

day working week in the MDNDP leads to a fairer patient allocation (minimum disparity of

17%) compared to a 4-day working week (minimum disparity level of 31%) but at the ex-

pense of significantly decreased net revenues. The inclusion of tours in the Mobile Dentistry

Network With Tours Design Problem (MDNWTDP) demonstrates favorable impacts on

patient-treated-maximizing solutions but does not yield improvements when maximizing net

revenues. These findings are consistently supported by a simulation study. However, the in-

corporation of tours does result in increased computational time. To address this challenge,

a heuristic approach is introduced, which offers relatively good solutions with a maximum

net revenue gap of 14,2% in the simulation study. Nonetheless, the heuristic does not surpass

the performance of the MDNDP model.
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1 Introduction

Regular attendance to dental care is essential for maintaining optimal oral health (Thomson

et al., 2010), which, in turn, plays a critical role in supporting overall health and well-being

(Davis et al., 2010). For instance, oral infections have been associated with an increased risk of

developing diabetes, heart diseases, and stroke (U.S. Department of Health and Human Services,

2000). While it is known that inequalities in the availability of oral health care give rise to various

conditions such as malnutrition, childhood speech problems, infections, diabetes, heart disease,

and premature births (National Research Council, 2012), access to dental care in rural areas is

still marked by significant disparities (U.S. Department of Health and Human Services, 2004).

Therefore, an imperative exists to identify a solution.

Crall (2006) describes how financial barriers create disparities in dental care access. A

public insurance program called ”Medicaid” (Medicaid.gov, 2016) in the United States provides

coverage for dental services, however, patients may face challenges in finding dental providers

who accept this insurance. Non-profit Community Health Centers (CHCs) are often important

access points for dental care, but especially in rural areas, there can still be a large distance

from a person’s home to the nearest CHC. Mobile dentistry has emerged as a viable solution to

address the challenges of limited access to dental care. This approach entails dentists, dental

hygienists, and dental assistants traveling in vans or trailers with onboard dental equipment.

One of the states in the United States that is known for its rural areas is Montana. The refer-

ence paper by Thorsen and McGarvey (2018) describes a study on the Mobile Dentistry Network

Design Problem (MDNDP) to assess the potential of a mobile dentistry service in Montana’s

rural regions. The MDNDP involves the operational framework of the mobile dentistry service,

which is initially based at a central hub. From this hub, the mobile dentistry unit is permitted

to travel to other CHCs. To optimize efficiency, the mobile dentistry unit has the flexibility to

stay overnight at other CHCs than the hub, thus reducing travel time. However, it is important

to note that the MDNDP prohibits direct travel between non-hub CHCs as Thorsen and McGar-

vey (2018) argue against incorporating tours due to the time required for setup and breakdown.

Additionally, it is required to return to the central hub for the weekend. The MDNDP is solved

using an algorithm that utilizes a Mixed Integer Linear Program (MILP) formulation.

Thorsen and McGarvey (2018) implement a 4-day working week, during which the dental

care team operates for 10 hours each day. The study indicates that serving six locations yields

a minimum disparity level of 19%. In this context, ”disparity” refers to the relative difference

between the actual number of patients served at a particular location and the number of patients

that should be served proportionally to the demand at that location and other locations. The

inclusion of three additional locations results in an increased minimum disparity level of 31%,

and thus has a negative impact on fair patient allocation.

This research aims to explore potential enhancements to the MDNDP. Specifically, two im-

provements are considered: transitioning from a 4-day to a 5-day working week and incorporating

tours into the model. The introduction of a 5-day working week allows for increased planning

flexibility and has the potential to generate solutions for lower disparity levels. We find that

employing a 5-day working week while serving nine locations leads to a significant reduction in

the minimum disparity level, reaching as low as 17%. However, this transition necessitates a
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reduction in daily working hours from 10 to 8, maintaining a total of 40 working hours per week.

As traveling becomes a relatively larger part of the working day, less time is left to treat patients,

resulting in a decline in net revenues. The most profitable solution achieved when employing a

4-day working week generates $36,910, while the most profitable solution when using a 5-day

working week generates $26,370, indicating a significant decrease in profitability.

To evaluate the potential benefits of incorporating tours into the MDNDP, we introduce the

Mobile Dentistry Network With Tours Design Problem (MDNWTDP). This modification allows

for travel between locations through overnight stays. This entails the mobile dentistry staff

staying overnight at a non-hub CHC, and the following morning, they travel to another non-hub

CHC. Such tours are limited to once per week to reduce the maximal total travel time in one

week and thereby accommodate the mobile dentistry staff’s comfort and well-being (Wheatley

& Bickerton, 2016). We apply the MDNWTDP to both the original 4-day working week and the

extended 5-day working week. We see that the MDNWTDP outperforms the MDNDP in both

scenarios in terms of patient-treated maximized solutions, however, no significant improvement

is made for net revenue maximized solutions.

As the MDNWTDP shows improvements in the Montana case study of Thorsen and McGar-

vey (2018), its potential value in other contexts merits examination. Consequently, we conduct

a simulation involving locations characterized by relatively high-demand locations, situated dis-

tant from the hub, with smaller demand locations located close to the high-demand location.

In this simulation, the MDNWTDP exhibited superiority over the MDNDP when optimizing

for total patients, presenting solutions that treat a greater number of patients at the selected

disparity levels. However, the improvements in profits for maximized net revenue solutions re-

main minimal, with a maximum improvement of only 0.5% compared to the MDNDP. Notably,

all solutions generated by the MDNDP are encompassed within the set of solutions obtained by

the MDNWTDP, ensuring that the MDNWTDP never produces inferior solutions. However,

it is important to consider that the computational time required to solve the MDNWTDP is

significantly longer than that of the MDNDP.

To address the computational challenge, we introduce a heuristic. This heuristic rapidly

generates solutions that are relatively close in quality to those produced by the exact models,

with net revenues approaching the levels achieved by the exact models. In the simulation study,

the gaps between the solutions obtained by the heuristic and the profit-maximizing solutions

range from a minimum of 6.4% to a maximum of 14.2%. However, it is important to note that

the heuristic never surpasses the performance of the MDNDP model.

To provide a concise overview, our investigation reveals that, a 5-day working week leads

to a decrease in the minimum disparity level compared to a 4-day working week. However, it

also results in a reduction in net revenues. In terms of generating solutions that maximize the

number of patients treated, the MDNWTDP model outperforms the MDNDP model, however,

the MDNWTDP model is not superior in providing solutions that maximize profits.

The subsequent sections aim to present additional literature related to topics similar to the

Mobile Dentistry problem. Afterward, we formally introduce our methods and provide a detailed

description of the data employed to derive the eventual results. Finally, we provide a conclusion

based on the findings obtained.
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2 Literature Review

Thorsen and McGarvey (2018) conducted a thorough investigation on the feasibility of providing

mobile dentistry services in Montana. The introduced MILP formulation to solve the MDNDP

includes constraints to account for overnight stays, the number of treated patients, and net

revenues to obtain optimal solutions. Additionally, disparity constraints are incorporated to

ensure a fair distribution of patients across different locations. An algorithm is proposed in

which the MILP is solved two times in order to find the efficient frontiers per disparity level in

terms of treated patients and annual net revenue. A negative relationship is identified between

the disparity of patient distribution and net revenue, whereby an increase in the number of

patients served from remote areas resulted in a decrease in net revenue due to travel time and

overnight expenses. However, tours are not used in this formulation as explained in Section 1,

but the inclusion of tours in similar cases has been investigated in other studies. In the next

subsection, I elaborate on these studies.

2.1 Tour-based facility problems: challenges and approaches

Facility problems involving the selection of the most optimal routes can be effectively addressed

through the utilization of a set covering approach. Nevertheless, Halper and Raghavan (2011)

assert that these problems present computational challenges due to their NP-hard nature. While

an algorithm has been introduced to tackle the set covering problem within a polynomial time

frame, it solely focuses on maximizing the fulfillment of demand and does not incorporate revenue

optimization. Furthermore, the algorithm does not consider any disparity constraints. Given

these limitations, the heuristic is deemed inapplicable to our specific problem. Consequently, an

alternative approach is pursued, considering the computational complexity inherent in the set

covering methodology. Another study on mobile healthcare facilities was conducted by Doerner,

Focke and Gutjahr (2007), who proposed three algorithms to approximate tours for mobile

healthcare in Senegal. However, it should be noted that the problem described in the paper did

not include the constraint of healthcare workers being available at their homes during weekends.

