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Abstract

The Macro Planner is a Quintiq application which is among others implemented as
supply chain planning tool by Capgemini. Given a certain sales forecast an optimal
demand planning is made. When making a planning for a long horizon there is a lot
of uncertainty for the actual demand. Currently only one sales forecast is used but in
this thesis multiple sales forecast scenarios can be specified and a planning is created
which is ‘good‘ for all sales forecasts.

We create three models based on different definitions of good, such that for each
type of risk-seeking there is a useful model. All our models belong the class of
two-stage recourse models in robust optimization and instead of solving the deter-
ministic model by CPLEX we could also apply decomposition methods. Therefore
the two most important parts of the thesis are the implementation of our models in
the Macro Planner on the one hand and the comparison of solution times for the
solution methods for this kind of problems on the other hand.

Test for a real dataset turned out that extra expected profit could be made when
a planning would be made in the expected goal function model compared to the
normal supply chain planning. Also it was seen that it could be possible to raise
the worst case profit with 10% when the worst case robustness measure was applied
compared to normal supply chain planning.

In JAVA we implemented other solving techniques of our models based on decom-
position methods with ILOG Concert Technology. For all our models we proposed
some new options in the decomposition methods using the fact that there is only
right-hand uncertainty in the models we considered. Although we could only gen-
erate a limited amount of results, there is an indication of the viability of our new
methods, especially the ideas in the worst case model.

Thereafter we will briefly review other possible extensions to increase the attractive-
ness of the Macro Planner as in principle this was the goal. For capacity extension
and CO2 emission first suggestions are made, but nothing is implemented.
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Chapter 1

Introduction

1.1 Company Information

1.1.1 Capgemini

Capgemini is a multinational company in IT consulting services with 91000 employ-
ees (in 2008) headquartered in Paris. It offers services in Consulting, Technology and
Outsourcing businesses. In the Netherlands there are about 7000 employees. The
Dutch headquarter is in Utrecht. Capgemini also has a subsidiary company, Sogeti,
which offers local services.

1.1.2 Quintiq

Quintiq is a company founded in 1997 when five people splitted off Bolesian, a filial
of Capgemini, to develop their own software to support advanced planning and
scheduling decisions. In 2008 this company from Den Bosch had 180 employees and
focuses on advanced planning and scheduling solutions for logistics, production and
workforce.

1.1.3 APS Solution Center

The APS Solution Center is a group in the sector of products of Capgemini concen-
trating on Advanced Planning and Scheduling problems. This is set up by former
employees of Bolesian, by then taken over by Capgemini, to work together with their
former colleagues and implement their Quintiq software. Nowadays Capgemini
evaluates planning and scheduling of customers and implements advanced solu-
tions if necessary. The Quintiq software is now used less often to develop solutions.

1.2 General Problem Description

1.2.1 Problem definition

The APS unit of Capgemini implements among others the Macro Planner, a software
application of Quintiq to support supply chain planning decisions. This application
will be the subject of this thesis. The motivation of this thesis is that there are probably
still a lot of possibilities to make the Macro Planner more attractive for customers by
adjusting or expanding it.

One possible interesting option is to make it able to support robust planning.
Currently in the Macro Planner (for this thesis version 4.5.0 is studied) only one
specific sales forecast is used and an optimal supply chain planning is a planning in
which the goal function is optimized to that sales forecast. However, in reality one
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forecast is just an expectation and will normally turn out to be wrong. We would
like to create a supply chain planning which also turns out to be ‘good‘ for other
realizations of the sales demand and we want to be able with several definitions of
good.

Furthermore it is useful to consider other possibilities for the Macro Planner.
Therefore the main question of this thesis is: How can a more robust supply chain
planning be created and what are the differences with the current supply chain planning, and
what else can be suggested to increase the attractiveness of the Macro Planner?

1.2.2 Problem description and thesis objective

The Macro Planner is an advanced planning software application which can be used
both for constructing a sales and operational plan and to make strategic decisions at
most a few times per year. The generated high level strategic decisions will probably
have an impact on a long horizon for which there is still a lot of uncertainty in the
sales demand and it will cost effort to reverse them.

