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Abstract

Historically, methods used to evaluate asset risk premia offer limited out-of-sample pre-

dictive power. Since the prediction of equity risk premia is a central component of empirical

asset pricing, this thesis aims to adress this problem by performing a comparative analysis

of methods to improve risk premia forecast quality. We focus on non-linear machine learning

methods including neural networks and random forests, and compare these to traditional

linear models including the Fama & French three factor model. Our results demonstrate the

potential of machine learning for the field of empirical asset pricing. Neural networks are

identified as the best performing methods, followed by a simple linear model with Huber loss

function. Random forest does not meet expectations and the Fama & French model loses its

explanatory power in the out-of-sample setting. We identify stock-level characteristics re-

lated to dividends and R&D ratios as most important for random forest model performance.

Overall, harnessing neural networks for risk premia prediction shows considerable potential

for improving financial decision-making.

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.
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1 Introduction

Evaluating equity risk premia is a fundamental component of asset pricing and therefore crucial

for anyone looking to make informed investment decisions. Equity risk premia capture the

excess return of an asset over the risk-free rate. These excess returns can be interpreted as the

compensation investors receive for tolerating the risk they are exposed to when investing in a

certain asset. Prediction of these risk premia has proven to be a considerable challenge due to

several factors, including the complexity of financial markets and the occurrence of unexpected

events influencing investor sentiment. Accurate risk premia forecasting allows investors, portfolio

managers and financial institutions alike to improve financial decision making and is imperative

to empirical asset pricing.

Despite its importance, methods historically used to predict these risk premia have drawbacks

limiting their effectiveness. Traditional models like the Fama and French Three factor model -

which expands on the Capital Asset Pricing Model (CAPM) - have many underlying assumptions

and only use a fraction of the financial data we have available in modern society (Fama &

French, 1992). Nevertheless, these traditional models have numerous advantages which is why

they continue to be widely used in the financial industry. Models like the Fama & French three

factor model (FF3) are relatively easy to implement and interpret due to their simple linear

structure, while still offering a certain degree of explanatory power (Chiah et al., 2016).

Considering the importance, the question arises whether alternative methods exist that can

enhance the prediction of asset risk premia. In the machine learning literature, many methods

exist that allow for predictor interactions or non-linear relationships between predictors and

asset returns. Employing such methods in the context of empirical asset pricing could potentially

improve out-of-sample explanatory power by capturing more complex relationships in the data

that are missed by traditional methods. A drawback of these machine learning methods is that

their complex structure results in computationally expensive estimation. However, the rapid

increase in computational power over the last few decades has enabled us to explore whether

using more sophisticated machine learning models combined with the vast amounts of data we

have available on stock returns can increase the out-of-sample explanatory power for excess stock

returns.

This paper examines two prominent machine learning methods and compares them to tra-

ditional approaches for the problem of predicting asset risk premia. Our primary goal is to

assess whether the machine learning methods we consider offer increased out-of-sample predict-

ive power based on forecasts of monthly excess stock returns. We are particularly interested in

the relative predictive performance of the methods, which we evaluate by means of the out-of-

sample R2 (R2
OOS). By doing so, this paper aims to find whether machine learning can improve

financial decision making by offering more accurate predictions of asset risk premia. This leads

to our first research question:

RQ1 How do machine learning methods compare to traditional methods for fore-

casting asset risk premia in terms of out-of-sample predictive performance?

In addition, the secondary objective is to identify the driving factors of risk premia by ranking

the predictor variables on their relative importance. Hence, our second research question is:
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RQ2 Which predictor variables are most important for model performance?

In order to adress the research questions, we focus on random forests and feedforward neural

networks and compare these sophisticated methods to the well-known Fama and French three

factor model. Additionally we employ a simple linear model using the same set of predictor

variables as the machine learning methods. Machine learning offers several advantages over the

traditional methods used in this thesis. Firstly, the random forest and neural network allow for

non-linear relationships to be captured which may improve forecast accuracy. Secondly, they

are able to detect interactions between the predictor variables, while the simple linear models

assume independence between predictors. Thirdly, machine learning methods are more robust to

outliers, which is especially relevant in the application of return prediction since the distribution

of stock returns is known to have fat tails (Officer, 1972).

This thesis builds on the work of Gu et al. (2020) by partly replicating their study and

subsequently extending their work by incorporating the Fama & French three factor method

as a traditional method to compare against. We perform a large-scale comparative analysis

based on monthly data of nearly 6500 stocks over the years 1977 up to 2021, a total of 45 years.

Our predictor set consists of 92 stock-level characteristics, 8 macroeconomic variables and 97

Standard Industrial Classification (SIC) code dummies. For the FF3 model, only the three Fama

& French factors are used. Our results show great promise for applying machine learning to risk

premia prediction. Specifically, neural networks perform well with an R2
OOS of 3.35% for the

prediction of monthly returns, a substantial improvement over the 1.23% R2
OOS of the simple

linear model containing the same predictor set. Random forest does not meet expectations,

providing respectable in-sample accuracy but failing to generalize to the out-of-sample setting.

With an out-of-sample R2
OOS of -1.23%, RF underperforms compared to a benchmark prediction

of zero for all stocks. Based on our empirical study, the FF3 model seems incapable of producing

reliable forecasts and is thus better suited for explaining returns using non-lagged data. We use

feature importance on the random forest models and identify the most influential stock-level

characteristics to be related to dividends and R&D ratios. Additionally, the convertible debt

indicator - and sin stock variable rank among the most important predictors.

Our findings show the potential of machine learning for predicting excess stock returns, which

may provide a new set of methods to help improve our understanding of risk premia behaviour.

2 Literature

2.1 Forecasting stock returns

There are two main approaches used in the empirical literature to predict stock returns. The first

focuses on estimating the relationship between expected returns and stock-level characteristics,

as exemplified by Lewellen (2014). This is usually done by running cross-sectional regressions

of returns on a select number of lagged stock-level characteristics (Gu et al., 2020).

The second approach for predicting stock returns views the returns as a time series and typic-

ally uses a select set of macroeconomic variables to predict portfolio returns. D. Rapach & Zhou

(2013) provide a survey that compares methods on their out-of-sample predictive performance.
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This paper focuses on the first approach by cross-sectionally predicting stock returns using

several machine learning models and traditional methods, which we compare based on their

out-of-sample forecasting ability. There is limited evidence of out-of-sample predictability of

returns (Phan et al., 2015). For instance, Welch & Goyal (2008) use a range of macroeconomic

predictors and financial ratios to evaluate numerous regression models for the out-of-sample

prediction of the equity premium. They find that all forecasts fail to beat the historical average

benchmark.