Consequently, directly applying the algorithms proposed in that study becomes challenging

in our context, where adherence to such constraints is essential. To optimize the route and

schedule of a fleet of mobile facilities that serve customers with uncertain demand, Lei, Lin and

Miao (2014) proposed a two-stage stochastic formulation to minimize the total cost incurred

during the planning horizon. Lei, Lin and Miao (2016) further developed a two-stage robust

optimization approach for mobile facility fleet sizing and routing under demand uncertainty

using a network flow formulation. These approaches only consider stochastic demand and do not

account for setup and breakdown times. In contrast, the variant of the vehicle routing problem

proposed by Doerner et al. (2007) considers setup and breakdown times, with a setup time

of 10 minutes. However, Thorsen and McGarvey (2018) reported that other mobile dentistry

operations in Montana required setup times of around 30-45 minutes, with similar breakdown

times. In contrast to Lei et al. (2016), we do not have to optimize for fleet size, as a fixed

fleet size is chosen by Thorsen and McGarvey (2018). Berman, Krass and Drezner (2003)

consider the maximum cover location problem (MCLP) with partial coverage defined by two
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coverage radii S1 and S2 (S1 < S2). It is fully covered if a demand point can be covered by

its closest facility in less than distance S1. If the distance is between S1 and S2, the demand

point is partially covered. If the distance is more than S2, the demand point is not covered. The

objective of MCLP is to establish a set of m facilities that maximize the total weight of “covered”

customers, where a customer is considered covered if he is located within a specified distance

away from the closest facility. However, it’s crucial to consider the implications of following

MDNDP’s maximum disparity levels. Opening all facilities becomes necessary to meet these

requirements, making the Maximum Covering Location Problem (MCLP) approach inadequate

for our mobile dentistry challenges. Current and Schilling (1994) developed the median tour

problem (MTP) and maximal covering tour problem (MCTP). The objective of the MTP is to

reduce the overall travel distance between each demand node and its closest node on the tour,

while also minimizing the length of the tour. On the other hand, the MCTP aims to maximize

the total demand within a predetermined distance from a stop on the tour. The study by

Ozbaygin, Yaman and Karasan (2016) aims to maximize demand coverage subject to a distance

limit similar to the MCTP. However, their coverage function differed in that it fully covered

the demands of vertices on the tour, while only a certain percentage of the demand of a vertex

was covered if it was not visited but within a specified distance of a tour stop. However, the

MTP, MCTP and the variant proposed by Ozbaygin et al. (2016) are not suitable for solving

the MDNWTDP due to the need to optimize net revenue and distribute patients proportionally

across locations. We see that the problem at hand presents a distinctive set of challenges

that distinguish it from the issues discussed in the aforementioned literature. Specifically, our

situation necessitates adherence to disparity constraints, thus rendering full coverage of demand

at a single location unattainable. Furthermore, it is essential to acknowledge the inherent

limitations of mobile dentistry, where only a limited number of patients can be treated per hour

and the mobile dentistry workers must be at home on weekends. Consequently, the combination

of disparity constraints with optimization techniques encompassing patient allocation and net

revenue accentuates the uniqueness of the mobile dentistry problem, calling for the development

of a tailored approach.

Section 3 provides a comprehensive elucidation of the methods employed to address these

challenges and solve the MDNWTDP effectively.

2.2 Heuristic approaches

Heuristics serve as valuable tools for reducing computational time, albeit at the expense of

obtaining sub-optimal solutions. Among these heuristics, two prominent types are greedy and

local search algorithms. Merz and Freisleben (2002) describe how greedy algorithms are intuitive

strategies that make greedy choices to attain a specific objective. On the other hand, local search

algorithms, such as hill-climbing, are improvement heuristics that explore the neighborhood of

the current solution in search of better alternatives until no further enhancements can be made.

A hybrid algorithm combining both greedy and local search techniques, referred to as a greedy

local search, applies a hill-climbing approach by selecting the local move that yields the greatest

improvement in the objective function. Although this method terminates at a local optimum,

it often serves as a reasonable approximation of the global optimum (Selman & Gomes, 2006).
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3 Methodology

In this section, we formulate the MDNDP and MDNWTDP as MILPs and introduce an al-

gorithm that is used to compute the efficient frontiers in terms of the number of patients treated

and net revenues. Furthermore, we formally introduce the heuristic that is used to approach the

solutions of the MDNDP and MDNWTDP.

3.1 Model for the MDNDP

First, we introduce the notation that is used in the MDNDP model. The notation is contained

in Table 1.

Index sets i i ∈ location set I

Data variables ai the total time required for a round trip, including travel time and

setup/breakdown times, to visit location i from the hub

bi the maximum number of patients that can be treated per day

at location i

c revenue per patient

e total fixed expense of the operation

f total patients who can be treated per hour

g the overall count of working days within the horizon, accounting

for two weeks of non-operation within a 26-week period

pi percentage of total under-served patient population living within a

prescribed radius of location i

α lever to adjust the sensitivity of total net revenue

β lever to adjust the sensitivity of service disparity across locations

γ lever to adjust the sensitivity of total patients treated

O overnight stay cost per night (based on a three-night trip)

O′ marginal additional cost for a two-night overnight trip

Ô marginal additional cost for a one-night overnight trip

Qi the increase in the number of patients treated when staying

overnight at location i, taking into account the elimination of

round trip travel time on the additional day

Continuous variables v total net revenue

Integer variables z total patients treated

yi total patients to be served at location i

xi number of days that location i is visited

wi total number of overnight stays at location i

ui number of three-night overnight stays at location i

Binary variables u′i number of two-night overnight stays at location i

ûi number of one-night overnight stays at location i

Table 1: List of the variables used in the MDNDP model
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Using the introduced variables, we formulate the following MILP model to solve the MDNDP:

Maximize: z =
∑
i∈I

yi (1)

Subject to:
∑
i∈I

xi = g (2)

yi = bixi +Qiwi ∀i ∈ I (3)

yi ≤ di ∀i ∈ I (4)

v = c
∑
i∈I

yi −
∑
i∈I

(Owi +O′u′i + Ôûi)− e (5)

v ≥ α (6)

z ≥ γ (7)

yi ≤ pi(1 + β)z ∀i ∈ I (8)

yi ≥ pi(1− β)z ∀i ∈ I (9)

wi ≤ 0, 75 ∗ xi ∀i ∈ I (10)

3ui + 2u′i + ûi = wi ∀i ∈ I (11)

u′i, ûi ∈ B ∀i ∈ I (12)

yi, xi, wi ∈ N ∀i ∈ I. (13)

The objective function states that we want to maximize the number of patients served.

Constraint (2) ensures that we visit exactly one location each day over our horizon. Constraints

(3) identifies the number of patients that are served per location based on how many times the

dental team visits and overnights at a location, and Constraints (4) enforces that the number

of patients served at a location is not higher than the number of underserved patients at that

location. Constraint (5) computes the net revenue. Constraints (6) and (7) are used in the

sensitivity analysis. Using these constraints, we can demonstrate and evaluate the trade-off

between net revenue and patients served. We can do another sensitivity analysis regarding the

service disparity using Constraints (8) and (9). When we set β equal to 0, the total patients

served at location i has to be equal to the percentage of the total under-served population residing

within a prescribed radius of location i. Constraints (10) limit the number of overnights at each

location to at most three nights per round-trip, as initially a 4-day working week is used. In

Section 4.2 we show which model is used for the 5-day working week. Finally, Constraints

(11) count the total number of overnights per location. One-night or two-night trips are more

expensive per night than a three-night trip, which will be explained in Section 4. As the

formulation attempts to maximize net revenue, it will prefer to assign as many three-night

overnight stays as possible, and would never perform more than a single one-night or two-night

overnight stay, which allows us to define u′i and ûi as binary variables, which is denoted in

Constraints (12). Constraints (13) denote the domain of the other decision variables.
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3.2 The MDNDP model using a 5-day working week

A 5-day working week presents an opportunity to incorporate four overnight stays, necessitating

modifications to the model proposed in the previous subsection. To accommodate this, we

introduce an additional variable, Õ, which represents the marginal cost associated with planning

a trip involving three overnight stays. The variable ui denotes the number of four nights used at

location i in this formulation. The binary variable ũi is used to indicate whether a three-night

stay at location i is included in the planning. Consequently, Constraint (5) is adjusted as follows:

v = c
∑
i∈I

yi −
∑
i∈I

(Owi +O′u′i + Ôûi + Õũ)− e. (14)

Furthermore, we change Constraints (10) and (11) into the following constraints:

wi ≤ 0.8 ∗ xi ∀i ∈ I (15)

4ui + 3ũ+ 2u′i + ûi = wi ∀i ∈ I. (16)

3.3 Algorithm for sensitivity analysis

We propose Algorithm 1 to conduct the sensitivity analysis. Define the optimization model in

3.1 as MILP1. Furthermore, a second optimization model (MILP2) is defined where Constraint

(5) is set as the objective value, and Equation (1) is added as a new constraint. Thus in this

formulation, we maximize net revenue. We explore various values of β in the set K to construct

efficient frontiers. The iteration process involves maximizing the number of patients treated

and subsequently adjusting α slightly higher than the profits obtained for this iteration. This

iterative approach aims to achieve higher net revenues in subsequent solutions. As a result, the

final solution obtained for each disparity level represents the one that maximizes net revenue.