We can distinguish the decisions which are made before information on the de-
mand is revealed and decisions which are made after the information is revealed.
The first category consists for example of planning the inventory levels, allocating
quantities to subcontractors and determining what the product mix will be. We know
the optimal supply chain planning with these first-stage decisions is excellent for the
given input of sales forecasts, but now we recognize the possibility of a different
demand we want also those first-case decisions to be good in that case. This will be
the main subject of study of this thesis.

For each planner the notion of good may have a different meaning, depending
on her risk aversion. Therefore we have to consider more robustness measures and
therefore also more models. We will do a literature review to explore the options and
choose the most likely for Macro Planner users. Then a comparison is needed with
the normal supply chain planning. Only if the outcome is considerably different, it
is worth the effort for planners to adopt robust planning.

Besides there are also other suggestions to improve the attractiveness of the Macro
Planner. Recently reducing the amount of carbon dioxide emission became a busi-
ness goal for many companies. According to [16], maybe an already outdated survey
in these days, more than 34% of the managers have sustainability on their agenda.
Greening of supply chains is an interesting topic with for example much research
on reverse supply chains. However little attention is paid to the effect of the plan-
ning/design decisions on the emission of carbon dioxide. It is likely that in some cases
a supply chain planning affects this amount, for example by the means of transporta-
tion chosen in the supply chain. Therefore the possibilities of containing measures
on emission have to be considered. The question how to measure and present the
emission is of course essential for making a planning based on CO2 emission. This
question in itself is actually not an econometric issue, but just very important for the
position of the Macro Planner.

In the Macro Planner it is currently possible to create multiple scenarios for the
supply chain design and there also the capacities of stocking points and units are
given as input. If a planning for a long horizon is made it may be a wise decision
to increase or decrease the capacity during the horizon. However, currently this has
to be stated manually. As a supply chain planning itself mostly triggers the needs
for capacities it seems very natural to try to include the choice for capacities in the
optimizer. Possibly this yields extra benefits when CO2 emission is taken into account
as maybe capacity expansion of clean machines can be observed.

2



1.2.3 Relevance of problem description

For Capgemini it is interesting to study these questions related to the Macro Planner
as they have some projects in which the Macro Planner is implemented and are still
interested in new projects in which it can do so. This thesis could help Capgemini
to offer additional value to the customer in such projects. Furthermore the ideas on
robustness may be inspiring for similar models.

There are a lot of related problems which deal with decision making under uncer-
tainty. All production problems represented by mathematical programming formu-
lations in which the right-hand side parameters representing demand are uncertain
with its uncertainty represented by a discrete sample space for example. All pro-
posed solution methods, and thus also the options which are not earlier studied in
literature, can be applied to those problems as well.

1.3 Outline

In the next chapter, chapter 2, a description of the Macro Planner is given. It is
important to read this chapter as all other topics are related to the Macro Planner
and the terminology is introduced in this chapter. With the Macro Planner at hand
it is easier to read this thesis, but with this chapter and if necessary the appendix
it should also be possible. Chapter 3 makes clear which decisions in the supply
chain are made by the optimizer and which supply chain design decisions are made
manually. Furthermore the planning decisions and the business goals are related in
a matrix. This will also give more insight in which business goals are affected when
the supply chain planning process is revised.

Chapter 4 is the core of the thesis. Here the main ideas of the thesis are worked
out. Instead of taking one sales forecast for granted, we want to consider multiple
possibilities for the sales demand when creating the supply chain planning. By a
literature survey the possible goals to strive for in robust planning are examined.
By making the assumptions that we regard as plausible and selecting from all pos-
sibilities the robustness goals we think planners working with the Macro Planner
strive for we present the three models mentioned under approach in this proposal.
These models can be solved by feeding it to CPLEX or solving it by a decomposition
method. For a decomposition method there are a number of options and it is not clear
which method will lead to the lowest computation time observing that all methods
lead to an exact solution.

Chapter 5 will then give the results of our robust planning methods in the Macro
Planner framework. As it will be very important to make customers enthusiastic
on robust planning we will also elaborate on the graphical representation. Before
studying the results a number of checks are performed to verify the implementation.

In chapter 6 the consequences of the decomposition methods are examined. For
various datasets we compare normal solutions with robust solutions and evaluate
their solution time on the possible solution methods.

