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Abstract

In this paper, we introduce the Orienteering Problem with Hotel and Charging station

Selection (OPHCS). This is a new variant of the Orienteering Problem with Hotel Selection

(OPHS). In both problems, we consider a set of vertices and hotels, where vertices have a

score assigned to them and hotels are assigned a score equal to zero. The goal of the problem

is to find an optimal tour, which exists out of consecutive trips that start and end at a hotel,

that maximises the sum of the scores of all vertices in the tour. In contrast to the OPHS,

we consider a tour that is performed by an electric vehicle with a limited range. If the total

distance driven exceeds the vehicle’s range, it should first recharge at a charging station

before it can continue the tour. We use a Skewed Variable Neighborhood Search (SVNS)

algorithm which builds upon the SNVS algorithm proposed for the OPHS in Divsalar et al.

(2013). We include extra local search moves to consider solutions with a variety of charging

stations. In our study, we have created 1270 OPHCS instances which can serve as a valuable

resource for future research. We test our algorithm on 231 instances and find an average gap

to the optimal solution of 4.99% with an average computation time of 184.48 seconds.

1 Introduction

The Orienteering Problem with Hotel Selection (OPHS) is relatively new and has not been widely

studied (Toledo et al., 2020; Divsalar et al., 2013). With this problem, we have a complete graph

where each node represents either a hotel or a vertex. All vertices have a score associated to

them. We assume the score of hotels to be equal to zero. The goal of the problem is to

find the optimal tour, which has the highest total score. The tour must start and end at two

predetermined hotels. The tour consists of consecutive trips, where trips start and end at a hotel

as well. Between the first and last hotel of each trip, a subset of all given vertices is visited.

Unlike hotels, vertices can only be visited once in the entire tour. Each trip must start at the

hotel where the previous trip ended. The goal is to find a selection of intermediate hotels and

vertices such that the total score of the tour is maximised. We extend the OPHS by introducing

charging stations into the problem. We assume that the score of charging stations is equal to

zero and that charging stations can be visited as often as necessary. Vehicles are now assumed

to have a limited range and must recharge at a charging station whenever the distance traveled

reaches the vehicle’s range. We call this problem the Orienteering Problem with Hotel and

Charging station Selection (OPHCS).

The OPHS knows many practical applications (Divsalar et al., 2013). For instance, trip

planning for tourists, a submarine performing several consecutive missions and trip planning

for truck drivers. By introducing electric vehicles with a limited range and charging stations,

we aim to enhance practicality of the problem. The relevance of our extension is especially for

this last application evident. Currently, still a large majority of freight truck registrations are

non-electric vehicles (IEA, 2022). However, as we are moving towards a sustainable society, this

number is expected to grow. An independent study of TNO predicts that by 2035, new electric

trucks will be cheaper in their use than 99.8% of diesel trucks (Tol et al., 2022). The relevance of

our extension is clearly not limited to that of freight trucks. Also for personal electric vehicles,

navigation systems include recommended charging stations in the route. Since these applications

require short computations times, the problem needs to be solved within a reasonable amount
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of time. However, solving this problem exactly, with a solver like CPLEX, quickly results in

infeasible computation times as the problem instance increases (Divsalar et al., 2013). For that

reason, a fast heuristic with high quality solutions is needed to solve this problem.

For the OPHS several efficient meta-heuristics exist (Divsalar et al., 2013; Sohrabi et al.,

2020). In this research, we introduce the OPHCS and propose a variable neighborhood search

method for the OPHCS which extends the algorithm of (Divsalar et al., 2013). The performance

of the algorithm is judged based on the average gap to the optimal solution and computation

times. We analyse how the performance of the SVNS algorithm is affected by the vehicle’s range

and the number of charging stations.

Since there are no benchmark instances available for the OPHCS, we create our own instances

to evaluate the performance of the presented algorithm. In total 1270 benchmark instances are

created for the OPHCS. These instances are created based on a selection of available OPHS

instances from www.mech.kuleaven.be/cib/op. We create OPHCS instances for SET1 and SET2.

To tackle the OPHCS we propose a skewed variable neighborhood search (SVNS) algorithm.

This algorithm builds upon the algorithm proposed in Divsalar et al. (2013). This variant of

variable neighborhood search has been developed to address the problem of exploring solution

spaces far from the current solution with respect to ordinary variable neighborhood search

(Hansen et al., 2019). It does so, by also accepting solutions that are slightly worse than the

current solution. Usually, a distance function is used to decide whether a slightly worse solution

is accepted. We prefer to use a SVNS method over other available algorithms to solve the

OPHCS, due to its simplicity, high quality solutions and practical computation times for the

OPHS (Divsalar et al., 2013).

From our results, we conclude that the OPHCS is more difficult to solve than the OPHS.

Compared to the obtained results for the OPHS, we observe higher average gaps and significantly

longer computation times for the OPHCS. We find that the performance of the algorithm is

significantly affected by the vehicle’s range and the number of charging stations. For instances

with higher vehicle ranges, the average gaps approach those reported for the OPHS in Divsalar

et al. (2013). All in all, with this research we introduce the OPHCS and provide a starting point

for the development of efficient algorithms for this problem. Furthermore, we have generated

a set of 1270 new benchmark instances for this problem. These instances serve as valuable

resources for future research in this field.

In the next Section we give a general problem description for the OPHCS and introduce the

necessary mathematical notation. We continue with a literature review in Section 3. In Section

4, we discuss the data that we use for our research and how we created the used benchmark

instances. In Section 5, we present a mathematical formulation for the OPHCS and introduce

our SVNS algorithm. After this, the obtained results are reported and analysed in Section 6.

We finalise this paper with a conclusion, where we summarise our main findings and propose a

number of extensions for future research.

2 Problem description

The OPHCS is closely related to the OPHS, which was introduced by Divsalar et al. (2013). In

both problems, we are given a complete graph with a set of N vertices and a set of H hotels.

2



Among these hotels, a first hotel and a last hotel are specified. In contrast to the traveling

salesman problem with hotel selection (Vansteenwegen et al., 2012), not all given vertices are

required to be visited. We let P denote the set of all vertices and let S denote the set of hotels.

All vertices i ∈ P have a score si associated to them. We follow Divsalar et al. (2013) in their

assumption that hotels have a score of zero assigned to them. In addition, we are given the

number of trips we need to make (D). For each trip d, we are given a maximum length Td for

d = 1, .., D. The goal of the problem is to find the tour, that visits a subset of all given vertices,

with the highest score associated to it. A tour consists of trips, where all trips must begin and

end at a hotel. Each trip must start at the hotel where the previous trip, if any, ended. Between

the hotels, a selection of all vertices can be visited. All vertices can only be visited once in the

tour.

The OPHCS differs from the OPHS in the sense that now not only the length of each trip

is limited, but the vehicle has a limited range, given by Q, as well. In addition, we are given

a set of C charging stations denoted by R. If the distance traveled reaches the range of the

vehicle, the vehicle must first recharge at a charging station before it can continue the tour. In

our implementation, we do not assume that the vehicle can recharge at hotels. However, it is

naturally possible that a charging station is located at the same location as one of the hotels.

We allow for charging stations and hotels to be visited multiple times.

For the purpose of notation, we let B = P∪S∪R. We assume the score of all charging stations

to be zero. All vertices, hotels and charging stations have an x- and y-coordinate associated

to them and we assume that the distance between a pair of locations is given by the euclidean

distance. The time it takes to travel between two points i and j is given by ti,j , i, j ∈ B. We let

qi,j denote the charge it takes to travel between i and j. Without loss of generality, we assume

that ti,j and qi,j are equal to the euclidean distance between i and j. In Figure 1, we present an

illustrative example of an OPHCS solution. In this example, the number of trips must be equal

to two, which implies that one extra hotel has to be included in the tour.

Figure 1: Illustrative example of an OPHCS tour with two trips

3 Literature review

In the literature, several problems have been considered that are closely related to the OPHCS.

The OPHS problem can be seen as a variant of the OPHCS where battery capacities are infinite.
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The OPHS is introduced by Divsalar et al. (2013) and is one of the most recent forms of the

Orienteering Problem (OP). Several other variants of the OP exist, such as the Team OP, the

Team OP with Time Windows and the Time Dependent OP (Gunawan et al., 2016). Because

orienteering problems are NP hard (Keller, 1989), we rely on heuristics to solve these problems.

In recent research, very efficient and high quality algorithms have been proposed for the OPHS

(Divsalar et al., 2013; Sohrabi et al., 2020; Divsalar et al., 2014). We present a Skewed Variable

Neighborhood algorithm to solve the OPHCS problem. We use the algorithm of Divsalar et al.

(2013) as a starting point and extend their approach to make it suitable for the OPHCS.

In their paper, a SVNS algorithm to solve the OPHS is introduced. Skewed variable neigh-

borhood search is a variant of general variable neighborhood search (VNS). In general, a VNS

algorithm follows the following framework. We start with an initial solution and iteratively

try to find better solutions by performing a shake step and improving this solution by means

of local search. We accept the new solution if it is better than the solution used to start the

current iteration. The shake step performs a neighborhood change and allows to escape from the

current solution valley. Local search is applied on this solution to get to local optima within the

neighborhood of the solution. Local search methods starts with an initial solution x. From this

solution, we find a direction of descent within the neighborhood of x that improves the solution.

Improvements are made by means of local search moves, such as the insertion of new vertices or

relocating included vertices in the tour. We then move to this new solution and repeat this pro-

cess until no direction of descent is found. Several descent heuristics exist, but most algorithms

make use of the “best improvement” direction (Hansen et al., 2010). This heuristic moves in

the direction with the steepest descent. After we complete the hotels-shake and improvement

step, we decide if we move from the solution that was used to start the current iteration to the

new solution. We move to this new solution if it is better than our current solution.