Algorithm 1. Generation of efficient frontiers

Step 0: Set β = 0
Step 1: Loop over the elements k ∈ K
Step 1.1: Set α = − inf
Step 1.2: While MILP1 and MILP2 are feasible for α and β
Step 1.2.1: Set γ = 0
Step 1.2.2: Solve MILP1, recording optimal objective function as z*
Step 1.2.3: Set γ = z*
Step 1.2.4: Solve MILP2, recording optimal objective function value as v*
Step 1.2.5: Record v* and z* as optimal solutions for the current iterates (j, k)
Step 1.2.6: Set α = 1.000001 ∗ v* and return to 1.2.1

Step 1.3: Set β = β + 0.01 and return to 1.1

3.4 Model for the mobile dentistry network with tours design problem

In the MDNWTDP we use a similar notation as the MDNDP. However, the differences and

additions are stated in Table 2.
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Index sets i i ∈ location set I

t t ∈ working day set T

t̂ t̂ ∈ working week set T̂

Data variables mik indicator if travel is possible between location i and location k

qi extra patients treated at location i when travel is started from

location i

q̂ik extra patients at location k when travel is used from location i

to location k

h1 the costs of one overnight stays

h2 the costs of two overnight stays

h3 the costs of three overnight stays

h4 the costs of four overnight stays

M large number

L length of one working week

Integer variables Ait̂ number of nights at location i in week t̂

tij travel time between location i and j in minutes

Binary variables xit denotes whether location i is visited at day t

sikt denotes whether a tour between location i and k is used

between day t and t+ 1

wit denotes whether a overnight to stay at location i is used

at location i on day t

an
it̂

equal to zero if Ait̂ is smaller than n (n ∈{1, 2, 3, 4})
bn
it̂

equal to zero if Ait̂ is greater than n (n ∈{1, 2, 3, 4})
on
it̂

equal to 1 if Ait̂ is equal to n (n ∈{1, 2, 3, 4})

Table 2: List of the added or changed variables used in the MDNWTDP model

The variables described in Table 2 are used to define the model that solves the MDN-

WTDP. We add several routing and overnight constraints compared to the model that solves

the MDNDP. Moreover, a time dimension is added. Day t = 0 is defined as the first day.

Maximize: z =
∑
i∈I

yi (17)

Subject to:
∑
i∈I

xit = 1 ∀t ∈ T (18)

yi =
∑
t∈T

bixit +
∑
t∈T

∑
k∈I

qisikt +
∑
t∈T

∑
k∈I

q̂iskit +
∑
t∈T

Qiwit ∀i ∈ I (19)

yi ≤ di ∀i ∈ I (20)

sikt ≤ mik ∀i, k ∈ I (21)

wit ≤ xit ∀i ∈ I, t ∈ T (22)
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wi,t−1 ≤ xit ∀i ∈ I, t ∈ T (23)

sikt ≤ xit ∀i, k ∈ I, t ∈ T (24)

sik,t−1 ≤ xkt ∀i, k ∈ I, t ∈ T (25)

t̂+5∑
t=t̂

∑
i∈I

∑
k∈I

sikt ≤ 1 ∀t̂ ∈ T̂ (26)

Ait̂ =

t̂+L−1∑
t=t̂

wit +

t̂+L−1∑
t=t̂

∑
k∈I

sikt ∀i ∈ I, t̂ ∈ T̂ (27)

Ait̂ ≤ L− 1 ∀i ∈ I, t̂ ∈ T̂ (28)∑
i∈I

wit +
∑
i∈I

∑
k∈I

sikt ≤ 1 ∀t ∈ T (29)∑
i∈I

wit +
∑
i∈I

∑
k∈I

sikt = 0 ∀t ∈ {L− 1, 2L− 1, 3L− 1, ..., g − 1} (30)

Ait̂ ≥ 4.1−M(1− a4
it̂
) ∀i ∈ I, t̂ ∈ T̂ (31)

Ait̂ ≤ 3.9−M(1− b4
it̂
) ∀i ∈ I, t̂ ∈ T̂ (32)

1− o4
it̂
≤ a4

it̂
+ b4

it̂
∀i ∈ I, t̂ ∈ T̂ (33)

Ait̂ ≥ 3.1−M(1− a3
it̂
) ∀i ∈ I, t̂ ∈ T̂ (34)

Ait̂ ≤ 2.9−M(1− b3
it̂
) ∀i ∈ I, t̂ ∈ T̂ (35)

1− o3
it̂
≤ a3

it̂
+ b3

it̂
∀i ∈ I, t̂ ∈ T̂ (36)

Ait̂ ≥ 2.1−M(1− a2
it̂
) ∀i ∈ I, t̂ ∈ T̂ (37)

Ait̂ ≤ 1.9−M(1− b2
it̂
) ∀i ∈ I, t̂ ∈ T̂ (38)

1− o2
it̂
≤ a2

it̂
+ b2

it̂
∀i ∈ I, t̂ ∈ T̂ (39)

Ait̂ ≥ 1.1−M(1− a1
it̂
) ∀i ∈ I, t̂ ∈ T̂ (40)

Ait̂ ≤ 0.9−M(1− b1
it̂
) ∀i ∈ I, t̂ ∈ T̂ (41)

1− o1
it̂
≤ a1

it̂
+ b1

it̂
∀i ∈ I, t̂ ∈ T̂ (42)

v = c
∑
i∈I

yi −
∑
i∈I

∑
t̂∈T̂

L−1∑
l=1

(hlo
l
it̂
)− e (43)

v ≥ α (44)

z ≥ γ (45)

yi ≤ pi(1 + β)z ∀i ∈ I (46)

yi ≥ pi(1− β)z ∀i ∈ I (47)

In this linear model, we maximize the number of patients treated. Furthermore, Constraints

(18) ensure that one location is visited each day, whereas Constraints (19) compute the number

of patients per location. Due to the Constraints (21), only tours between locations are utilized,

when this is possible. If an overnight is planned at location i at time t in order to operate

the next day at location i as well, it necessitates visiting location i on both day t and t + 1.

Similarly, if a tour is scheduled from location i to k at time t, it requires visiting location i at

time t and location k at time t+ 1. Constraints (22), (23), (24), and (25) ensure that the visits
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to a location align with the planned overnight stays. Because of Constraints (26), only one

overnight is combined with a tour per week. Constraints (27) tallies the number of overnight

stays at location i in week t̂. Constraint (28) ensures that the total number of overnight stays

within a single working week does not exceed the available number of nights in that week. Only

one overnight can be used per night, due to Constraints (29). Overnights on the last day of the

working week are prohibited, as indicated by Constraints (30). Constraints (31) sets a4
it̂
to zero

if Ait̂ is less than 4.1. Likewise, Constraints (32) sets b4
it̂
to zero if Ait̂ exceeds 3.9. Since Ait̂ is an

integer, both a4
it̂
and b4

it̂
are simultaneously zero only when Ait̂ equals 4. Consequently, the value

of o4
it̂
must be 1 when Ait̂ = 4 due to Constraints (33). However, we have no constraints that set

o4
it̂
= 0 when Ait ̸= 4. For this problem, we define the model described in Equations (17) to (47)

as MILPT1. Additionally, we define another model as MILPT2. In the MILPT2, Constraint (43)

represents the objective function. Equation (17) is included as a constraint. Notably, MILPT2

aims to maximize net revenues, and as setting o4
it̂
= 1 negatively affects net revenue, it is set

to zero whenever feasible during the solution process of MILPT2. Note that Constraints (34)

to (42) follow a similar structure and operate in the same manner. As the MDNWTDP model

contains more decision variables, it is likely to have a larger running time than the MDNDP

model (Watson & Woodruff, 2011). Therefore, computing all efficient frontiers via Algorithm 1

can be computationally challenging. However, we can compute the patient-treated-maximizing

solutions by solving MILPT1, setting γ = z, and then solving MILPT2. For net-revenue-

maximizing solutions, we can solve MILPT2 first, set α = v, and then solve MILPT1. Note that

when using a 4-day working week, Constraints (31), (32), and (33) can be left out of the model.

