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Abstract

This thesis compares the performance of mean-variance and active portfolio selection

strategies to näıve diversification for commodity futures. Commodity futures offer diversi-

fication benefits and act as inflation hedges, making them an attractive asset class. Ana-

lyzing monthly returns of commodity futures from 1987 to 2008, we find that active timing

strategies outperform mean-variance strategies for commodity futures. Risk-to-reward tim-

ing strategies even outperform näıve diversification, particularly for investors with a low level

of relative risk aversion. However, short sales introduce volatility, limiting the superiority of

risk-to-reward timing strategies to investors with a low level of relative risk aversion. Over-

all, risk-to-reward timing strategies are more effective for commodity futures, while volatility

timing and mean-variance strategies underperform. These findings provide insights for con-

structing optimal portfolios in the commodity futures market.
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1 Introduction

In the world of portfolio optimization, two fundamental approaches get a significant amount of

attention. These approaches are mean-variance optimization, introduced by Markowitz (1952)

and näıve diversification. Mean-variance optimization is a technique that considers the expected

asset returns and variances of asset returns. This technique aims to optimize portfolio weights

to maximize expected return for a given level of risk. Näıve diversification often called the

1/N strategy, distributes capital equally across all assets. The 1/N strategy does not consider

expected returns or asset variances.

In the paper ”It’s All in the Timing: Simple Active Portfolio Strategies that Outperform

Naive Diversification”, Kirby & Ostdiek (2012) compare these strategies using various data sets.

However, their study mainly focused on equity assets and did not dive into commodity futures.

As an extension to their work, this thesis aims to perform a similar comparison for commodity

features, a relatively unexplored asset class in most of the current academic literature.

Several factors motivate an extension of this research with commodity futures. Firstly,

commodity futures offer diversification benefits because of their low correlation with traditional

and well-studied asset classes such as equities and bonds (Gorton & Rouwenhorst, 2006). Besides

this, commodities provide a hedge against inflation because they are physical assets. This

provides a layer of protection during volatile economic periods (Bodie & Rosansky, 1980). Lastly,

the market for commodity futures has grown in recent years (Büyükşahin & Robe, 2014), making

it attractive to include commodity futures in investment portfolios for institutions and individual

investors.

Besides these motivating factors, it is worth noting that the mean-variance portfolio selec-

tion has received a lot of criticism because of the sensitivity to input assumptions (Michaud,

1989). Therefore, testing the performance of mean-variance portfolio selection in the context

of commodity futures is worth testing because of their differing return characteristics compared

to traditional asset classes like equities and bonds. Because commodity futures contracts re-

quire no initial investment, their risk premia differ from traditional assets like stocks. Generally,

risk premia for stocks are expected to be positive in the long term. However, risk premia for

commodity futures contracts can be positive and negative. Additionally, taking short and long

positions in commodity futures is equally easy. Short-selling stocks usually require borrowing

shares and complying with regulations and market rules. The relative ease of taking short po-

sitions makes short-selling restrictions less reasonable for the portfolio selection of commodity

futures.

Despite the significant growth of the commodity futures market that sparked the increased

interest of institutional investors and individual investors (Büyükşahin & Robe, 2014), the lit-

erature on portfolio selection strategies for commodity futures is relatively scarce. The unique

characteristics of commodity futures motivate the investigation of the best-performing portfolio

strategies for this asset class. This thesis aims to contribute to filling this gap in the literat-

ure by comparing the performance of näıve diversification and a combination of mean-variance

optimization strategies and active portfolio selection strategies for commodity futures portfolios.

Therefore the research question of this thesis is: ”What is the performance of mean-variance

and active portfolio selection for commodity futures, and how does it compare to näıve diversi-
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fication?”.

This thesis aims to replicate and extend the research of Kirby & Ostdiek (2012) to address

the main research question. Specifically, this thesis considers the asset class of commodity

futures, while the original paper considers equities. This thesis investigates whether the same

mean-variance and active portfolio selection strategies that outperform näıve diversification in

the original paper outperform näıve diversification for commodity futures. The results of this

analysis can be helpful for investors and institutions in constructing more effective and diversified

portfolios.

This thesis finds that active timing strategies perform better for commodity futures than

mean-variance strategies. The risk-to-reward timing strategies even outperform näıve diversific-

ation for commodity futures for investors with a low level of relative risk aversion. The additional

volatility that comes with allowing short-sales, results in the risk-to-reward timing strategies only

outperforming näıve diversification for investors with an even lower level of relative risk aversion.

In Section 2, the literature is given. Next, in Section 3, the data is explained. After this,

in Section 4, the investment strategies are described, and an explanation is given for the per-

formance measures of these strategies. Section 5 contains the results. Lastly, Section 6 contains

concluding remarks and suggestions for future research.

2 Literature

Markowitz (1952) introduced the theory behind portfolio optimization. His work significantly

impacted how investors view risk and returns of investments. He presented how investments

contribute to the overall portfolio’s risk and return instead of viewing risk and return character-

istics per asset. Markowitz (1952) laid the foundation for current portfolio theory, which aims

to maximize the risk-adjusted returns for a portfolio.

Building onto Markowitz’s theory, Sharpe (1964) introduced the Capital Asset Pricing Model

(CAPM). This model simplified the portfolio optimization process by introducing the market

portfolio idea. This theory states that every investor’s optimal portfolio combines the market

portfolio and the risk-free asset.