This last step is where SVNS differs from VNS. This method is designed to overcome the

difficulty of exploring solutions that are distant from the incumbent solution (Hansen et al.,

2010). If we have found the best solution in a solution valley, we need to move away from

this solution and find an improved one. To allow for this, SVNS gives some compensation to

solutions far from the incumbent solution by also accepting solution with a slightly lower score.

By this, solutions that are in far apart valleys are also explored. This variant of VNS is often

used for problems with many local optima or multiple far apart near optimal solutions (Hansen

& Mladenovic, 2003).

To develop a SVNS algorithm suitable for the OPHCS, we extend the algorithm of Divsalar

et al. (2013) by including additional local search steps that aim to find the optimal charging

stations and their best positions in the tour. To decide on which extra local search moves should

be included, we look for moves that are found to be effective for related problems. We include an

insertion step for charging stations, since both Zhang et al. (2018) and Hiermann et al. (2016)

include this move in their local search procedure. We choose to keep this move intuitive and

simple. Our implementation of this move is described in Section 5.3.4. Besides from charging

station insertion, a charging station removal step is often included for relevant problems (Keskin

& Çatay, 2016; Zhang et al., 2020). For that reason, we include a charging station removal

step in our local search procedure. This step is described in more detail in Section 5.3.4. To
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maintain the advantage of very few parameters required as input for SVNS algorithms Divsalar

et al. (2013), we choose for a more straightforward implementation compared to the approaches

of Keskin & Çatay (2016) and Zhang et al. (2020).

4 Data

We use the paper of Divsalar et al. (2013) as a starting point for our research. The OPHS

benchmark instances used in their paper can be found on www.mech.kuleaven.be/cib/op. We

use these instances to replicate their results. Since there are no benchmark instances available

for the OPHCS, we construct new cases for this problem. We make use of the instances in SET1

and SET2.

To create the OPHCS instances, we need the optimal OPHS tour for the cases from SET1

and SET2. We only create OPHCS instances for the cases for which the optimal OP solution

can be found within half an hour by CPLEX. Due to how the instances in Divsalar et al. (2013)

are created, obtaining the optimal OPHS tour from the OP tour is relatively straightforward.

Given that the instances from Set1 and Set2 give the same optimal OP solution, we only need

to find the optimal OP solutions for Set1. We find the optimal solution with CPLEX by solving

the OP. We only use the instances for which we are able to find the optimal solution within half

an hour of computation time. This is the case for 26 of the 35 OPHS instances. We start with

creating three OPHCS instances for those cases. In these instances, we set the vehicle range

equal to 20%, 40% and 60% of the length of the known optimal OPHS tour. For all three vehicle

ranges, we traverse the optimal OPHS solution and as soon as the distance traveled exceeds the

range of the vehicle, we insert a charging station at exactly the position of the last vertex that

we could travel without exceeding the battery capacity. After insertion, the distance traveled is

set to zero again and we continue traversing the optimal OPHS tour starting from the inserted

charging station. We continue this process until we reach the final hotel of the tour.

We do not create these instances for the instances from SET3, since the computation time

of the OPHS algorithm increases significantly for these instances (Divsalar et al., 2013). We

do not consider SET4 either, because we need instances with a known optimal solution. If the

battery capacity is lower than the maximum distance between two vertices in the optimal OP

tour, no OPHCS instance can be created with this capacity. This is only the case for instance

100− 30 when the range equals 20% of the length of the optimal OPHS route. For that reason,

instance 100− 30 is excluded from the created sets with a 20% range.

To make the benchmark instances more complex, we create two more instances for each

OPHCS instance with respectively two and six extra charging stations. Adding the stations

is done in a similar way to how the extra hotels are added for the OPHS instances (Divsalar

et al., 2013). We let N denote the number of vertices in the instance, so not counting hotels

and charging stations, and C denote the total number of charging stations in the new instance.

Thus, C includes the charging stations to be added to the instance. The extra charging stations

are placed at the locations of the the vertices with an index that is a multiple of N
C+1 . The

first hotel has index zero and the final hotel is assigned an index equal to one. We skip the

other hotels when we compute the indices. As soon as the number of total charging stations

equals C, we stop traversing the vertices. All in all, this gives us nine new OPHCS instances
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for each OPHS instance that we consider. In accordance with how Divsalar et al. (2013) added

the extra hotels to the OPHS instances, we allow an extra charging station to be equal to an

already included charging station. We tried to solve these instances with CPLEX, but none

of the OPHCS instances was solved to optimality within an hour of computation time. This

stresses the importance of developing an efficient algorithm for this problem.

5 Methodology

In this section, we begin by presenting a mathematical formulation for the OPHCS. Following

that, we describe the SVNS algorithm for the OPHCS. Finally, we introduce a benchmark

algorithm that is employed to critically asses the performance of our SVNS approach.

5.1 Mathematical Formulation

Like the OPHS, the OPHCS can be formulated as an mixed-integer linear program (MIP). By

making use to the notation introduced in Section 2, we can formulate the problem as shown

by equation 1 to 13. We introduce the decision variables xi,j,d and yi. The decision variable

xi,j,d is equal to 1 if we travel from point i to point j in trip d and 0 otherwise for i, j ∈ B

and d = 1, .., D. We let yi represent the range left in the battery when we arrive at point i,

where i ∈ B. This formulation is based on the formulation for the OPHS of Divsalar et al.

(2013). Extra constraints have been added to make it suitable for the OPHCS. Since we assume

instantaneous and only full recharges, there is no need for us to make duplicates of the nodes

that represent the charging stations that are visited multiple times. However, since we allow

for hotels to be visited multiple times and do not assume that a vehicle recharges at a hotel,

we are required to add duplicate nodes for the hotels. This formulation has also been used for

the electric TSP (Roberti & Wen, 2016). We duplicate each hotel d − 1 times, such that the

formulation still holds in the extreme case of a tour with d times the same hotel. We let S′

denote the set of hotels with the duplicates included. This results in |S′| to be equal to d ∗H.

We let B′ = P ∪S′ ∪R. Index 0 denotes the first hotel and index 1 the final hotel. It is possible

for the hotel at index 0 and index 1 to be the same.
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Max
D∑

d=1

∑
i∈B′

∑
j∈B′

sixi,j,d (1)

s.t. ∑
l∈B′\{0}

x0,l,1 = 1 (2)

∑
k∈B′\{1}

xk,1,D = 1 (3)

∑
h∈S′

∑
l∈B′

xh,l,d = 1, ∀d = 1, ., , D (4)∑
h∈S′

∑
k∈B′

xk,h,d = 1, ∀d = 1, ., , D (5)∑
i∈B′

xi,k,d =
∑
j∈B′

xk,j,d, ∀k ∈ P ∪R, ∀d = 1, ..., D (6)

D∑
d=1

∑
j∈B′

xi,j,d ≤ 1, ∀i ∈ P (7)

∑
i∈B′

∑
j∈B′

ti,jxi,j,d ≤ Td, ∀d = 1, .., D (8)

y0 = Q (9)

yj + (qi,j +Q)xi,j ≤ yi +Q, ∀i ∈ P ∪ S′, ∀j ∈ B′ (10)

yj + qi,jxi,j ≤ Q, ∀i ∈ R, ∀j ∈ B′ (11)

xi,j,d ∈ {0, 1}, ∀i, j ∈ B′ s.t i ̸= j, d = 1, ..., D (12)

yi ∈ [0, Q], ∀i ∈ B′ (13)

Equation 1 represents the objective of the problem. This equation calculates the total score of

the tour, which we aim to maximise. With equation 2, we ensure that the tour starts at the

specified first hotel. In a similar way constraint 3 ensures that the tour ends at the final hotel

with index 1. Constraints 4 and 5 make sure that each trip starts and ends at a hotel. In addition

constraint 6 guarantees the connectivity within each trip. To consider the restriction that each

vertex, so excluding hotels and charging stations, can only be visited once, we include constraint

7. Constraint 8 ensures that the length of each trip does not exceed the maximum trip length.

The remaining constraints are not included in the OPHS formulation and are incorporated to

take into account the vehicle’s range. To set the initial vehicle charge to full capacity, we include

constraint 9. We include constraints 10 and 11 to monitor the battery charge of the vehicle,

while also serving as subtour elimination constraints.

5.2 Skewed variable neighborhood search algorithm for the OPHS

The algorithm that we present for the OPHCS builds upon the algorithm for the OPHS of

Divsalar et al. (2013). For that reason, we initially replicate their algorithm for the OPHS

and compare our results with theirs to validate if our implementation is correct. The authors

did not report all of their methods clearly, which forces us to make some decisions ourselves.

Firstly, we set kmax equal to the maximum of 0.25 ∗ NUFC and two. This is to ensure that
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also for instances with NUFC smaller than four, all shake moves are applied at least once.

Unfortunately, the authors are not clear about which descent heuristic they use in their local

search algorithm. They do specify for the sub-OP that they apply one local search move as

long as it finds improvements to the solution. If no improvements are possible anymore, they

move on to the next move. We choose to use this approach for the local search algorithm as

well. We recognise that this approach is expected to lead to longer running times compared

to a first-order descent heuristic (Hansen et al., 2010). This is due to the fact that the more

time-consuming moves are positioned lower in the predetermined order of local search moves.

The other parameter values are set equal to those reported in Divsalar et al. (2013).

5.3 Skewed variable neighborhood search algorithm for the OPHCS

We use a skewed variable neighborhood search (SVNS) framework to solve the OPHCS. We

use the algorithm proposed in Divsalar et al. (2013) for the OPHS as a starting point for our

approach. Modifications have been made to the feasibility checks for hotel combinations and

routes to consider the limited range of the vehicle. In addition, extra local search steps have

been included to create solutions with a diverse range of charging stations.

5.3.1 Parameter inputs

The framework of our SVNS algorithm is shown in Algorithm 1. We made adjustments to the

parameter inputs of our algorithm in comparison to those presented in Divsalar et al. (2013).