Constraints (20), (44), (45), (46), and (47) are explained in Section 3.1.

3.5 Heuristic for the MDNWTDP

As mentioned in the previous subsection, the generation of MDNWTDP solutions can potentially

pose computational challenges. To mitigate this, a greedy local search algorithm is proposed

to obtain feasible solutions for the MDNWTDP. The concept is to identify a route with the

maximum net revenue per day that serves the location that serves the relatively least patients in

the solution of the previous iteration. Subsequently, a search is performed to find a combination

of routes that are included in the selected routes, collectively spanning a duration equal to

the route that will be added, serving the location that serves the relatively most patients and

generating the least profits per day. In cases where no route is found to accommodate the

relatively least serving location, the search proceeds to consider the second relatively least serving

location, followed by the third, and so forth. This iterative process continues until a feasible

route is identified. Similarly, if no routes are found that can be removed that serve locations

serving the relatively most patients, the search expands to explore routes that can be removed

that serve locations serving the second relatively most patients, then the third, and so on,

until a suitable solution is obtained. Following this, an assessment is made to determine if the

maximum disparity has decreased. If not, the originally added route is removed from the pool

of potential routes. Additionally, the instance variables are reverted to their values from the

previous iteration. This is also done if the addition and removal of routes in that iteration ensure

that patients treated at a location exceed the demand at that location. This assessment is only
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made when β < 1 as we start from an infeasible solution due to this demand constraint, and we

are only interested in solutions below a disparity level of 100%. The Route object encompasses

several instance variables, such as revenue, patientsServed, and days. These instance variables

can be accessed using the functions getRevenue(), getPatients(), and getDays(). Furthermore,

the heuristic utilizes the functions changeAddition(Route j) and changeRemoval(Route j) to

update the number of patients served per location, the number of visits per location, and the

number of overnight stays per location. We introduce a variable ϵ, which denotes the maximum

disparity level we want to achieve. It should be noted that when a too-low value of ϵ is selected,

the heuristic fails to terminate. The heuristic is described in Algorithm 2.

Algorithm 2.

0. Initialize xh = 120, ϵ = desired disparity level, generate routes and store in listOfRoutes,

fill selectedRoutes with 120 one-day-visits to hub, β = 10000

while β > ϵ do

1.1 Compute dispi =
pi∗z−yi
pi∗z ∀i ∈ I

1.2 Order locations i on basis of dispi in list listLocs, β = maxi∈I |dispi|
while

1.3 Find route r ∈ listOfRoutes which has the highest net revenue per day of all routes

that serve the first location in listLocs

1.4 If no route r is found; do find route r ∈ listOfRoutes which has the highest net

revenue per day of all routes that serve the location that serves the next location in

listLocs, until a route is found

1.5 changeAddition(r)

1.6 Initialize daysToF ill = r.getDays(), initialize combinationToDelete

1.7 reverse listLocs

Loop iteratively over locations i in listLocs until daysToF ill = 0:

1.8.1 Find the route w ∈ selectedRoutes that serve i with lowest net revenue and

add to combinationToDelete

1.8.2 daysToF ill = daysToF ill − j.getDays()

Loop over routes j ∈ combinationToDelete

1.9.1 Remove j from selectedRoutes

1.9.2 changeRemoval(j)

1.10 Add route r to selectedRoutes

1.11 Compute newDispi =
pi∗z−yi
pi∗z ∀i ∈ I, βtest = maxi∈I |newDispi|

If βtest > β or ∃ i ∈ I for which yi > di when β < 1 do

2.1 remove r from selected routes, changeRemoval(r)

2.2 Add every route j ∈ combinationToDelete to selectedroutes,

call changeAddition(j) ∀j ∈ combinationToDelete

2.3 remove r from listOfRoutes and return to 1.3

else return to 1.1

totalRevenue =
∑

j∈selectedRoutes j.getRevenue()

totalPatients =
∑

j∈selectedRoutes j.getPatients()
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4 Data

In this section, we discuss the data utilized in the Montana case study in Section 4.1, followed

by an examination of the data employed in the simulation study in Section 4.2. In both studies,

we adopt a planning horizon of six months for a single dentistry clinic as Patel et al. (2010)

state that a six-month recall interval is associated with more restored teeth but less active caries.

Furthermore, Thorsen and McGarvey (2018) estimate that the mobile dentistry service can treat

an average of 2.75 patients per hour (f), with an average patient revenue (c) of $85. Additionally,
the costs associated with one-night, two-night, and three-night trips for the mobile dentistry staff

(comprising four individuals) are estimated at $670, $1,238, and $1,806, respectively. Therefore,
we can set O = $602, O′ = $34 and Ô = $68. The estimation of overnight stay costs is based

on the per diem rates provided by the US General Services Administration (US GSA). These

rates include a lodging fee (for Montana, the rate is $91 per night) and a meals and incidental

expenses (M&IE) rate (for Montana, the rate is $51 per day). However, the M&IE rate is

reduced by 25% for the first and last day of a trip. Additionally, fixed costs are estimated to be

$152,225. For the sake of comparability, we also use these facts for the simulation study. In the

case of the 4-day working week, it is assumed that there are 96 working days within a span of

26 weeks. Each working day consists of 10 hours, which includes travel times, therefore we set

patients treated per day bi equal to ⌊f(10 − ai)⌋ and additional patients treated per overnight

Qi equal to ⌊f ∗ 9⌋ − bi.

When transitioning to a 5-day working week, the possibility of a four-night stay arises.

Utilizing the same calculations as those employed for one-night, two-night, and three-night

stays, it is estimated that a four-night stay incurs a cost of $2,374. This means that O = $593.5,

O′ = $76.5, Ô = $51 and Õ = $25.5.

When considering a tour followed by another overnight stay, the M&IE is increased by 50% for

the day of traveling due to the risk of higher incidental expenses that come when overnighting at

multiple locations after each other. This is included in the model, as it computes overnight costs

per week per location. Consider the scenario where the mobile dentistry staff stays overnight

at two different locations within a week. In this case, 75% of the M&IE costs are calculated

for the first location visited on the day of departure to the second location. However, 75% of

the M&IE costs are calculated for the day before overnighting at the second location. As this

is the same day, this results in a total of 150% estimated M&IE costs for that particular day.

However, no increase in M&IE is applied when planning a tour without an overnight stay at the

second location, as the M&IE is not augmented on days when the mobile dentistry team travels

without scheduling an overnight stay. Furthermore, we reformulate bi to ⌊f(8− ai)⌋ and Qi to

⌊f ∗ 7⌋ − bi, as a working day lasts 8 hours in a 5-day working week, to maintain a total of 40

working hours per week. We set extra patients treated at location i when utilizing a tour from

location i (qi) equal to ⌊2.75∗tAi
60 ⌋ and set extra patients treated at location k when utilizing a

tour from i to k (q̂ik) equal to ⌊2.75∗(tAk−tik)
60 ⌋, with index A coinciding with the hub that is used.

We set mik equal to 1 if tAi + tAk − tik ≥ 60, else it is set equal to zero.
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4.1 Montana case study

The data utilized for addressing the Montana problem was collected by Thorsen and McGarvey

(2018), who provide a comprehensive explanation of the data collection process. The demand

per location is as follows: Big Sky (412), Clyde Park (297), Emigrant (524), King Arthur Park

(12,323), Livingston (2846), and Wilsall (194). Big Timber (663), Townsend (951), and White

Sulphur Springs (503) denote the three additional locations used in the nine-location problem.