2.2 Machine Learning

In recent years, there has been a surge in the application of machine learning methods because

of the increased robustness and predictive accuracy that these methods offer compared to tra-

ditional regression-based models (Goldstein et al., 2017). The attractive features that machine

learning methods possess combined with significant advancements in computational power in

recent years, make it possible to explore the potential of machine learning for complex predictive

problems.

The predictive power of machine learning has been proven in many fields. For instance,

Kourou et al. (2015) discusses how machine learning may improve cancer prognosis, and Fujiy-

oshi et al. (2019) explores how image recognition using deep learning can be used to realize

autonomous driving.

Since the problem of empirical asset pricing is fundamentally a matter of prediction, we

explore whether harnessing machine learning for evaluating asset risk premia can provide an

improvement in out-of-sample forecasts.

Machine learning has been applied before in the context of empirical asset pricing. D. E. Ra-

pach et al. (2013) use lasso to predict global equity market returns using lagged returns per

country. Moreover, Krollner et al. (2010) conduct a survey of machine learning methods used

for stock index forecasting and identify Artificial Neural Networks as the dominant technique.

While machine learning may potentially provide more accurate forecasts compared to linear

methods, equity risk premia are notoriously hard to predict. Although the explainable compon-

ent in stock returns may be minimal, even models that can offer an R2
OOS of around 1% can

hold economic relevance (D. Rapach & Zhou, 2013).

2.3 Traditional Methods

Traditional models that are more common in the cross-sectional stock prediction literature

include the capital asset pricing model and the fama & french factor models including three

or five factors. Parsimonious models like the FF3 model are widely used in practice, with

applications ranging from analyzing hedge fund performance (Capocci & Hübner, 2004), to

portfolio construction (Eraslan, 2013). The FF3 model, containing three factors, expands on

the CAPM which only includes a market risk factor. By including two additional factors, Fama

& French (1992) aim to improve the predictive accuracy while maintaining model sparsity. More

recently, Fama & French (2015) further expand on the FF3 model by considering a total of five

factors, which results in improved performance compared to the previous three factor model.
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3 Data and Over-arching Model

We obtain monthly individual stock returns from the CRSP over the period starting from Janu-

ary 1977 up to December 2021, a total of 45 years. The number of stocks we consider in our

sample is almost 6500, with the average number of stocks per month being nearly 1600. In total,

our data consists of over 830.000 observations. To calculate individual excess returns, we use

the 10 year Treasury-bill rate to proxy for the risk-free rate.

In contrast to Gu et al. (2020), this paper considers 92 stock-level predictive characteristics

instead of 94 to limit the number of missing characteristics in the data. Any missing charac-

teristics are imputed by means of the local B-XS model detailed in Bryzgalova et al. (2022).

The stock characteristics are updated either monthly, quarterly or annually. Since most of the

characteristics are available to the public with a delay, we aim to prevent a forward-looking bias

by assuming that monthly characteristics are delayed by at most one month, quarterly with at

least four months lag, and annual with at least six months lag.

Before letting these stock-level characteristics enter the model as predictor variables, we

cross-sectionally rank each characteristic and map the resulting ranks to the [-1,1] interval (Frey-

berger et al., 2020). We rank the characteristics because we are more interested in the relative

rank of a characteristic in the cross-section instead of the absolute value. For example, firm

size may increase over time, and since our models are not time dependent, its more important

what the relative size of the firm is at a certain point of time in the cross-section. Ranking

the characteristics in this manner provides a more straightforward interpretation of the vari-

able observations. In addition to these ranked characteristics, we have 97 industry dummies

represented by the first two digits of Standard Industrial Classification (SIC) codes.

In addition to stock-level characteristics, we construct eight macroeconomic predictor vari-

ables according to the definitions and data from Welch & Goyal (2008). The macroeconomic

predictors we include are: dividend-price ratio, earnings-price ratio, Treasury-bill rate, term

spread, default spread, stock variance, net equity expansion and book-to-market ratio.

Finally, we obtain the monthly Fama and French factors for the same time period from the

website of Kenneth French. We obtain the market risk (Mkt-RF), size (SMB) and value (HML)

factors. Since these are monthly factors we follow the same approach as for the other predictors

and lag them by one month.

We denote the vector of predictor variables for our methods by zi,t. For the Fama and French

three factor model, zi,t consists of the Mkt-RF, SMB and HML factors. For the other three

methods we focus on, zi,t consists of 92 stock-level characteristics, 8 macroeconomic predictors

and 97 SIC industry dummies.

Next to evaluating the methods based on their ability to predict monthly stock returns, we

also perform an analysis at the annual level. We construct annual returns each month which we

then use as the target variable for our methods to predict, instead of the monthly returns from

the CRSP. Annual returns are calculated each month by computing the compounded return of

a stock over the next 12 months, essentially corresponding to a holding period of 12 months. If

a stock at time t is missing one or more observations somewhere over the next 12 months, we

exclude that stock from the annual analysis at time t.

The total dataset of 45 years is divided into three samples with the following initial sizes:
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18 years of training (1977 - 1994), 12 years of validation (1995 - 2006) and 1 year of testing

out-of-sample (2007). Every year, we increase the training sample by one year and roll forward

the validation and test samples by a year after which we refit and re-evaluate the models.

Thus, we use a total of 15 years for out-of-sample testing. A visual representation of the

training/validation/test split is provided as appendix figure 7.

4 Methodology

We focus on a total of four methods consisting of two machine learning methods and two

traditional methods. For the machine learning methods, we use a tree-based ensemble method

(Random Forest) and an artificial neural network. We compare these against a simple linear

model including the same predictor set, and the Fama & French three factor model (Fama &

French, 1992).

This section discusses all methods in terms of model definition, objective function and tuning

the hyperparameters. Each subsection corresponding to a method first defines the general stat-

istical model, then describes the objective function and finally briefly discusses how this paper

aims to determine the optimal specification among the considered options.

Similarly to Gu et al. (2020), all estimates share the same objective of minimizing the Mean

Squared Prediction Error (MSE). Variations on the MSE are employed to introduce regular-

ization with the goal of improving the model’s out-of-sample performance by reducing risk of

overfitting and being more robust to outliers.