Fama & French (1993) extended the CAPM model with the three-factor model. This model

increased the explanatory power of expected returns by adding two factors. These two additional

factors are the size (SMB) and book-to-market (HML) factors. These factors are used to capture

the different risk premia associated with a stock’s size and value.

Näıve diversification, also known as the 1/N strategy, is a strategy where capital is allocated

equally across all available assets. The 1/N strategy is a simplistic portfolio that still has a

competitive performance compared to more complex portfolio selection strategies. DeMiguel et

al. (2009) found that the 1/N strategy often outperforms MV strategies due to the estimation

error of these MV strategies, despite the simplicity of the 1/N strategy.

Kirby & Ostdiek (2012) found that the application of timing rules to active portfolio selection

strategies improve their performance and even outperform the 1/N strategy for various datasets,

which accentuates the potential benefits of active portfolio selection. However their research

is limited to traditional assets like stocks and they do not consider other asset classes like

commodity futures.
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Commodity futures contracts are agreements to buy or sell a commodity at a date in the

future for a price that is agreed upon today (Gorton & Rouwenhorst, 2006). The types of

commodities typically include metals, softs (grown products like cocoa, sugar and coffee), grains,

energy, and meat.

Commodity futures have received a lot of attention as an asset class due to their benefits

which include diversification, hedging against inflation, and providing returns that are uncor-

related with traditional asset classes (Erb & Harvey, 2006). Besides this, commodity futures

have other unique characteristics regarding different maturities. When it comes to commod-

ity futures, investors are able to choose futures contracts with different expiration dates. The

maturity represents the time horizon for the delivery of settlement of the underlying commodity.

Erb & Harvey (2006) found that a diversified portfolio of commodity futures seems to be an

excellent diversifier of a traditional stock and bond portfolio. These diversification benefits are

due to their low correlation with equities and bonds (Gorton & Rouwenhorst, 2006). Adding

to this, You & Daigler (2013) show that there are benefits to adding commodity futures to

traditional portfolios such as stocks and bonds. They also show that adding commodity futures

by applying mean-variance optimization provides benefits over näıve optimization. However,

their study is limited because it does not consider portfolios that solely consist of commodity

futures but rather a combination of commodity futures and traditional assets. Besides this,

their research only investigates mean-variance optimization but not active portfolio selection

strategies like volatility timing or risk-to-reward timing.

Vrugt et al. (2004) investigate timing strategies for commodities futures and find that certain

timing strategies deliver superior portfolio returns. However, the timing strategies applied in

their research are related to business cycles, monetary environment, and market sentiment.

Therefore, this thesis investigates to which extent the latter conclusions hold regarding the

performance of mean-variance, volatility timing, and risk-to-reward timing strategies compared

to näıve for a portfolio that solely consists of commodity futures.

3 Data

3.1 Replication

For the replication part of this thesis, ten industry portfolios and the market portfolio are used,

and the size, value, and market portfolio are from July 1963 until November 2004 to replicate

the characteristics of the 1/N and MVE strategies. For the replication of the out of sample

performance of the different strategies, the 10 industry, 10 momentum and market portfolios are

used from July 1963 until December 2008.

All the data that is used for the replication part of this thesis is monthly data. All the data

is publicly available and is obtained from Ken French’s website. The data does not need any

processing and does not have any missing observations. Table 1 gives an overview of all the used

data for the replication part of this thesis. N is the number of risky assets in each data set, and

Obs is the number of observations in each data set.

Figures 1 to 6 contain reward and risk characteristics for the 10 Industry, 3 Factor, and 10

Momentum data sets, namely the cross-section of annualized mean returns and the cross-section
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Table 1: Overview of data used for replication

Dataset N Obs Time Period Abbreviation

Ten industry portfolios & market portfolio 10 + 1 546 06/1963 - 12/2008 10 FF Industry
Size, Value, and the market porfolio 2 + 1 497 06/1963 - 11/2004 MKT/SMB/HML
Ten portfolios formed on Momentum 10 546 06/1963 - 12/2008 10 MOM

of annualized return standard deviations.
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Figure 4: Volatility FF3
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Figure 5: Mean Return MOM10
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Figure 6: Volatility MOM10

3.2 Extension

For the extension part of this thesis, five data sets will be added to the original paper. All five

data sets include monthly data for commodity futures. The futures contracts that are used for

this thesis consist of gold, gas oil, sugar, wheat, and feeder cattle. These commodities each

represent a different commodity type (metal, energy, softs, grains, and livestock). The maturity

of these commodity futures is one month. The Goldman Sachs Commodity Index can obtain a

proxy for the market portfolio for commodity futures. This index includes various commodity

futures contracts across the different commodity sectors. An overview of the used data for the

extension can be found in Table 2, containing the data set, number of observations, and period

of the data set. The five commodity futures and the SPGSCI will be combined with the risk-free

rate to create the CC5 data set.