Since we observed that our SVNS algorithm for the OPHCS rarely finds improvements after 25

moves without improvement, we set NoImprovementMax equal to 25 for time saving purposes.

The “Number of Used Feasible Combinations of hotels” (NUFC) remains equal to 250. We set

kmax equal to the maximum of 0.25 ∗NUFC and two. This is to ensure that also for instances

with a NUFC smaller than or equal to four, we perform at least one shake iteration. Similar

to Divsalar et al. (2013), we set the value of MaxPercentageWorse equal to 30%.

5.3.2 Initialization

To begin, we need to find a feasible OPHCS tour. This process can be broken down into three

steps: computing the matrix of pairs of hotels, finding all feasible combinations of hotels and

finally constructing a feasible initial solution. Firstly, we compute the matrix of pairs of hotels.

This matrix contains the potential score for each pair of hotels. Naturally, this score is dependent

on the maximum trip length Td. For that reason, we compute and store this potential score for

each maximum trip length Td, with d = 1, ..., D. This results in a three dimensional matrix with

dimensions H by H by d. The potential score for each pair of hotels is computed by solving a

sub-OP. This process is described in Algorithm 2, where Xinit is the empty pair of hotels. It

is likely that the distance between a pair of hotels is longer than the vehicle’s range. To give

a feasible initial trip to the sub-OP algorithm, we first make the pair feasible by means of the

“Insert Charging Stations” method. This method is used in Algorithm 3 and described in more

detail further in this section. For pairs of hotels that have no feasible route between them, the

sub-OP cannot be solved. We assign a score of zero to these pairs.
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Algorithm 1: Skewed Variable Neighborhood Search

Initialization:
1) Construct matrix of pairs of hotels
2) Find all feasible hotel combinations
3) Construct a feasible initial solution: X
NoImprovement ← 0
while NoImprovement < NoImprovementMax do

k ← 1
while k < kmax do

X ′ ← Vertices-Shake(X)
X ′′ ← LocalSearch(X ′)
X ′ ← Hotels-Shake(X ′′)
X ′′ ← LocalSearch(X ′)
Recenter:
if X ′′ is better than X then

X ← X ′′

k ← 1
NoImprovement ← 0

end
else

NoImprovement++
if X ′′ is at most MaxPercentageWorse worse than X then

X ← X ′′

k ← 1
end
else

k ++
end

end

end

end

Algorithm 2: Sub-OP algorithm

Input: Feasible trip Xinit

Output: Feasible trip X
while Any of the moves improves solution do

X ← Insert(X);
X ← InsertChargingStations(X);
X ← Replace(X);
X ← ReplaceChargingStations(X);
X ← TwoOpt(X);
X ← MoveBest(X);

end
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Secondly, we compute all feasible combinations of hotels that start at the specified first hotel

of the tour and end at the specified final hotel of the tour. Since each combination must result

in D trips, all combinations must contain D+1 hotels. We consider a combination feasible, if it

obeys both the trip length- and vehicle range constraints. It is likely that a hotel combination

needs charging stations to be feasible with respect to the vehicle range constraints. If so, we

add charging stations into the combination with the “Insert Charging Stations” move shown in

Algorithm 3. This move is described in more detail later.

For all of the hotel combinations that are found to be feasible, we compute a heuristic

estimated score (HES) by summing all of the sub-OP values for each consecutive pair of hotels

in the combination. These sub-OP values are taken from the matrix of pairs of hotels. We take

the sub-OP value of the matrix that belongs to that pair of hotels and the respective trip in

the combination. This value is used to get a first idea of which combinations are promising.

The combinations are sorted based on their HES and we continue with the NUFC highest

combinations. If the Total Number of Feasible Combinations (TNFC) is smaller than NUFC,

we set NUFC equal to TNFC.

Finally, we apply three different search strategies to the chosen combinations. The solution

with the highest score will be used as the initial solution. To start, we apply the full local search

algorithm on each combination of hotels. It is possible that charging stations are included in

this empty combination. To obtain another solution, we apply the sub-OP on each trip of the

empty combination, starting from the first trip. After this, we improve the solution using local

search. For one more solution, we again start by applying the sub-OP on the empty trips, but

now starting at the last trip. Again the solution is improved by means of local search. With

all three strategies, we do not allow for vertices to occur more than once in the tour. The last

two approaches are now more complex than for the OPHS approach of Divsalar et al. (2013),

because a change in one trip might cause a conflict with respect to the charge constraints in

another trip. In our approach, we do not allow for the sub-OP to result in an infeasible tour.

For that reason, when we apply the sub-OP on one of the trips of a tour, it is essential that we

ensure that this does not cause conflicts with respect to the vehicle range among other trips.

We save the solution with the highest associated score and continue to the next phase of the

algorithm with this solution.

5.3.3 Shaking Phase

In the shaking phase, we apply three different shake moves on the current solution: two types

of vertices-shakes and one hotels-shake. In the first shake move, we delete the first half of each

trip of the current solution. If l denotes the length of the trip, we remove the first
⌊
l
2

⌋
elements.

These elements can be both vertices and charging stations. In order to try solutions with a high

variety of charging station combinations, we also delete the charging stations in the first half of

each trip. We improve the solution with local search.

The second shake move is comparable to the first. However, now we remove the second half

of each trip. We again improve the solution by means of local search. If one of these moves

results in a feasible tour with a higher score than the current tour, we update the current tour

to the improved tour.

10



After we have made both shake moves, we continue with a hotels-shake on the current

solution. In this move, the hotels in a solution are replaced by one of the NUFC combinations

of hotels. We randomly select a combination out of the NUFC combinations. To prevent

considering the same hotel combinations in different iterations without moving to a new solution,

we store the NUFC combinations that we have considered. The combinations in this list can

not be selected. As soon as we recenter to a new solution at the end of an iteration, we clear

the list of tried combinations. All charging stations are removed. This hotel change is likely to

result in an infeasible tour. In such cases we apply an iterative approach, where we sequentially

remove the vertex with the lowest ratio of score over distance saved after removal. This process

continues until the solution is feasible or no more vertices to remove are left. This new solution

is improved by means of local search.

With all three shake steps, it is possible that the solution passed to the local search method

is infeasible with respect to the vehicle’s range. For that reason, we apply the “Make Feasible”

method, which is shown in Algorithm 3, before starting the local search procedure. This method

consists of an “Insert Charging Stations” move in combination with a “Remove Most Expensive”

move. We initially apply the “Insert Charging Stations” move. If this does not result in a

feasible solution, we apply the “Remove Most Expensive” move and try the “Insert Charging

Stations” move again. This is done until we obtain a feasible solution. This procedure is shown

in Algorithm 3. Both moves are described in more detail below.

Insert charging stations This method takes as input an infeasible solution with respect to

the charging constraints. We iteratively insert the cheapest charging station into the route until

the tour is feasible with respect to all constraints. If we can not insert more charging stations

and the route is still infeasible, we start the make feasible method again, but start with inserting

another charging station than we started with the previous times. We try this until we have

obtained a feasible solution or we have tried all possible charging stations for the first insertion.

Remove most expensive This move takes as input an infeasible tour from the make feasible

move. We remove the vertex from the tour, so no hotel or charging station, for which the removal

results in the highest decrease in the distance traveled.

Algorithm 3: Make Feasible algorithm

Input: Infeasible solution X
while X is not feasible do

X ← InsertChargingStations(X);
if X is not feasible then

X ← RemoveMostExpensive(X);
end

end

5.3.4 Local-Search

Our local search algorithm utilises, among other moves, the nine local search moves of Divsalar

et al. (2013). We include three extra moves, which contribute to choosing the optimal charging
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stations and finding their best position in the tour. Except for the insert charging stations

move, we apply one local search move as long as it finds improvements to the current solution.

The local search moves are applied in the order below as long as one of the moves improves

the current solution. We design the local search procedure in a way that limits the number of

parameter inputs.

Insert This step inserts non-included vertices into the tour. For all non-included vertices we

find the position for which insertion of the non-included vertex results in a minimum increase

in the length of the tour. For these non-included vertices we compute a value that is calculated

as the score of that vertex divided by the increase in trip length. We insert the vertex for which

this value is the highest and insertion does not result in an infeasible solution. The vertex is

inserted at the position which results in the lowest increase in trip length. We do not consider

inserting charging stations in this step.

Insert charging stations This move is applied as soon as the insert move fails to insert new

vertices. For each charging station we find the position of insertion that results in a minimum

increase in trip-length while maintaining a feasible solution. We insert the charging station that

can be added to the tour with the lowest increase in trip length. When a feasible insertion is

found we go back to the insert step and try to insert new vertices to the route, as soon as this fail

we go back to this move. If no feasible insertion is found for all charging stations, we continue

to the next step.

Two-Opt For each trip in the tour, we find the two vertices for which reversing the order of

the vertices between them results in the highest decrease of travel distance. If a profitable pair

is found, the order of the vertices is reversed. Due to the limited vehicle range and the presence

of charging stations, this step does not always result in a feasible solution. We perform the move

that is most profitable and results in a feasible solution.

Move-best Starting at the first vertex of the tour, we evaluate whether moving this vertex to

the position where insertion results in the minimal increase in trip length is feasible. If so, we

complete this move and we move on to the next vertex in the tour. We also consider charging

stations for relocation in this step.

Swap-trips For each pair of trips d1 and d2, we swap two vertices i ∈ d1, j ∈ d2 only if this

swap results in a decrease in the distance traveled for at least one of the trips and whole tour

remains feasible. The swap that results in the largest decrease in distance traveled is performed.

Even though Divsalar et al. (2013) states that a swap-trips move is performed as long as the

distance of at least one of the trips decreases, we follow other relevant literature and only perform

a swap-trips move if this results in a decrease of the total tour length (Vansteenwegen et al.,

2011).

