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Abstract

Kirby and Ostdiek (2012) investigate the performance of many different mean-variance based

strategies of portfolio selection. A drawback of these strategies in comparison to naive

diversification is the presence of estimation risk. We attempt to reduce this risk by combining

the sophisticated strategies with the 1/N portfolio with the goal to improve on the strategies

of Kirby and Ostdiek (2012). We examine three different methods of combining portfolio

selection strategies. Our results show that combinations based on maximum utility perform

the best. In many cases, these combination strategies show similar or improved performance

in comparison to the individual mean-variance based strategies. This advantage is most

pronounced for combinations with strategies that suffer from large estimation risk.

1 Introduction

Portfolio management has always been one of the most significant research topics in finance as it

presents practical information and tools to investors in order to optimize their economic gains.

A large part of this field of study is to find and compare useful portfolio selection strategies.

The equally weighted portfolio, which places a weight of 1/N on each of N assets, is a classical

and intuitively appealing approach. It might seem naive, as it does not utilize any information

on the history of assets and therefore seems sub-optimal. However, studies like DeMiguel,

Garlappi and Uppal (2009) and Bloomfield, Leftwich and Long Jr (1977) show that in many

cases more sophisticated methods perform worse than the 1/N portfolio. These methods are

mostly variants on the Markowitz (1952) mean-variance optimization theory. They point to the

high estimation error in estimating expected returns and variances as the main cause of the

diminishing performance of the mean-variance strategies out of sample.

Kirby and Ostdiek (2012) respond to DeMiguel et al. (2009) in stating that their research

design limits the performance of mean-variance strategies. This is because the mean-variance

portfolios implicitly target extremely high expected returns, resulting in high estimation risk

and turnover. They then show that constraining the model to have the same expected return as

the 1/N portfolio, performance is greatly improved and now competes with the naive strategy.

Finally, they find two strategies that significantly outperform the 1/N portfolio in most cases.

The first is a strategy based on volatility timing, and the second on reward-to-risk timing.

So forms of mean-variance based portfolio selection strategies can be implemented in order

to improve over the traditional equally weighted portfolio. But that does not mean that we have

to throw it out altogether. As Kirby and Ostdiek (2012) point out, the timing strategies can face

challenges depending on the data set. For example, risk-to-reward timing does not outperform

the 1/N portfolio for the industry sorted dataset. This is because the cross-sectional variation

in the expected returns is relatively low in this dataset. The result of this is that the estimates

for these returns do not contain enough useful information in order to offset the decrease in

performance caused by the estimation risk of the timing strategies. Moreover, Kan and Zhou

(2007) find that combining different portfolio strategies is essential in the presence of estimation

risk. This stems from their result that combining the standard tangency portfolio with the more

robust global minimum variance portfolio greatly improves performance.

These observations leave the question: How do linear combinations in weights of naive and

mean-variance portfolio selection strategies compare to the individual strategies? We perform
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research on this topic by replicating and extending the paper of Kirby and Ostdiek (2012). We

combine their methods of volatility timing and reward-to-risk timing, as well as some mean-

variance efficient strategies, with the equally weighted portfolio to examine if the 1/N portfolio

can still provide value to strategies that have been shown to outperform it.

We analyze three different methods of combining the different strategies. The first is an

intuitively appealing approach where we combine strategies in a way that maximizes utility.

Secondly, we examine equally weighted combinations. Finally, Guo, Boyle, Weng and Wirjanto

(2019) have examined the market characteristics that indicate how difficult it is to beat the 1/N

portfolio. We investigate the practical implications of these findings. We do this by examining

to what effect these market characteristics can be used to dynamically change the weights given

to each strategy in the portfolio combination.

We find that the method based on maximum utility gives the best performance. Combina-

tions using this method often show similar or improved performance in comparison to the indi-

vidual strategies that comprise those combinations. This performance improvement is greatest

for combinations with strategies that suffer from large estimation risk. The reason this works

is that periods with high estimation risk often follow each other, which means they can be

predicted. In these periods more weight is then allocated to the 1/N portfolio, which is better

suited for periods with high estimation risk, as it requires no estimation.

The paper proceeds as follows. In Section 2, we give an overview of the existing literature

that forms the basis for our research. In Section 3, we describe the data that we use to perform

our analysis. Afterwards, in Section 4, we discuss the individual portfolio selection strategies

and the ways that we combine those strategies. Then we discuss our empirical findings in Section

5. Finally, we conclude the paper in Section 6.

2 Literature Review

Tu and Zhou (2011) analyze the performance of combinations of the 1/N portfolio with four more

sophisticated, mean-variance based methods. They find that these combinations outperform the

individual mean-variance methods in terms of utility. It should, however, be noted that these

methods perform quite badly on their own in comparison to the equally weighted portfolio, with

some even achieving negative risk-adjusted utilities. It should therefore not be a surprise that

combining with the better-performing 1/N strategy, results in better performance overall. The

portfolio combinations, however, struggle to outperform the 1/N portfolio in many cases. Only

in the case of low risk aversion do the combinations consistently compete with it.

In contrast to their sophisticated methods, Kirby and Ostdiek (2012) have examined two

mean-variance timing strategies which outperformed naive diversification, even when accounting

for transaction costs. Thus our first contribution to this literature is to analyze the potential of

combinations consisting of naive and strategic approaches in a different environment. We try to

investigate whether linearly combining the weights of the mean-variance timing strategies with

the 1/N strategy can result in better performance in comparison with the individual performance

of the mean-variance and 1/N strategies.

Our second contribution relates to a novel approach exploiting market characteristics found

by Guo et al. (2019) that indicate how difficult it is to beat the 1/N strategy. They start their
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investigation by finding the theoretical market condition in which the equally weighted portfolio

is equal to the Sharpe ratio maximizing portfolio. This turns out to be when the expected return

of each asset is proportional to the sum of its covariances. They use this to construct a measure

of how favourable a market is to the performance of the 1/N portfolio, which they call the

1/N favorability index. This measure reflects the angle between the vector of expected return

and the vector of aggregate covariances. If the angle is small, the market is close to optimal

conditions for the 1/N strategy, corresponding to a 1/N favorability index close to 1. Following

this, it intuitively makes sense to let this index control the weight of our portfolio combination.

if the market is favourable to an equally weighted portfolio, we let the weight for this strategy

increase, and in the opposite case, we put more emphasis on the mean-variance timing strategy.

The methodology of portfolio combinations is quite similar to that of forecast combinations.

And as the existing literature on portfolio combinations is not very extensive, it is useful to

discuss findings in this related field. Clemen (1989) and Stock and Watson (1998) find that

combining different forecasts leads to an increase in forecast accuracy compared to the indi-

vidual forecasts. They explain that this is because different models or methods may capture

different aspects of the underlying data-generating process, and combining their predictions can

mitigate the weaknesses of individual models. This finding is a justification for our approach of

combining mean-variance based strategies with the 1/N portfolio. This is the case because the

performance of mean-variance strategies is negatively impacted by estimation error. Therefore

combining these strategies with the 1/N strategy, which requires no estimation, might help mit-

igate this weakness. Moreover, Smith and Wallis (2009) and Claeskens, Magnus, Vasnev and

Wang (2016) point out an interesting phenomenon in forecast combinations commonly referred

to as the forecast combination puzzle. This is the finding that simple forecast combinations

often outperform more sophisticated combination weighting methods. They point to the estim-

ation error of the combining weight as the root cause of this discrepancy in performance. We

investigate if a parallel can be drawn from these findings to the field of portfolio combinations.

Finally, we discuss a few papers that have commented on Kirby and Ostdiek (2012). For

example, Zakamulin (2017) is quite critical of their research. They state that the superior

performance of the novel timing strategies of Kirby and Ostdiek (2012) appears as a result of

some known market anomalies. Firstly they point out that these strategies inherently make use

of the low-volatility anomaly documented by Blitz and Van Vliet (2007). This anomaly refers

to the finding that low-volatility stocks often receive higher returns than those with higher

volatility. This is also the reason why the minimum variance portfolio often performs well as

found by Clarke, De Silva and Thorley (2011). Secondly, they comment on certain datasets

used by Kirby and Ostdiek (2012) that are exposed to established factor premiums, like book-

to-market ratio and momentum. mean-variance based strategies will improve performance over

the 1/N strategy by profiting from these factor premiums. They find that it is not clear that

the superior performance provided by portfolio optimization is still present when controlling for

these anomalies. Similarly, Lo and MacKinlay (1990) have established that sorting stocks into

portfolios by some empirically motivated characteristics of those stocks introduces a statistical

bias. Specifically, this means that portfolio sorts based on important asset-pricing factors can

lead to an increased likelihood of obtaining statistically significant results. Hsu, Han, Wu and
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Cao (2018) also find that very few strategies significantly outperform the 1/N strategy when

accounting for these biases.

3 Data

In order to replicate and extend the methods of Kirby and Ostdiek (2012), we use two of the

datasets that they also examine, namely the 10 Industry and the 10 Momentum datasets. The

sample period is July 1963 to December 2008 (546 monthly observations). Like Kirby and

Ostdiek (2012), we draw these datasets from the Ken French data library.

Figure 1: Reward and Risk Characteristics of the Datasets

This figure gives a picture of the sample reward and risk characteristics of the 10 Industry and the
10 Momentum datasets. The graphs on the left show the cross-section of annualized return for the 10
portfolios and the graphs on the right show the cross-section of the annualized standard deviation. The
reported statistics correspond to the period that is used to evaluate the out-of-sample performance of the
portfolio strategies, which is from July 1973 until December 2008.