In its most general form, the model is specified as an additive prediction error model (Gu et

al., 2020):

ri,t+1 = Et(ri,t+1) + ϵi,t+1, (1)

where

Et(ri,t+1) = g∗(zi,t). (2)

Here, stocks are indexed by i = 1, ..., Nt months are indexed as t = 1, ...T . We aim to

estimate a function g∗(·) which represents the conditional expected excess return function, that

takes a set of predictor values at time t as input to make a prediction for ri,t+1 and minimizes

the out-of-sample errors, ϵi,t+1. The function g∗(·) is independent of the individual stock and

time. This way, we are able to leverage information from the entire panel instead of restricting

the model to only use information specific to a single stock or point in time.

Each of the methods we consider has the goal of approximating the over-arching model

Et(ri,t+1) = g∗(zi,t) described in equation (2).

4.1 Training, Tuning and Testing

The predictive advantages associated with machine learning methods also come with the chal-

lenge of having to make more decisions about how to tune all of the hyperparameters corres-

ponding to the model. Hyperparameters in machine learning are crucial to the performance

of the model since they control regularization of the estimators which is supposed to prevent
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overfitting and improve out-of-sample performance (Feurer & Hutter, 2019).

This paper follows the most common approach in the literature for similar applications (Gu

et al., 2020) and splits the data in three disjoint sets maintaining the temporal order of the data.

The sets will be referred to as the training, validation and testing set. The training set is used

to estimate the initial model parameters for a model subject to a specific set of hyperparameter

values.

The second sample, or validation set, is used for tuning the hyperparameter values to find

the optimal settings for this particular application. Predictions are made for the data points in

the validation sample for all considered hyperparameter combinations using the estimated model

obtained from the training sample. Next, we evaluate the performance of the models with all

hyperparameter settings by computing the MSE. For each model, we pick the hyperparameter

combination that has the lowest MSE as the tuned hyperparameters. The hyperparameter values

that we set or tune are provided in Table 4 in the appendix.

After obtaining the tuned hyperparameters, we use these settings to re-estimate the model

parameters based on the training and validation set combined. We then have the estimated

model with the tuned hyperparameters, which we use to predict on the test set. The predictions

on the test set are truly out-of-sample, since it is not used for estimation nor tuning. After one

iteration, we increase the size of the training set and roll forward the validation and test sets

by the most recent twelve months. More details about the motivation behind this approach are

highlighted in Gu et al. (2020).

Since Gu et al. (2020) find that shallow learning outperforms deep learning for the prediction

of equity risk premia, we focus on shallow model structures when tuning the hyperparameters.

4.2 Simple Linear

For this comparative study we are interested in evaluating the potential of employing sophistic-

ated machine learning models in the context of asset pricing. To be able to accurately assess this

potential, we use a simple linear method as a benchmark. While it is expected that the model

will perform badly in a high-dimensional setting compared to the machine learning methods

that we study, simple linear methods have been used historically to approach these kinds of

modelling challenges. The Capital Asset Pricing Model (CAPM), for example, is essentially a

simple linear model with a single factor (Fama & French, 1996).

The most commonly used method to estimate the parameters in a simple linear model is

Ordinary Least Squares (OLS). Since OLS assumes normally distributed errors with constant

variance and gives equal weights to all observations, we expect it to perform poorly in our setting

where we predict returns that are known to be fat-tailed. We address this issue by considering

an alternative to OLS that is known to be more robust to outliers, the Huber loss function.

Huber assigns lower weights to large residuals to negate the influence of extreme values.

4.2.1 Model

The simple linear model fits a linear function of the predictor variables zi,t to the returns with

the goal of optimizing the specified objective function. Thus, with θ being the parameter vector,

the model becomes:
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g∗(zi,t; θ) = z′i,tθ. (3)

This model does not allow for any nonlinear effects or predictor interactions, making it

straightforward to interpret. The predictor variable vector for this model, zi,t, contains all

stock-level characteristics, macroeconomic predictors and SIC industry dummies.

4.2.2 Huber Robust Objective Function

As mentioned, the most common objective function for a simple linear model is the OLS func-

tion. This function has the advantage of not having to tune any parameters and is thus easily

implemented. However, there are also some downsides to ordinary least squares, especially when

dealing with noisy data containing many outliers. Stock returns are known to have a low signal-

to-noise ratio and fat tails, indicating the presence of outliers (Officer, 1972). In order to limit

these harmful effects, we consider the Huber robust objective function (Huber, 1992) presented

below as an alternative to the standard least squares objective function.

LH(θ) =
1

NT

N∑
i=1

T∑
t=1

H(ri,t+1 − g(zi,t; θ), ε), (4)

where

H(x; ε) =

x2, if |x| ≤ ε;

2ε|x| − ε2, if |x| > ε.
. (5)

For relatively small errors, the Huber loss function is the regular squared loss. However,

when an error is larger than the tuning parameter ε, we consider it relatively large and use an

absolute loss. The tuning parameter ε is optimized using the validation sample and determines

the degree of regularization.

4.3 Fama and French Three Factor Model

The Fama and French three factor (FF3) model is identical to the simple linear method in terms

of model structure and estimation. This means that the FF3 model has the same linear structure

and is estimated by applying the Huber loss function.

The difference is that zi,t only contains three predictor variables - or factors - for the FF3

model. These factors are designed to capture various sources of risk and explain excess returns

using a simple linear structure.

Since the FF3 is mainly intended for explaining the stock return and not necessarily fore-

casting, we explore whether the model can also be useful for prediction by lagging the predictors

by one month.

The FF3 factors are market risk (Mkt-RF), size (SMB) and value (HML). The market risk

factor represents the excess return of the market, and is computed by taking the overall market

(S&P500) return, and subtracting the risk-free rate. To proxy for the risk-free rate, the one

month T-bill return is used. The factor loading for the Mkt-RF factor tends to be high for

stocks that are more sensitive to market movements.
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The size factor measures the difference in stock returns between small and large companies

based on their market capitalization. Historically, the SMB factor is likely to be positive,

indicating that small companies tend to produce higher returns compared to large companies.

Lastly, the value factor measures the return difference for value and growth stocks based

on price-to-book ratios. Historically, value stocks (low price-to-book ratio) tend to outperform

growth stocks (high price-to-book ratio). When value stocks outperform growth stocks, the

HML coefficient has a positive sign.