Extract-Insert Starting form the first vertex in the tour, we check whether excluding this

vertex and inserting as many non-included vertices as possible can increase the score of the trip.
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In those cases, the change is made and we move on to the next vertex in the tour. The excluded

vertex is not considered again for insertion in this iteration of the local search. However, inserted

vertices are considered again for exclusion.

Extract2-Insert This move is similar to the previous move, but now we consider two consec-

utive vertices for exclusion.

Extract5-Insert This move resembles the Extract-Insert and Extract2-Insert moves, but now

we consider five consecutive vertices for exclusion. If this change is found to be profitable, we

perform the change and start a new local search iteration.

Extract-Move-Insert Starting from the first vertex in the first trip, we consider each vertex

for removal from the tour. Subsequently, we examine if after this removal any other vertex

can be moved to a different position in the tour. Charging stations are considered for both

extraction and relocating. If this is possible, we check whether we can insert any of the non-

included vertices in the trip the vertex was moved from. We only consider inserting vertices

with a higher score than the removed vertex. If this move is found to be feasible, we make the

changes and update the current solution. We move on to the next vertex in the trip, where the

extracted vertex is considered again for insertion.

Replace For each trip, we check for all non-included vertices whether we can insert this vertex

at the position that results in the lowest increase in travel distance. If this insertion is found to

be feasible, we insert the vertex. If not, we check whether removing one of the vertices with a

lower score than the vertex under consideration results in a feasible insertion. We also consider

charging stations for removal. As soon as we find a removal that results in a feasible insertion,

we perform this change.

Replace Charging Stations This move is similar to the Replace move. However, now we

only consider charging stations for insertion and removal. In addition, we only consider replacing

one charging station for another, so we do not insert a charging station without removing another

one. This is to prevent excessive insertion of charging stations, as we prioritise solutions with

less charging stations. We replace one charging station for another if this results in a decrease

of the tour length and the tour remains feasible.

Remove Charging Stations This step is often included in relevant literature (Keskin &

Çatay, 2016). To keep this move simple, we include one removal component for the charging

stations. Starting with the first charging station in the first trip, we check if the tour remains

feasible when we remove this charging station. If so, we apply all local search steps, except for

this move and the insert charging stations move, to the tour with the removed charging station.

If this results in an improvement of the solution with respect to either score or distance, we

update the current solution to this new solution and move on the next trip. If this is not the

case, we move on to the next charging station in the tour.
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5.3.5 Recentering phase

Each time after we finish the local search after the hotels-shake, we decide if we update the

current solution. If the solution after hotels-shake and local search is better than the one

used to start this iteration of the algorithm with respect to the score of the tour, we start

the next iteration of the algorithm with this new solution. Also if the new solution is only

MaxPercentageWorse percent worse than the solution used to start this iteration, we start the

next iteration with the new solution. If the solution after hotels-shake and improvement is more

than MaxPercentageWorse percent worse, we start the next iteration with the same solution

used to start this iteration.

5.4 Benchmark Algorithm

To critically evaluate the performance of the presented SVNS algorithm, we want to compare

its results to those of a relatively simple benchmark algorithm. The benchmark algorithm starts

with a feasible OPHS tour. This feasible solution is obtained via our implementation of the

SVNS algorithm presented in Divsalar et al. (2013). To convert this tour into a feasible OPHCS

tour, we apply the make feasible algorithm as described in Algorithm 3. This gives us a feasible

OPHCS tour. To improve this solution, we perform the local search procedure of Section 5.3.4.

Due to how the OPHCS instances are created, it is not representative for the true quality of the

benchmark model if we use all instances to compare the algorithms. For the instances that our

OPHS algorithm solved to optimality, we know that the optimal charging stations are located

at exactly the locations of vertices in the tour. As a result, all optimal charging stations can be

added to the optimal OPHS tour without increasing the distance of the tour. For that reason,

we only compare the results of our OPHCS algorithm and the benchmark algorithm for the

instances that our OPHS algorithm does not solve to optimality.

6 Results

In this section, we start by presenting the results of our algorithm for the OPHS instances and

compare them to the results of Divsalar et al. (2013). After this, we continue with our results

for the OPHCS. Finally, we compare the performance of our SVNS algorithm for the OPHCS

with the results of a relatively easy benchmark model.

6.1 Results OPHS

The results of our implementation of the SVNS algorithm for the OPHS are shown in Table

1. We compare these with the results of Divsalar et al. (2013), which are shown in Table 2.

The results for each instance separately can be found in Appendix A. Here, the results for

SET4 are also included. In both tables, the rows represent the different sets of instances. The

columns respectively give the average “Total Number of Feasible Hotel Combinations” (TNFC),

the average gap when compared to the optimal solution given as a percentage value and the

computation time of the algorithm in seconds. If we consider the average performance of both

implementations, we observe that the average gap is slightly higher for our algorithm. Even

14



tough the average gaps are not too far apart, the gaps per set seem to differ significantly

between both implementations. Our algorithm delivers lower gaps to the optimal solution for

set1: 1-2, Set1: 2-3 and set2: 5-3. However, for set2: 6-4, set3: 10-4 and set3 12-5 our algorithm

is outperformed.

Sets TNFC Gap (%) CPU (s)

Set1: 1-2 2.89 0.83 11.39

Set1: 2-3 14.03 0.38 10.56

Set1: 3-4 92.80 0.93 15.53

Set2: 5-3 62.49 0.36 12.27

Set2: 6-4 379.31 1.97 24.41

Set3: 10-4 1417.18 2.76 365.73

Set3: 12-5 25029.18 5.26 252.71

Average 1.78 98.94

Table 1: SVNS result

Sets TNFC Gap (%) CPU (s)

Set1: 1-2 2.89 1.22 0.18

Set1: 2-3 14.03 0.93 0.21

Set1: 3-4 92.80 0.92 0.65

Set2: 5-3 62.49 0.93 0.34

Set2: 6-4 379.31 1.21 1.39

Set3: 10-4 1417.18 2.61 8.20

Set3: 12-5 25029.18 3.58 6.77

Average 1.63 2.53

Table 2: SVNS results of Divsalar et al.
(2013)

We can only speculate about the causes of these differences. It is likely that our implement-

ation differs from that of the authors, since some of the steps of the SVNS algorithm are not

described in detail. We suspect that Divsalar et al. (2013) uses a different descent heuristic,

probably a “best improvement” approach, in their SVNS algorithm. If this is the case, this

could provide a plausible explanation for the longer running times of our implementation and

potentially also for the differences observed in the average gaps. In addition, it is likely that a

part of the difference in running times can can be attributed to sub optimal programming on

our part.

It is worth mentioning that our algorithm gives lower gaps than that of Divsalar et al. (2013)

for the three sets with a lower average TNFC and performs worse for the remainder of the sets.

An increase in the average gap as a result of a higher TNFC is expected (Divsalar et al., 2014),

but the average gap in our implementation appears to exhibit a greater degree of responsiveness

than the implementation of Divsalar et al. (2013).

Given that the average running time for set1: 1-2 is relatively low and the average gap is

close to that of Divsalar et al. (2013), we decide to assess the effectiveness of our SVNS algorithm

for the OPHCS based on the results for set1: 1-2. We choose not to evaluate the algorithm’s

performance on the results for set1: 2-3, because these results might exaggerate the quality of

our algorithm.

6.2 Results OPHCS

We evaluate the performance of the presented algorithm for the OPHCS by using the instances

created for Set1 with one extra hotel and two trips. We create these instances according to

the procedure described in Section 4. As described in that section, we find the optimal OP

solution within a time frame of thirty minutes for a total of 26 instances. Our OPHS algorithm

achieved the optimal objective value in 16 out of 26 cases. The corresponding results are shown

in Table 3. In Table 4, we present the baseline performance of our OPHCS algorithm. For
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these instances, the capacity of the vehicle has been set equal to 100% of the optimal length

of the optimal OP tour and no extra charging stations have been included. We observe that

the average gap increases slightly and the average computation time increases from 12.03 to

20.34. Based on these results, we conclude that the baseline instances exhibit a slightly higher

level of complexity compared to their respective OPHS instances. We use the results in Table

4 to evaluate how the vehicle’s range and the number of extra charging stations influence the

performance of the algorithm.

Instance TNFC SVNS Gap (%) CPU (s)
100-30 2 173 0.00 0.68
100-35 1 241 0.00 1.27
100-40 2 299 0.00 1.42
100-45 3 367 0.00 3.86
64-45 3 816 0.00 8.49
64-50 3 876 2.67 10.46
64-55 3 966 1.83 17.58
64-60 3 1050 1.13 24.12
64-65 3 1116 0.00 26.80
64-70 3 1170 1.52 35.20
64-75 3 1230 0.49 35.37
64-80 3 1284 0.00 35.05
66-125 3 1655 0.90 51.06
T1-65 3 240 0.00 1.29
T1-70 3 260 0.00 1.57
T1-73 3 250 5.66 3.90
T1-75 3 270 0.00 3.96
T1-80 3 280 0.00 2.50
T1-85 3 285 0.00 3.06
T3-100 3 800 0.00 4.99
T3-65 3 610 0.00 3.43
T3-75 3 650 2.99 4.99
T3-80 3 710 0.00 4.37
T3-85 3 720 2.70 6.69
T3-90 3 770 0.00 4.26
T3-95 3 780 1.27 5.04
Average 0.85 12.03

Table 3: SVNS results for Set1: 1 extra
hotel 2 trips (OPHS)