(a) Mean Returns 10 Industry (b) Volatility 10 Industry

(c) Mean Returns 10 Momentum (d) Volatility 10 Momentum

The 10 Industry dataset contains the returns on 10 different industries sorted by their SIC

code. In the analysis of Kirby and Ostdiek (2012), this dataset posed the biggest challenge

to their mean-variance methods in comparison to naive diversification. Thus for our research,

we expect that we find the largest benefit of combining mean-variance strategies with naive

diversification using this dataset.

The 10 Momentum dataset contains the returns of 10 portfolios that are sorted according

to their recent price trend. As shown by Carhart (1997), momentum is an important factor
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in explaining excess returns. Consequently, sorting firms according to momentum promotes

significant cross-sectional spread in returns. This, in turn, makes this dataset favorable to mean-

variance timing strategies, as it causes estimators of the conditional expected return to carry

more useful information. Figure 1 provides more detail on the reward and risk characteristics

of both datasets.

We also use one dataset that contains the returns of the factors of the Fama and French

(1992) three-factor model as well as the risk-free rate. Finally, we use a dataset that contains

the returns of the momentum factor. These datasets are also drawn from the Ken French data

library. We use the risk-free rate to be able to calculate the excess returns of the 10 Industry and

10 Momentum datasets. And we need the factor returns to calculate the betas for the Carhart

(1997) four-factor model. It will become clear in the methodology section why we need these

betas.

4 Methodology

The methodology for volatility and reward-to-risk timing strategies is taken from Kirby and

Ostdiek (2012). The methodology we use for combining portfolio strategies is based on several

previous studies like Kan and Zhou (2007), DeMiguel et al. (2009) and Tu and Zhou (2011).

These have all analyzed portfolio combinations.

4.1 Portfolio Selection Strategies

We start by discussing the varying portfolio selection strategies that were examined in Kirby and

Ostdiek (2012). First is the naive portfolio, where we place equal weights on each asset. Next

there are four strategies based on the classic mean-variance framework, namely: the tangency

portfolio, the minimum variance portfolio, an optimal constrained portfolio (OC), which targets

the expected return of the 1/N strategy, and finally OC with short selling constraints.

Aside from these approaches, Kirby and Ostdiek (2012) propose several timing strategies.

These strategies do not necessarily result in theoretically optimal portfolios, however they use

practical rules to exploit sample information on the assets while limiting estimation error. One

method, which they call ’volatility timing’, solely uses information on the individual asset vari-

ances. For the second method, they also incorporate sample information on the expected returns.

They call this ’reward-to-risk timing’.

4.1.1 Tangency Portfolio

The most traditional approach according to mean-variance theory is to choose the portfolio

weights ωp,t that maximize the quadratic utility function of an investor:

Q(ωp,t) = ω′
p,tµt −

γ

2
ω′
p,tΣtωp,t, (1)

where µt = Et(rt+1) is the conditional expected excess return of period t+1 using the information

up until period t. similarly, Σt = Et(rt+1r
′
t+1) − Et(rt+1)Et(rt+1)

′ denotes the conditional

expected covariance matrix. γ is the investors’ relative risk aversion. We follow Kirby and

5



Ostdiek (2012) in using a simple rolling window estimator to estimate both the conditional return

and covariance. These are calculated as µ̂t = (1/L)
∑L−1

i=0 rt−i and Σ̂t = (1/L)
∑L−1

i=0 (rt−i −
µ̂t)(rt−i−µ̂t)

′. Here L denotes the window size which we set to be 120 months. Let rt = Rt−ιRf,t

be the vector of excess returns of N assets at period t (Rt is the vector of regular returns and

Rf,t is the risk-free rate). For each strategy, we only consider weight allocation to the risky

assets and not to the risk-free asset. The reason is that our objective is to compare strategies

directly with each other and it is more difficult to inspect differences in those strategies if they

can be caused by different allocations to the risk-free asset. From now on in the text we will use

returns instead of excess returns for simplicity.

The analytical solution to the maximization problem where the investor only allocates his

wealth to the risky assets is

ωTP,t =
Σ−1
t µt

|ι′Σ−1
t µt|

. (2)

This equation gives the weights of the tangency portfolio (TP). We take the absolute value of

the denominator because the tangency portfolio would otherwise be conditionally inefficient if

ι′Σ−1
t µt < 0 (see Kirby and Ostdiek (2012)).

The tangency portfolio forms a foundation for mean-variance optimization theory. In the

history of portfolio management, it is seen as the basic framework that is used to create many

kinds of different asset allocation strategies. Even though it has been very significant throughout

finance, the literature shows that the tangency portfolio exhibits very significant practical lim-

itations which makes it unviable as an investing strategy. For example, Michaud and Michaud

(2008) state that it is extremely sensitive to small changes in input parameters. Consequently,

the risk of estimation error is magnified greatly. DeMiguel et al. (2009) also point to these

reasons to explain why the 1/N strategy often outperforms strategies based on mean-variance

optimization. Kirby and Ostdiek (2012) show another shortcoming of the tangency portfolio:

turnover. the tangency portfolio often gives extreme weights to assets. And because of the input

sensitivity, these extreme weight allocations also change drastically over time. Therefore the TP

is often characterized by very high turnover and thus large transaction costs, which impedes the

performance of this method even further.

4.1.2 Minimum Variance

The minimum variance portfolio (MV) is constructed by minimizing the variance ω′
p,tΣtωp,t

subject to ω′
p,tι = 1. Like the tangency portfolio, it has a straightforward analytical solution:

ωMV,t =
Σ−1
t ι

ι′Σ−1
t ι

. (3)

Despite its simplicity, the minimum variance portfolio often performs quite well. This strategy is

stable and as expected delivers low volatility. Surprisingly, this strategy also generally achieves

high returns, which can be attributed to the low-volatility anomaly, as discussed in Section

2. Additionally, a big advantage of minimum variance over the tangency portfolio lies in the

estimation risk. As conditional expected returns are not involved in the estimation process, the

estimation error is greatly diminished. To add to this, Merton (1980) state that covariances of
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returns can be estimated more accurately than the mean returns. These characteristics of the

minimum variance portfolio make it attractive as an asset allocation strategy.

Although to a much lesser extent than the TP, a downside of the minimum variance portfolio

is its turnover. As can be seen in our replication of the results of Kirby and Ostdiek (2012), the

turnover of the MV portfolio often greatly exceeds the turnover of the 1/N and mean-variance

timing strategies. This aspect of this strategy leaves room for improvement.

4.1.3 Optimal Constrained Portfolio

The mean-variance optimization that results in the tangency portfolio is a very aggressive

strategy that implicitly targets extreme returns. DeMiguel et al. (2009) find that the TP has

conditional expected returns that often exceed 100% per year. It is unreasonable to expect

such a strategy to perform well, which is why we look at a constrained version of the tangency

portfolio which Kirby and Ostdiek (2012) calls the optimal constrained (OC) portfolio. The

constraint that is imposed is that the OC portfolio targets conditional expected returns that are

equal to the expected returns of the 1/N strategy (i.e. µ̂t
′ι/N).

The weights of the OC strategy are calculated as:

ωp,t =

(
µe,t − µMV,t

µTP,t − µMV,t

)(
Σ−1
t µt

ι′Σ−1
t µt

)
+

(
1−

µe,t − µMV,t

µTP,t − µMV,t

)(
Σ−1
t ι

ι′Σ−1
t ι

)
, (4)

where µe,t, µMV,t and µTP,t denote the conditional expected returns of the 1/N, MV and tangency

portfolios. Note that this constrained version of the TP is a linear combination of the weights

of the tangency portfolio and the minimum variance portfolio. OC mimics the aggressiveness

of the 1/N portfolio which makes it a lot less volatile than the TP. Finally, Kirby and Ostdiek

(2012) also examine a version of the optimal constrained strategy which prohibits short sales.

This is mainly done to reduce turnover. they call this the OC+ strategy.

4.1.4 Volatility Timing

Next, we discuss the mean-variance timing strategies introduced by Kirby and Ostdiek (2012),

starting with volatility timing (VT). This strategy can be seen as a constrained version of the

minimum variance approach. The constraint is that it imposes all non-diagonal elements of

the covariance matrix to be zero. Their reasoning behind this choice is that, firstly, it reduces

the estimation risk of MV even further. This is because we now do not have to estimate any

sample covariances and we do not need to invert the covariance matrix. Secondly, this volatility

timing strategy is designed to counteract the substantial turnover that is normally present in

the minimum variance portfolio. This is a result of the fact that setting covariances to zero

prevents negative weights. The weight of asset i in period t for this constrained MV approach

is given by

ω̂it =
(1/σ̂2

it)∑N
i=1(1/σ̂

2
it)

, i = 1, 2, ..., N, (5)

where σ̂it is the estimated conditional volatility of the return on asset i. This weight allocation

strategy turns out to be quite simple. The weights are directly proportional to the assets’ inverse
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volatility. This means that if an asset has low variance it will receive a large weight and vice

versa.

One final adjustment is made to this strategy to allow the investor some control over the

aggressiveness of the strategy, which then automatically also controls the turnover. This is done

by introducing a tuning parameter η in equation 5 as follows:

ω̂it =
(1/σ̂it

2)η∑N
i=1(1/σ̂it

2)η
, i = 1, 2, ..., N, (6)

where η ≤ 0. η is the sensitivity to changes in the volatilities of the assets. If η is set to zero,

the weights are completely insensitive to changes in volatility, in which case we get the 1/N

portfolio. If η = 1, we retrieve the strategy in equation 5. The larger η becomes, the quicker the

weights will change as a result of a volatility shift. Thus, a larger η results in higher turnover.