Table 2: Overview of data used for extension

Dataset Obs Time Period Abbreviation

Gold 253 12/1987 - 12/2008 AU
London Gas Oil 253 12/1987 - 12/2008 LGA
London Sugar 253 12/1987 - 12/2008 LS
London Wheat 253 12/1987 - 12/2008 LW
Feeder Cattle 253 12/1987 - 12/2008 FC
Goldman Sachs Commodity Index 253 12/1987 - 12/2008 SPGSCI

Figures 5 and 6 contain reward and risk characteristics for the 5 Commodity Futures data

sets, namely the cross-section of annualized mean returns and the cross-section of annualized

return standard deviations.
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Figure 7: Mean Return CC5
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Figure 8: Volatility CC5

To compare the results from the extension to the original paper, the data must be adjusted for

factors that could affect the comparability to the US stock data from the original paper. Hence,

all the extension data has to be adjusted for sample periods. The data for the commodity futures

and the SPGSCI is obtained from the investing.com website.

4 Methodology

This section describes all the methods that will be used to replicate specific results from the

paper from Kirby & Ostdiek (2012) and the methods that will be used to perform the extension

of the paper. All the calculations will be performed in Python.

4.1 1/N and Mean-Variance Efficient Strategies

The 1/N portfolio strategy consists of holding a portfolio of N assets where the same weight is

assigned to each asset. The vector of weights for the näıve portfolio (1/N) is constructed by

dividing one by the number of assets as depicted in the following formula.

ω1/N,t = 1/N (1)

Here N is the number of assets and ri is the return of asset i.

The tangency portfolio (TP) is the portfolio that lies on the efficient frontier. The first order

condition of this problem is depicted as:

µt + λtι− γΣtωpt = 0, (2)

where λt is the Lagrange multiplier of the constraint ω′
ptι = 1.

The vector of weights for the tangency portfolio at time t is calculated using the following

formula.

ωTP,t =
Σ−1
t ∗ µt

ι′ ∗ Σ−1
t ∗ µt

(3)
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Here Σ−1
t is the inverse of the covariance matrix of asset returns at time t and µt is the mean

of the asset return at time t and ι is the vector of ones. These weights are then normalized such

that they sum up to 1.

The minimum-variance portfolio (MV) is the portfolio that is obtained by minimizing ω′
t

∑
t ωt

subject to ω′
tι = 1. The vector of weights for the minimum-variance portfolio at time t is calcu-

lated using the following formula.

ωMV,t = Σ−1
t ∗ ι ∗ (ι′ ∗ Σ−1

t ∗ ι)−1 (4)

Here Σ−1
t is the inverse of the covariance matrix of asset returns at time t and ι is the vector

of ones.

The optimized unconstrained portfolio (OU) is a portfolio where the investor divides his

wealth between the risk-free asset and the tangency portfolio. The investor chooses the port-

folio in period t by minimizing the conditional risk of the portfolio for a specified value of the

conditional expected excess return. The optimized constrained portfolio (OC) is similar to the

optimized unconstrained portfolio (OU), except that the weight in the risk-free asset has been

transferred to the minimum-variance portfolio. The OC portfolio also targets the conditional

expected return of the 1/N portfolio. The vector of weights of the OC portfolio can be calculated

using the following formula.

ωOC,t = (
µpt − µMV,t

µTP,t − µMV,t
) ∗ ( Σ−1

t µt

ι′Σ−1
t µt

) + (1−
µpt − µMV,t

µTP,t − µMV,t
) ∗ ( Σ−1

t ι

ι′Σ−1
t ι

) (5)

Here µpt is the conditional mean vector of the excess portfolio returns, and Σt is the condi-

tional covariance matrix of the excess portfolio returns. µTP,t and µMV,t denote the conditional

expected excess returns for the tangency and MV portfolios

Next, the annualized mean excess return is obtained by multiplying the mean of the excess

returns by 12, and the annualized excess return standard deviation are obtained by multiplying

the standard deviation of the excess returns by the square root of 12. Then the Sharpe Ratio is

calculated by the following formula.

SR =
µ̂

σ̂
(6)

Here µ̂ and σ̂ are the annualized mean excess return and the annualized excess return stand-

ard deviation respectively.

The turnover at time t is calculated with the following formula.

τt =

N∑
i=1

|ωit − ω̃it|+ |
N∑
i=1

(ωit − ω̃it)| (7)

Where ωit is the desired weight in asset i at time t and ω̃it is the weight in asset i before the

portfolio is rebalanced at time t and it can be calculated using the following formula.

ω̃it =
ωi,t−1(1 +Rit)∑N

i=1 ωi,t−1(1 +Rit) + (1−
∑N

i=1 ωi,t−1)(1 +Rft)
(8)

Here Rit is the return of asset i at time t, and Rft is the risk-free rate at time t. The turnover
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in the results is expressed as a fraction of wealth invested (τ̂)

A rolling estimator is used with a 120-month window length, and transaction costs are

assumed to be 0. Panel B contains the minimum, median, and maximum values of each strategy’s

estimated conditional expected return over the months in the out-of-sample period.

4.2 Volatility Timing and Risk-To-Reward Timing Strategies

The analysis is extended by adding volatility timing (VT) and reward-to-risk strategies. The

volatility timing strategies have four key characteristics: they do not require optimization, they

do not require co-variance matrix inversion, they do not generate negative weights, and they

allow the sensitivity of the weights to volatility changes to be adjusted via a tuning parameter.

The weights of the VT strategy can be calculated using the following formula.