In chapter 7 we will propose ways to work out the ideas of capacity extension and
CO2 emission. These ideas are not implemented and therefore this chapter can be
seen as a large chapter to describe recommendations for future research to increase
the attractiveness of the Macro Planner except from enabling robust planning.

Chapter 8 gives the conclusions of this thesis and recommendations for further
research. In the appendix A all details on the model of the Macro Planner are given.
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Chapter 2

Macro Planner Environment

2.1 General Information

The Macro Planner is an advanced planning software application of Quintiq which
can be used both for constructing a sales and operational plan and to make strategic
decisions at most a few times per year. Most Macro Planners are currently imple-
mented for metal producers. As Quintiq was already a market leader for scheduler
products in the metal industry, this is the logical industry to be an early adaptor.
However the Macro Planner is suited for all production industries. To make a supply
chain planning, input data is needed to get the planning as output.

The inputs of this software application are:

• Forecasts for the finished products of the supply chain, usually on a monthly
or yearly basis, and the current outstanding orders which are accepted in the
past. This is processed by demand netting to so called sales demands for the
planning. The goal of the planning is to react on this demands as good as
possible.

• The supply chain design, which can consists of plant-units, machines existing
in plants, stocking points, transport-units, routings from stocking point(s) via
a unit to stocking point(s), shift times for machines, current inventories and so
on. It is the total current structure of the supply chain. This is framework the
company has disposal of to support the reactions on demands.

For each Quintiq application, including the Macro Planner, there is, according
to the Quintiq way of working, also a Quintiq Business Analysis document made:
[33], which will be denoted by the abbreviation QBA. It is a technical description
of the application and it serves as input for the next modeling phase done by the
Quintiq specialist when implementing the solution. To get insight in the framework
in which we operate, the supply chain design, we quote the QBA where the design
is described in 6 steps for a metal manufacturer:

1. “Define supply chain skeleton: defining all production units (facto-
ries, suppliers, transport), the stocking points and the connections
between the production units via stocking points.

2. Define sales hierarchy.

3. Define unit availability: defining the availability in the various pe-
riods for all units with constrained capacity.

4. Define products hierarchy: defining the high level products, e.g. Hot
rolled coils

5. Define product routings: define product routings.
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Figure 2.1: Supply Chain Planning in the Macro Planner

6. Define capacities of units and stocking points: external production
units such as suppliers may have a maximum capacity (e.g. in
number of tons per month), as well as a minimum capacity (long term
contracts). These capacity restrictions are defined in this decision.”

An example of a supply chain network will be presented for a problem instance in
figure 6.1 later in this thesis. Although some terminology will only be explained later
in this chapter, it is already clear that many decisions in the supply chain optimization
process have already been made in the supply chain design. In advance of the relation
between planning decisions and business goals as explained in the next chapter, we
can already reveal that the design of the supply chain influences the key performance
indicator (KPI) total fixed costs directly which is important for the business goal of
profitability. This includes costs of opening and closing plants for example.

The performance which can be reached in the planning is also influenced by the
design. To compare the influence of the design on the planning it is possible to create
manually different scenarios in which a supply chain design is defined. When a
planning is made for two scenarios that only have a very small difference caused by
a supply chain design decision, the quality of that decision can be evaluated.

For a scenario the output can be created by manual actions or by a planning
algorithm which is the most interesting for this thesis. The output is:

• A planning that determines the quantity to be produced, the way to produce
that quantity (use own plants or hire a subcontractor) and which sales demands
are fulfilled with that quantity. Also planned inventory levels are a result of
this planning.

Once a planning algorithm creates this output it can still be adjusted manually, the
final responsibility is always for the planner. In this way the effect of each decision can
be perceived by the planner. See 2.1 for an example output of a planning generated
by the Macro Planner. A Gantt chart shows demand for products in stocking points in
periods and the colors indicate whether the demand or inventory targets are fulfilled
by the planning.