We refer to the class of strategies that use equation 6 to find the weights as V T (η).

4.1.5 Reward-to-risk Timing

The volatility timing strategies only use information on the assets’ variances. This, however,

ignores information on the returns. Therefore we also examine a strategy that uses conditional

expected returns, namely reward-to-risk timing. The reward-to-risk timing strategy is designed

similarly to the V T (η) strategy in the sense that it uses a diagonal covariance matrix. But

instead of taking the approach of a minimum variance strategy, we look at the sample tangency

portfolio. The weights for this constrained version of the sample tangency portfolio are given by

ω̂it =
(µ̂it/σ̂

2
it)∑N

i=1(µ̂it/σ̂2
it)

, i = 1, 2, ..., N, (7)

where µ̂it is the estimated conditional mean of the return of asset i. A result of incorporating

conditional expected returns into the strategy is of course increased estimation risk, but the hope

is that they contain enough information to mitigate this extra risk. Unlike with VT, the version

of reward-to-risk timing in equation 7 does not come with the inherent property of prohibiting

short sales. This could still allow extreme weights, which is the main thing we wish to avoid. For

this reason all negative µ̂it are set to zero. Secondly, like for the volatility timing, we introduce

tuning parameter η to control the aggressiveness of the strategy. This gives the reward-to-risk

weights as

ω̂it =
(µ̂+

it/σ̂
2
it)

η∑N
i=1(µ̂

+
it/σ̂

2
it)

η
, i = 1, 2, ..., N, (8)

where µ̂+
it = max(µ̂it, 0). Kirby and Ostdiek (2012) abbreviate this class of strategies as

RRT(µ+, η).

Kirby and Ostdiek (2012), however, point out that the rolling sample estimates of the con-

ditional expected returns will likely not be very accurate. Therefore they propose an alternative

estimator of these returns, which is based on the capital asset pricing model (CAPM). If CAPM

holds, all of the systemic variation between the returns of different assets is explained by their

betas. Using betas instead of expected returns will give us a more robust picture of the assets’
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relative expected returns. We follow Kirby and Ostdiek (2012) in using the Carhart (1997)

four-factor model to estimate the betas, after which we use the average of these four betas. This

results in the RRT(β+, η) strategy, which is given by

ωit =
(β

+
it/σ

2
it)

η∑N
i=1(β

+
it/σ

2
it)

η
, i = 1, 2, ..., N, (9)

where β
+
it = max(βit, 0) and βit = (1/K)

∑K
j=1 βijt is the average conditional beta of asset i

with respect to K factors.

4.2 Portfolio Combinations

We continue ahead to the discussion of how these strategies are combined with naive diversifica-

tion. The basic setup is to linearly combine the portfolio weights of the 1/N and mean-variance

timing strategies. The weights of the combination strategy at time t are then given by

ωc,t = δtωe + (1− δt)ωp,t, (10)

where ωe is the vector of weights for the equally weighted portfolio (i.e. ωe = ι/N). ωp,t is

the vector of weights for the mean-variance timing strategy, and 0 ≤ δt ≤ 1 is the combining

weight at time t. This is all simple enough, but the real challenge lies in the way we determine

this combining weight. We take three different approaches to do this. Firstly, we estimate the

δt using utility optimization. Secondly, we examine the equally weighted combination strategy.

Finally, we use the 1/N favourability index proposed by Guo et al. (2019) to determine the

combining weight.

4.2.1 Utility Optimization

We want to optimally choose δt by maximizing the expected utility of a mean-variance investor

with quadratic utility:

Q(ωc,t) = ω′
c,tµt −

γ

2
ω′
c,tΣtωc,t. (11)

Here γ represents the investors’ relative risk-aversion. We examine the standard case where

γ = 1. The obvious upside of this method is that, in theory, the combination of strategies

dominates the performance of both naive diversification and mean-variance timing. This is

because both of these strategies are included in the possibilities of the portfolio optimization,

specifically when δ = 1 and δ = 0. This method is designed to put more emphasis on a

particular strategy in the combination if it is expected to perform well. For example, in a period

where there is high estimation error, the naive diversification strategy would likely be preferred

over mean-variance strategies. On the other hand, if, for example, the cross-sectional variation

in returns happens to be high, more weight will be put on mean-variance strategies such as

RRT(µ+, η). It is an attempt to get the best of both worlds.

It is important to note that optimizing utility in-sample would not be effective. This happens

because the mean-variance strategies are designed to use the sample information on returns and

covariances to construct their weights. If we then try to optimize δ using the same information,
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the mean-variance based strategies will always be preferred over 1/N. In this case, δt will always

be equal to zero, which would destroy the potential usefulness of combining these strategies.

The way to combat this issue is to introduce a validation period into the estimation process.

This is a period that lies between the training sample, which is used to estimate the expected

returns and covariance, and the out-of-sample period. The validation sample is then used to

estimate the combining weight on unseen data without compromising the integrity of the test

sample. This method creates an even playing field and thus allows the strengths of the 1/N

strategy, diversification and no estimation error, to play a role. Using a validation sample is the

most popular way to tune hyperparameters in the literature and is used successfully by several

big papers like Gu, Kelly and Xiu (2020) and Chen, Pelger and Zhu (2023).

A choice has to be made on the length of the validation period. Too short a period will not

give reliable estimates for δ as the sample size will be too small. If the period is too long it means

that the size of the training sample is shorter. As a result, the estimates for the expected returns

and covariance would become less accurate. Through experimentation we find that a validation

period of three years strikes a good balance as it gives the best performance. Consequently,

the training sample is seven years to ensure that our model uses the same information as the

individual weight allocation strategies. This way we can sensibly compare the performance of

this combining strategy with the results of Kirby and Ostdiek (2012). So to find δt, we use

the rolling window estimators for the expected returns and covariances with L = 84 to find the

weights for the specified mean-variance strategy for each date in the validation sample (i.e. the

three years prior to period t). We then find the δt that maximizes the sum of the utilities over

the entire validation sample. For the covariance matrix in the utility function in equation 11

we use the sample covariance matrix of the three-year validation period. Finally, we find the

weights of the combination strategy using equation 10. Note that we still use the 10-year rolling

window estimates to determine wp,t.

4.2.2 Equally Weighted Combination

It, however, remains to be seen if the utility optimization process translates to better performance

out-of-sample. To avoid estimation risk, it is worth looking at a method that does not require

any optimization. After all, these characteristics are exactly what has made the 1/N portfolio

so historically successful. The most straightforward approach is to simply give equal weights to

the two strategies that we would like to combine. This means we set δt =
1
2 for every period t.

The evidence from forecast combinations supports this approach. Recall that Smith and Wallis

(2009) and Claeskens et al. (2016) find that simple combinations of forecasts often outperform

more sophisticated combination weighting methods.

4.2.3 1/N Favorability Index

Our final portfolio combination method relates to the measure proposed by Guo et al. (2019)

to describe how difficult it is to beat the 1/N portfolio. The goal of their research was to

find conditions of a market in which the naive diversification strategy has good performance.

They did not use empirical analysis to reach this goal, but they looked at this problem from

a theoretical point of view. They analyzed the condition in which the 1/N portfolio would be
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the optimal choice for the utility-optimizing investor. This is the same as determining when the

1/N portfolio is equal to the tangency portfolio. This turns out to be when the expected return

of each asset is proportional to the sum of its covariances. More formally, the condition

µ = cΣι (12)

needs to hold for some c > 0. Conversely, if this condition holds for some c < 0, the 1/N portfolio

would be the Sharpe ratio minimizing portfolio. This means that the 1/N portfolio would be

outperformed by every other portfolio where the sum of the weights is equal to one. Therefore a

sensible measure of the performance strength of the naive diversification strategy would reflect

the proportionality of the returns of assets with their aggregate covariances. With this rationale

they developed the 1/N favorability index (we abbreviate with FI), which is given by

FIt = cos(µt,Σtι) =
µ′
tΣtι

||µt|| ||Σtι||
, (13)

where ||·|| represents the Euclidian norm of a vector. Importantly, Guo et al. (2019) show that

the rolling window estimator of FIt (i.e. cos(µ̂t, Σ̂tι)) is consistent. We put the research of Guo

et al. (2019) to practical use in hopes of improving the performance of the combined portfolio.

We do this by using the FI as the combining weight δt. With this combining weight we can then

calculate the weights of the combining strategy using equation 10. When the market is optimal

for the 1/N portfolio, FIt = 1 and we put all of the weight on the 1/N strategy. If there is no

proportionality of the returns with their aggregate covariances, FIt = 0. In this case we put

100% of the weight on the mean-variance based strategy. If it happens that FIt < 0, the 1/N

strategy theoretically performs very poorly which means we should short this strategy. In the

worst case for the 1/N portfolio (i.e. FI = −1), we short 100% of the 1/N portfolio and invest

200% in the mean-variance based strategy.

4.3 Performance Evaluation

In this section we describe how we evaluate the performance of the different weight allocation

strategies. We do this in the same way as Kirby and Ostdiek (2012). We use two different

measures for the out-of-sample performance of a strategy. The first is the Sharpe ratio, λp =

µp/σp. This ratio is estimated using the sample mean and variance of the out-of-sample returns,

thus µ̂p = (1/T )
∑T+h

t=h+1 rpt and σ̂2
p = (1/T )

∑T+h
t=h+1(rpt − µ̂p)

2. The reported values of λ̂p are

based on the annualized values of µ̂p and σ̂p for each portfolio strategy. The second measure of

performance is one with an economic interpretation. It is a performance fee that signifies the

maximum fee an investor would be willing to pay to switch from one strategy to another. If

we compare strategies i and j, and such a fee ∆γ is imposed on strategy j, we then must have

that the expected utilities of strategy i and j are equal, i.e. E[U(Rpi,t)] = E[U(Rpj ,t − ∆γ)].