The round-trip travel times include 60 minutes per day for setup and breakdown (30 minutes

each), based on expert stakeholder estimates. The round-trip travel times and setup hours for

each location, with Livingston as the hub, are as follows: King Arthur Park (138 minutes), Big

Sky (226 minutes), Clyde Park (108 minutes), Emigrant (112 minutes), Wilsall (124 minutes),

Townsend (220 minutes), White Sulphur Springs (202 minutes), and Big Timber (126 minutes).

Overnight stays are limited to locations where the round-trip travel time exceeds two hours from

the hub in Livingston.

The travel times utilized for constructing the tours are obtained using Google Maps and

can be found in Appendix A. To ensure comparability between the solutions of the MDNDP

and the MDNWTDP, the same travel times for round-trip journeys to Livingston as used by

Thorsen and McGarvey (2018) are employed. This choice aims to ensure that the solutions

remain consistent when tours are not utilized.

4.2 Simulation study

In the simulation, the locations are labeled as A through I. The demand at location A is 2500,

at location B it is 4000, at location C it is 600, at location D it is 350, at location E it is 400,

at location F it is 40, at location G it is 60, at location H it is 100, and at location I it is 70.

Table 9 in Appendix B displays the travel times between locations. These travel times con-

form to the triangle inequality and exhibit symmetry. The simulation characterizes by medium

to high-demand locations located distant from the hub but surrounded by other small-demand

locations in closer proximity.

5 Results

In this section, we elaborate on the results obtained from our models. First, we explain the

results using six locations in the Montana case, whereafter we discuss the implications of adding

the three other locations and shifting to a 5-day working week. Furthermore, we show the

performance of the MDNWTDP and the heuristic in the Montana case and the simulation.

5.1 Initial problem: serving six locations in Montana

Utilizing a 4-day working week, the minimum disparity level that results in a feasible solution

is 19%. In this solution, 2067 patients are treated, and a net annual revenue of $45,600 is

obtained. When increasing the disparity level to 100%, we obtain a profit-maximizing solution

that generates $55,100, with 2115 patients treated. Figure 1 demonstrates that lower disparity

levels are linked to reduced net revenues and a smaller patient count. Conversely, permitting
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higher disparities can result in increased revenues, even with a constant number of treated

patients. An example can be seen in the solutions that treat 2080 patients for disparity levels of

30% and 50%. The 30% disparity solution generates a profit of $46,674, while the 50% disparity

solution generates $49,150. A more precise examination of these solutions and their distribution

of patients across the locations is given in Appendix C.1. Besides that, we can conclude a trade-

off in patients treated and net revenue for each disparity level. We obtain the same results as

Thorsen and McGarvey (2018), and a further sensitivity analysis is made in Appendix C.2.

Figure 1: Trade off between net annual revenue and patients served per disparity level

5.2 The expanded case: serving nine locations in Montana

When we expand the set of locations with three additional locations, the lowest disparity level

that results in a feasible solution is 31%. This solution generates an annual net revenue of

$36,910 and treats 2008 patients. When comparing the solution for β ≤ 31% in Figure 2 with

the β ≤ 30% curve in Figure 1, we observe a notable shift downwards and leftwards, suggesting

a reduction in both the number of patients treated and net revenue. For all other β values, the

expansion of service has minimal impact on the total number of treated patients. However, it

leads to a significant decrease in net annual revenue. This decline is primarily attributed to the

utilization of overnight stays necessary to achieve the required number of treated patients in

Townsend and White Sulphur Springs. Once again, we observe a trade-off between the number

of patients treated and net revenues, where higher disparity levels result in more treated patients

and higher revenues. A comparison similar to the one in the previous subsection reveals that

a 35% disparity solution, treating 2079 patients, generates $41,552 in net revenues, while a

70% disparity solution, treating a comparable 2080 patients, generates $47,810. More detailed

information on the allocation of patients in these solutions can be found in Appendix C.1. The

results in the nine-location problem correspond to those found by Thorsen and McGarvey (2018).
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Figure 2: Trade off between net annual revenue and patients served per disparity level when
serving to nine locations

5.3 The effects of introducing tours in a 4-day working week

The MDNWTDP’s performance in the 4-day working week was deemed to be unprofitable

in a study conducted by Thorsen and McGarvey (2018). However, an analysis of the results

presented in Table 3 demonstrates that incorporating a tour from Big Sky (BS) to King Arthur

Park (KAP) proves advantageous in terms of maximizing the number of treated patients for

most disparity levels. By utilizing the tour, an additional 3 patients can be treated, albeit at a

cost per patient extra (CPPE) of $209. It is worth noting that the running times (RT) for the

MDNWTDP are longer compared to the MDNDP, but they remain within acceptable limits.

MDNDP MDNWTDP
β patients net rev RT patients net rev RT tours CPPE

≤ %31 2008 $36,910 0,1s 2008 $36,910 3,5s - -
≤ %40 2082 $42,062 0.2s 2085 $41,436 3.5s BS to KAP $209
≤ %50 2090 $39,810 0.1s 2093 $39,184 8,7s BS to KAP $209
≤ %60 2100 $40,374 0.2s 2103 $39,748 1,6s BS to KAP $209
≤ %70 2106 $40,258 0,2s 2109 $39,632 1,6s BS to KAP $209
≤ %80 2112 $41,728 0.1 2115 $40,652 1.6s BS to KAP $209
≤ %90 2116 $41,958 0.1s 2219 $41,332 1,5s BS to KAP $209
≤ %100 2123 $42,012 0.2s 2123 $42,012 3,0s - -

Table 3: Comparison between outcomes that patients-treated per disparity level in MDNDP
and MDNWTDP in the Montana case study for a 4-day working week

The inclusion of a tour from Big Sky to King Arthur Park appears to be a comprehensive

option, considering the travel times involved. It takes 86 minutes to drive from Big Sky to

Livingston via King Arthur Park, whereas direct travel from Big Sky to Livingston takes 83
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minutes. Therefore, opting to drive via King Arthur Park proves advantageous in terms of time

savings compared to the scenario where the mobile dentistry has to return to Livingston from

Big Sky and then travel to King Arthur Park on a separate day.

When comparing the performance of the MDNDP and the MDNWTDP in terms of profit-

maximizing solutions, it is evident that the MDNWTDP does not surpass the MDNDP except

for the disparity level of 60%. In this solution, a tour from Townsend to White Sulphur Springs is

incorporated, resulting in an additional patient. Consequently, the MDNWTDP generates $170
more in revenue than the MDNDP model for the disparity level of 60%. However, this is only

a 0.4% increase compared to the solution generated by the MDNDP. A tour between Townsend

and White Sulphur Springs appears rational due to their distance from Livingston (80 minutes

and 71 minutes, respectively) and their relatively close proximity to each other (43 minutes).

Utilizing a tour between these locations can result in significant time savings. However, when

considering the costs associated with overnighting, it is observed that these costs do not outweigh

the benefits of treating additional patients in general. This is evident from Table 4, where only

one tour is incorporated, and from Table 3, where all tours come with extra costs.

MDNDP MDNWTDP
β patients net rev RT patients net rev RT tours RPPE

≤ %31 2008 $36,910 0,1s 2008 $36,910 1,6s - -
≤ %40 2063 $43,784 0.8s 2063 $43,784 49,1s - -
≤ %50 2066 $44,294 0.4s 2066 $44,294 231,4s - -
≤ %60 2073 $45,484 1,2s 2074 $45,654 1872,2s T to WSS $170
≤ %70 2073 $47,960 1,3s 2073 $47,960 25,7 - -
≤ %80 2076 $48,470 1,5s 2076 $48,470 26,8s - -
≤ %90 2087 $50,340 1,6s 2087 $50,340 17,9s - -
≤ %100 2102 $52,890 0.2s 2102 $52,890 5,0s - -

Table 4: Comparison between outcomes that maximize net revenue per disparity level in
MDNDP and MDNWTDP in the Montana case study for a 4-day working week

5.4 Difference in working days and its impact on revenue and patient treat-

ment in the MDNDP

In Figure 3, we observe that the introduction of a 5-day working week leads to a substantial

reduction in net revenue. The solution yielding the highest profitability corresponds to net

revenue of $26,370, accommodating the treatment of 1946 patients with a disparity level of

100%. In contrast, the efficient frontier solution generating the lowest profits within a 4-day

working week yields, $36,910 while treating 2008 patients for a disparity level of 31%. The

difference in net revenue arises due to the fact that a working day in a 4-day week spans 2

hours longer than a working day in a 5-day week. Consequently, in a 5-day working week, travel

constitutes a relatively larger proportion of the working day in comparison to a working day

in a 4-day working week. Considering a patient treatment rate of 2.75 patients per hour, an

opportunity cost of 5 patients per day arises. However, the introduction of the 5-day working

week does lead to a reduction in the minimum disparity level to 17%. For this disparity level,

we obtain two solutions. When prioritizing patients mobile dentistry generates $6,628 while
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treating 1859 patients. The other solution treats 3 patients less and generates $7,458. Notably,
in the original scenario with nine locations, the MDNDP achieved a minimum disparity level of

31%, indicating a significant improvement in achieving a fairer distribution of patients across

the locations.