Reducing the dimensionality of the predictor set to these three variables has several potential

advantages. Firstly, it makes the model highly interpretable. Moreover, a large predictor set may

increase the chance of overfitting on the training sample and negatively impact out-of-sample

performance.

4.4 Random Forest

The random forest (RF) is a tree-based, ensemble method used for classification and regression

that combines the outputs of multiple decision trees to reach a single result (Breiman, 2001).

Random forest is a variation on ’bagging’ (Breiman, 2001), a procedure introduced to stabil-

ize predictive performance by averaging over multiple predictions that are based on different

bootstrap samples. Random forests are based on a variation of bagging specifically designed

to reduce correlation among trees in different bootstrap samples. This method which reduces

correlation is called ’dropout’.

An advantage of RF is a low chance of overfitting compared to a single decision tree due

to its averaging component. Furthermore, RF is not sensitive to outliers in the training data

compared to a single tree. Lastly, RF is known to be suitable for large high-dimensional datasets,

which is promising given the dimensions of our dataset for this application.

Figure 1: Random Forest Regression is an ensemble method combining the predictions of mul-

tiple decision trees into a single output by taking the average (y) of the predicted values

Figure 1 provides a visualisation of the process behind a random forest, where x represents

the vector of predictor variables that we feed into the model and y is the combined averaged

output from all the trees.
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4.4.1 Model

As mentioned, the random forest averages predictions of multiple trees to reach a single result.

A more detailed description of regression trees can be found in Gu et al. (2020).

For a single decision tree with K terminal nodes and depth L, the model can be formally

written as

g(zi,t; θ,K,L) =
K∑
k=1

θk1{zi,t∈Ck(L)}, (6)

where Ck(L) is one of K partitions of the data. A more detailed model description can be

found in Breiman (2001).

4.4.2 Objective Function

In each RF iteration, we use bootstrapping to sample (with replacement) various training

samples from the training set. The training set is split into a bootstrap sample and an Out-Of-

Bag (OOB) sample. For every bootstrap sample, a tree is constructed and trained independently

where every tree can contain a different subset of features. Features are randomly selected for

each split in the tree, which improves efficiency and prediction power due to lowered correlation

among trees. For every OOB sample, the model’s prediction is made using all decision trees

which do not contain that particular OOB sample in their bootstrap sample. The resulting

predictions are compared to the actual target values and the OOB error is computed. This is

unbiased since every tree in the RF is tested on data that has not been used in the training

phase. All predictions are combined and the average is taken as the final prediction result.

There are several hyperparameters that have to be set before starting the training procedure.

Given the computational time we fix the number of trees in the ensemble to 100 and focus on

tuning the depth of the trees and the number of features randomly sampled at each split. We

optimize the amount of features randomly sampled at each split to minimize the Out-Of-Bag

estimate of the error rate.

Details of the hyperparameter tuning values can be found in the appendix. We implement

the Random Forest regressor in python through SKLearn.

4.5 Feedforward Neural Network

The second machine learning method we use is an Artificial Neural Network (ANN). The ability

of ANNs to establish relationships amongst highly non-linear anomalous variables and produce

accurate results to complex problems through learning makes them one of the most promising

methods currently available in machine learning Jain et al. (1996). One of the most basic ANNs

is the Feedforward Neural Network (FFNN), which this paper focusses on.

4.5.1 Model

The FFNN consists of multiple layers, where each layer contains a number of neurons that are

connected with the layers before and after them (Svozil et al., 1997). ANNs owe their name

to their similarity to the human brain. The name ’Feedforward’ comes from the trait that the
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data flows through the network from the input layer to the output layer without feedback loops.

A simplified visualisation of such a Feedforward Neural Network with a single hidden layer is

provided below.

Figure 2: A Visualisation of a simple Feedforward Neural Network

The input layer consists of the raw predictors, where the number of units in the input layer

equals the number of predictors. The hidden layers interact with each other in a forward flow,

and non-linearly transform the data. Hidden layers consist of groups of neurons, illustrated by

the circles in Figure 2.

Selecting the optimal architecture of a neural network is a challenging task. In this case we

focus on a network with three hidden layers, as was found optimal in a similar application (Gu

et al., 2020). The number of neurons in each layer are 32, 16 and 8 respectively, and are chosen

according to the geometric pyramid rule (Masters, 1993).

We use the same activation function at all nodes, the rectified linear unit (ReLU) function,

defined as

ReLU(x) =

0, if x < 0

x, otherwise.
. (7)

To describe the general statistical model, we first define K(l) as the number of neurons in

each layer, l. Next, the output of neuron k in layer l is defined as x
(l)
k . The output vector of

this layer is then defined as x(l) = (1, x
(l)
1 , ..., x

(l)

K(l))
′. The input layer of raw predictors, which

is needed to initialize the neural network, is defined as x(0) = (1, z1, ..., zN )′. It then holds for

layer l > 0 that the output formula for each neural in that layer is

x
(l)
k = ReLU(x(l−1)′θ

(l−1)
k ), (8)

recursively resulting in the final output

g(z; θ) = x(L−1)′θ(L−1) (9)

11



4.5.2 Objective Function

The FFNN is estimated using the Adam optimizer with the aim of minimizing the MSE. We

tune the learning rate and the l1 penalty, which limits the size of the coefficients as a form

of regularization. Another regularization method we use is early stopping. Early stopping is

implemented using the mean squared error for monitoring. Lastly, we employ an ensemble

method using an ensemble of 2, where we average the predictions within the ensemble to reduce

prediction variance. Other parameter settings were fixed and can be found in the appendix.

The FFNN is implemented in python using Keras from Tensorflow.

4.6 Performance Evaluation

4.6.1 R-Squared out-of-sample

This paper evaluates model performance by calculating the out-of-sample R2 based on the test

set for each model with tuned hyperparameters. The advantage of this performance measure is

that we pool all prediction errors from different stocks over time into one number which is easy

to interpret. We compute the out-of-sample R2 as

R2
OOS = 1−

∑
(i,t)∈T3

(ri,t+1 − r̂i,t+1)
2∑

(i,t)∈T3
r2i,t+1

(10)

where r̂i,t+1 denotes the predicted value for stock i at time t + 1 and ri,t+1 is the actual

excess return. It is important that T3 is defined as the test set, such that our R2
OOS does not

consider any data points that have been used to train or validate the models.