We consider two levels of risk aversion (namely γ = 1 and γ = 5), and we report the sample

maximum annualized fee in basis points that an investor would be willing to pay to switch from

the 1/N strategy to each mean-variance based strategy that we consider.

As turnover is an important factor in determining whether a strategy is viable, we also report

the performance measures of each strategy when accounting for the performance decrease caused
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by transaction costs. Kirby and Ostdiek (2012) define turnover as the fraction of invested wealth

traded in a given period to rebalance the portfolio. Before we can calculate this, it is important

to note that the weights of assets change according to the size of their returns. This happens

prior to rebalancing towards the desired weights of the next period. Thus we first calculate the

weights of each asset i before the portfolio is rebalanced at time t:

ω̃i,t =
ωi,t−1(1 +Ri,t)∑N
i=1 ωi,t−1(1 +Ri,t)

. (14)

Then the turnover at time t is calculated as follows:

τp,t =

N∑
i=1

|ωi,t − ω̃i,t|+

∣∣∣∣∣
N∑
i=1

(ωi,t − ω̃i,t)

∣∣∣∣∣ , (15)

where ωi,t is the desired weight in asset i at time t. Then the portfolio return net of transaction

costs for period t (i.e. R̃p,t) is calculated as

R̃p,t = (1 +Rp,t)(1− cτp,t)− 1, (16)

where c is the level of proportional costs per transaction. We follow Kirby and Ostdiek (2012)

in setting transaction costs to 50 basis points of the total turnover. For the statistical inference

for the differences in Sharpe ratios between strategies as well as for the performance fees we use

GMM estimation as described in Kirby and Ostdiek (2012).

5 Results

In this section we first revisit the results of Kirby and Ostdiek (2012) for the 10 industry and

10 momentum datasets. This provides context so we can adequately discuss and compare the

results of the three different portfolio combining strategies. They examine the performance of

all strategies discussed in the methodology. For the timing strategies they investigate three

different cases, namely η = 1, η = 2 and η = 4.

5.1 The Kirby and Ostdiek (2012) Results Revisited

In general, the results of our replication are very similar to the results of Kirby and Ostdiek

(2012). The minor differences that are present are likely caused by changes in the data from

the Ken French data library. The only case where these changes in the data have a significant

impact is for the tangency portfolio. This only corroborates the arguments of Michaud and

Michaud (2008), Kirby and Ostdiek (2012), and many other papers that state that the tangency

portfolio is extremely sensitive to changes in the input data.

We report the results of our replications of the findings for the 10 industry dataset in Table 1.

Kirby and Ostdiek (2012) find that this dataset provides the biggest challenge for the timing and

mean-variance efficient strategies to outperform the 1/N portfolio. The 1/N strategy performs

quite well, with the annualized mean and standard deviation of the excess returns being 5.85%

and 15.01% respectively. This yields a Sharpe ratio of 0.390 without transaction costs. As
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expected, this strategy has a low turnover at only 2.4%. This only decreases the Sharpe ratio

to 0.380.

The volatility timing strategies show a lot of promise for this dataset. As for η = 1, η = 2

and η = 4 they have both a higher µ̂p and a lower σ̂p than 1/N. Thus the Sharpe ratios also

exceed that of the 1/N strategy. VT greatly reaps the benefits of not estimating the covariances

between returns. This is reflected in its low turnover, which ranges from 2.5% to 3.5%, only

slightly higher than that of the 1/N strategy. Therefore these strategies remain better after the

inclusion of turnover.

In contrast to VT, RRT(µ+, η) strategies do not perform very well on this dataset in terms of

Sharpe ratio. λ̂p is 0.334 for η = 1, 0.328 for η = 2 and 0.319 for η = 4. They also underperform

in terms of turnover, which ranges from 7.5% for η = 1 to 11.7% for η = 4. These strategies

suffer from the low cross-sectional variation in the returns of this dataset. As a consequence,

There is not much useful information to be gained by including the expected conditional returns

in the weight allocation process, but the estimation risk of estimating the expected returns is

still present. This estimation risk, however, can be greatly diminished by using the alternative

estimator of the conditional expected returns, namely the average betas of the Carhart (1997)

four-factor model. The Sharpe ratios for the RRT(β+, η) strategies are 0.419 for η = 1, 0.430

for η = 2 and 0.433 for η = 4. After transaction costs the Sharpe ratios become 0.407, 0.413

and 0.406 respectively.

So both timing strategies are able to outperform the 1/N strategy, even with a challenging

dataset. Now we turn to the mean-variance efficient (MVE) strategies. Firstly, as expected, the

tangency portfolio performs horribly. It achieves a negative mean return, and thus a negative

Sharpe ratio with a value of -0.276. Turnover is extremely high, exceeding 500% of wealth

invested, which deteriorates its performance even more. The OC strategy performs considerably

better with a Sharpe ratio of 0.449. It does suffer from high turnover which is 28.9%. With

the inclusion of transaction costs its Sharpe decreases to 0.318. OC+ outshines OC in terms

of turnover, which becomes 13.1% after imposing short selling constraints. It has a turnover

adjusted Sharpe of 0.405. The best performer among the MVE strategies is the minimum

variance strategy. MV has the lowest standard deviation and the highest mean return of all

strategies we examine. This results in a high Sharpe ratio of 0.515 without transaction costs.

As for the other MVE strategies, however, its turnover is quite high at 16.1%. With transaction

costs its performance drops as the Sharpe ratio becomes 0.440.

Now we shift our focus to the replication of the results for the 10 Momentum dataset. These

results can be found in Table 2. This dataset provides a lot more opportunity for sophisticated

weight allocation strategies to perform well relative to the 1/N strategy. This stems from the

fact that the cross-sectional variation in the returns is a lot higher than for the 10 industry

dataset.

The values of µ̂p, σ̂p and λ̂p for the 1/N strategy are 4.68%, 16.67% and 0.281. Again

transaction costs are low at 1.8%. All three VT strategies now significantly outperform 1/N at

the 1% level, with Sharpe ratios 0.329 for η = 1, 0.355 for η = 2 and 0.375 for η = 4.

RRT(µ+, η) strategies benefit the most from the large cross-sectional variation in returns.

Their Sharpe ratios are 0.454 for η = 1, 0.475 for η = 2 and 0.481 for η = 4. The differences with
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1/N are all significant at the 1% level. This is true even in the presence of transaction costs.

The turnover adjusted Sharpe ratios range from 0.433 to 0.470. In contrast to the 10 industry

dataset, using the alternative estimator for µt does not make much of a difference. The Sharpe

ratios then become 0.397, 0.448 and 0.481 respectively.

For the MVE strategies, MV is still a strong performer, with a Sharpe ratio of 0.491, which

is significantly better than the 1/N strategy at the 5% level. This is still greatly decreased

after accounting for transaction costs, with an adjusted Sharpe of 0.378. Additionally, the OC

strategy emerges as one of the best performers without transaction costs. It has a Sharpe ratio

of 0.579 without, and 0.445 with transaction costs. This is significant at 1% without transaction

costs and at 10% with transaction costs.

5.2 Results of the Combination Strategies

We can now discuss the results of the three methods of combining the more sophisticated

strategies with the 1/N strategy. We start with the maximum utility combinations, where

the combining weight is determined by optimizing the total utility in the validation sample.

5.2.1 Maximum Utility Combination

The results of the maximum utility combinations for the 10 industry dataset are presented in

Table 3. We compare these values to the values in Table 1, which allows us to see the impact of

combining portfolio selection strategies relative to the individual strategies that comprise that

combination. It becomes apparent that combining strategies with the 1/N strategy impacts

performance differently depending on the mean-variance based strategy used.

For the VT strategies, the combinations showed similar or slightly improved performance

in comparison to those strategies individually. Notably, the results for the VT(1) combination

stayed exactly the same. This happens because the individual VT(1) strategy consistently

dominates the 1/N strategy in the validation sample, which causes the combining weight to be

equal to zero for almost every period. There are a few periods around 1996 where this is not the

case, but even then the δt were mostly small. For η = 2 there is a slight improvement compared

to the individual VT(2) strategy, as its Sharpe ratio increased from 0.459 to 0.464. The Sharpe

ratio of the combination of the VT(4) strategy improved with a larger margin from 0.467 to

0.487. It seems that the more aggressive a strategy is, the more benefit combining with 1/N

has to its performance. The explanation for this is that an aggressive strategy more sharply

changes the weights when its input parameters change. If there happens to be large estimation

error in estimating these inputs, performance then deteriorates more quickly. In these cases, the

aggressive strategy will likely be outperformed by the 1/N portfolio in the validation sample.

This allows the 1/N strategy to ’help’ the aggressive strategy in periods of high estimation

risk. The fact that this method of combining strategies improves performance means that these

periods of high estimation risk are predictable to some extent.

Combining with the 1/N portfolio gives large benefits for the RRT(µ+, η) strategies. The

Sharpe ratios for the individual RRT ranged from 0.319 to 0.334, and they become 0.392 for

η = 1, 0.389 for η = 2 and 0.396 for η = 4. So the RRT strategies that performed poorly

individually for this dataset, are now up to par with the 1/N strategy. And again the most
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aggressive strategy receives the greatest increase in performance when combined with 1/N. A

problem for the original RRT(µ+, η) strategies is their turnover, but this does not change much

after combining strategies. This might be unexpected, considering that one of the strong points

of the 1/N strategy is its low turnover. However, the benefit of combining with a low turnover

gets offset by the added turnover that is caused by shifts in the combining weight δt.