ω̂it =
(1/σ̂2

it)
η∑N

i=1(1/σ̂
2
it)

η
(9)

Here η is the tuning parameter, and it is a measure of timing aggressiveness. As η moves to

0, the naive portfolio is recovered, and as η moves to ∞, the weight on the asset with the lowest

volatility approaches 1. For the VT strategy, we assume a diagonal covariance matrix (i.e., no

correlations). The RRT strategy also considers the estimated conditional mean for asset i. The

weights for the RRT strategy can be calculated by using the following formula.

ω̂it =
(µ̂+

it/σ̂
2
it)

η∑N
i=1(µ̂

+
it/σ̂

2
it)

η
(10)

Here µ̂+
it = max(µ̂it, 0) and η is once again the tuning parameter. As η approaches 0, the

strategy approaches naive diversification. As η approaches ∞, a weight of 1 is put on the asset

with the maximum estimated reward-to-risk ratio.

An alternative estimator of conditional expected returns is also used. The following formula

calculates the weights for this RRT strategy.

ωit =
(β̄+

it /σ
2
it)

η∑N
i=1(β̄

+
it /σ

2
it)

η
(11)

Here β̄+
it = max(β̄it, 0) and β̄it = (1/K)

∑K
j=1 βij,t is the average conditional beta of asset i

with respect to the K factors.

The portfolio returns at time t are constructed by taking the dot product of the weights

vector and the returns vector as depicted in the following formula.

Ri,t = ωi,t · rt (12)

Here ωi,t is the weight of strategy i at time t, and rt is the asset return vector at time t. Ri,t

is the return of portfolio i at time t. The excess returns are then calculated by subtracting the

risk-free rate from each individual portfolio return.
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4.3 Risk-To-Reward Timing Strategies With Short-Selling

The RRT strategies in Kirby & Ostdiek (2012) are constructed in a way that they do not generate

negative weights. However, in the context of commodity futures, short-selling is relatively easy.

To construct the RRT strategies while allowing for short-selling, the tuning parameter η is

removed from the weights equations and the assumptions that an investor has a strong prior

belief that µit ≥ 0 and β̄it ≥ 0 are also removed from the RRT strategy construction. Therefore

the new weights formulas for the RRT strategies that allow short-selling are:

ω̂it =
(µ̂it/σ̂

2
it)∑N

i=1(µ̂it/σ̂2
it)

(13)

for the RRT(µt) strategy, and the weights formula for the RRT(β̄t) strategy becomes:

ωit =
(β̄it/σ

2
it)∑N

i=1(β̄it/σ
2
it)

(14)

4.4 Performance Measures

Additionally, to evaluate portfolio performance, the maximum per period fee an investor would

pay to switch from strategy i to strategy j is calculated, which is denoted by ∆̂γ and γ is the

individual investors coefficient of relative risk aversion. When γ is high, it indicates that an

investor is more sensitive to changes in risk. The formula for this metric for different levels of

risk aversion is shown in the following formula:

∆̂γ = −1

γ
(1− γE[Rj,t+1]) +

1

γ

√
(1− γE[Rj,t+1])2 − 2γE[Ri,t+1 −Rj,t+1 −

γ

2
(R2

i,t+1 −R2
j,t+1)]

(15)

Here Ri,t+1 is the return of portfolio i for the period t + 1, and γ is the investor’s level of

risk aversion. All the abovementioned strategies are compared to the 1/N portfolio.

To understand each strategy’s relative performance, the p-values of the ∆̂γ are calculated for

each strategy. The t-statistics are constructed using the generalized method of moments (GMM).

Suppose there is a J × 1 vector of random variables Yt and a J × 1 vector of disturbances. This

disturbance vector e is shown as:

e(Yt, θ) =


rpit − θ1θ3

rpjt − θ2θ4

(rpit − θ1θ3)
2 − θ23

(rpjt − θ2θ4)
2 − θ24

 (16)

The GMM estimator θ̂ is the value of θ for which the average value of the disturbance vector

is zero. The limiting distribution of θ̂ is:

√
T (θ̂ − θ) → N(0, V ) (17)

Here V = D−1SD−1 with D = E(∂e(Yt, θ)/∂θ
′) and S =

∑∞
j=−∞E(e(Yt, θ)e(Yt−j , θ)

′)
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The distribution of the maximum per period fee an investor is willing to pay to switch from

the 1/N strategy to another strategy for a given level of risk aversion is:

√
T (∆̂γ −∆γ) ∼ N(0, d∆V∆d

′
∆) (18)

Here, d∆ = ∂∆γ/∂θ
′ and V∆ is the asymptotic covariance matrix implied by the disturbance

vector e. To identify strategies that outperform näıve diversification, the 1/N strategy is specified

as strategy i and the p-values are reported for H0 : ∆γ ≤ 0 based on the following t-statistic:

√
T (

∆̂γ

(d̂∆V̂∆d̂′∆)
1/2

∼ N(0, 1) (19)

The p-values are determined from 10,000 trials of a stationary block bootstrap with an

expected block length of 10, as seen in Kirby & Ostdiek (2012). All performance measures are

reported assuming no transaction costs and proportional transaction costs of 50 basis points.

For the comparison considering 50 basis points of transactions, the portfolio returns are adjusted

by the following formula:

R̃t = (1 +Rt)(1− τtc)− 1 (20)

Here R̃t is the net portfolio return at time t after accounting for transaction costs, Rt is the

portfolio return at time t, τt is the estimated expected turnover at time t, and c is the level

of proportional transaction costs. In this case, c is set to 0.005 to assume 50 basis points of

transaction costs.