Similarly to Gu et al. (2020), this paper considers the R2
OOS without demeaning in the

denominator (sum of squared excess returns). The reason for this being that the historical mean

stock return is generally too noisy, causing it to assign a higher R2
OOS value to each of the

methods and giving a flawed representation of model performance. Since a naive forecast of zero

is typically superior to the historical average excess return when predicting excess stock returns,

we benchmark our R2
OOS against a prediction value of zero.

When comparing models, the model with the highest R2
OOS is preferred. Since we fit the

models based on the training and validation data, negative R2
OOS values can exist as we are

predicting on a distinct test set. A negative R2
OOS can be interpreted as underperformance

compared to predictions of zero.

4.6.2 Diebold-Mariano Tests

On top of comparing methods based on their R2, we perform pairwise comparisons using the

Diebold and Mariano (DM) test for comparing tests on their predictive accuracy Diebold &

Mariano (2002). The DM test evaluates the difference in prediction errors between two sets of

forecasted values and returns a test statistic that tells us which forecast performs best between

the two. Additionally, we compute the p-value to assess whether the performance difference is

significant. Considering that excess stock returns in the cross-section are likely to have strong

error dependence, this thesis considers an alternative implementation of the DM test that meets

the requirement of weak error dependence. Where the regular DM test compares errors among
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individual returns, we compare the cross-sectional average of prediction errors for each model.

Thus, to test whether method (1) produces better out-of-sample forecasts than method (2), we

define the DM test statistic as

DM12 = d̄12/σ̂d̄12 , (11)

where

d12,t+1 =
1

n3,t+1

n3∑
i=1

((ê
(1)
i,t+1)

2 − (ê
(2)
i,t+1)

2). (12)

The prediction error for stock i at time t for model (1) and (2) are denoted by ê
(1)
i,t+1 and

ê
(2)
i,t+1 respectively. n3,t+1 is the number of stocks in the test set at year t+1. Thus, d̄12 is defined

as the mean of d12,t from the testing sample, and σ̂d̄12 as the Newey-West standard error. This

adjusted Newey-West standard error is computed by taking the average of the cross-sectional

Newey-West standard errors.

The null hypothesis is that of no difference in predictive accuracy between method (1) and

(2) and we test at a significance level of five percent.

4.7 Variable Importance

The primary objective of this thesis is to evaluate the potential of machine learning methods for

predicting asset risk premia based on their predictive performance. While interpretation is not

a primary focus, we will identify the most influential predictor variables in the cross-section as

a secondary objective to gain some more insights on the drivers of stock returns.

We do so by means of feature importance for the random forest. We measure feature im-

portance by the Mean Decrease in Impurity (MDI). The MDI calculates the average reduction

in impurity across all trees in the ensemble when a specific feature is considered for splitting

Scornet (2020). In general, features with a higher MDI are deemed more important. Specifically,

we compute feature importances each time we fit the model on the training and validation set

combined. Afterwards, we derive the average feature importance to get a better understanding

of which predictors contribute most to our random forest model.

5 Empirical Results

5.1 Performance Comparison

Table 1 shows the predictive performance of all methods in terms of percentage R2
OOS . We

compare a total of four methods, including two linear models and two machine learning models.

The linear models we use are the Fama & French three factor model (FF3+H) and a simple

linear model (OLS+H) using the same high-dimensional predictor variable set as the machine

learning methods. Both linear models are estimated using the Huber loss function to provide

more robust out-of-sample predictions. The machine learning methods we forecast with include

a feedforward neural network (FFNN) containing three hidden layers and random forest (RF).

The first row of table 1 presents R2
OOS for the entire pooled 15 years that make up the

testing sample. In the second and third rows the same R2
OOS is presented for a sub-sample only
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containing the 500 top and bottom stocks, respectively, in terms of size. Here size is defined as

market capitalization, represented by the stock-level characteristic mvel1.

Table 1: Monthly Out-of-Sample Predictive Performance (Percentage R2
OOS) per method for the

entire pooled sample (All), high - and low market capitalization companies (Top & Bottom).

OLS FF3 RF FFNN

+H +H

All 1.23 -4.24 -1.14 3.35

Top 500 1.23 -4.25 -1.14 3.34

Bottom 500 -0.41 -1.87 -1.15 1.36

OLS+H FF3+H RF FFNN
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Figure 3: Percentage R2
OOS per method based on the prediction of monthly returns.

Overall we find that the FFNN performs best, producing an out-of-sample R2 of 3.35%

for the entire pooled sample. In second place comes OLS+H, yielding an R2
OOS of 1.23% and

therefore beating expectations by outperforming the random forest method. RF underperforms

relative to a naive forecast of zero with an out-of-sample R2 of -1.14%. The Fama & French

three factor model adapted to our setting with the Huber loss, is not able to compete with the

other models, generating an R2
OOS of -4.24%.

The FFNN is the best performing method overall, which could be partially attributed to

the ability of the neural network to incorporate complex interactions between predictors, which

are missed by our linear models. The FFNN is not the only method with this ability since this

is embedded in tree-based models like RF as well. However, in contrast to FFNN, the random

forest model does not produce robust results.

The linear Huber model (OLS+H) containing all 197 predictor variables performs surpris-

ingly well. OLS+H produces a positive R2
OOS , indicating it dominates a naive forecast of zero.

Applying the Huber loss function appears to be the crucial factor that causes this performance,

since using the standard least squares objective produces an R2
OOS far into negative territory.
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As previously discussed, RF fails to generalize for our data, producing a negative out-of-

sample R2. We find that RF performs well for the first two years of testing, producing R2
OOS

values of around 8%. After these two years we enter a turbulent period in the testing data

which the RF model is unable to appropriately adapt to, producing an R2
OOS of approximately

-10% in the third testing year. This turbulent data enters the model as part of the training

and validation set in the following years, which could help improve the model in the following

years in case of a structural break corresponding to the turbulence. However, one year of data is

still only a small proportion of the entire training - and validation set. The inability of random

forest to generalize when faced with changing data structures is potentially the bottleneck of

the model in this study.

The poor performance of the Fama & French model can be caused by several factors. Firstly,

the FF3+H model only considers three monthly factors which do not vary per stock. This means

the model is very static compared to the other three methods we consider, since predictions for

a given month are the same for all stocks.