If we shift our focus to the RRT strategies using the alternative estimator of µt, the combin-

ations do not perform very differently from the individual RRT(β+, η) strategies. Individually,

their Sharpe ratios ranged from 0.419 to 0.433. After combining these become 0.413 for η = 1,

0.418 for η = 2 and 0.429 for η = 4. The main cause that combining with 1/N does not

make much difference for this estimator is that there is less estimation error for the individual

RRT(β+, η) strategies. Therefore there are fewer periods where the 1/N strategy is needed to

counteract the estimation risk.

As combining with the 1/N portfolio seems to have a more positive effect in the presence

of high estimation risk, it should be especially helpful for the mean-variance efficient strategies,

which is indeed the case. The tangency portfolio performed atrociously individually, achieving

a negative Sharpe ratio of -0.276. After combining with 1/N, its Sharpe ratio skyrockets to

0.414, which means that it now outperforms the individual 1/N strategy in the absence of

transaction costs. An investor would be willing to pay a maximum fee of 38 basis points for

γ = 1 and 35 for γ = 5 to switch from the 1/N strategy to the combination with the tangency

portfolio. Its turnover decreased significantly after combining with 1/N, from over 500% to

13.8%. This is much more manageable, but still deteriorates its performance quite a bit, as

its turnover adjusted Sharpe is 0.359. The performance of the OC and OC+ strategies also

gain some ground. Their Sharpe ratios were 0.449 and 0.466 respectively, and they increase to

0.492 and 0.490 after combining with 1/N. The turnover for the OC strategy decreases from

28.9% to 23.4% after the combinations. When accounting for transaction costs the Sharpe then

becomes 0.386, which now slightly outperforms the 1/N strategy. The combination with OC+,

with its lower turnover, achieves an even higher turnover adjusted Sharpe of 0.430. The MV

strategy sees a similar increase to the VT(η) strategies. Its Sharpe ratio increases from 0.515 to

0.521 after combining with 1/N, while the transaction costs remain roughly the same. Without

transaction costs this combination strategy is statistically significant at the 10% level.

In general for this dataset, combining a strategy with the 1/N portfolio achieves similar or

improved results no matter the strategy. This is interesting, as weight allocation strategies based

on in-sample utility optimization (e.g. the tangency portfolio) often yield poor results. This is

the case because of their high estimation risk. In contrast, utility optimization can be effective

when done in the validation sample. In this case, utility optimization works by finding periods

where mean-variance based strategies are likely to perform poorly in comparison to 1/N. By

doing this it makes predictions on the level of estimation risk in the next period.

A practical implication of this combination method is that can be employed to mitigate the

downside risk of a mean-variance based strategy. Because, if an individual strategy performs

worse than the 1/N strategy, combining the two will give you performance that is at least on

par with the 1/N strategy itself. And if the individual strategy performs better than 1/N, the

corresponding combination strategy will not harm the results much, and might even slightly
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improve over the individual strategy.

It is, however, important to understand that the success of combining with the 1/N portfolio

is a bit dependent on the dataset that is used. At least for the timing strategies, it seems a

requirement that the performance of the 1/N strategy comes somewhat close to that of the

mean-variance based strategies. Otherwise, the 1/N portfolio does not provide enough value to

mitigate the estimation risk of estimating the combining weight δ. This can be seen in the results

for the 10 Momentum dataset, which is shown in Table 4. The 1/N for this dataset performed

quite poorly, achieving a Sharpe ratio of only 0.281. This poor performance can be explained

by the observation that the 1/N strategy is quite dubious for a momentum sorted dataset. As

discussed in the data section, momentum is an important factor in explaining returns. Therefore

the portfolios with low momentum generally achieve lower returns, while the high momentum

portfolios exhibit higher returns. Knowing this information, it then makes less sense to equally

distribute wealth among these momentum portfolios. Nevertheless, we shall see that combining

strategies with 1/N can still prove quite useful for certain mean-variance based strategies.

Of the timing strategies, VT showed the least difference in performance after combining with

the 1/N strategy. The Sharpe ratios for the individual VT strategies were 0.329, 0.355 and 0.375

in ascending order of η. The VT combinations have Sharpe ratios of 0.328, 0.350 and 0.366.

The decrease in performance of the RRT(β+, η) strategies after combining with 1/N is a

bit more drastic. A reason for this, as discussed, is the poor relative performance of the 1/N

portfolio compared to RRT. Specifically, the individual RRT strategies have Sharpe ratios of

0.454, 0.475 and 0.493, which are all more than 50% higher than that of the 1/N strategy. We

see this in the results of the combination strategies, which have lower Sharpe ratios of 0.431 for

η = 1, 0.447 for η = 2 and 0.463 for η = 4. Although these Sharpe ratios are still significantly

better than that of the individual 1/N strategy at the 1% level, they give little reason to use the

combinations over the individual RRT strategies. The same holds true if we use the alternative

estimator for the conditional expected returns. The Sharpes of the combination strategy with

RRT(β+, η) are 0.385, 0.430 and 0.459 compared to 0.397, 0.448 and 0.481 of the individual

RRT strategies.

Combining strategies with 1/N starts to shine again when it comes to the MVE strategies.

For these, the estimation risk is so high that even a poorly performing 1/N portfolio is quite

useful. This can most saliently be seen in the combination with the tangency portfolio. The

individual TP was extremely aggressive for this dataset, with a µ̂p and σ̂p of 507 and 1702

respectively. Therefore the inclusion of the 1/N was needed to create a more balanced strategy.

The combination achieved an annualized mean return of 7.93 and a standard deviation of 16.88,

resulting in a healthy Sharpe ratio of 0.470. Its turnover shot down from over 100000% to a more

modest 19.7%. When accounted for transaction costs its Sharpe ratio becomes 0.400, which is

significantly better than that of the 1/N portfolio at the 5% level.

The combination of 1/N with the OC strategy proves especially successful. Without trans-

action costs, the OC strategy by itself already performed very well with a Sharpe ratio of 0.579.

The large turnover of 34,7%, however, decreases it to 0.445 after accounting for transaction

costs. This is still quite good, but now it is outperformed by several RRT strategies. Com-

bining OC with 1/N improves this performance. Without transaction costs, the Sharpe of the
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combination becomes 0.590. Importantly, the turnover drops to 28,0%, which gives an adjusted

Sharpe ratio of 0.478. This means that the OC combination has the best performance of all in-

dividual strategies, even when accounting for transaction costs. This really shows the potential

of combining weight allocation strategies.

For the MV strategy combining with the 1/N portfolio does not have a lot of impact. Without

transaction costs the Sharpe ratio drops from 0.491 for the individual MV to 0.479 for the

combination. This decrease in performance is largely offset in the presence of transaction costs,

due to the lower turnover of the MV combination.

5.2.2 Equally Weighted Combination

We have seen that utility optimization to obtain the δt proves useful in a lot of cases, especially

when the mean-variance based strategy in the combination suffers from high estimation risk.

Now let us see what happens if we do not use optimization to find the combining weight, and

instead let δt =
1
2 for every period t. The results for the equally weighted combinations can be

seen in Table 5 for the 10 Industry dataset and Table 6 for the 10 Momentum dataset.

When looking at the results for both datasets it becomes quite apparent that they do not show

many abnormal improvements over the individual strategies that comprise the combinations.

The performance of the combinations in terms of Sharpe ratio mostly lies around the average

of the Sharpes of their components. This can be illustrated with an example from the 10

Industry dataset: here, the Sharpe ratio of the 1/N portfolio is 0.390, and that of VT(1) is

0.431, which gives an average of 0.4105. Meanwhile the Sharpe ratio of the equally weighted

combination of these strategies is 0.410. This suggests that a constant combining weight δt

leads to a combined performance with the same weight. This is evidence that it is not very

straightforward to draw a parallel between portfolio combinations and findings in the field of

forecast combinations. Recall that simple combinations of different forecasts often outperformed

more sophisticated methods of determining the combining weight (Smith and Wallis (2009),

Claeskens et al. (2016)). In contrast, in our research the maximum utility combinations almost

always outperform the equally weighted combinations. This also confirms our conclusion that

the potential of combining portfolio strategies with 1/N lies mainly in using the 1/N portfolio

only when it performs relatively better than the other component strategy (which occurs due

to periods with high estimation risk). This is because we find that the combinations perform

worse if the 1/N strategy is included with the same combining weight for every period.

Apart from these general findings, there are a few minor things to note about the results

of the equally weighted combinations. These relate to the combinations of the MVE strategies.

Firstly for the 10 Industry dataset, the MV combination now significantly outperforms the

individual 1/N strategy at the 5% level in terms of Sharpe ratio. This is not the case for

the MV strategy by itself, even though it achieves a higher Sharpe than the MV combination.

This happens because the MV combination is more highly correlated with 1/N, which results

in a lower standard error of the difference in Sharpe ratio. Consequently, less of a difference

in performance is needed to make that difference significant. Secondly, we find that the equal

combinations can sometimes outperform their component strategies if those strategies suffer

from high turnover. For example for the 10 Industry dataset, the individual OC strategy has
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a high turnover of 23.4% and a Sharpe of 0.318 when adjusted for transaction costs. Yet the

combination with 1/N has an average monthly turnover of 14.0% and an adjusted Sharpe ratio

of 0.384. Thus this combination outperforms both 1/N and the individual OC strategy after

accounting for transaction costs.