From the point of view of the planner the input-output information of the Macro
Planner is used as decision support tool for multiple decisions. One could name
optimal inventory policy, determining an inventory policy which can probably be
viewed as determining a safety stock safety stock; source efficiency, where to get how
many of the raw materials and semi-finished products indicates how contracts with
suppliers should be agreed; product mix optimization, the planning indicates which
products will become the most produced products and possibly the marketing can
be adjusted to that result; (effective supply chain design), by trying out more scenarios
for the supply chain design with for example different fulfillment goals the effect of
the fulfillment goals on the cost can be examined.
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2.2 Terminology Macro Planner

In the application several terms are used to describe the supply chain. Here the most
important terms are listed and explained with the purpose to make the rest of the
thesis readable without having the application at hand. A list of terms in alphabetical
order is presented below. In some explanations terms are used which are explained
itself in another place.

External parties The actual term is quantity-based units, as external parties like
suppliers or subcontractors have in each period a minimum and a maximum
amount of goods to be processed. The intuition is that it is the result of a
contract. Also a minimum or maximum capacity per product can be defined.

Fulfillment goals For each sales segment it is possible to define for a period what
percentage of demand should be fulfilled and this is called a fulfillment goal.
For a fulfillment goal also a cost per percentage of demand less fulfilled has to
be specified. This will be taken into account in the optimizer. It is also possible
to specify such an fulfillment goal specifically for one product.

Machines The actual term is time-based units as the capacity of machines is mea-
sured in operating time in each period. Like external parties machines are an
example of units. In all periods for machines fixed costs, maintenance time, a
shift pattern defining the number of hours the machine is available per week
and the number of identical copies of this type of machine is defined. The used
capacity in hours is derived from the quantities of supply routings planned
on the machine. On basis of the used capacity and the available capacity the
utilization per period can be obtained.

Periods The periods (years/quarters/months/weeks/days) which are considered in
the planning. All periods have a number of days, a start date and end date.
Also a number of periods before the ‘present period‘ can be taken into account
in the planning as satisfying the demand for the start periods may require
production steps in earlier periods. The start of the planning horizon is defined
in the supply chain design.

Plants Actually this is an non-capacitated unit. For each plant a set of machines
which it houses is given. When a product routing is defined on a plant obvi-
ously only machines from the plant can be used for the operations. There are
connections between plants and stocking points and these connections are used
to check whether it is possible for a product-in-stocking point to be an input or
output for a product routing.

Products In the supply chain several products are used from raw material to finished
products. It is possible to classify the products in this way (raw materials -
intermediate products - finished products as example of a product hierarchy).
Each product is assigned a set of stocking points in the supply chain in which
it can be stored.

(Product) Routings This non-standard term is very important for the Macro Planner.
A routing is the representation of the process in which from certain products
in stocking points (PISPs) certain products in stocking points are created in a
plant or by a subcontractor. So a routing is defined on a unit being a plant or
an external party. A routing normally has one ore more product-in-stocking
points as input and one or more product-in-stocking points as output. For
each product-in-stocking point that is used as input the share of its quantity
relative to the total input quantity should be given. Similarly for each product-
in-stocking point that is used as output a share should be given. In a production
process the total input quantity does not have to be equal to the total output
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quantity. There can be some waste in the process. Therefore each product
routing has a yield, the proportion of output quantity in relation to the input
quantity. One side note is that there can be product routings base on external
suppliers that have no input but have as output the supplied product in a
stocking point.

Inside the process represented by the product routing for a plant there are
product routing steps, steps that have to be made sequentially to transform
the input to the output. In these steps product routing operations are defined,
operations that have to be performed simultaneously. Most frequently each
product routing step has only one product routing operation. For the product
routing operation the machines on which they can be performed are known
and a production speed is assigned to perform the product routing operation
on each of those machines. Maybe more insight in the concept of a product
routing can be given by figure 2.2.

Unit (Plant / External Unit / Transport)

PISP

PISP

PISP

Á

-

^

PISP

PISP

s
3

Figure 2.2: Product Routing Diagram

Sales demands For each sales segment and each period and each stocking point
there is a sales demand with a quantity, a priority and a revenue per fulfilled
quantity. This is the result of sales forecasts and orders, by the demand netting
procedure explained in section 2.3. Fulfilling these sales demands is the idea
of making a supply chain planning.