Figure 3: Trade off between net annual revenue and patients served per disparity level when
introducing a 5-day working week

5.5 The effects of introducing tours in a 5-day working week

A comparison is drawn between patient-treated-maximizing solutions of the MDNDP model

and the MDNWTDP model in Table 5. In the ”tours” column, locations are abbreviated by

their initials. It can be observed that solutions generated by the MDNWTDP model often

involve a tour between Big Sky and King Arthur Park, a comprehensive result explained in

Section 5.3. In these solutions (except for the β ≤ 17% solution), the cost per patient extra

(CPPE) is $209. In the patient-treated-maximizing solution at a disparity level of 30%, the

CPPE reaches a minimum of $158. On the other hand, the maximum CPPE occurs for a dis-

parity level of 60%, as a tour from Townsend to White Sulphur Springs results in an additional

patient at the expense of $966 fewer profits. Although the running times (RT) for the patient-

treated-maximizing solutions in the MDNWTDP are deemed acceptable (with a maximum of

34.4 seconds for β ≤ 50%), computing solutions that maximize net revenue is computationally

challenging. Nevertheless, by solely solving the MILPT2, we can determine the maximum net

revenue achievable in the MDNWTDP. Although the number of patients treated is not optim-

ized, this approach provides insight into the potential of utilizing the MDNWTDP to enhance

profits. However, we observe that none of the net revenues obtained surpass those generated

by the MDNDP. Consequently, it can be inferred that while the MDNWTDP model excels in
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generating patient-treated-maximizing solutions, it cannot surpass the net revenues attained by

the MDNDP model in the Montana case study. Exact maximized net revenues per disparity

level and running times for the MDNDP and MDNWTDP are presented in Appendix C.5.

The heuristic approach may be employed to address the computationally challenging solu-

tions. However, the lowest disparity level for which the heuristic terminates is 93%, generating

annual revenues of $13,506 by treating 1962 patients. This approach utilizes a tour from Big

Sky to King Arthur Park and another from King Arthur Park to Big Sky. In contrast, the

least-generating solution for the MDNDP yields $15,484 per year by treating 1987 patients for

a disparity level of 93%. When the disparity level is set to 100%, the annual net revenue of

the solution generated by the heuristic amounts to $16,546 by treating 1972 patients, which is

relatively close to the patient-treated-maximizing solutions in terms of net revenue (0.00007%),

but significantly lower than the net-revenue-maximizing solution of the MDNDP, which gener-

ates $26,370 (a percentage difference of 37.3%). Although the heuristic approach approximates

the net revenues achieved by the patient-prioritizing solutions, it is unable to improve upon the

solutions generated by the MDNDP.

MDNDP MDNWTDP
β patients net rev RT patients net rev RT tours CPPE

≤ %17 1859 $6,628 0.3s 1859 $6,628 15.4s BS to KAP -
≤ %20 1907 $10,040 0.2s 1907 $10,040 18.3s - -
≤ %30 1911 $10,720 0.3s 1922 $8,978 3.8s T to WSS $158

and BS to KAP
≤ %40 1927 $9,828 0.2s 1930 $9202 3.7s BS to KAP $209
≤ %50 1937 $11,528 0.2s 1940 $10,902 34.4s BS to KAP $209
≤ %60 1954 $12,146 0.2s 1955 $11,180 4.0s T to WSS $966
≤ %70 1965 $12,880 0,2s 1968 $12,254 3.2s BS to KAP $209
≤ %80 1978 $13,954 0.1 1981 $13,328 2.6s BS to KAP $209
≤ %90 1987 $15,484 0.1s 1990 $14,858 2.2s BS to KAP $209
≤ %100 2000 $16,558 0.3s 2000 $16,558 7,3s - -

Table 5: Comparison between outcomes that prioritize patients treated in MDNDP and
MDNWTDP in the Montana case study

5.6 Maximizing patients treated in the simulation study

The MDNWTDP’s benefits in maximizing patient treatment warrant further exploration in other

scenarios. In Table 6 we compare the solutions of the simulation study that maximize patients

treated for the MDNDP and the MDNWTDP. It is observed that the MDNWTDP outperforms

the MDNDP on nearly all disparity levels in terms of patients treated. Computational times

are on an acceptable level, with the solution of the MDNWTDP as the only outlier with a

computational time of 682,6 seconds. Furthermore, it can be concluded that trips to high-

demand location B are favored, as well as tours from medium-demand location E. This can be

explained by the fact that these are both locations that are relatively distant from the hub, but

surrounded closely by other low-demand locations such as G, F, and I, which makes it profitable

to incorporate a tour. We see that the CPPE is minimal for the solution that maximizes patients

for a disparity level of 40% and that it is maximal for a disparity level of 100%.
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MDNDP MDNWTDP
β patients net rev RT patients net rev RT tours CPPE

≤ %29 2058 $45,410 0.7s 2058 $45,410 4.1s - -
≤ %40 2231 $67,596 1.8s 2256 $66,894 53.1s E to B, E to F $28

, G to B, I to B
≤ %50 2262 $71,730 1.0s 2279 $69,464 58.2s 2x E to B, E to F $133

, G to B, I to B
≤ %60 2290 $76,490 1.1s 2307 $74,224 682,6s 2x E to B, E to F $133

, G to B, I to B
≤ %70 2324 $79,794 0.6s 2340 $77,358 80,7s 2x E to B, E to F, $152

G to B, 2x I to B
≤ %80 2351 $84,384 1.7s 2371 $81,696 66,8s 3x E to B, F to G $134

, I to B
≤ %90 2368 $87,654 1.3s 2411 $86,020 115,6s 3x E to B, F to G $38

, G to B, I to B
≤ %100 2421 $95,148 1.5s 2440 $91,154 126,8s 3x E to B, G to B $210

, I to B

Table 6: Comparison between outcomes that prioritize patients treated in MDNDP and
MDNWTDP in the simulation study

5.7 Comparison between maximizing net revenue solutions of MDNDP and

MDNWDP and the heuristic in the simulation study

As shown in Table 7, the MDNWTDP solutions for net revenue maximization achieve slightly

higher revenues at disparity levels of 60% and 70%. However, The improvements are minimal,

with a 0.5% increase in net revenue for the 60% disparity level compared to the MDNDP model.

This is the result of two tours added, namely G to F and I to B. Similarly, the MDNWTDP

solution at the 70% disparity level sees a 0.07% net revenue increase, due to the addition of the

two times the tour E to F and one time from I to B. In contrast to the Montana case study,

computing the optimal solution in terms of patients for net revenue maximization is possible,

although longer running times were observed for higher disparity levels. The heuristic approach

addresses disparity levels above 38%. While its performance is within 6.4% (smallest percentage

margin) of the maximized net revenue at a 40% disparity level, it falls short by 14.2% (largest

percentage margin) compared to the maximized net revenue at a 100% disparity level.