5.2.3 Favorability Index Combination

We now turn to the results of the final method of making portfolio combinations, which is done

by letting the 1/N favorability index control the combining weight δt. The results for the 10

Industry dataset are shown in Table 7 and for the 10 Momentum dataset in Table 8.

With a quick glance at these results, it can be gathered that this method of combining

different portfolio strategies does not perform very well. This is true even when comparing

them to the results of the equally weighted combinations. For the 10 Industry dataset, every

combination strategy using the favorability index has a worse Sharpe ratio than that of its equally

weighted counterpart, with or without accounting for transaction costs. For the 10 Momentum

dataset, only the FI RRT combinations outperform the equally weighted RRT strategies, but

they are still outclassed by the maximum utility combinations. We investigate what causes the

favorability index to fail as a method of determining the combining weight δt.

The most prominent reason is that this method puts too much emphasis on the 1/N strategy.

This can be seen from the values of δt for both datasets. The mean combining weight for the 10

Industry dataset is 0.72, which means that on average 72% of the weights of the combination

strategy are determined by the 1/N rule. For the 10 Momentum dataset this value is 0.53.

This is a problem as most of the timing strategies outperform the 1/N portfolio. Therefore

putting much emphasis on the 1/N portfolio is most definitely suboptimal. In contrast, for

the maximum utility combinations, if an individual mean-variance based strategy outperformed

the 1/N portfolio, we often saw that the δt of their combinations were close to zero for many

periods. In Figure 2 we see the progression of the FI for both datasets over time. The FI is

quite volatile in the first decade of the out-of-sample period. After that it remains consistently

very high almost until the end of the out-of-sample period. The fact that the δt are so high for

the FI method reflects a fundamental flaw that prevents us from using the index successfully.

That flaw is that the FI does not use any information on the performance of the mean-variance

based strategies. Therefore it fails to predict periods of high estimation risk, in which the 1/N

strategy is likely to outperform the mean-variance strategies.

It should be noted, however, that the favorability index does contain some useful information

on the performance of the 1/N portfolio. Looking at Figure 2, we see that the FI for the 10

Industry dataset is always at least as high as the FI for the 10 Momentum dataset. And

as we know, the 1/N portfolio has much better performance for the 10 Industry dataset. So

although the FI does not contain the right information to facilitate high performing portfolio

combinations, it can be used to quickly compare the potential performance of the 1/N portfolio

for different datasets.
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Figure 2: Plot of the time series of the 1/N favorability index

6 Conclusion

Kirby and Ostdiek (2012) examined the performance of many different mean-variance based

strategies of portfolio selection. This includes two novel strategies, namely volatility timing

and reward-to-risk timing, which both showed an ability to outperform the historically well-

performing 1/N portfolio. We provide an analysis of combinations of these strategies with

the 1/N strategy by linearly combining their weights. We do this to investigate the potential of

combining different portfolio selection strategies by comparing performance to the mean-variance

based strategies examined by Kirby and Ostdiek (2012).

We examined three different methods to combine the mean-variance based strategies with

the 1/N strategy. Firstly we choose the combination that maximizes the investors’ utility.

Secondly, we examine equally weighted combinations of the strategies. Finally, we determine

the composition of the combinations using the 1/N favourability index proposed by Guo et al.

(2019).

We find that the maximum utility method of creating portfolio combinations is the best per-

forming of the three. In many cases, these combination strategies show similar or improved per-

formance in comparison to the individual mean-variance based strategies. This method works,

because it makes predictions on the level of estimation risk in the next period. Thus in periods

with high estimation risk more emphasis is put on the 1/N strategy, as this strategy requires

no estimation. This way the 1/N strategy can help mitigate a large weakness of mean-variance

based strategies. This research gives a reason for investors to consider adopting combinations

of asset allocation strategies to achieve greater economic gains and limit downside risk.

For future research in this area, one could investigate combinations of strategies that do not

involve the 1/N strategy. One could also investigate the performance of three or more different

strategies put together. Finally, as our methods for estimating the conditional returns vector

and covariance matrix are quite simple, it would be interesting to see if our findings are robust

to different estimation methods.
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Table 1: Replication Results 10 Industry

This table reports our replication of the results of Kirby and Ostdiek (2012) for the 10 Industry dataset. It shows the performance of the 1/N strategy, three
VT(η) strategies, three RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies. It reports the following sample statistics of

the time series of returns that is generated by each strategy: the annualized mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p),
the average monthly turnover (τ̂p), the fee in basis points that an investor would be willing to pay to switch from the 1/N strategy another particular strategy and
p-values corresponding to the difference in Sharpe ratios with the 1/N strategy as well as the p-values for the performance fees. A ’-’ for the TP strategy signifies
that it was not possible to calculate this value, as there was no real value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample
period is July 1963 - December 2008 (546 observations) and the reported values are calculated using the period July 1973-December 2008 (426 observations), as
the first 120 observations are held out to initialize the rolling window estimates for the conditional mean vector and the conditional covariance matrix.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N 5.85 15.01 0.390 0.024 0.380
Panel A. Volatility Timing Strategies
VT(1) 6.10 14.15 0.431 0.018 38 0.127 89 0.007 0.025 0.421 0.021 37 0.131 89 0.007
VT(2) 6.17 13.44 0.459 0.048 54 0.203 146 0.020 0.028 0.447 0.055 52 0.215 143 0.022
VT(4) 5.97 12.77 0.467 0.181 43 0.365 171 0.102 0.035 0.451 0.203 36 0.387 163 0.112
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 5.08 15.23 0.334 0.859 -80 0.879 -94 0.881 0.075 0.304 0.930 -111 0.945 -125 0.938
RRT(µ+, 2) 5.09 15.54 0.328 0.813 -84 0.806 -117 0.861 0.087 0.294 0.893 -122 0.894 -155 0.924
RRT(µ+, 4) 5.17 16.20 0.319 0.782 -86 0.742 -163 0.870 0.117 0.276 0.877 -142 0.858 -219 0.936
RRT(β+, 1) 6.12 14.62 0.419 0.106 33 0.173 57 0.063 0.030 0.407 0.130 30 0.202 54 0.076
RRT(β+, 2) 6.19 14.39 0.430 0.122 43 0.203 81 0.073 0.040 0.413 0.170 33 0.262 71 0.101
RRT(β+, 4) 6.11 14.10 0.433 0.194 39 0.301 93 0.128 0.062 0.406 0.300 15 0.418 70 0.195
Panel C. Mean-Variance Efficient Strategies
MV 6.58 12.76 0.515 0.135 104 0.267 232 0.100 0.161 0.440 0.300 21 0.450 149 0.203
TP -22.48 81.36 -0.276 0.976 -6083 0.952 - - 5.287 -0.604 0.994 -5162 0.997 -12087 1.000
OC 5.96 13.28 0.449 0.307 36 0.418 136 0.232 0.289 0.318 0.700 -124 0.759 -24 0.552
OC+ 6.00 12.89 0.466 0.182 45 0.360 166 0.109 0.131 0.405 0.386 -20 0.563 101 0.226
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Table 2: Replication Results 10 Momentum

This table reports our replication of the results of Kirby and Ostdiek for the 10 Momentum dataset. It shows the performance of the 1/N strategy, three VT(η)
strategies, three RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies. It reports the following sample statistics of the

time series of returns that is generated by each strategy: the annualized mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the
average monthly turnover (τ̂p), the fee in basis points that an investor would be willing to pay to switch from the 1/N strategy another particular strategy and
p-values corresponding to the difference in Sharpe ratios with the 1/N strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies
that it was not possible to calculate this value, as there was no real value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample
period is July 1963 - December 2008 (546 observations) and the reported values are calculated using the period July 1973-December 2008 (426 observations), as
the first 120 observations are held out to initialize the rolling window estimates for the conditional mean vector and the conditional covariance matrix.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N 4.68 16.67 0.281 0.018 0.274
Panel A. Volatility Timing Strategies
VT(1) 5.25 15.96 0.329 0.001 69 0.017 116 0.002 0.017 0.323 0.001 70 0.016 117 0.002
VT(2) 5.54 15.62 0.355 0.002 103 0.018 172 0.002 0.018 0.348 0.002 103 0.019 172 0.002
VT(4) 5.76 15.37 0.375 0.003 129 0.022 214 0.002 0.026 0.365 0.004 124 0.027 209 0.003
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 7.61 16.77 0.454 0.001 291 0.000 285 0.001 0.058 0.433 0.002 267 0.001 261 0.002
RRT(µ+, 2) 8.13 17.12 0.475 0.002 338 0.000 307 0.002 0.061 0.454 0.004 312 0.001 281 0.004
RRT(µ+, 4) 8.61 17.44 0.493 0.003 379 0.001 326 0.005 0.068 0.470 0.006 349 0.001 296 0.009
RRT(β+, 1) 6.40 16.09 0.397 0.000 181 0.000 220 0.000 0.019 0.390 0.000 180 0.000 219 0.000
RRT(β+, 2) 7.26 16.20 0.448 0.000 266 0.000 298 0.000 0.024 0.440 0.000 263 0.000 294 0.000
RRT(β+, 4) 7.94 16.49 0.481 0.001 329 0.000 341 0.001 0.034 0.469 0.001 319 0.001 331 0.001
Panel C. Mean-Variance Efficient Strategies
MV 7.38 15.04 0.491 0.034 296 0.061 401 0.027 0.281 0.378 0.181 137 0.238 243 0.122
TP 507.07 1701.65 0.298 0.481 - - - - 124.797 -0.248 0.910 - - - -
OC 9.01 15.56 0.579 0.008 451 0.013 525 0.009 0.347 0.445 0.080 253 0.106 327 0.067
OC+ 5.38 15.21 0.354 0.059 93 0.143 188 0.031 0.123 0.305 0.258 30 0.368 125 0.107
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Table 3: Results Maximum Utility Combinations 10 Industry