Instance TNFC SVNS Gap (%) CPU (s)
100-30 1 173 0.00 0.75
100-35 1 241 0.00 0.78
100-40 1 299 0.00 1.33
100-45 2 367 0.00 3.36
64-45 3 816 0.00 9.60
64-50 3 882 2.00 14.32
64-55 3 978 0.61 27.74
64-60 3 1062 0.00 26.31
64-65 3 1116 0.00 38.42
64-70 3 1170 1.52 60.62
64-75 3 1230 0.49 57.30
64-80 3 1284 0.00 85.35
66-125 3 1655 0.90 131.42
T1-65 3 240 0.00 2.31
T1-70 3 260 0.00 3.93
T1-73 3 245 7.55 4.01
T1-75 3 270 0.00 5.32
T1-80 3 280 0.00 5.25
T1-85 3 280 1.75 4.77
T3-100 3 800 0.00 7.13
T3-65 3 610 0.00 3.29
T3-75 3 650 2.99 7.73
T3-80 3 710 0.00 7.51
T3-85 3 710 4.05 6.80
T3-90 3 770 0.00 7.91
T3-95 3 760 3.80 5.53
Average 0.99 20.34

Table 4: 100% range, 0 extra charging sta-
tions

In Table 5, the results of our OPHCS algorithm are shown. In this table CS is used to

abbreviate ”Charging Stations”. The results of each individual instance of the OPHCS can be

found in Appendix B. For all instances created for Set 1 with one extra hotel and two trips,

we report the average gap to the optimal OPHCS solution expressed as a percentage and the

computation time in seconds. Starting with the instance with a vehicle range equal to 20% of

the length of the known optimal OPHS tour and no extra charging stations, we observe that

the average gap is significantly higher than the average gap reported in Table 4. The average

gap rises from 0.99 to 15.97. The computation time increases from 20.34 to 189.29. We observe

a downward trend in the average gap as the number of extra charging stations increases for the

instances with 20% range. This reduction in the average gap is accompanied with an increase

in the average computation times. From this pattern, we suspect that the vehicle’s range is a

prominent limiting factor for these instances.

16



For the instances with a vehicle range equal to both 40% and 60% of the length of the known

optimal OPHS tour, a different pattern in the average gaps is observed. Increasing the number

of extra charging stations from zero to two, results in a decrease in the average gaps. However,

increasing the number of extra charging stations further to six extra stations leads to a increase

in the average gaps. This response is stronger for the instances with a vehicle range equal to

60%. It is worth mentioning that for the instances with a range equal to 60% of the length of

the optimal OPHS tour, the average gap is only 1.08%. This is not significantly higher than the

average gap for the baseline instances, which equals 0.99%. The average gap for the instances

with two extra hotels is with a value of 0.85% even lower than that of the baseline instances. It

is likely, that this is due to how the instances were created. Since the optimal charging stations

are placed at exactly the location of vertices in the optimal OPHS tour, the algorithm tends to

include these points in the tour.

Capacity (%) 20 40 60 Average
Extra CS’s Gap (%) CPU(s) Gap (%) CPU(s) Gap (%) CPU(s) Gap (%) CPU (s)

0 15.97 189.29 3.32 85.41 1.07 80.24 6.79 118.31
2 10.95 219.13 2.00 121.93 0.85 125.58 4.60 155.55
6 7.39 355.02 2.02 276.13 1.31 207.61 3.57 279.59

Average 11.44 254.48 2.45 161.16 1.08 137.81 4.99 184.48

Table 5: SVNS results for the OPHCS

On average, it is evident that both changes in the vehicle range and the number of extra

charging stations significantly affect the performance of the OPHCS algorithm. From Table 5,

we conclude that increasing the vehicle’s range leads to a significant decrease in the average gap

and computation time. We conclude that decreasing the vehicle’s range makes the OPHCS more

difficult to solve. The effect of increasing the number of extra charging stations is less evident.

The results in Table 5 suggest that increasing the number of extra charging stations leads to

a reduction of the average gap. However, the true effect appears to depend on the vehicle’s

range. Only for the instances with a vehicle range equal to 20%, we observe that increasing

the number of extra hotels from two to six results in a decrease in the average gap. This, in

combination with the significantly higher average gap than for the other vehicle ranges, suggests

that our SVNS algorithm struggles to find the optimal charging stations and their best position

in the tour for these instances. This is not very surprising, since these instances require that

a larger combination of charging stations is chosen correctly and that those charging stations

are inserted at exactly the correct position in the tour. From this, we suspect that treating

the charging stations in the same manner as hotels in the SVNS algorithm could result in more

favorable results for low vehicle range instances.

To further analyse the performance of our SVNS algorithm for the OPHCS, we compare its

performance to that of a simple benchmark algorithm. We compare both algorithms for the

ten instances in Table 3 that were not solved to optimality. The choice for this subset of the

instances is motivated in Section 5.4. The results of the SVNS algorithm for these instances

are shown in Table 6. Table 7 presents the results for the benchmark algorithm. In Appendix

C, the separate results for each instance can be found. We observe that the average gap of the

benchmark algorithm has a value of 4.23%. This is lower than the average gap of the SVNS
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algorithm, which has a value of 4.89%. However, we find that the SVNS algorithm outperforms

the benchmark algorithm for all instances with a capacity equal to 40% and 60%. For the

instances with a capacity equal to 20%, the benchmark algorithm delivers better results.

Capacity (%) 20 40 60 Average

Extra CS’s Gap (%) CPU(s) Gap (%) CPU(s) Gap (%) CPU(s) Gap (%) CPU (s)

0 17.38 290.36 2.31 125.20 2.31 141.06 7.33 185.54
2 8.47 319.95 1.61 184.52 1.45 206.94 3.84 237.14
6 6.47 510.44 1.87 461.32 2.14 335.45 3.49 435.74

Average 10.77 373.58 1.93 257.01 1.97 227.82 4.89 286.14

Table 6: SVNS results for the OPHCS (ten instances)

Capacity (%) 20 40 60 Average

Extra CS’s Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s) Gap (%) CPU (s)

0 7.17 18.70 3.78 17.94 4.61 20.38 5.19 19.01
2 7.33 18.43 2.93 19.85 1.98 18.41 4.08 18.90
6 5.89 18.75 2.07 20.18 2.34 17.13 3.43 18.69

Average 6.80 18.63 2.93 19.32 2.98 18.64 4.23 18.86

Table 7: Benchmark algorithm results for the OPHCS (ten instances)

From the fact that the benchmark algorithm outperforms our SVNS approach for the 20%

range instances, we suspect that for low vehicle ranges another implementation is likely to

deliver better results. From Table 5, we already noticed that increasing the number of extra

charging stations from two to six leads to a lower average gap for the 20% range instances. This

indicates that the algorithm has more difficulty to find the optimal charging stations and their

best positions for those instances than for the 40% and 60% range instances.

7 Conclusion

In this paper, we introduce the orienteering problem with hotel and charging station selection

(OPHCS). We focus on presenting an algorithm for this problem. The OPHCS is closely related

to the orienteering problem with hotel selection (OPHS), where the OPHS can be seen as a

OPHCS with infinite vehicle range. Efficient algorithms for the OPHS exist. We build upon

the SVNS algorithm of Divsalar et al. (2013) and apply this new algorithm to the OPHCS. We

examine the performance of the algorithm and investigate how the performance is affected by

the range of the vehicle and the number of extra charging stations in the instance.

All in all, our SVNS algorithm for the OPHCS achieves promising results. We found an

average gap to the optimal solutions of 4.99% and an average computation time of 184.48

seconds. The proposed algorithm demonstrates great efficiency by solving all the considered

OPHCS instances within a maximum of fifteen minutes. In contrast, CPLEX failed to achieve

optimality for any of those instances within an hour of computation time. We find that for an

increasing vehicle range the average gap to the optimal solution decrease significantly. For high

vehicle ranges, the average gaps approach those of our implementation of the SVNS algorithm

for the OPHS. We observe that for the instances with 60% range and two extra hotels, the
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average gap is even lower than that for the instances with 100% range and no included charging

stations.

However, we do believe that improvements can be made to our algorithm. To ensure that

our algorithm is applicable for practical scenarios, such as trip planning for electric trucks,

improvements with respect to both the average gaps and the computation times are essential.

Compared to the performance of our OPHS algorithm, we observed a significant increase in all

computation times. From this, we conclude that the OPHCS is more difficult to solve than the

OPHS. Even for the set that is solved within the shortest time, computation times are almost

four times higher than for the OPHS. We found that the algorithm’s performance is significantly

affected by the vehicle range. A lower vehicle range, and thus more charging stations to be

included in the route, results in higher gaps and increased computation times. These results

implies that the OPHCS becomes more difficult with a lower vehicle range. In addition, we

found that for the instances with vehicle ranges equal to 0.20% of the optimal OPHS solution,

increasing the number of extra charging stations leads to a lower average gap. This implies

that the algorithm struggles to select the tour with the optimal charging stations. One more

difficulty with the presented algorithm are the long computation times.

It is worth mentioning that the computation time of our algorithm can most likely be im-

proved with more efficient programming. This is likely to be one of the reasons for why our

implementation of the SVNS for the OPHS has a longer average running time that that of

Divsalar et al. (2013). Another reason for these higher running times could be the descent

heuristic used in the local search method. We use a relatively time consuming descent heuristic,

so it is possible that Divsalar et al. (2013) uses a less time consuming heuristic like the best-

improvement or first-descent heuristic. Since the proposed algorithm for the OPHCS builds upon

that for the OPHS, it is most likely that the running times for the OPHCS are also dependent

on the running times for the OPHS.