The data that is used for the characteristics of the 1/N and MVE strategies is the 10 Industry

and 10 Momentum data set from July 1963 until December 2004. The data that is used for the

out-of-sample performance comparison of the 1/N, MVE, and active timing strategies are the

10 Industry, 10 Momentum, and 5 Commodity Futures data sets from July 1963 until December

2008 for the industry and momentum data set and December 1987 until December 2008 for the

commodity futures data set.

5 Results

5.1 Replication

This part of the replication section contains all the tables and figures that are replicated from

Kirby & Ostdiek (2012). Some values might not match exactly due to using a different data

set. Kirby & Ostdiek (2012) use a different data set than the one publicly available on the

Kenneth R. French library. For most estimated values for each portfolio, these differences are

minor. However, the tangency portfolio, for example, is very sensitive to small changes in the

data. Therefore the results for the tangency portfolio differ more than expected from the results

from Kirby & Ostdiek (2012).
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5.1.1 Characteristics of the 1/N and MVE Strategies

One thing that stands out in Table 3 is that for the 10 industry portfolios, the 1/N strategy

beats the TP strategy in terms of the Sharpe Ratio. The MV and OC portfolios outperform

the 1/N portfolio in terms of Sharpe ratio with 0.54 and 0.49, respectively, but they also come

with a significantly higher turnover due to the rebalancing. Therefore it becomes a trade-off

between turnover and risk-adjusted performance. With no transaction costs, the MV portfolio

is the best-performing portfolio due to its high Sharpe Ratio.

For the 3-factor data set, once again, the 1/N strategy outperforms the TP strategy and, in

this case, also the OC portfolio in terms of Sharpe Ratios. Once again, the MV portfolio is the

best-performing portfolio due to its high Sharpe Ratio and also low turnover compared to the

other portfolios.

Table 3: Characteristics of the 1/N and MVE Strategies

FF 10 Industry Mkt/SMB/HML

Panel A. Summary Statistics

Strategy µ̂p σ̂p λ̂p τ̂p µ̂p σ̂p λ̂p τ̂p
TP 108 457 0.24 515 5.66 7.47 0.76 0.06
1/N 7.14 15.21 0.47 0.02 4.93 6.35 0.78 0.02
MV 7.07 13.11 0.54 0.46 4.80 5.55 0.86 0.02
OC 6.54 13.27 0.49 0.64 4.77 6.25 0.76 0.06

Panel B. Estimated Conditional Expected Returns

Strategy Min. Med. Max. Min. Med. Max.
TP 21.9 47.4 12.216 3.4 6.7 15.5
1/N -3.2 7.9 14.1 0.3 1.0 2.3
MV -1.7 4.2 12.2 1.8 4.3 8.6
OC -0.3 8.4 15.8 2.6 5.0 8.6

Table 3 compares the TP, 1/N, MV, and OC strategies. It reports the an-
nualized mean, standard deviation, Sharpe Ratio, and average monthly
turnover for the FF10 Industry and FF3 data set. Additionally, it also
displays the minimum, medium, and maximum of the estimated condi-
tional expected returns for each strategy.

5.1.2 Out of Sample Performance Comparison of Strategies

For the 10 Industry data set considering no transaction costs, one thing to note is that the fee

an investor is willing to pay to switch from the 1/N strategy is positive for all strategies except

for three of the RRT strategies and the TP strategy.

For the second part of out-of-sample performance comparison, 50 basis points of transaction

costs are assumed. This does not impact the maximum fees that investors would be willing to

pay to switch from the 1/N strategy because all fees are still positive except for the OC portfolio.

The introduction of transaction costs makes investors not want to switch from the 1/N to the

OC portfolio. The reason for the relatively small impact imposing transaction costs has is due

to the low turnover for every strategy.
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Table 4: Comparison of the strategies for the 10 industry data set without transaction costs

Versus 1/N

Strategy µ̂p σ̂p λ̂p ∆̂1 p-val ∆̂5 p-val τ̂p
1/N 5.78 15.07 0.383 - - - - 0.022

Panel A. Volatility Timing Strategies

VT(1) 5.98 14.29 0.419 32 0.108 79 0.020 0.023
VT(2) 6.03 13.62 0.443 46 0.158 132 0.026 0.027
VT(4) 5.82 12.85 0.453 35 0.258 162 0.047 0.036

Panel B. Risk-to-Reward Timing Strategies

RRT(µ+
t ,1) 4.85 15.70 0.309 -102 0.000 -142 0.000 0.078

RRT(µ+
t ,2) 4.77 16.36 0.291 -121 0.000 -205 0.000 0.088

RRT(µ+
t ,4) 4.89 17.48 0.280 -128 0.000 -290 0.000 0.114

RRT(β̄+
t ,1) 5.92 15.08 0.393 14 0.000 14 0.000 0.027

RRT(β̄+
t ,2) 5.95 15.21 0.0.391 15 0.203 6 0.239 0.035

RRT(β̄+
t ,4) 5.89 15.64 0.376 2 0.297 -34 0.400 0.050

Panel C. Mean Variance Efficient Strategies

MV 6.54 12.54 0.522 122 0.211 255 0.112 0.421
OC 6.09 12.79 0.480 64 0.255 194 0.151 0.682
TP -5.90 69.95 -0.084 -3536 0.852 - - 41.14

Table 4 contains the out-of-sample performance comparison of the 1/N, 3 VT, 6 RRT,
and 3 MVE strategies without transaction costs for the 10 Industry data sets. The
relative performance of each strategy is compared to the 1/N strategy through the
maximum per period fee an investor would pay to switch from the 1/N strategy to
another strategy for different levels of risk aversion.