This table reports the results of the maximum utility combining strategies for the 10 Industry dataset. It shows the performance of strategies where the 1/N
portfolio is combined with several strategies using the combining weight based on utility optimization. These strategies are: three VT(η) strategies, three
RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies. Finally the performance of the individual 1/N strategy is shown
as a reference for the other strategies. It reports the following sample statistics of the time series of returns that is generated by each strategy: the annualized
mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the average monthly turnover (τ̂p), the fee in basis points that an investor
would be willing to pay to switch from the 1/N strategy another particular strategy and p-values corresponding to the difference in Sharpe ratios with the 1/N
strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies that it was not possible to calculate this value, as there was no real
value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample period is July 1963 - December 2008 (546 observations) and the
reported values are calculated using the period July 1973-December 2008 (426 observations), as the first 120 observations are held out to initialize the rolling
window estimates for the conditional mean vector and the conditional covariance matrix. The combining weight δt is calculated using a training sample of 84
observations and a validation sample of 36 observations.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy combined with 1/N µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N (for reference) 5.85 15.01 0.390 0.024 0.380
Panel A. Volatility Timing Strategies
VT(1) 6.10 14.15 0.431 0.018 38 0.124 89 0.007 0.025 0.421 0.020 37 0.131 88 0.007
VT(2) 6.24 13.46 0.464 0.035 62 0.171 152 0.016 0.030 0.451 0.043 58 0.186 149 0.018
VT(4) 6.26 12.87 0.487 0.109 71 0.269 193 0.059 0.044 0.466 0.138 59 0.306 181 0.071
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 5.86 14.93 0.392 0.472 2 0.484 7 0.442 0.076 0.362 0.696 -29 0.734 -23 0.685
RRT(µ+, 2) 5.93 15.24 0.389 0.502 5 0.472 -9 0.553 0.089 0.354 0.692 -34 0.691 -48 0.755
RRT(µ+, 4) 6.17 15.58 0.396 0.465 23 0.402 -13 0.557 0.104 0.356 0.638 -25 0.607 -60 0.752
RRT(β+, 1) 6.06 14.66 0.413 0.131 26 0.196 47 0.065 0.036 0.399 0.191 19 0.271 40 0.099
RRT(β+, 2) 6.03 14.45 0.418 0.173 27 0.269 61 0.089 0.047 0.398 0.275 12 0.388 47 0.149
RRT(β+, 4) 6.07 14.16 0.429 0.168 35 0.281 86 0.091 0.065 0.401 0.303 10 0.436 61 0.170
Panel C. Mean-Variance Efficient Strategies
MV 6.65 12.77 0.521 0.083 112 0.214 239 0.057 0.162 0.445 0.247 28 0.421 156 0.150
TP 6.24 15.06 0.414 0.274 38 0.256 35 0.270 0.138 0.359 0.702 -31 0.704 -34 0.720
OC 6.53 13.25 0.492 0.120 93 0.239 194 0.081 0.234 0.386 0.473 -34 0.603 68 0.313
OC+ 6.37 13.01 0.490 0.099 80 0.246 195 0.060 0.129 0.430 0.260 17 0.443 132 0.146
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Table 4: Results Maximum Utility Combinations 10 Momentum

This table reports the results of the maximum utility combining strategies for the 10 Momentum dataset. It shows the performance of strategies where the
1/N portfolio is combined with several strategies using the combining weight based on utility optimization. These strategies are: three VT(η) strategies, three
RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies. Finally the performance of the individual 1/N strategy is shown
as a reference for the other strategies. It reports the following sample statistics of the time series of returns that is generated by each strategy: the annualized
mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the average monthly turnover (τ̂p), the fee in basis points that an investor
would be willing to pay to switch from the 1/N strategy another particular strategy and p-values corresponding to the difference in Sharpe ratios with the 1/N
strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies that it was not possible to calculate this value, as there was no real
value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample period is July 1963 - December 2008 (546 observations) and the
reported values are calculated using the period July 1973-December 2008 (426 observations), as the first 120 observations are held out to initialize the rolling
window estimates for the conditional mean vector and the conditional covariance matrix. The combining weight δt is calculated using a training sample of 84
observations and a validation sample of 36 observations.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy combined with 1/N µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N (for reference) 4.68 16.67 0.281 0.018 0.274
Panel A. Volatility Timing Strategies
VT(1) 5.23 15.95 0.328 0.001 66 0.020 115 0.002 0.019 0.320 0.001 66 0.021 114 0.002
VT(2) 5.46 15.61 0.350 0.002 95 0.023 165 0.002 0.024 0.341 0.002 92 0.027 162 0.002
VT(4) 5.61 15.33 0.366 0.003 114 0.028 202 0.002 0.036 0.352 0.006 103 0.043 191 0.003
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 6.89 15.99 0.431 0.001 232 0.001 278 0.000 0.058 0.409 0.002 208 0.001 254 0.000
RRT(µ+, 2) 7.18 16.07 0.447 0.001 260 0.001 300 0.000 0.065 0.422 0.003 231 0.003 272 0.001
RRT(µ+, 4) 7.48 16.16 0.463 0.002 288 0.001 323 0.001 0.079 0.434 0.005 252 0.004 287 0.003
RRT(β+, 1) 6.08 15.80 0.385 0.000 154 0.001 212 0.000 0.026 0.375 0.000 150 0.001 207 0.000
RRT(β+, 2) 6.75 15.67 0.430 0.000 223 0.001 289 0.000 0.034 0.417 0.000 213 0.001 279 0.000
RRT(β+, 4) 7.21 15.73 0.459 0.000 269 0.001 331 0.000 0.048 0.440 0.001 251 0.002 314 0.000
Panel C. Mean-Variance Efficient Strategies
MV 7.08 14.78 0.479 0.011 270 0.031 391 0.006 0.253 0.376 0.115 128 0.187 249 0.054
TP 7.93 16.88 0.470 0.003 321 0.001 307 0.001 0.197 0.400 0.020 213 0.014 204 0.013
OC 8.86 15.02 0.590 0.000 445 0.001 551 0.000 0.280 0.478 0.010 286 0.024 394 0.006
OC+ 5.51 15.18 0.363 0.027 107 0.088 204 0.012 0.123 0.314 0.175 43 0.292 140 0.058
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Table 5: Results Equally Weighted Combinations 10 Industry

This table reports the results of the equally weighted combination strategies for the 10 Industry dataset. It shows the performance of strategies where the 1/N
portfolio is equally combined with: three VT(η) strategies, three RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies.
Finally the performance of the individual 1/N strategy is shown as a reference for the other strategies. It reports the following sample statistics of the time series

of returns that is generated by each strategy: the annualized mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the average
monthly turnover (τ̂p), the fee in basis points that an investor would be willing to pay to switch from the 1/N strategy another particular strategy and p-values
corresponding to the difference in Sharpe ratios with the 1/N strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies that
it was not possible to calculate this value, as there was no real value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample
period is July 1963 - December 2008 (546 observations) and the reported values are calculated using the period July 1973-December 2008 (426 observations), as
the first 120 observations are held out to initialize the rolling window estimates for the conditional mean vector and the conditional covariance matrix.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy combined with 1/N µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N (for reference) 5.85 15.01 0.390 0.024 0.380
Panel A. Volatility Timing Strategies
VT(1) 5.97 14.56 0.410 0.016 19 0.121 47 0.005 0.024 0.401 0.017 19 0.124 47 0.005
VT(2) 6.01 14.12 0.426 0.035 29 0.189 82 0.011 0.025 0.415 0.039 28 0.196 81 0.012
VT(4) 5.91 13.46 0.439 0.107 28 0.327 119 0.040 0.028 0.426 0.121 25 0.343 116 0.044
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 5.47 14.87 0.368 0.801 -36 0.857 -28 0.778 0.041 0.351 0.868 -47 0.912 -38 0.849
RRT(µ+, 2) 5.47 14.86 0.368 0.730 -36 0.769 -27 0.699 0.044 0.350 0.802 -48 0.837 -39 0.776
RRT(µ+, 4) 5.51 14.97 0.368 0.675 -33 0.691 -30 0.669 0.060 0.344 0.778 -55 0.795 -52 0.774
RRT(β+, 1) 5.99 14.78 0.405 0.093 17 0.166 31 0.048 0.025 0.395 0.105 16 0.179 30 0.053
RRT(β+, 2) 6.02 14.63 0.411 0.101 23 0.191 46 0.049 0.029 0.400 0.128 19 0.226 43 0.061
RRT(β+, 4) 5.98 14.39 0.415 0.149 22 0.278 59 0.075 0.039 0.399 0.220 13 0.366 50 0.110
Panel C. Mean-Variance Efficient Strategies
MV 6.21 13.00 0.478 0.047 65 0.220 180 0.025 0.081 0.440 0.124 30 0.361 146 0.057
TP -8.32 41.95 -0.198 0.979 -2189 0.952 -5739 0.964 8.776 -0.534 0.971 -8759 0.977 - -
OC 5.91 13.19 0.448 0.150 31 0.359 137 0.073 0.140 0.384 0.474 -39 0.669 67 0.240
OC+ 5.93 13.54 0.438 0.109 29 0.323 115 0.045 0.072 0.406 0.256 -1 0.503 86 0.103
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Table 6: Results Equally Weighted Combinations 10 Momentum