Sales segments Selling segments can be defined as the sales forecasts of the sales de-
partment are sometimes made for a specific selling area. These areas are called
sales segments and can also be non-geographical determined, large customers
for example. Outstanding orders, fulfillment goals en sales targets are also all
defined on a selling segment.

Sales targets For a period there can be a target of the number of products to sell in a
sales segment. This is specified by a starting date, an ending date, a minimum
capacity and a maximum capacity. Maybe sales could be undesirable from a
marketing point of view to rise above or drop below a certain level in a sales
segment and it can be taken in account in the optimizer settings.

Stocking points Products are stored in stocking points. Stocking points are the start
and end of a product routing and sales demand is defined on a stocking point.
For a stocking point in each period there is a starting inventory and ending
inventory measured in number of goods. Also a maximum capacity can be
defined and this can be split out to a maximum inventory per product. There
is also a ‘planned capacity‘ which is the inventory target for the stocking point
in a period. In the optimization parameters, the weight for a penalty on the
deviation from this planned capacity can be defined.

Supply routings A supply routing is a copy of a product routing but now also an
output quantity (and with that the input quantity), an end date (and with that
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Quantity Day
20 2
20 4
30 6
30 9
15 12

Table 2.1: Orders

Quantity Startday Endday
45 1 5
35 6 10
10 11 12

Table 2.2: Sales forecasts

the start date) are defined. The output of a supply routing creates a supply.
A diagram of a supply routing is given in the appendix on the mathematical
model, see figure A.1.

Stocking points All stocking points have per period a starting inventory and an
ending inventory measured in number of goods. They also have a parameter
planned capacity, the inventory target, and a maximum capacity in number of
goods. Also for each period a maximum and a planned capacity per product
can be defined. In the optimization parameters, the weight for a penalty on the
deviation from this planned capacity can be defined.

Now we will give in the next section a description of demand netting which
deduces the sales demands and in the next chapter we will look at the planning
decisions.

2.3 Demand Netting

At the supply chain design sales forecasts and orders are imported from ERP-systems.
Orders are already known and have one day at which they should be delivered. Sales
forecasts are from the forecasting department and they have an end and a start date
and a sales segment in which the sales would take place. As mentioned in the model
itself discrete time periods are used, so these orders and forecasts should be converted
into demands per period in the model, the so-called sales demands.

An illustration of the process can be seen by tables 2.2, 2.1 and 2.3 and figure
2.3. Sales segments are ignored, but the procedure described here should be done
for each sales segment. In the example each period consists of 3 days. An important
concept in demand netting is the planning feedback horizon. Here the planning
horizon consists of two periods. It means that the two coming periods are so close
to this moment that it is not possible anymore, or at least it is not expected, that new
orders will be made in this period. The once made sales forecasts are useless for these
two periods and we take the order quantity as demand quantity. In the example this
can be seen for the first 6 days. For the remaining two periods the maximum of
the quantity of the confirmed orders and the quantity of the sales forecasts is taken.
When the ordered quantity exceeds the sales forecast, then it is clear the sales demand
will be at least the ordered quantity. Otherwise the sales forecast is still taken as valid.
See for this process the remaining 2 periods.

The revenue per unit of a sales demand is determined in this demand netting
process by first summing the sales forecast quantities times the revenues per quantity
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9

Figure 2.3: Demand Netting Example

Period Days Orders Forecasts Sales demand
1 1-3 20 (3/5) × 45 = 27 20
2 4-6 20 + 30 = 50 (2/5) × 45 + (1/5) × 35 = 25 50
3 7-9 30 (3/5) × 35 = 21 30
4 10-12 15 (1/5) × 35 + 10 = 17 17

Table 2.3: Netting results



of these sales forecast if the total sales forecast quantity is higher or by the order
quantities times the revenue per unit of these orders otherwise. The revenue per
unit follows by dividing this revenue by the total quantity of the sales demand. This
procedure is a bit unnatural as will be shown in chapter 5 when we will do the
implementation of a robust planning method.