We have contributed to research in this area by introducing a new variant of the OPHS, called

the OPHCS, and creating 1270 new benchmark instances for this problem. We provide an SVNS

algorithm for this problem that obtains high quality solutions within acceptable computation

times, especially for instances with a higher vehicle range. Furthermore, by critically evaluating

the proposed SVNS algorithm, we have provided interesting suggestions for future research. We

found that for instances with low vehicle ranges, our algorithm struggles to find the optimal

charging stations and their optimal positions in the tour. Since charging stations need to be

at exactly the correct position in the tour to find the optimal tour, treating them in a fashion

comparable to how hotels are treated in the SVNS algorithm might deliver more favorable

results. In addition, future research could be on improving the local search moves used in the

descent phase and on what effect the chosen descent heuristic has on the performance of the

algorithm. Another interesting extension would be to assign scores to charging stations, which

is relevant for many practical purposes. Since people have to spend more time at a charging

stations than at ordinary gas stations, they assign more value to the available facilities such as

restaurants. In addition, some car manufacturers offer their customers so called superchargers

that allow for faster recharges. Those customers are likely to value these charging stations more

than ordinary charging stations.
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Instances SVNS TNFC Gap (%) CPU (s)

100-30 2 173 0.00 0.68
100-35 1 241 0.00 1.27
100-40 2 299 0.00 1.42
100-45 3 367 0.00 3.86
102-50 3 181 0.00 0.34
102-60 3 243 0.00 1.39
64-45 3 816 0.00 8.49
64-50 3 876 2.67 10.46
64-55 3 966 1.83 17.58
64-60 3 1050 1.13 24.12
64-65 3 1116 0.00 26.80
64-70 3 1170 1.52 35.20
64-75 3 1230 0.49 35.37
64-80 3 1284 0.00 35.05
66-125 3 1655 0.90 51.06
66-130 3 1680 0.00 60.63
66-40 3 570 0.87 2.25
66-45 3 645 0.77 4.00
66-50 3 705 3.42 6.21
66-55 3 825 0.00 9.12
66-60 3 890 2.73 8.95
T1-65 3 240 0.00 1.29
T1-70 3 260 0.00 1.57
T1-73 3 250 5.66 3.90
T1-75 3 270 0.00 3.96
T1-80 3 280 0.00 2.50
T1-85 3 285 0.00 3.06
T3-100 3 800 0.00 4.99
T3-105 3 800 0.00 4.35
T3-65 3 610 0.00 3.43
T3-75 3 650 2.99 4.99
T3-80 3 710 0.00 4.37
T3-85 3 720 2.70 6.69
T3-90 3 770 0.00 4.26
T3-95 3 780 1.27 5.04

Average 0.83 11.39

Table 8: Set1: 1 extra hotel - 2 trips

Instances SVNS TNFC Gap (%) CPU (s)

100-30 1 173 0.00 0.18
100-35 2 241 0.00 1.92
100-40 2 299 0.00 0.87
100-45 2 367 0.00 2.61
102-50 12 181 0.00 0.66
102-60 12 243 0.00 0.56
64-45 12 816 0.00 10.19
64-50 16 876 2.67 7.38
64-55 16 972 1.22 12.37
64-60 16 1062 0.00 15.37
64-65 16 1116 0.00 21.37
64-70 16 1170 1.52 37.02
64-75 16 1218 1.46 29.55
64-80 16 1260 1.87 30.85
66-125 16 1670 0.00 51.78
66-130 16 1675 0.30 64.67
66-40 16 570 0.87 2.73
66-45 16 645 0.77 2.09
66-50 16 715 2.05 3.51
66-55 16 825 0.00 4.60
66-60 16 910 0.55 6.28
T1-65 16 240 0.00 1.85
T1-70 16 260 0.00 2.31
T1-73 16 265 0.00 1.85
T1-75 16 270 0.00 2.26
T1-80 16 280 0.00 2.59
T1-85 16 285 0.00 3.80
T3-100 16 800 0.00 5.12
T3-105 16 800 0.00 8.16
T3-65 16 610 0.00 3.66
T3-75 16 670 0.00 5.94
T3-80 16 710 0.00 4.79
T3-85 16 740 0.00 4.44
T3-90 16 770 0.00 11.41
T3-95 16 790 0.00 4.71

Average 0.38 10.56

Table 9: Set1: 2 extra hotels - 3 trips
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Instances SVNS TNFC Gap (%) CPU (s)

100-30 2 173 0.00 0.92
100-35 1 241 0.00 0.32
100-40 1 299 0.00 0.58
100-45 2 367 0.00 0.95
102-50 33 181 0.00 0.22
102-60 60 243 0.00 1.30
64-45 44 810 0.74 2.66
64-50 72 870 3.33 9.51
64-55 100 978 0.61 12.02
64-60 100 1044 1.69 16.38
64-65 125 1116 0.00 26.53
64-70 125 1152 3.03 30.08
64-75 125 1206 2.43 65.08
64-80 125 1272 0.93 51.29
66-125 125 1650 1.20 71.25
66-130 125 1670 0.60 75.94
66-40 107 570 0.87 1.84
66-45 88 645 0.77 3.51
66-50 107 715 2.05 4.82
66-55 107 825 0.00 7.65
66-60 107 910 0.55 8.65
T1-65 107 240 0.00 1.03
T1-70 107 260 0.00 1.41
T1-73 107 265 0.00 1.70
T1-75 107 270 0.00 3.27
T1-80 125 280 0.00 3.36
T1-85 125 285 0.00 3.16
T3-100 125 770 3.75 6.75
T3-105 125 790 1.25 9.10
T3-65 100 610 0.00 3.40
T3-75 125 650 2.99 5.52
T3-80 107 710 0.00 3.53
T3-85 107 740 0.00 5.80
T3-90 100 720 6.49 5.35
T3-95 100 790 0.00 9.50

Average 0.95 12.98

Table 10: Set1: 3 extra hotel - 4 trips

Instances SVNS TNFC Gap (%) CPU (s)

100-30 1 173 0.00 0.16
100-35 2 241 0.00 0.82
100-40 2 299 0.00 0.97
100-45 2 367 0.00 2.12
102-50 14 181 0.00 0.32
102-60 17 243 0.00 1.99
64-45 42 816 0.00 7.51
64-50 49 876 2.67 9.54
64-55 49 978 0.61 16.06
64-60 49 1038 2.26 20.61
64-65 49 1116 0.00 26.85
64-70 49 1170 1.52 30.02
64-75 49 1224 0.97 38.46
64-80 49 1284 0.00 50.72
66-125 49 1670 0.00 64.92
66-130 49 1675 0.30 71.96
66-40 45 570 0.87 2.14
66-45 47 645 0.77 3.22
66-50 49 715 2.05 5.18
66-55 49 825 0.00 6.36
66-60 49 910 0.55 7.56
T1-65 49 240 0.00 1.95
T1-70 49 260 0.00 2.19
T1-73 49 265 0.00 2.49
T1-75 49 270 0.00 3.51
T1-80 49 280 0.00 3.19
T1-85 49 285 0.00 3.28
T3-100 49 800 0.00 5.73
T3-105 49 800 0.00 6.75
T3-65 49 610 0.00 3.10
T3-75 49 670 0.00 4.22
T3-80 49 710 0.00 4.99
T3-85 49 740 0.00 5.31
T3-90 49 770 0.00 9.26
T3-95 790 790 0.00 5.85

Average 0.36 12.27

Table 11: Set2: 5 extra hotels - 3 trips
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Instances TNFC SVNS Gap (%) CPU (s)

100-30 2 173 0.00 0.16
100-35 1 241 0.00 0.37
100-40 1 299 0.00 0.63
100-45 2 367 0.00 1.24
102-50 60 181 0.00 0.30
102-60 105 243 0.00 1.24
64-45 424 810 0.74 12.29
64-50 252 870 3.33 25.52
64-55 378 978 0.61 32.66
64-60 448 1056 0.56 44.97
64-65 448 1116 0.00 56.32
64-70 512 1164 2.02 54.77
64-75 512 1224 0.97 68.98
64-80 512 1266 1.40 107.54
66-125 512 1650 1.20 111.55
66-130 512 1670 0.60 149.08
66-40 512 570 0.87 3.41
66-45 302 645 0.77 4.92
66-50 228 715 2.05 10.86
66-55 357 825 0.00 12.25
66-60 400 910 0.55 18.65
T1-65 482 220 8.33 3.33
T1-70 482 240 7.69 3.80
T1-73 482 245 7.55 5.66
T1-75 482 270 0.00 7.11
T1-80 512 280 0.00 8.46
T1-85 512 285 0.00 7.66
T3-100 512 770 3.75 15.38
T3-105 512 790 1.25 16.29
T3-65 448 610 0.00 7.85
T3-75 512 620 7.46 11.01
T3-80 482 710 0.00 9.78
T3-85 482 660 10.81 13.73
T3-90 448 720 6.49 13.99
T3-95 448 790 0.00 12.76

Average 1.97 24.41

Table 12: Set2: 6 extra hotels - 4 trips
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Instances SVNS TNFC Gap (%) CPU (s)

100-100 1296 774 1.02 123.59
100-110 1728 815 2.40 150.28
100-120 1728 878 1.79 174.53
100-130 1551 903 5.54 309.71
100-140 1551 935 7.70 352.37
100-150 1728 1002 5.20 362.29
100-160 1728 1044 6.28 465.56
100-170 1728 1093 6.10 689.80
100-180 1728 1148 4.41 675.93
100-190 1728 1186 3.89 749.38
100-200 1728 1214 3.73 868.19
100-210 1728 1243 3.19 1307.61
100-240 1728 1298 0.61 1276.91
100-50 39 408 0.97 2.21
100-60 161 504 0.00 7.75
100-70 276 587 0.51 26.07
100-80 892 652 0.00 43.49
100-90 1220 706 2.62 75.64
64-75 1728 1218 1.46 58.49
64-80 1728 1260 1.87 77.90
66-125 1728 1650 1.20 128.46
66-130 1728 1675 0.30 119.82

Average 2.76 365.73

Table 13: Set3: 10 extra hotel - 4 trips

Instances SVNS TNFC Gap (%) CPU (s)