MDNDP MDNWTDP Heuristic
β patients net rev RT patients net rev RT patients net rev RT

≤ %29 2058 $45,410 0.9s 2058 $45,410 3.8s - - -
≤ %40 2210 $71,250 0.1s 2210 $71,250 98.9s 2207 $66,720 0,5s
≤ %50 2239 $76,180 0.7s 2239 $76,180 79.83s 2225 $69,780 0.4s
≤ %60 2262 $80,090 0.7s 2280 $80,470 80.7s 2249 $73,860 0.6s
≤ %70 2289 $84,680 0.7s 2313 $84,740 77.5s 2270 $77,430 0.6s
≤ %80 2318 $89,610 1.6s 2318 $89,610 134.3s 2286 $80,150 0.8s
≤ %90 2349 $94,880 2.0s 2349 $94,880 5754,5s 2311 $84400 0.4s
≤ %100 2394 $102,530 1.5s 2394 $102,530 53,4s 2332 $87,970 0.5s

Table 7: Comparison between the maximized revenues solutions of MDNDP and MDNWTDP
and solutions of heuristic
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6 Conclusion

In this paper, we explored the potential enhancements of the MDNDP introduced by Thorsen

and McGarvey (2018). Firstly, we examined the improvements a 5-day working could make

over a 4-day working week. The introduction of a 5-day working week improved the minimal

disparity level from 31% to 17%. However, the number of patients-treated and net revenues

dropped significantly. Moreover, we introduced the MDNWTDP, which incorporates tours in

the MDNDP. The inclusion of tours proved to be beneficial for both the 4-day working week

and the 5-day working week when maximizing the number of patients treated. Nevertheless, the

MDNWTDP does not surpass the MDNDP in terms of net revenue maximization. Furthermore,

the MDNWTDP proves to have significantly longer running times than the MDNDP. Therefore

a heuristic is introduced. However, the heuristic only solved for high disparity levels, with net

revenues comparable to those of the patient-treated maximizing solutions.

A simulation study is conducted where high-demand locations were situated at a distance

from the hub while being surrounded by small-demand cities in close proximity. Once again,

the MDNWTDP proves superior in patient-treated maximization but generates comparable

solutions as the MDNDP when maximizing net revenues. Compared to the solutions that

maximize profits in the MDNWTDP, the heuristic performances within 6,4% (smallest margin)

and 14,2% (largest margin) for the selected disparity levels. It should be noted that the heuristic

never outperforms any of the solutions in the MDNDP. In conclusion, for organizations seeking to

implement a mobile dentistry service and prioritize maximizing the number of patients treated,

the MDNWTDP model is recommended, particularly in situations with small-demand locations

near large-demand locations located far from the hub. However, if the main goal is to maximize

net revenue, the MDNDP provides comparable solutions with lower computational costs.

6.1 Limitations and further research

A major limitation of the MDNDP is its financial sustainability, and while the MDNWTDP does

not demonstrate significant improvements in profit-maximizing solutions, financial sustainability

remains a challenge. In order to enhance the net revenues of the MDNWTDP, a strategy could

be to increase the number of patients treated per hour. By utilizing the time saved through

the inclusion of tours for treating patients, tours become a more profitable option. Therefore it

is interesting to explore the implications of improved productivity in mobile dentistry services

including tours.

Furthermore, the heuristic only provides solutions for high disparity levels in the Montana

case, hence it is worth considering an alternative algorithm that allows for iterations with in-

creasing maximum disparity levels. This approach can help escape local optima and potentially

lead to more beneficial outcomes. As the heuristic provides relatively good solutions in the

simulation study, it can be useful to explore its applicability on larger problems, and if it can

outperform the MDNDP in terms of patient allocation, net revenues, and running times.
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Appendix

A Travel times between locations in Montana

In Table 8, the locations are abbreviated using their initials. These times are obtained from

Google Maps.

L KAP BS CP E W T WSS BT

L 0 39 83 24 26 32 80 71 33
KAP 39 0 47 55 57 61 61 93 66
BS 83 47 0 101 102 105 105 140 115
CP 24 55 101 0 43 8 71 47 39
E 26 57 102 43 0 50 97 86 53
W 32 61 105 8 50 0 58 44 47
T 80 61 105 71 97 58 0 43 115
WSS 71 93 140 47 86 44 43 0 86
T 33 66 115 39 53 47 115 86 0

Table 8: Travel times between locations in Montana

B Travel times between locations in simulation study

Table 9 contains the travel times between locations in the simulation study.

A B C D E F G H I

A 0 60 30 50 70 100 90 40 90
B 60 0 30 100 60 90 80 100 30
C 30 30 0 30 90 120 110 70 60
D 50 100 30 0 100 130 120 30 110
E 70 60 90 100 0 30 20 100 70
F 100 90 120 130 30 0 20 130 110
G 90 80 110 120 20 20 0 100 110
H 40 100 70 30 100 130 100 0 120
I 90 30 60 110 70 110 110 120 0

Table 9: Travel times between simulated location

C Sensitivity analysis

In this section, we dive more deeply into the solutions generated by the MDNDP and MDN-

WTDP models.
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C.1 Comparing solutions that treat equal patients for different disparity

levels

The solution serving the most patients (2080) with β = 0.30 generates a $46,674 profit. However,

if we set β = 0.50, the solution that serves 2080 patients generates $49,150. This is entirely

the result of allocating the patients in a different manner, which is illustrated in Figure 4. The

solution with a disparity level of 30% utilizes a two-night trip to Big Sky, whereas no overnight

is used in the solution for a disparity level of 50%. The requirement for overnight stays to ensure

compliance with disparity constraints has a direct impact on reducing net revenues. Additionally,

we observe that as the disparity level increases, more patients in Livingston receive treatment,

resulting in an increased number of planned visits to Livingston. This is a comprehensive result

since Livingston serves as the hub, and during a visit to Livingston, more patients can be treated

since no travel time is incurred, and thus more revenue will be generated, compared to a visit

to another location.

Figure 4: Allocations of feasible solutions serving 2080 patients, using different disparity levels

A similar comparison can be made in the situation where we serve nine locations. In Figure

2, a β ≤ 0.35 solution demonstrates 2079 treated patients and a net revenue of $41,552, while
a β ≤ 0.7 solution treats 2080 patients while generating a net revenue of $47,810. Once again,

reducing the number of visits to more distant locations significantly increases the net revenue,

while maintaining a nearly equal total number of treated patients. The distribution of patients

of these solutions can be seen in Figure 5. Once again, it is evident that in the higher disparity

solution, a greater number of patients in Livingston are treated. This outcome can be attributed

to the fact that visits to Livingston yield higher profitability compared to other locations due

to the fact that no travel time is incurred.
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Figure 5: Allocations of feasible solutions serving around 2080 patients, using different
disparity levels

C.2 Impact of varying the average reimbursement rate

The average reimbursement rate to community health centers, after removing variable costs,

is estimated to be $137,75 (Thorsen & McGarvey, 2018). Using this revenue rate per patient,

instead of the $85 we used in the previous sections, the solutions on the efficient frontiers for

the original and extended case do not differ, besides a few exemptions. The annual net revenue

has risen to respectively $278,232.50 and $274,651 for the original and extended cases. If we

set the average reimbursement rates equal to $102.58, we obtain maximums of $129,463.40
and $126,796.32 for the baseline and extended location set. Average reimbursements rates of

$120.16 result in maximum net revenues of $203,826.80 and $200,702.64 for the baseline and

extended locations set. All solutions correspond to the solutions presented by Thorsen and

McGarvey (2018), besides the solution that generates a net revenue of $274,651 for the nine-

location problem and uses an average reimbursement rate of $102.58. Thorsen and McGarvey

(2018) determine a net revenue of $274,200 for this instance.

C.3 Mixed fixed-site (at hub) and traveling operations

Another option is to split up the 26-week period into two parts of three months. In the first three

months, we only treat patients at the hub Livingston. This results in 48 ∗ ⌊2.75(10)⌋ = 1296

patients treated in three months in Livingston. The disparity constraint does not apply for

the Livingston location, and thus only for the eight locations receiving traveling service. The

solution with the highest revenue for β = 0.75 treats 2296 patients in total. Plots for the feasible

solutions for β = 0.75 and β = 1 are given in Figure 6. If we compare the solution that serves

2080 (β ≤ 0.7) patients when traveling full-time, we see that we treat much fewer (528) patients
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in Livingston than when we travel only half of the time (1296 patients). However, patients

treated in the other locations drops drastically. If we accumulate all patients treated in the

eight other locations when we travel full-time, we obtain 1552 patients. In the solution where

we only travel half of the time, this number is reduced to 1000. The annual net revenues rise

significantly. We generate $85,870 when traveling half of the time, compared to the $ 47,810

annual net revenue in the solution where we travel full-time. The allocations of patients can be

found in Figure 7. Our solutions fully correspond to those of Thorsen and McGarvey (2018).