By intuition it can already be felt that the way demand netting is taking place
influences the results of the Macro Planner. In theory it would be best for example if
the sales forecast of the sales department is perfectly up-to-date such that a forecast
given the current ordered quantity is made. For example when there is already
a period outside the planning feedback horizon in which orders exceed the sales
forecast, the expectation that sales demand will be the now ordered quantity may be
inaccurate.
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Chapter 3

Planning and Business Goals

3.1 Supply Chain Planning

As mentioned in the previous chapter, a supply chain planning itself can be obtained
by manual actions or an optimizer. A manual action in the planning is to set a
quantity of a supply for a product in a stocking point in a period, which will be
denoted as ‘pispip‘. This is also the term used in the mathematical model. Setting
such a quantity is usually done when there is some sales demand for that pispip.
Creating supplies gives costs from the supply routings used to create the supply from
other products but fulfilling those sales demands will give revenue. Also it could be
reasonable to create supplies such that an inventory level at the stocking point will
be reached.

When setting such a supply one or more routings of which with some factor
larger or equal than zero the output goes to that pispip (‘with output in pispip‘) have
to be created. This should satisfy that the sum of supply routings output for that
pispip equals the quantity of the supply. The quantity of these supply routings is
not unlimited as their operations have to be planned on a finite number of machines
which have a maximum available time in a period. Luckily the user is guided
to choose a quantity for supply which can be realized by supply routings by an
algorithm which calculates the maximum quantity supply routings can offer. See the
screenshot in figure 3.1.

When a planning is automatically created and supplies are determined by the
optimizer, the maximum capacity of machines will of course be taken into account.
Once supply routings have been created they require inputs from pispip’s and this
generates dependent demand. In the optimizer these dependent demands automat-
ically have to be fulfilled by creating other supply routings which have output in
that pispip as otherwise all supplies depending on the supply routings which use
this dependent demand are still worthless. This backward chain in the ends uses the
product routings based on external product (usually raw material) suppliers which
do not generate dependent demand.

The mathematical model for the automatic supply chain planning is discussed in
appendix A. Those wanting more mathematical insight are referred to that appendix.
In the end the supply chain planning part can be summarized as the decision what
quantity of supply is produced, from which sources (supply routings) the supply
comes, how supply operations are divided over machines and for which demands
(sales demand, dependent demand, inventory demand) the supplies is used for each
pispip. Note that it would also be desirable in certain circumstances to determine in
the supply chain planning for a machine in a period if it is switched on or switched off,
because usually costs are coupled with it. This can now only be simulated by opening
and closing a machine for a certain period in the supply chain design. Currently all
these decisions are captured by continuous variables and linear expressions such that
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Figure 3.1: Creating a new supply

the problem can be solved with a simplex method in the optimizer.

3.2 KPI Matrix

In section 4.2 of the QBA a KPI matrix is presented. Recall that KPI stands for
key performance indicator. This matrix tells which planning decisions affect which
business goals and how these relations are captured in performance indicators. We
give an extended version here in table 3.1 to get insight in the effects of planning
decisions on the business goals. The numbers stand for the following KPI’s:

1. Total profit: Total revenue of finished products - Total fixed cost - Total cost of
supply

2. Total revenue: Sum of revenue of fulfilled demand

profit inventory satisfaction productivity
Supply Chain Planning
Quantity of supply to produce (1),(2),(3),(4) (4),(5) (6) (8)
Sources used for supply (1),(3) - - -
Operation allocation to machines (1),(3) - - -
Demand served by supply (1),(2),(4) (4),(5) (6) -
Inputs for Supply Chain Planning
Demand netting - - - -
Fulfillment goal, sales target - - (6) (8)
Inventory target decision - (4) - -
Supply Chain Design (7) - - -

Table 3.1: Planning Decisions versus Business Goals
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3. Total cost of supply: Sum of cost of the supply routings for the supplies.

4. Total inventory cost: Sum of all cost for having inventory in a pispip. This is
calculated per pispip as

CostO f Inventory = InventoryLevelStart ∗ (YearlyInterestRate/100 ∗DaysO f Period/365)

+ 0.5 ∗ (InventoryLevelEnd − InventoryLevelStart)
∗(YearlyInterestRate/100 ∗DaysO f Period/365)

So the total inventory cost is related to cost of inventory for finished products
and inventory for work in progress. When the optimizer is making the planning
decisions it uses a simplification to represent inventory cost in it’s goal function.