100-100 15272 697 10.87 76.80
100-110 10991 794 4.91 97.58
100-120 15423 812 9.17 123.53
100-130 24210 850 11.09 167.17
100-140 27440 930 8.19 249.64
100-150 38416 1008 4.64 242.86
100-160 35672 992 10.95 339.74
100-170 38416 1075 7.65 375.70
100-180 38416 1146 4.58 552.54
100-190 38416 1161 5.92 615.23
100-200 38416 1211 3.97 579.67
100-210 38416 1235 3.82 724.82
100-240 38416 1304 0.15 962.03
100-50 26 393 4.61 1.06
100-60 442 504 0.00 9.26
100-70 1273 590 0.00 18.71
100-80 3053 604 7.36 31.40
100-90 5240 663 8.55 61.02
64-75 32928 1194 3.40 51.35
64-80 32928 1254 2.34 65.12
66-125 38416 1630 2.40 108.00
66-130 38416 1660 1.19 106.49

Average 5.26 252.71

Table 14: Set3: 12 extra hotels - 5 trips

Set4:
3-2/3

Best
feasible

Upper
bound

Optimal
value

TNFC SVNS
Gap (%)
w. BF

Gap (%)
w. UB

Gap (%)
w. OV

CPU
(s)

100-20-2 - - 247 4 247 - - 0.00 0.856

100-20-3 357 376 - 19 368 -3.08 2.13 - 2.449

100-25-2 - - 385 5 385 - - 0.00 2.954

100-25-3 495 568 - 25 522 -5.45 8.10 - 5.998

102-35-2 - - 157 2 151 - - 3.82 0.341

102-35-3 230 380 - 7 324 -40.87 14.74 - 0.641

102-40-2 - - 210 2 210 - - 0.00 0.81

102-40-3 299 493 - 7 389 -30.10 21.10 - 2.32

102-45-2 - - 266 2 254 - - 4.51 1.324

102-45-3 356 579 - 7 425 -19.38 26.60 - 3.325

Average -19.78 14.53 1.67 2.10

Table 15: SET4: 3 extra hotels - 2 trips/3 trips
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B OPHCS SVNS results

Instance TNFC SVNS Gap (%) CPU (s)

100-35 1 173 28.22 95.07
100-40 1 299 0.00 92.33
100-45 1 367 0.00 134.21
64-45 3 510 37.50 76.04
64-50 3 606 32.67 164.70
64-55 3 750 23.78 187.13
64-60 3 798 24.86 303.29
64-65 3 1086 2.69 346.90
64-70 3 1134 4.55 492.79
64-75 3 1176 4.85 464.50
64-80 3 1230 4.21 506.53
66-125 3 1655 0.90 852.75
T1-65 3 145 39.58 20.73
T1-70 3 205 21.15 71.46
T1-73 3 185 30.19 78.72
T1-75 3 225 16.67 46.04
T1-80 3 240 14.29 57.14
T1-85 3 225 21.05 46.81
T3-100 3 700 12.50 57.95
T3-65 3 590 3.28 86.11
T3-75 3 470 29.85 36.63
T3-80 3 630 11.27 77.03
T3-85 3 660 10.81 166.10
T3-90 3 670 12.99 114.32
T3-95 3 700 11.39 157.03

Average 15.97 189.29

Table 16: 20% range, no extra charging sta-
tions

Instance TNFC SVNS Gap (%) CPU (s)

100-35 1 173 28.22 118.11
100-40 1 299 0.00 110.60
100-45 1 367 0.00 95.11
64-45 3 708 13.24 100.82
64-50 3 750 16.67 195.59
64-55 3 948 3.66 347.59
64-60 3 948 10.73 438.11
64-65 3 1032 7.53 376.48
64-70 3 1152 3.03 500.72
64-75 3 1224 0.97 403.35
64-80 3 1254 2.34 584.25
66-125 3 1645 1.50 763.81
T1-65 3 180 25.00 41.61
T1-70 3 205 21.15 85.97
T1-73 3 215 18.87 54.98
T1-75 3 220 18.52 55.63
T1-80 3 240 14.29 119.69
T1-85 3 240 15.79 69.10
T3-100 3 710 11.25 201.66
T3-65 3 590 3.28 119.08
T3-75 3 580 13.43 160.73
T3-80 3 600 15.49 81.38
T3-85 3 660 10.81 132.12
T3-90 3 670 12.99 119.22
T3-95 3 750 5.06 202.57

Average 10.95 219.13

Table 17: 20% range. 2 extra charging sta-
tions
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Instance TNFC SVNS Gap (%) CPU (s)

100-35 1 173 28.22 47.18
100-40 1 299 0.00 282.12
100-45 1 286 22.07 42.71
64-45 3 798 2.21 236.99
64-50 3 726 19.33 346.62
64-55 3 972 1.22 395.98
64-60 3 1014 4.52 590.21
64-65 3 1116 0.00 788.53
64-70 3 1140 4.04 777.26
64-75 3 1224 0.97 900.15
64-80 3 1260 1.87 732.03
66-125 3 1655 0.90 913.32
T1-65 3 230 4.17 64.88
T1-70 3 220 15.38 146.18
T1-73 3 220 16.98 223.11
T1-75 3 245 9.26 143.37
T1-80 3 250 10.71 198.60
T1-85 3 265 7.02 147.45
T3-100 3 750 6.25 311.00
T3-65 3 590 3.28 152.72
T3-75 3 600 10.45 201.00
T3-80 3 670 5.63 226.22
T3-85 3 740 0.00 270.82
T3-90 3 740 3.90 251.08
T3-95 3 740 6.33 485.93

Average 7.39 355.02

Table 18: 20% range, 6 extra charging sta-
tions

Instance TNFC SVNS Gap (%) CPU (s)

100-30 1 173 0.00 12.93
100-35 1 206 14.52 28.65
100-40 1 299 0.00 22.96
100-45 2 367 0.00 26.82
64-45 3 666 18.38 43.59
64-50 3 858 4.67 38.45
64-55 3 954 3.05 93.74
64-60 3 1050 1.13 114.49
64-65 3 1116 0.00 207.96
64-70 3 1170 1.52 186.71
64-75 3 1230 0.49 274.44
64-80 3 1284 0.00 318.28
66-125 3 1655 0.90 381.50
T1-65 3 240 0.00 12.62
T1-70 3 260 0.00 31.21
T1-73 3 250 5.66 18.99
T1-75 3 270 0.00 28.88
T1-80 3 275 1.79 40.76
T1-85 3 280 1.75 34.70
T3-100 3 750 6.25 39.21
T3-65 3 560 8.20 16.78
T3-75 3 640 4.48 50.04
T3-80 3 650 8.45 35.76
T3-85 3 740 0.00 56.12
T3-90 3 740 3.90 67.57
T3-95 3 780 1.27 37.49

Average 3.32 85.41

Table 19: 40% range, no extra charging sta-
tions
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Instance TNFC SVNS Gap (%) CPU (s)

100-30 1 173 0.00 7.85
100-35 1 206 14.52 13.69
100-40 1 299 0.00 12.49
100-45 2 367 0.00 13.77
64-45 3 816 0.00 88.16
64-50 3 882 2.00 120.99
64-55 3 972 1.22 179.53
64-60 3 1062 0.00 187.54
64-65 3 1116 0.00 382.22
64-70 3 1170 1.52 295.83
64-75 3 1230 0.49 307.42
64-80 3 1284 0.00 411.29
66-125 3 1665 0.30 563.11
T1-65 3 235 2.08 19.04
T1-70 3 260 0.00 33.61
T1-73 3 245 7.55 26.77
T1-75 3 270 0.00 35.63
T1-80 3 270 3.57 49.39
T1-85 3 285 0.00 32.29
T3-100 3 760 5.00 48.25
T3-65 3 570 6.56 31.04
T3-75 3 650 2.99 51.33
T3-80 3 680 4.23 45.27
T3-85 3 740 0.00 51.75
T3-90 3 770 0.00 100.95
T3-95 3 790 0.00 60.93

Average 2.00 121.93

Table 20: 40% range, 2 extra charging sta-
tions

Instance TNFC SVNS Gap (%) CPU (s)

100-30 1 173 0.00 25.87
100-35 1 206 14.52 20.41
100-40 1 299 0.00 45.24
100-45 2 343 6.54 42.80
64-45 3 816 0.00 190.09
64-50 3 882 2.00 299.71
64-55 3 972 1.22 413.77
64-60 3 1050 1.13 500.74
64-65 3 1116 0.00 592.53
64-70 3 1170 1.52 1315.84
64-75 3 1230 0.49 715.69
64-80 3 1284 0.00 763.39
66-125 3 1660 0.60 817.37
T1-65 3 240 0.00 64.96
T1-70 3 260 0.00 70.09
T1-73 3 245 7.55 106.88
T1-75 3 270 0.00 87.67
T1-80 3 270 3.57 102.08
T1-85 3 285 0.00 79.11
T3-100 3 770 3.75 130.56
T3-65 3 610 0.00 70.42
T3-75 3 650 2.99 128.92
T3-80 3 700 1.41 131.32
T3-85 3 740 0.00 155.20
T3-90 3 740 3.90 149.62
T3-95 3 780 1.27 159.10

Average 2.02 276.13

Table 21: 40% range, 6 extra charging sta-
tions
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Instance TNFC SVNS Gap (%) CPU (s)

100-30 1 173 0.00 3.99
100-35 1 241 0.00 8.97
100-40 2 299 0.00 6.40
100-45 3 367 0.00 9.46
64-45 3 816 0.00 26.87
64-50 3 876 2.67 31.70
64-55 3 978 0.61 95.00
64-60 3 1050 1.13 101.31
64-65 3 1116 0.00 152.23
64-70 3 1170 1.52 238.91
64-75 3 1218 1.46 231.62
64-80 3 1284 0.00 242.69
66-125 3 1655 0.90 567.69
T1-65 3 240 0.00 8.39
T1-70 3 260 0.00 24.61
T1-73 3 245 7.55 31.62
T1-75 3 270 0.00 30.89
T1-80 3 270 3.57 16.61
T1-85 3 285 0.00 16.92
T3-100 3 800 0.00 25.85
T3-65 3 610 0.00 31.13
T3-75 3 630 5.97 24.99
T3-80 3 710 0.00 40.70
T3-85 3 740 0.00 55.36
T3-90 3 760 1.30 29.79
T3-95 3 780 1.27 32.46