Table 6 contains the same comparison as Table 4 but for the 10 Momentum data set. What

stands out in Table 6 is that the 3 RRT strategies that did not yield a higher utility than the

1/N strategy for the 10 Industry data set do yield a higher utility than the 1/N strategy for the

10 Momentum data set for both levels of risk aversion. For most RRT strategies, the differences

to the 1/N strategy are statistically significant for the 1% level. All RRT strategies have a ∆̂γ

larger than 100 for both a risk aversion level of 1 and 5. This means that investors would be

willing to pay a maximum per-period fee of over 100 basis points to switch from the 1/N strategy

to any RRT strategy.

When it comes to the VT and the MVE strategies, once again, the maximum per period fee

an investor would be willing to pay to switch from the 1/N strategy to any of the VT strategies is

positive for both levels of risk aversion. Hence, for the 10 Momentum data set, the 1/N strategy

seems to perform the worst among all strategies.

The results do not change much for the same results assuming 50 basis points of transaction

costs. The maximum per period fee an investor would be willing to pay to switch from the

1/N strategy to another is still significantly positive for all strategies and both levels of risk

aversion. The small impact of imposing transaction costs is that all strategies have a relatively

low turnover.
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Table 5: Comparison of the strategies for the 10 industry data set with transaction costs

Versus 1/N

Strategy λ̂p ∆̂1 p-val ∆̂5 p-val
1/N 0.375 - - - -

Panel A. Volatility Timing Strategies

VT(1) 0.409 18 0.201 66 0.024
VT(2) 0.431 30 0.224 116 0.033
VT(4) 0.436 13 0.334 140 0.065

Panel B. Risk-to-Reward Timing Strategies

RRT(µ+
t ,1) 0.280 -149 0.000 -189 0.000

RRT(µ+
t ,2) 0.259 -174 0.000 -258 0.000

RRT(µ+
t ,4) 0.241 -197 0.000 -359 0.000

RRT(β̄+
t ,1) 0.382 -2 0.000 -3 0.000

RRT(β̄+
t ,2) 0.377 -6 0.300 -15 0.339

RRT(β̄+
t ,4) 0.357 -28 0.381 -64 0.464

Panel C. Mean Variance Efficient Strategies

MV 0.319 -143 0.472 -1 0.341
OC 0.154 -349 0.536 -223 0.504
TP - - - - -

Table 5 contains the out-of-sample performance com-
parison of the 1/N, 3 VT, 6 RRT, and 3 MVE
strategies assuming transaction costs of 50 basis
points for the 10 Industry data sets. The relative
performance of each strategy is compared to the 1/N
strategy through the maximum per period fee an in-
vestor would pay to switch from the 1/N strategy to
another strategy for different levels of risk aversion.

5.2 Extension

A few results that stand out are that for the VT strategies, the maximum fee an investor would

pay to switch from the 1/N strategy to the VT strategies is negative for a risk aversion level of

1 but positive for a risk aversion level of 5 for all values of eta. So the VT strategies yield higher

utility for investors that are more risk averse than the 1/N strategy. All of the VT strategies

also yield a higher Sharpe ratio than the 1/N strategy for the commodity futures data set.

Contrary to this, for the RRT strategies, the maximum per period fee an investor would pay

to switch from the 1/N strategy to the RRT strategies is positive for a risk aversion level of 1

and negative for a risk aversion level of 5 for all values of eta. This is due to the high volatility

that comes with commodity futures, making this asset class less attractive to investors that are

more risk-averse. This means that the RRT strategies yield higher utility for investors that are

less risk averse than the 1/N strategy. All of the RRT strategies also yield a higher Sharpe ratio

than the 1/N strategy for the commodity futures data set.

For the MVE strategies, we see different results for each strategy. For the MV strategy, we

get the same result as with the VT strategies, namely that the maximum per period fee an
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Table 6: Comparison of the strategies for the 10 momentum data set without transaction costs

Versus 1/N

Strategy µ̂p σ̂p λ̂p ∆̂1 p-val ∆̂5 p-val τ̂p
1/N 4.71 16.57 0.284 - - - - 0.017

Panel A. Volatility Timing Strategies

VT(1) 5.23 15.91 0.328 62 0.167 106 0.120 0.016
VT(2) 5.48 15.60 0.351 92 0.166 156 0.112 0.017
VT(4) 5.66 15.36 0.369 115 0.173 194 0.124 0.024