Figure 6: Trade off between net annual revenue and patients served per disparity level for the
mixed service
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Figure 7: Patient allocation when traveling full-time vs traveling half-time

C.4 Minimum patients treated per location

A notable finding observed consistently in our study pertains to the significantly elevated visita-

tion rate in Livingston. This occurrence can be attributed to the model’s inclination to prioritize

larger populations located in close proximity to the central hub (Livingston) in order to minim-

ize travel time. To address this particular issue, a supplementary analysis is undertaken. This

analysis involves resolving the complete set of efficient frontiers while imposing the constraint

that a minimum of 100 patients are served in each of the nine locations (as presented in Table

3). It is necessary to set β = 361% to achieve a feasible solution. This solution yields an annual

net revenue of $58,544, which is also the solution that Thorsen and McGarvey (2018) found.

Location Number of patients served Number of visits per six months

Livingston 1344 56
King Arthur Park 105 5
Big Sky 106 5 (3 overnights)
Clyde Park 110 5
Emigrant 110 5
Wilsall 105 5
Townsend 106 5 (3 overnights)
White Sulphur Springs 108 5 (3 overnights)
Big Timber 105 5

Table 10: Solution for β = 3.61 which treats at least 100 patients at every location
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C.5 Comparing net-revenue-maximizing solutions of the MDNDP and MD-

NWTDP for the 5-day working week

As described in Section 5.5 it is computationally challenging to optimize the net-revenue-

maximizing solutions of the MDNWTDP for patients treated. The solutions presented in the

MDNWTDP column are generated by solely solving MILPT2, and hence not optimized for pa-

tients. However, we see that the MDNWTDP does not surpass the MDNDP in revenues for any

of the selected disparity levels.

MDNDP MDNWTDP
β net rev RT net rev RT

≤ %17 $7,458 0.9s $7,458 165.7s
≤ %20 $10,040 0.2s $10,040 18.3s
≤ %30 $11,728 0.1 $11,728 98,9s
≤ %40 $13,448 0.5 $13,448 53.3s
≤ %50 $15,148 0.5s $15,148 50,3s
≤ %60 $16,434 0.1s $16,434 189,7s
≤ %70 $18,930 0.4s $18,930 77,5s
≤ %80 $20,950 1.0s $20,950 18,8s
≤ %90 $23,140 0,4s $23,140 20,7s
≤ %100 $26,370 0,4s $26,370 46,0s

Table 11: Comparison between outcomes that maximize net revenue in MDNDP and
MDNWTDP in the Montana case study by solving MILPT1 for the MDNWTDP

D Programming code

In this section, we explain the code that is used to solve the MDNDP model, the MDNWTDP

model, and the heuristic. First, we elaborate on the MDNDP model.

D.1 Code MDNDP model

The classesMobileDentistry, EightHoursMobileDentistry, and SimNormalMobileDentistry

all have the same layout but differ in the fact that MobileDentisty is used as the code to rep-

licate the results of Thorsen and McGarvey (2018), EightHourMobileDentistry implements a

4-day working week and SimNormalMobileDentistry generates results for the MDNDP sim-

ulation study. Furthermore, these classes basically do the same, and therefore we explain the

code of these classes together. At the beginning of the code of the MDNDP model, all instance

variables and fixed constants are initialized. These can be modified to change easily from a 4-day

working week to a 5-day working week or to switch from the 6-location problem to the 9-location

problem. We implement two methods that generate results: testBeta() and Algorithm1. The

method testBeta() is used to obtain results for specific values of α and β. After we set values

for α and β, we run the method MILP1 and MILP2 to compute the efficient solution. We

write the important results in a text file, to be able to make graphs for example. Some valuable

information is directly printed as well, as it delivers the user a quick overview of the most im-

portant results. Algorithm1 implements the algorithm proposed in Section 3.3. It starts from
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β = 0 and iterates over the potential values of β with steps of 0.01. If a solution is found via the

usage of MILP1 and MILP2, we update α to have higher revenue in the next iteration, while

still adhering to the same disparity level. We continue looping until we cannot find a higher

revenue for the disparity level. In that case, we increment the β with 0.01 and do the same

process for the new disparity level. For each disparity level, we write the important features of

all solutions in a separate text file, so we can use the information to draw for example graphs

For each solution, we record the running time using the System.currentT imeMillis() call when

we start computing the solution, and after a solution is found. When we subtract these times

from each other, we find the running time. Dividing the running time by 1000 gives us the

running time in seconds. The methods MILP1 and MILP2 implement the MILPs described

in subsection 3.1. The implementation makes use of CPLEX to solve the MILPs. The reasoning

behind the constraints is extensively described in subsection 3.1, and comments are placed in

the code to see which lines of codes create which constraints. In the MILP1 we maximize the

value of totalPatients, whereas we maximize the value of netRevenue. Furthermore, we used

text files to incorporate the data from the Excel file and created methods that were able to store

the data of the text files in vectors. These methods are called readV ector. When changing from

a 4-day working week to a 5-day working week or vice versa, it is important to call the right

data files when calling the readV ector function.

The class MixedMobileDentistry implements mixed mobile dentistry as proposed in subsec-

tion 7.3.1. The class has a similar structure as the previous ones mentioned in this subsection,

but we added constraints to equal the visits of Livingston to 48 days and equal the treated

patients to 1296. Furthermore, we did not include the disparity constraints for the Livingston

location and used the total amount of patients treated without the location Livingston to form

the disparity constraints for all other locations.

D.2 Code for the MDNWTDP model

The MDNWTDP model is implemented in the following classes: ExtensionMobileDentistry

and MobileDentistrySim. The first implements the MDNWTDP model for the Montana case

study, and the other for the simulation study. Both are nearly identical, except for the data

that is used to run them. These classes have similar structures as the MDNDP models, as the

testBeta and the Algorithm1 perform in the same manner. However, some instance variables

and constants are changed or added to accommodate the class to the MDNWTDP model. In the

MILP1 and MILP2, we implement the models described in subsection 3.4. The constraints

are explained in this section as well, and in the classes itself is described which lines of code

implement certain constraints. by comments. We use the same methods as in the MDNDP

model to transform the Excel data to vectors, however, due to the addition of tours, we also add

a method that can read text files with two-dimensional data, and convert it to a two-dimensional

matrix. The instance variables introduced at the beginning of the code can be used to change

from a 4-day working week to a 5-day working week. However, it is needed to change the text

files containing the data when a transition in the working week structure is done.
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D.3 Code for the heuristic

The code that implements the heuristic is less alike than the two models described in the previous

subsections, as it is structured differently. This implementation uses the methods readV ector

and readMatrix as well, to transform text file data into one- or two-dimensional vectors. The

method that actually implements the heuristic is called heuristic and starts by transforming all

data it needs from text files into vectors. Then it calls the makeRoutes method. This method

generates all possible routes, back-and-forth trips to the hub without overnighting, back-and-

forth trips to the hub with overnighting, and tours that visit 2 locations before returning to the

hub or routes that use combinations of these trips. Only tours using one overnight to travel

are generated, as we only considered those routes to accommodate the mobile dentistry staff’s

comfort. Then we implement the heuristic as it is described in subsection 3.5. In the implement-

ation, we make use of the following methods: changeAddition, changeRemoval, selectRoutes,

and removalRoutes. The method changeAddition has a route that is added to the selected

Routes as an argument and decides whether this route employs overnights, tours, or none of

them and updates the instance variables accordingly. The method changeRemoval does the

opposite of changeAddition and updates the instance variables if the route is removed from

the selected. routes. The method selectRoutes takes a location as an argument and finds the

route that has the highest revenue per day while treating the location it has as the argument.

The method removalRoutes takes a location as an argument as well. However, it returns a

combination of tours that serve the location it has as input, and generate the least profits per

day. The tours together span the number of days which was given as input. When the new

routes are added to the selected routes, and the routes returned by removalRoutes are removed,

the new maximum disparity level is computed. If it is higher than the previous disparity level,

we remove the route that was initially added from the list of potential routes to add and change

the instance variables back to their values of the previous iteration. If the new disparity level is

lower, we loop again in order to search for another swap of tours to repress the maximal dispar-

ity level. If a too-low value of ϵ is chosen, the code will fail to terminate. When the maximum

disparity level is beneath ϵ we print the most important information and calculate total revenue

and the number of patients treated. An important note is that we only check if the patients

treated per location do not exceed the demand per location if a disparity level beneath 100%

is encountered. As we start with a solution that is infeasible for this constraint, the heuristic

will fail to work otherwise. Not checking the demand constraint for disparity levels above 100%

is not necessarily a problem since we are mainly interested in disparity levels beneath 100% in

this paper.
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