Average 1.07 80.24

Table 22: 60% range, no extra charging sta-
tions

Instance TNFC SVNS Gap (%) CPU (s)

100-30 1 173 0.00 2.47
100-35 1 241 0.00 13.70
100-40 2 299 0.00 31.66
100-45 3 367 0.00 49.07
64-45 3 798 2.21 75.75
64-50 3 882 2.00 132.62
64-55 3 966 1.83 181.49
64-60 3 1062 0.00 232.19
64-65 3 1116 0.00 209.17
64-70 3 1170 1.52 278.14
64-75 3 1230 0.49 308.47
64-80 3 1284 0.00 382.01
66-125 3 1670 0.00 693.29
T1-65 3 240 0.00 26.12
T1-70 3 260 0.00 24.28
T1-73 3 250 5.66 30.18
T1-75 3 270 0.00 26.88
T1-80 3 280 0.00 30.33
T1-85 3 285 0.00 23.04
T3-100 3 790 1.25 66.67
T3-65 3 610 0.00 60.90
T3-75 3 650 2.99 81.32
T3-80 3 690 2.82 96.21
T3-85 3 740 0.00 70.26
T3-90 3 760 1.30 77.50
T3-95 3 790 0.00 61.44

Average 0.85 125.58

Table 23: 60% range, 2 extra charging sta-
tions
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Instance TNFC SVNS Gap (%) CPU (s)

100-30 1 173 0.00 1.56
100-35 1 241 0.00 13.59
100-40 2 299 0.00 33.30
100-45 3 367 0.00 55.32
64-45 3 804 1.47 184.11
64-50 3 882 2.00 333.12
64-55 3 972 1.22 487.23
64-60 3 1062 0.00 541.72
64-65 3 1116 0.00 474.20
64-70 3 1170 1.52 450.16
64-75 3 1230 0.49 578.00
64-80 3 1284 0.00 541.48
66-125 3 1665 0.30 580.06
T1-65 3 240 0.00 62.47
T1-70 3 255 1.92 56.83
T1-73 3 245 7.55 64.86
T1-75 3 270 0.00 51.98
T1-80 3 265 5.36 69.15
T1-85 3 285 0.00 104.43
T3-100 3 800 0.00 115.22
T3-65 3 610 0.00 50.22
T3-75 3 650 2.99 120.42
T3-80 3 710 0.00 117.37
T3-85 3 710 4.05 99.50
T3-90 3 740 3.90 112.03
T3-95 3 780 1.27 99.45

Average 1.31 207.61

Table 24: 60% range, 6 extra charging sta-
tions
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C OPHCS benchmark algorithm results

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 786 12.67 12.246
64-55 3 936 4.88 13.678
64-60 3 1008 5.08 21.546
64-70 3 1104 7.07 28.919
64-75 3 1182 4.37 29.36
66-125 3 1625 2.69 65.065
T1-73 3 240 9.43 2.143
T3-75 3 570 14.93 6.562
T3-85 3 690 6.76 4.622
T3-95 3 760 3.80 2.834

Average 7.17 18.70

Table 25: Benchmark: 20% range, no extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 822 8.67 10.043
64-55 3 960 2.44 15.731
64-60 3 1008 5.08 17.398
64-70 3 1110 6.57 31.298
64-75 3 1128 8.74 30.027
66-125 3 1625 2.69 64.006
T1-73 3 225 15.09 2.724
T3-75 3 580 13.43 5.954
T3-85 3 690 6.76 4.642
T3-95 3 760 3.80 2.456

Average 7.33 18.43

Table 26: Benchmark: 20% range, 2 extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 810 10.00 11.55
64-55 3 966 1.83 17.117
64-60 3 1014 4.52 20.426
64-70 3 1146 3.54 27.108
64-75 3 1194 3.40 28.172
66-125 3 1655 0.90 61.733
T1-73 3 225 15.09 3.189
T3-75 3 600 10.45 6.239
T3-85 3 700 5.41 8.89
T3-95 3 760 3.80 3.038

Average 5.89 18.75

Table 27: Benchmark: 20% range, 6 extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 876 2.67 11.342
64-55 3 966 1.83 18.914
64-60 3 1014 4.52 17.781
64-70 3 1152 3.03 31.103
64-75 3 1194 3.40 29.687
66-125 3 1640 1.80 56.919
T1-73 3 250 5.66 2.243
T3-75 3 640 4.48 3.403
T3-85 3 700 5.41 4.183
T3-95 3 750 5.06 3.792

Average 3.78 17.94

Table 28: Benchmark: 40% range, no extra
charging stations
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Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 876 2.67 13.345
64-55 3 966 1.83 17.429
64-60 3 1050 1.13 20.24
64-70 3 1170 1.52 32.882
64-75 3 1188 3.88 40.631
66-125 3 1640 1.80 56.826
T1-73 3 250 5.66 3.548
T3-75 3 650 2.99 3.495
T3-85 3 710 4.05 6.787
T3-95 3 760 3.80 3.343

Average 2.93 19.85

Table 29: Benchmark: 40% range, 2 extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 876 2.67 12.669
64-55 3 966 1.83 16.723
64-60 3 1050 1.13 24.491
64-70 3 1170 1.52 35.609
64-75 3 1236 0.00 31.777
66-125 3 1655 0.90 65.387
T1-73 3 250 5.66 2.022
T3-75 3 650 2.99 4.254
T3-85 3 720 2.70 4.909
T3-95 3 780 1.27 3.94

Average 2.07 20.18

Table 30: Benchmark: 40% range, 6 extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 876 2.67 11.593
64-55 3 930 5.49 16.657
64-60 3 1014 4.52 19.028
64-70 3 1104 7.07 33.89
64-75 3 1206 2.43 41.148
66-125 3 1605 3.89 65.866
T1-73 3 250 5.66 3.024
T3-75 3 600 10.45 4.574
T3-85 3 720 2.70 4.978
T3-95 3 780 1.27 3.006

Average 4.61 20.38

Table 31: Benchmark: 60% range, no extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 876 2.67 11.881
64-55 3 966 1.83 14.061
64-60 3 1050 1.13 16.756
64-70 3 1170 1.52 29.216
64-75 3 1236 0.00 33.638
66-125 3 1670 0.00 64.082
T1-73 3 250 5.66 3.038
T3-75 3 650 2.99 3.134
T3-85 3 720 2.70 5.383
T3-95 3 780 1.27 2.881

Average 1.98 18.41

Table 32: Benchmark: 60% range, 2 extra
charging stations

Instances TNFC SVNS Gap (%) CPU (s)

64-50 3 876 2.67 13.254
64-55 3 966 1.83 14.405
64-60 3 1014 4.52 18.731
64-70 3 1170 1.52 27.472
64-75 3 1236 0.00 28.202
66-125 3 1665 0.30 53.381
T1-73 3 250 5.66 2.99
T3-75 3 650 2.99 3.435
T3-85 3 720 2.70 6.325
T3-95 3 780 1.27 3.082

Average 2.34 17.13

Table 33: Benchmark: 60% range, 6 extra
charging stations
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D Structure of the code

In this section of the appendix, we give a short overview of the structure of our code. All code is

written in Java and is included in the provided zip file. In the zip-file, we also include a manual

that explains how the presented results can be obtained.

D.1 Code for the OPHS

We solve the OPHS with a skewed variable neighborhood search. The variable neighborhood

search is programmed in the MainV NS class. To perform the described shake moves, this class

uses the ShakeMachine class. We construct a new ShakeMachine object, which performs

both the vertices shakes and the hotels-shake. After all shake moves, the solution is improved

by means of local search. The methods for the local search are introduced in the LocalSearch

class. The V ertex class allows us to create objects that represent hotels and vertices with

coordinates and a score associated to them. We use objects of the Tour class, to represent

the OPHS tour. The BigReader class allows us to run the SVNS algorithm for a whole set of

instances.

D.2 Code for generating the OPHCS instances

Since the OPHCS is a new problem, no benchmark instances are available for it. We create our

own benchmark instances based on the available OPHS instances of Divsalar et al. (2013). For

this, we make use of the InstanceCreator class. In the main method of this class, the user spe-

cifies for which instances new OPHCS instances should be created. With theMakeNewInstance

method, the user creates new OPHCS instances for capacities equal to 20%, 40% and 60% of the

known length of the optimal OPHS tour. These new instances do not contain extra charging

stations. To include extra charging stations, the user runs the MakeNewInstanceExtraCS

method with as its input the number of extra charging stations to include.

D.3 Code for the OPHCS

We solve the OPHCS with a skewed variable neighborhood search. The variable neighbor-

hood search is programmed in the MainV NSChargingStations class. To perform the de-

scribed shake moves, this class uses the ShakeMachineChargingStations class. We construct

a new ShakeMachineChargingStations object, which performs both the vertices shakes and

the hotels-shake. After all shake moves, the solution is improved by means of local search. The

methods for the local search are introduced in the LocalSearchChargingStations class. The

V ertex class allows us to create objects that represent hotels and vertices with coordinates and

a score associated to them. We use objects of the TourChargingStation class, to represent the

OPHCS tour.The BigReaderOPHCS class allows us to run the SVNS algorithm for a whole

set of instances.
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D.4 Code for the benchmark algorithm

Our benchmark algorithm starts with solving the OPHS. The variable neighborhood search and

the repair is programmed in theMainV NSRepair class. The classes used by theMainV NSRepair

class are identical to those that the SVNS class for the OPHS uses. The BigReaderBenchmark

class allows us to run the SVNS algorithm for a whole set of instances.
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