Panel B. Risk-to-Reward Timing Strategies

RRT(µ+
t ,1) 7.63 16.93 0.450 285 0.000 260 0.000 0.057

RRT(µ+
t ,2) 8.27 17.49 0.473 340 0.000 276 0.000 0.056

RRT(µ+
t ,4) 8.89 18.12 0.490 390 0.000 280 0.000 0.063

RRT(β̄+
t ,1) 6.21 16.25 0.382 155 0.084 177 0.050 0.018

RRT(β̄+
t ,2) 7.28 16.52 0.441 258 0.028 262 0.000 0.022

RRT(β̄+
t ,4) 8.59 17.25 0.498 376 0.000 329 0.000 0.029

Panel C. Mean Variance Efficient Strategies

MV 6.20 14.62 0.424 180 0.217 304 0.169 0.402
OC 7.66 15.00 0.510 320 0.152 422 0.128 0.477
TP 131.23 210.93 0.622 - - - - 180.57

Table 6 contains the out-of-sample performance comparison of the 1/N, 3 VT, 6 RRT,
and 3 MVE strategies without transaction costs for the 10 Momentum data set. The
relative performance of each strategy is compared to the 1/N strategy through the
maximum per period fee an investor would pay to switch from the 1/N strategy to
another strategy for different levels of risk aversion.

investor would be willing to pay to switch from the 1/N strategy is negative for low levels of risk

aversion and positive for higher levels of risk aversion. The Sharpe ratio for the MV strategy

is higher than the Sharpe ratio of the 1/N. For the OC and TP strategies, investors would not

switch from the 1/N strategy for both levels of risk aversion, and the Sharpe ratio for these

strategies is also lower than the 1/N strategy.

Table 9 shows the out-of-sample comparison of the unrestricted RRT strategies (i.e. allowing

short-sales). When looking at the unrestricted version of the RRT(µt) strategy, the Sharpe ratio

increases but the maximum fee an investor is willing to pay to switch from the 1/N strategy to

this RRT strategy is significantly negative. This is because there seems to be a large increase

in the annualized return standard deviation to 104.62. Because of this increase even investors

with a level of relative risk aversion at 1 are not willing to switch away from the 1/N strategy.

Because of this, ∆̂γ is also calculated for a relative risk aversion level of 0.5. For this level of

relative risk aversion we actually see a significant increase and investors with this level of risk

aversion would have positive utility by switching from the 1/N strategy to this RRT strategy

that allows short-sales.

For the RRT(β̄t) we see once again that the annualized return standard deviation increased

by a large amount but now also the annualized return mean is negative, resulting in a negative

sharp ratio. Because of this the utility gain from switching from the 1/N strategy to this RRT
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Table 7: Comparison of the strategies for the 10 momentum data set with transaction costs

Versus 1/N

Strategy λ̂p ∆̂1 p-val ∆̂5 p-val
1/N 0.278 - - - -

Panel A. Volatility Timing Strategies

VT(1) 0.323 53 0.182 97 0.125
VT(2) 0.344 82 0.182 146 0.128
VT(4) 0.359 100 0.191 179 0.128

Panel B. Risk-to-Reward Timing Strategies

RRT(µ+
t ,1) 0.430 251 0.000 226 0.000

RRT(µ+
t ,2) 0.454 306 0.000 242 0.000

RRT(µ+
t ,4) 0.469 352 0.000 242 0.000

RRT(β̄+
t ,1) 0.375 144 0.086 166 0.060

RRT(β̄+
t ,2) 0.433 245 0.033 249 0.000

RRT(β̄+
t ,4) 0.488 359 0.000 312 0.000

Panel C. Mean Variance Efficient Strategies

MV 0.258 63 0.343 61 0.293
OC 0.320 33 0.279 136 0.233
TP - - - - -

Table 7 contains the out-of-sample performance com-
parison of the 1/N, 3 VT, 6 RRT, and 3 MVE
strategies assuming transaction costs of 50 basis
points for the 10 Momentum data set. The relative
performance of each strategy is compared to the 1/N
strategy through the maximum per period fee an in-
vestor would pay to switch from the 1/N strategy to
another strategy for different levels of risk aversion.

strategy is negative for both levels of relative risk aversion however, the utility decrease is even

worse for an investor with a relative risk aversion of 1. For both strategies there is a substantial

increase in average monthly turnovers, and because the utility gains are already mostly negative,

there is no motivation to compare these results with the results of a 50 basis points increase in

transaction costs because the utility gains from that comparison will be even worse than the

ones that are obtained now.
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Table 8: Comparison of the strategies for the 5 commodity data set without transaction costs

Versus 1/N

Strategy µ̂p σ̂p λ̂p ∆̂1 p-val ∆̂5 p-val τ̂p
1/N 4.29 13.57 0.316 - - - - 0.044

Panel A. Volatility Timing Strategies

VT(1) 3.76 10.63 0.354 -17 0.481 127 0.174 0.040
VT(2) 3.63 9.93 0.365 -23 0.448 151 0.215 0.041
VT(4) 3.29 10.32 0.319 -61 0.455 97 0.280 0.050

Panel B. Risk-to-Reward Timing Strategies

RRT(µ+
t ,1) 10.52 26.81 0.392 354 0.11 -779 0.907 0.320

RRT(µ+
t ,2) 11.11 28.22 0.394 375 0.104 -931 0.928 0.314

RRT(µ+
t ,4) 11.66 29.70 0.393 387 0.096 -1111 0.943 0.313

RRT(β̄+
t ,1) 6.80 18.60 0.366 170 0.140 -164 0.682 0.092

RRT(β̄+
t ,2) 7.64 21.64 0.353 193 0.188 -400 0.805 0.109

RRT(β̄+
t ,4) 8.14 24.79 0.328 169 0.249 -737 0.908 0.120

Panel C. Mean Variance Efficient Strategies

MV 3.37 9.66 0.349 -46 0.497 138 0.226 0.050
OC 1.87 9.52 0.196 -195 0.622 -5 0.452 0.133
TP -19.27 42.33 -0.455 -3166 0.000 -6883 0.000 6.51

Table 8 contains the out-of-sample performance comparison of the 1/N, 3 VT, 6
RRT, and 3 MVE strategies without transaction costs for the 5 Commodity Futures
data set. The relative performance of each strategy is compared to the 1/N strategy
through the maximum per period fee an investor would pay to switch from the 1/N
strategy to another strategy for different levels of risk aversion.