Secondly, the Fama & French model is designed to explain stock returns using on common

risk factors, which is not what we focus on in this study. We forecast excess returns using

the three factors which are lagged by one month, since the actual values of the factors are not

available at time t to predict the excess return at time t. When we do not lag the factors, the

FF3+H model produces a respectable R2 of around 8%, which supports the hypothesis that

these three factors are able to explain a substantial part of returns. However, our results show

that forecasting returns based on the lagged factors is not economically informative.

In addition to analyzing the entire pooled sample, we compute the out-of-sample R2 for sub-

samples only containing the 500 top and the 500 bottom stocks in terms of market capitalization.

Comparing these per method, we find that the top 500 stocks present nearly identical R2
OOS

values as the entire sample. The bottom 500 stocks deviate more from the entire sample,

producing R2
OOS values that are generally closer to zero. The contrast between large and small

cap stocks could be due to higher market efficiency of large market cap stocks. Higher market

efficiency implies that prices reflect all available information quicker which could help a model

- when specified correctly - better predict excess returns.

Table 2: Annual Out-of-Sample Prediction Performance (Percentage R2
OOS)

OLS FF3 RF FFNN

+H +H

All 1.20 -15.26 -1.31 3.66

Top 500 1.18 -15.23 -1.34 3.64

Bottom 500 1.28 -1.74 1.14 4.03
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Figure 4: Percentage R2
OOS per method for annual returns. FF3+H is left out due to its large

negative values as observed in table 2.

Table 2 shows the results for each of the methods at the annual horizon. The relative

performance of the models does not change compared to the monthly setting. FFNN still

performs best overall, followed by OLS+H, RF and FF3+H.

Although relative model performance remains the same, there are some noticeable differences

when considering annual returns. Firstly, the FF3+H model worsens substantially, dropping

down to an out-of-sample R2 of -15.26%. As discussed, the model is not specifically designed to

predict future returns but rather aims explain stock returns based on a select number of driving

factors. Using the Fama & French model to predict annual returns fails, from which we can

conclude that the model is not suited for individual stock return prediction.

The predictive power of FFNN slightly increases for annual returns, with an R2
OOS of 3.66%

for the overall sample, which reaffirms our findings from the monthly setting that the FFNN is

able to capture a respectable part of excess returns in the model.

In contrast to a previous study by Gu et al. (2020), our annual R2
OOS results are not an

order of magnitude larger than our monthly results. Gu et al. (2020) observe relatively small

R2
OOS values for the monthly setting, peaking at 0.40% for a feedforward neural network with

three hidden layers. In the annual setting, the results of Gu et al. (2020) improve drastically,

yielding a similar magnitude of annual R2
OOS values to our results. Equivalently to Gu et al.

(2020), our models that produced negative R2
OOS in the monthly setting (FF3+H and RF) do

even worse for predicting annual returns. However, for RF this difference is only 0.17%.

At the annual horizon, all models show a substantial increase in performance when predict-

ing for small (bottom) market capitalization stocks. In the monthly setting, the two models

producing positive R2
OOS values both perform substantially worse for the bottom 500 stocks.

When predicting for a holding period of one year, all four models produce the best results for

small cap stocks. This supports our earlier hypothesis that it takes longer for small cap stocks

to reflect all publicly available information in the stock price, which is in line with the literature

on financial market efficiency (Hung et al., 2009). Similarly to the monthly setting, performance
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of the top 500 stocks is nearly identical to the entire pooled sample R2
OOS when predicting for

annual risk premia.

Overall, our annual results show that FFNN and OLS+H are not only able to capture short-

term changes in the risk premium, but also successfully isolate excess returns that persist over

time. FFNN is the best performing method, producing R2
OOS values of 3.35% and 3.66% for the

monthly and annual setting, respectively.

Table 3: Pairwise Model Comparison on Monthly Out-of-Sample Prediction Performance using

Diebold-Mariano Tests. Positive numbers indicate the column model produces better forecasts

than the row model. None of the differences in performance are significant at the 5% level.

FF3 RF FFNN

+H

OLS +H -0.35 -0.28 0.15

FF3 +H 0.26 0.41

RF 0.28

In addition to evaluating model performance based on the R2
OOS , we perform pairwise model

comparisons using Diebold-Mariano tests to assess whether a difference in predictive performance

is significant. Table 3 shows our results for each for each pair of models predicting for the monthly

horizon.

At the monthly level, our results show that none of the differences in forecasting errors are

significant for any of the model pairs at the 5% level.

A potential reason for the insignificant results is high variance of forecast errors. Due to the

low signal-to-noise ratio of returns, we observe relatively high variability of forecast errors for

all of the models.

Another potential cause for insignificance of a DM test result is a small sample size, since this

decreases the power of the test. We adapt our DM test to compare the cross-sectional average

of prediction errors instead of comparing errors for all individual returns. Only considering the

cross-sectional average means we decrease the sample size for the test to 180 observations, or 15

years worth of monthly average prediction errors. However, a sample size of 180 should still be

large enough to have sufficient power, so this is unlikely to cause insignificance.

When applying the unadapted DM test, all of the differences in predictive power are signi-

ficant, however, these p-values are not reliable due to the expected violated assumption of weak

error dependence.

5.2 Feature Importance

To gain insights on the relative importance of predictors, we compute feature importances from

our random forest model based on the monthly setting. We obtain feature importances using

the mean decrease in impurity for two different RF models. The first model only uses stock-level

characteristics as predictors to construct monthly return forecasts, whereas the second model

uses the entire predictor set which additionally contains macroeconomic predictors and SIC
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industry dummies.

We compare these two settings because of the difference in data preparation for these different

variables. In the data section, we explain the procedure used to cross-sectionally rank the

stock-level characteristics and map these to the [-1,1] interval. For the SIC industry variable,

we construct dummies indicating whether a stock corresponds to a certain industry. On the

contrary, the macroeconomic predictors are not scaled. Not scaling some of the predictors

could bias the feature importance calculations to assign higher relative importance to large-

scale variables. Additionally, unscaled predictors may influence the tree-growing process of the

random forest as splits could favor variables with larger scales, which could potentially impact

model performance.

Feature importances are not global but specific to the model and dataset. Since our RF

models fail to capture a positive R2
OOS , the features we find to be most important can only be

interpretated as most important for these specific models with poor out-of-sample performance.

Figure 5: Random Forest Feature Importances for the top 20 most influential variables in the

model when exclusively using the 92 stock-level characteristics as predictors.

Figures 5 and 6 contain feature importances for the RF model containing only stock-level

predictors and the model containing the entire predictor set, respectively. Here we only include

the top 20 most influential variables. Importances for all variables of the model containing only

stock-level characteristics can be found in appendix figure 8.