5. Fulfilled target levels: The percentage of inventory target fulfillment.

6. Fulfillment: The percentage of demand for finished goods fulfilled.

7. Total fixed cost: Sum of fixed cost per period of units and the opening/closing
cost of units.

8. Total volume: Total quantity of fulfilled sales demand.

From the division of supply chain planning decisions it can be seen that even
making separate small decisions in the supply chain planning business goals are
affected. If we set the quantity of supply to be produced we affect many business
goals but leave also still a lot of possibilities open to affect these goals.

3.3 Non-supply-chain-planning Decisions

The supply chain planning does not deal with some of the planning decisions for
the supply chain. These other planning decisions can be supported with the Macro
Planner by creating different scenario’s in which, usually while keeping other things
equal, an aspect of the inputs for supply chain planning or the supply chain design
is changed. The KPI’s of the different scenario’s should be compared.

For the planning decision of inventory target it is clear that costs will decline when
the inventory target declines. In the Macro Planner the difference in costs and emis-
sion for lowering the inventory target can be estimated. However no information
about the advantage of such a safety stock can not be obtained because the random-
ness of demand is not taken into account. Therefore another calculation should be
made for this aspect to take the right decision. This note is meant to emphasize that
the application is primary meant for supply chain planning and it can only help in
supply chain design.

Another planning decision in the supply chain design is whether capacity should
be expanded and at what time moment this should take place. Now it is possible
to try some scenario’s in which in the knowledge base some change in capacity is
made. The difference in costs and other KPI’s of the supply chain planning can than
be compared with the costs of such a capacity change which the user should estimate.
Later in the thesis some ideas are presented about considering this planning decision
in the optimizer of the supply chain planning.
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Chapter 4

Robust Planning Methodology

In this chapter we will first give a literature overview of robust optimization. Dis-
cussed are among others types of uncertainty, robustness measures and types of
robustness measures. Then we consider the assumptions to be made to use robust
planning in the Macro Planner with a critical view on their sense of reality. After
that we will propose three models. These models are given in a general form and we
specify how this general form should be interpreted in the Macro Planner environ-
ment. A number of solution methods are proposed subsequently on the models in
their general form. After we presented our models and solution methods we give a
summary of the benefits for the customer at the end of the chapter.

4.1 Literature

Robust optimization is a branch of mathematical programming with the goal to find
solutions which perform well under any realization of the yet uncertain parameters,
though not necessarily optimal in any. Note the difference with conducting a sensitiv-
ity analysis for a LP-solution to measure the sensitivity to the uncertain parameters.
A sensitivity analysis is only a post-optimization tool while robust optimization takes
the uncertainty into account during the optimization. Sensitivity analysis is reactive
instead of proactive. Moreover in general it will only give information about a very
small interval of a parameter. In supply chains there is a lot of uncertainty in param-
eters. Consider for example demand, transport prices, revenues, raw material prices,
inventory costs, possible new production technologies and management decisions.
Therefore it is not surprising to see many articles in robust optimization considering
a problem in supply chains. First we will elaborate on the different forms of robust
optimization.

At first the subfields of robust optimization can be split on the type of uncertainty
for parameters. At the one hand there is continuous, interval-based uncertainty
and at the other hand there is discrete uncertainty when only a finite number of
realizations are possible for a parameter which is also called the scenario approach.
For continuous uncertainty usually there is no possibility to evaluate an expectation
of the goal function value or other possible robustness values. Such an expectation
would be

∫
ω∈Ω F(x, ω)dP(ω) if x denote the decision variables. Techniques based

on Monte Carlo sampling are therefore common in stochastic programming. In
[28], a standard work on stochastic programming, multiple techniques available
for continuous uncertainty can be found. Note that when there is a correlation
between the realization of parameters, it is not possible to define intervals for every
single parameter but ellipsoids to model the sample space of two variables. An
intersection of many ellipsoids can then give the total uncertainty region. However
in this thesis only discrete uncertainty is considered because it is most relevant for
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the Macro Planner. Throughout this chapter we will use the term goal function for
the goal function of the problem for one specific scenario, one specific realization
of parameters. The term objective function is reserved for the goal function of the
overall robust optimization problem, using results from all scenarios.