This table reports the results of the equally weighted combination strategies for the 10 Momentum dataset. It shows the performance of strategies where the 1/N
portfolio is equally combined with: three VT(η) strategies, three RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies.
Finally the performance of the individual 1/N strategy is shown as a reference for the other strategies. It reports the following sample statistics of the time series

of returns that is generated by each strategy: the annualized mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the average
monthly turnover (τ̂p), the fee in basis points that an investor would be willing to pay to switch from the 1/N strategy another particular strategy and p-values
corresponding to the difference in Sharpe ratios with the 1/N strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies that
it was not possible to calculate this value, as there was no real value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample
period is July 1963 - December 2008 (546 observations) and the reported values are calculated using the period July 1973-December 2008 (426 observations), as
the first 120 observations are held out to initialize the rolling window estimates for the conditional mean vector and the conditional covariance matrix.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy combined with 1/N µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N (for reference) 4.68 16.67 0.281 0.018 0.274
Panel A. Volatility Timing Strategies
VT(1) 4.97 16.30 0.305 0.001 35 0.016 60 0.001 0.017 0.298 0.001 35 0.015 60 0.001
VT(2) 5.11 16.11 0.317 0.001 52 0.017 90 0.001 0.017 0.311 0.001 53 0.017 91 0.001
VT(4) 5.22 15.94 0.327 0.002 66 0.020 115 0.001 0.020 0.320 0.002 65 0.022 113 0.002
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 6.15 16.53 0.372 0.001 149 0.000 159 0.000 0.033 0.360 0.001 140 0.000 150 0.000
RRT(µ+, 2) 6.41 16.60 0.386 0.001 174 0.000 179 0.000 0.034 0.374 0.002 164 0.001 169 0.001
RRT(µ+, 4) 6.64 16.66 0.399 0.001 196 0.000 197 0.001 0.038 0.385 0.002 184 0.001 185 0.001
RRT(β+, 1) 5.54 16.31 0.340 0.000 92 0.000 116 0.000 0.018 0.333 0.000 92 0.000 116 0.000
RRT(β+, 2) 5.97 16.28 0.367 0.000 136 0.000 162 0.000 0.019 0.360 0.000 135 0.000 161 0.000
RRT(β+, 4) 6.31 16.33 0.386 0.000 168 0.000 192 0.000 0.024 0.377 0.001 165 0.000 188 0.000
Panel C. Mean-Variance Efficient Strategies
MV 6.03 15.09 0.400 0.013 160 0.047 263 0.006 0.134 0.346 0.088 90 0.174 193 0.033
TP 255.87 850.77 0.301 0.478 - - - - 110.196 -0.263 0.914 - - - -
OC 6.85 15.21 0.450 0.002 240 0.009 335 0.001 0.166 0.385 0.029 151 0.068 246 0.013
OC+ 5.03 15.81 0.318 0.045 49 0.132 106 0.019 0.068 0.292 0.209 19 0.335 76 0.068
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Table 7: Results Favorability Index Combinations 10 Industry

This table reports the results of the favorability index combining strategies for the 10 Industry dataset. It shows the performance of strategies where the 1/N
portfolio is combined with several strategies based on the combining weight resulting from the 1/N favorability index. These strategies are: three VT(η) strategies,
three RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies. Finally the performance of the individual 1/N strategy
is shown as a reference for the other strategies. It reports the following sample statistics of the time series of returns that is generated by each strategy: the
annualized mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the average monthly turnover (τ̂p), the fee in basis points that
an investor would be willing to pay to switch from the 1/N strategy another particular strategy and p-values corresponding to the difference in Sharpe ratios with
the 1/N strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies that it was not possible to calculate this value, as there was
no real value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample period is July 1963 - December 2008 (546 observations)
and the reported values are calculated using the period July 1973-December 2008 (426 observations), as the first 120 observations are held out to initialize the
rolling window estimates for the conditional mean vector and the conditional covariance matrix.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy combined with 1/N µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N (for reference) 5.85 15.01 0.390 0.024 0.380
Panel A. Volatility Timing Strategies
VT(1) 5.92 14.74 0.401 0.028 11 0.168 27 0.022 0.029 0.390 0.067 8 0.252 24 0.036
VT(2) 5.93 14.47 0.410 0.063 16 0.243 49 0.035 0.040 0.393 0.167 6 0.392 39 0.071
VT(4) 5.83 14.02 0.416 0.179 12 0.396 72 0.089 0.064 0.389 0.389 -12 0.596 47 0.184
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 4.91 16.39 0.300 0.932 -116 0.960 -205 0.968 0.106 0.261 0.979 -165 0.990 -253 0.986
RRT(µ+, 2) 4.83 16.53 0.292 0.936 -126 0.954 -224 0.971 0.105 0.254 0.977 -175 0.987 -273 0.987
RRT(µ+, 4) 4.94 16.65 0.296 0.913 -118 0.916 -225 0.962 0.111 0.256 0.967 -170 0.973 -277 0.984
RRT(β+, 1) 5.84 14.94 0.391 0.410 0 0.493 5 0.278 0.033 0.378 0.679 -6 0.761 -1 0.563
RRT(β+, 2) 5.82 14.87 0.392 0.404 -1 0.520 8 0.229 0.041 0.375 0.742 -11 0.839 -3 0.600
RRT(β+, 4) 5.75 14.79 0.389 0.530 -7 0.649 7 0.351 0.054 0.367 0.841 -25 0.910 -12 0.743
Panel C. Mean-Variance Efficient Strategies
MV 5.82 13.80 0.422 0.285 15 0.433 86 0.172 0.168 0.348 0.705 -72 0.793 -2 0.508
TP -26.76 92.50 -0.289 0.971 -7513 0.935 - - 4.409 -0.549 0.989 -4412 0.993 -9919 0.997
OC 5.16 13.98 0.369 0.614 -54 0.691 7 0.476 0.242 0.264 0.920 -186 0.935 -128 0.844
OC+ 6.20 14.03 0.442 0.077 49 0.200 108 0.047 0.097 0.400 0.294 5 0.464 63 0.158
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Table 8: Results Favorability Index Combinations 10 Momentum

This table reports the results of the favorability index combining strategies for the 10 Momentum dataset. It shows the performance of strategies where the
1/N portfolio is combined with several strategies based on the combining weight resulting from the 1/N favorability index. These strategies are: three VT(η)
strategies, three RRT(µ+, η) strategies, three RRT(β+, η) strategies, and four mean variance efficient strategies. Finally the performance of the individual 1/N
strategy is shown as a reference for the other strategies. It reports the following sample statistics of the time series of returns that is generated by each strategy:
the annualized mean (µ̂p), the annualized standard deviation (σ̂p), the annualized Sharpe ratio (λ̂p), the average monthly turnover (τ̂p), the fee in basis points
that an investor would be willing to pay to switch from the 1/N strategy another particular strategy and p-values corresponding to the difference in Sharpe ratios
with the 1/N strategy as well as the p-values for the performance fees. A ’-’ for the TP portfolio signifies that it was not possible to calculate this value, as there
was no real value for a fee to make the investor indifferent between the TP and 1/N strategies. The sample period is July 1963 - December 2008 (546 observations)
and the reported values are calculated using the period July 1973-December 2008 (426 observations), as the first 120 observations are held out to initialize the
rolling window estimates for the conditional mean vector and the conditional covariance matrix.

No Transaction Costs Transaction Costs
vs. 1/N vs. 1/N

Strategy combined with 1/N µ̂p σ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val τ̂p λ̂p p-val ∆̂1 p-val ∆̂5 p-val

1/N (for reference) 4.68 16.67 0.281 0.018 0.274
Panel A. Volatility Timing Strategies
VT(1) 4.98 16.27 0.306 0.010 37 0.048 64 0.011 0.021 0.298 0.013 35 0.054 62 0.012
VT(2) 5.11 16.08 0.318 0.016 53 0.059 93 0.012 0.028 0.307 0.026 46 0.079 86 0.015
VT(4) 5.14 15.92 0.323 0.037 58 0.091 109 0.018 0.040 0.308 0.074 45 0.145 95 0.028
Panel B. Reward-to-Risk Timing Strategies
RRT(µ+, 1) 7.28 17.34 0.420 0.012 249 0.002 203 0.010 0.086 0.391 0.023 208 0.006 163 0.027
RRT(µ+, 2) 7.70 17.69 0.435 0.015 285 0.002 213 0.017 0.084 0.407 0.025 245 0.006 174 0.039
RRT(µ+, 4) 8.05 17.94 0.449 0.015 315 0.002 225 0.023 0.085 0.420 0.025 274 0.005 185 0.047
RRT(β+, 1) 5.73 16.37 0.350 0.003 110 0.004 131 0.003 0.029 0.339 0.005 103 0.005 124 0.004
RRT(β+, 2) 6.31 16.46 0.383 0.006 166 0.003 181 0.004 0.040 0.369 0.008 153 0.006 167 0.006
RRT(β+, 4) 6.83 16.66 0.410 0.008 215 0.003 216 0.006 0.053 0.391 0.013 194 0.006 195 0.011
Panel C. Mean-Variance Efficient Strategies
MV 5.27 15.29 0.345 0.209 81 0.277 172 0.122 0.217 0.260 0.573 -38 0.610 52 0.360
TP 616.42 2023.44 0.305 0.475 - - - - 138.077 -0.270 0.915 - - - -
OC 6.11 15.52 0.393 0.087 161 0.128 237 0.062 0.248 0.298 0.387 23 0.435 100 0.252
OC+ 4.43 15.76 0.281 0.492 -10 0.562 51 0.223 0.102 0.242 0.807 -60 0.832 0 0.502
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