We find that including the unscaled macroeconomic predictors and SIC dummies produces
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a slightly higher R2
OOS , indicating that performance is not negatively affected by incorporating

the unscaled variables.

Our results in figure 5 show that the most influential variables for our RF model limited

to stock-level predictors are related to dividends. These variables include dividend omission

(divo), dividend initiation (divi) and dividend to price ratio (dy). Next, we find that sin stocks

(sin) and convertible debt indicator (convind) contribute most. Multiple R&D related variables

also enter the top 20, including R&D increase (rd), R&D to sales ratio (rd sale) and R&D to

market capitalization (rd mve). Our findings deviate from the results of Gu et al. (2020), who

find divo, divi and sin to be among the least influential variables for the RF model. They find

that variables related to momentum and size (mvel1) contribute most to the model. These

variables also appear in our top 20, but contribute substantially less. Overall, only 9 of our top

20 variables also appear in the top 20 of Gu et al. (2020) for their random forest.

Figure 6: Feature Importances for the top 20 most influential variables when including the 92

stock-level characteristics, 8 macroeconomic predictors and 97 SIC dummies as predictors.

Figure 6 shows the results when we include the macroeconomic predictors and SIC dummies

in the model. It is likely that not scaling the variables biases the feature importance calculations

towards assigning higher relative importance to these unscaled predictors, since all eight mac-

roeconomic variables appear in the top 20. In fact, out of the seven variables with the highest

assigned importance, six of them are macroeconomic predictors.

Since these macroeconomic predictors seem to bias the feature importance results in figure
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6, it is unclear which of the variables in the complete RF model actually contribute most to

model performance.

Overall, we conclude based on figure 5 including only the stock-level characteristics, that

variables related to dividend and R&D are most influential for our RF model. Additionally,

the convertible debt indicator and sin stock variables rank among the most important. This

contradicts expectations based on Gu et al. (2020), who find momentum predictors, liquidity

variables and risk measures to be most important based on the reduction in R2 when setting a

variable to zero.

6 Conclusion

This thesis focuses on replicating and extending the work of Gu et al. (2020), who conduct a

large-scale analysis on the effectiveness of machine learning methods for the prediction of equity

risk premia. We forecast monthly and annual excess returns each month using a total of four

methods. Three of our methods are also used in Gu et al. (2020), including random forest,

simple linear with a Huber loss function and feedforward neural network. We extend this set of

methods by further incorporating the Fama & French three factor model.

First, we examine how machine learning methods compare to traditional methods for out-

of-sample prediction of asset risk premia. Our feedforward neural network outperforms all other

methods based on the R2
OOS in both the monthly and annual setting, which is in line with the

results of Gu et al. (2020). In contrast to expectations based on Gu et al. (2020), random forest

fails to produce a positive R2
OOS and is outperformed by the linear model with all predictors

and Huber loss. The Fama & French model is not able to compete with the other methods

and seems unsuitable for the prediction of excess returns when its factors are lagged. Based on

adjusted Diebold-Mariano tests, where we perform a pairwise comparison of the cross-sectional

average forecast errors, we conclude that none of the differences in predictive performance are

significant at the 5% level.

We show that risk premia of stocks with a small market capitalization are harder to predict

in the monthly setting compared to big cap stocks. When performing our annual analysis,

predictive performance for small cap stocks improves considerably, supporting the theory that

small cap stocks take more time to reflect all information in their stock prices.

Next, we identify the driving factors of risk premia by evaluating their relative performance

using feature importance on our random forest models. The results show that the most important

stock-level predictors for our random forest are variables associated with dividends and R&D.

Other influential variables are sin stocks, convertible debt indicator, size and momentum related

predictors.

Overall, random forest failed to improve upon the out-of-sample performance of traditional

methods in our setting. On the other hand, neural networks show promising results for empirical

asset pricing applications based on out-of-sample R2 values of 3.35% and 3.66% for monthly and

annual equity risk premia, respectively.

Finally, harnessing machine learning methods like neural networks shows promise to improve

prediction of excess returns. Since risk premia are a central component in empirical asset pricing,

machine learning could help increase our understanding of the behaviour of asset prices.
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7 Discussion

This section discusses several points of improvement, suggestions for future research and any

remaining considerations.

Firstly, we observe poor performance of our random forest models in both the monthly and

annual setting in terms of overall R2
OOS . We separately evaluate the performance for every year

in the testing sample and find that RF R2
OOS is generally stable and positive. In years three

and four of the testing set, corresponding to 2008 and 2009, RF produces large negative R2
OOS

values. This is around the time of the great recession, taking place from late 2007 to 2009, which

explains the change in the data structure. The poor performance of the random forest model

implies that RF is potentially less capable of handling turbulent periods in the data relative to

neural networks.

Compared to Gu et al. (2020), we obtain fairly high R2
OOS results for the monthly setting. It

would be interesting to explore whether this has to do with modelling decisions or the difference

in data. Furthermore, our OLS+H model exceeds expectations, producing positive R2
OOS values

in both the monthly and annual setting. Since this contradicts the results of Gu et al. (2020),

we suggest to expand the dataset to examine whether our result holds in the face of different

data.

Moreover, we discussed that including the unscaled macroeconomic predictors did not neg-

atively impact RF performance. However, a suggestion for future research would be to rank and

scale the macroeconomic variables over the entire sample and examining whether this further

improves performance.

Another possibility is to examine the differences in performance when using a rolling window

compared to an expanding window for the training set. It is likely that relationships between

predictors and the target variable are not static but change over time, which could result in

improved performance when applying a rolling window.

Our results show support for the theory that small cap stocks take more time to reflect all

information in the stock price. Hence, it would be interesting to explore whether this holds for

a different dataset or when using different predictive models.

Lastly, hyperparameter tuning is of crucial importance for the performance of machine learn-

ing models. Due to time restrictions we focus on tuning a select number of hyperparameters per

method. Expanding the set of hyperparameters we tune could result in improved out-of-sample

performance and more insights on the implications of deep learning compared to shallow learning

for risk premia prediction.
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A Hyperparameter tuning

A.1 Sample Splitting

Figure 7: Visual representation of the training, validation and testing split, where each horizontal

line represents one iteration. Blue dots correspond to the training set which expands each year.

Green dots correspond to the rolling validation set and red dots represent the moving test set.