Table 9: Comparison of the RRT strategies allowing short sales to the 1/N strategy

Versus 1/N

Strategy µ̂p σ̂p λ̂p ∆̂0.5 p-val ∆̂1 p-val τ̂p
RRT(µt) 43.87 104.62 0.419 1248 0.000 -1569 0.000 1.375
RRT(β̄t) -30.90 198.63 -0.156 -13564 0.902 -25187 0.881 4.435

Table 9 contains the out-of-sample performance comparison of the 2 RRT strategies
without transaction costs for the 5 Commodity Futures data set. The relative per-
formance of each strategy is compared to the 1/N strategy through the maximum per
period fee an investor would pay to switch from the 1/N strategy to another strategy
for different levels of risk aversion.

6 Conclusion

In this thesis, we consider to which extent mean-variance and active portfolio selection strategies

perform compared to näıve diversification for commodity futures. To get an answer to this

problem, we analyze monthly returns on five commodity futures from December 1987 until

December 2008 with a maturity of one month. To get an answer to this problem we construct

the 3 VT, 6 RRT, and 3 MV portfolios and compare their performance to näıve diversification

through the maximum fee investors are willing to pay to switch from the 1/N strategy to the

mean-variance or active timing strategies for different levels of an investor relative risk aversion.
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Adding to this research, we also construct two more risk-to-reward timing strategies that allow

for the possibility of short sales and report the same values.

When comparing the performance of mean-variance and active portfolio selection strategies

for traditional assets like stocks we see that investors are not willing to switch from the 1/N

strategy to the RRT(µ+
t , η) and TP strategy for the 10 industry portfolios for both levels of

relative risk aversion. For all other strategies and data sets, investors are willing to pay a fee

per period to switch from the näıve strategy to any of the mean-variance and active strategies.

For the commodity futures data set investors are not willing to pay a fee to switch from the 1/N

strategy to the mean-variance efficient strategy. When we consider the active timing strategies,

investors with a low level of relative risk aversion are willing to switch from the 1/N strategy

to the RRT strategies but investors with a high level of relative risk aversion will not switch

from the 1/N strategy to the RRT strategies. This is due to the high volatility that comes

with commodity futures investments. For the volatility timing strategies, the opposite is true.

Because volatility timing strategies take into account the volatility, investors with a low level of

relative risk aversion are not willing to switch from the 1/N strategy to the VT strategies, but

investors with a high level of risk aversion are willing to switch because of the low volatility. The

Sharpe ratios are also higher for almost all of the RRT strategies when considering commodity

futures portfolios than for traditional asset portfolios, indicating that RRT strategies perform

better in terms of risk adjusted returns for commodity futures than for traditional assets. The

opposite is true for the VT and MVE strategies.

Because of the interesting results of the RRT strategies for commodity futures, further in-

vestigation into these strategies is performed by allowing short sales for these strategies. The

restriction of short sales is removed because of the relative ease of short-selling commodity fu-

tures contracts. When allowing short sales, the utility gains for investors with a low level of

relative risk aversion are negative, resulting in investors not being willing to switch from the

1/N strategy to the RRT strategies. A possible explanation for this could be that the possibility

of short-selling increases volatility which is in line with the findings of Duong et al. (2023) for

bond prices. When looking at investors with an even lower level of relative risk aversion we find

that they are only willing to switch from the 1/N strategy to the RRT(µt).

To conclude, it appears that the performance of risk-to-reward timing strategies performs

well when considering commodity futures compared to traditional assets, while volatility timing

and mean-variance efficient strategies perform worse for commodity futures portfolios compared

to traditional assets. When comparing risk-to-reward timing strategies to näıve diversification,

only investors with a low level of relative risk aversion are willing to switch from näıve diversific-

ation to risk-to-reward timing strategies due to the high volatility that comes with this portfolio

selection strategy. These results are even stronger when allowing for short-sales since the volatil-

ity increases even more and the levels of relative risk aversion need to be even lower for investors

to gain utility from switching from the näıve strategy to the risk-to-reward timing strategy.

An interesting avenue for future research might be to take the maturities of the commod-

ity futures contracts into consideration, because considering different maturities in commodity

futures is particularly relevant in the context of asset pricing. In addition to this, it might be in-

teresting to also take into account the varying risk premia in commodity futures. Szymanowska
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et al. (2014) finds that risk premia for commodity futures are not constant over time, but that

they show signs of a term structure. Further investigation into these risk premia across different

maturities can help make more informed decisions about the construction of optimal portfolios

and also the evaluation of mean-variance efficient strategies compared to näıve diversification in

the commodity futures market.
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