Each dot represents a year of data. This figure is obtained from the online appendix of Gu et

al. (2020), who use a similar sample split scheme.

A.2 Tuning Scheme

Table 4: Hyperparameters that are set or tuned per method. This table does not contain all

hyperparameters. Hyperparameters that are set identically to Gu et al. (2020) are left out.

Epsilon refers to the only hyperparameter of the Huber loss function that controls the amount

of regularization. LR refers to the learning rate of the FFNN. #Features refers to the number

of features considered per split for the random forest.

OLS FF3 RF FFNN

+H +H

epsilon epsilon #Trees = 100 # hidden layers = 3

∈ {2.0, 2.5, 3.0} ∈ {2.0, 2.5, 3.0} Depth = ∈ {1, 2, 3, 4} ensemble = 2

#Features = ∈ {8, 10, 20, 30} LR ∈ {0.001, 0.01}

L1 penalty ∈ {10−5, 10−3}
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B Feature Importances

Figure 8: Random Forest Feature Importances when only including the 92 stock-level charac-

teristics as predictors.
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C Predictor Variables

Table 5: Details of the stock-level characteristics

No. Acronym Description Frequency

1 mvel1 Size Monthly
2 beta Beta Monthly
3 betasq Beta squared Monthly
4 chmom Change in 6-month momentum Monthly
5 dolvol Dollar trading volume Monthly
6 idiovol Idiosyncratic return volatility Monthly
7 indmom Industry momentum Monthly
8 mom1m 1-month momentum Monthly
9 mom6m 6-month momentum Monthly
10 mom12m 12-month momentum Monthly
11 mom36m 36-month momentum Monthly
12 pricedelay Price delay Monthly
13 turn Share turnover Monthly
14 absacc Absolute accruals Annual
15 acc Working capital accruals Annual
16 age # years since first Compustat coverage Annual
17 agr Asset growth Annual
18 bm Book-to-market Annual
19 bm ia Industry-adjusted book-to-market Annual
20 cashdebt Cash flow to debt Annual
21 cashpr Cash productivity Annual
22 cfp Cash flow to price ratio Annual
23 cfp ia Industry-adjusted cash flow to price ratio Annual
24 chatoia Industry-adjusted change in asset turnover Annual
25 chcsho Change in shares outstanding Annual
26 chempia Industry-adjusted change in employees Annual
27 chinv Change in inventory Annual
28 chpmia Industry-adjusted change in profit margin Annual
29 convind Convertible debt indicator Annual
30 currat Current ratio Annual
31 depr Depreciation / PP&E Annual
32 divi Dividend initiation Annual
33 divo Dividend omission Annual
34 dy Dividend to price Annual
35 egr Growth in common shareholder equity Annual
36 ep Earnings to price Annual
37 gma Gross profitability Annual
38 grcapx Growth in capital expenditures Annual
39 grltnoa Growth in long term net operating assets Annual
40 herf Industry sales concentration Annual
41 hire Employee growth rate Annual
42 invest Capital expenditures and inventory Annual
43 lev Leverage Annual
44 lgr Growth in long-term debt Annual
45 mve ia Industry-adjusted size Annual
46 operprof Operating profitability Annual
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Table 6: Details of the stock-level characteristics (continued)

No. Acronym Description Frequency

47 orgcap Organizational capital Annual
48 pchcapx ia Industry adjusted % change in capital expenditures Annual
49 pchcurrat % change in current ratio Annual
50 pchdepr % change in depreciation Annual
51 pchgm pchsale % change in gross margin - % change in sales Annual
52 pchquick % change in quick ratio Annual
53 pchsale pchinvt % change in sales - % change in inventory Annual
54 pchsale pchrect % change in sales - % change in A/R Annual
55 pchsale pchxsga % change in sales - % change in SG&A Annual
56 pchsaleinv % change sales-to-inventory Annual
57 pctacc Percent accruals Annual
58 ps Financial statements score Annual
59 quick Quick ratio Annual
60 rd R&D increase Annual
61 rd mve R&D to market capitalization Annual
62 rd sale R&D to sales Annual
63 roic Return on invested capital Annual
64 salecash Sales to cash Annual
65 saleinv Sales to inventory Annual
66 salerec Sales to receivables Annual
67 securedind Secured debt indicator Annual
68 sgr Sales growth Annual
69 sin Sin stocks Annual
70 sp Sales to price Annual
71 tang Debt capacity/firm tangibility Annual
72 tb Tax income to book income Annual
73 aeavol Abnormal earnings announcement volume Quarterly
74 cash Cash holdings Quarterly
75 chtx Change in tax expense Quarterly
76 cinvest Corporate investment Quarterly
77 ear Earnings announcement return Quarterly
78 nincr Number of earnings increases Quarterly
79 roaq Return on assets Quarterly
80 roavol Earnings volatility Quarterly
81 roeq Return on equity Quarterly
82 rsup Revenue surprise Annual
83 stdacc Accrual volatility Quarterly
84 stdcf Cash flow volatility Quarterly
85 ms Financial statement score Quarterly
86 baspread Bid-ask spread Monthly
87 ill Illiquidity Monthly
88 maxret Maximum daily return Monthly
89 retvol Return volatility Monthly
90 std dolvol Volatility of liquidity (dollar trading volume) Monthly
91 std turn Volatility of liquidity (share turnover) Monthly
92 zerotrade Zero trading days Monthly
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D Code Description

All methods have been implemented using python in Jupyter Notebook. Before running any

code, we construct one excel file where all provided CRSP data is included. Additionally,

we compute excess returns in a separate column and obtain the corresponding macroeconomic

predictors. We use a separate data file for the Fama & French three factor model, only containing

the dates, companies, excess returns, FF3 factors and mvel1 (size) to be able to sort the stocks

for the top 500 and bottom 500 calculations. Lastly, construct annual returns in python based

on the original df, and write these results to an excel file called ’annual’.

We use Keras to implement our feedforward neural network, randomforestregressor for our

random forest, and huberregressor for our simple linear models.

For data preparation, we cross-sectionally rank the stock-level characteristics and map to

[-1,1]. Moreover, we construct SIC dummies.

After doing so, we run the methods separately for the monthly and annual setting, updating

the training/validation/test sets each iteration. We obtain the out-of-sample R2 and DM test

results from functions we coded based on our adjused settings.

We provide all code for the replication of the monthly and annual results, including DM test,

feature importances and R2 function.
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