Although frequently mixed up, in principle also a distinction can be made be-
tween risk and uncertainty. Risk is meaning that a probability distribution is available
for the sample space of the uncertain parameter, while under uncertainty there is no
information about probabilities. It is clear that in an uncertainty situation there are
less possible robustness measures. The most natural suggestion in that situation is
always to use a measure based on worst-case objective value. While in this thesis a
distinction is made between situations with or without probabilities, the term uncer-
tainty is always used in favour of risk.

[34] gives an easily readable overview of stochastic linear programming models,
robust optimization models in which no integer variables are allowed. Emphasized
is that under uncertainty wait-and-see approaches, when a solution is determined
for each possible scenario and from that a first-stage response is constructed, do not
bring anything in the form of a decision-making framework. Those solutions may all
be infeasible for other scenarios. Under uncertainty you have to use a here-and-now
approach for a subset of the variables. In this tutorial treated decision-making frame-
works are amongst others recourse models and models with probabilistic constraints.

Stochastic programming with recourse is said to be introduced in [11]. In these
(two-stage) recourse models first-stage and second-stage decision variables are used,
also called design variables and recourse variables or control variables. By defini-
tion are first-stage decisions made before information is available and second-stage
decisions after information is available. Second-stage variables are also called re-
course variables as after the information is available the decision maker usually has
recourse to an adaptation of the initial policy, for example demand is backlogged.
These decisions can be made on wait-and-see basis. When it is not possible to set
the first-stage variables such that for every scenario there is a feasible choice of
second-stage variables, the recourse model is said to be infeasible. On the contrary a
recourse model is said to be complete recourse when for every choice of the first-stage
variables there is in every scenario a feasible choice of recourse variables. A weaker
but still important characteristic is relatively complete recourse, in which there is in
every scenario a feasible choice of recourse variables for every feasible choice of the
first-stage variables.

In models with probabilistic constraints instead of defining control actions with
certain cost for every scenario in which control constraints have to be satisfied, here
the possibility of infeasibilities is just accepted as long as it does not occur too much
over the scenarios. This is appropriate for example in emergency medical services
when a call has to be answered within a certain period of time by a certain probability.
The definition already indicates that the control constraint can be violated by a certain
probability. In the Macro Planner there are hardly any hard constraints such that this
approach is not useful in this thesis.

These different models cause us to separate robustness into model robustness and
solution robustness. A solution that performs well under all possible realizations
means in solution robustness that the solution is always ‘nearly‘ optimal. In model
robustness it means that the solution is nearly feasible in all realizations. An exam-
ple to show that a solution can be infeasible: A solution in which a certain amount
will be sold does not hold anymore when the demanded quantity is lower than that
amount when no control action is available. In recourse models solution robustness
is considered and in models with probabilistic constraints the model robustness. A
combination of these robustness measures can lead to a new model. In [23] a so-
called RO (robust optimization) framework is introduced, a model in which the goal
function promotes solution robustness as well as model robustness. That last term
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is based on the infeasibilities in the scenario-dependent control constraints. This is
different from models with probabilistic constraints in the sense that there is no hard
constraint for the number of infeasibilities but a term in the goal function and it is dif-
ferent from recourse models in the sense that it is not possible to take control actions
which lead to a certain cost. Instead it is not clear how undesirable an infeasibility is.
By varying the weights in the aggregate objective function a set of solutions can be
obtained in which a trade-off is made between solution quality and model robustness.

Considering the solution robustness there is a range of robustness measures to which
the model can be optimized. As we will study a recourse model in this thesis, it is
interesting to list which robustness measure possibilities the literature offers. In the
next paragraphs an enumeration is made and some advantages and disadvantages
are examined.

The most straightforward is the expected goal function, in which a weighted aver-
age is taken over the possible realizations of the parameters. Here it is important to
note that the solution for this model when the expected goal function is taken over
the possible parameter realizations is in general very different from the goal function
value of the problem when the expected parameter values are taken as input. This
straightforward measure may not be totally adequate as usually utility is considered
as primary goal for the homo economicus and a Von Neumann-Morgenstern utility-
function is not necessarily risk-neutral. A possibility based on the expected goal
function measure to allow for non risk-neutral preferences of the decision maker is to
introduce a mean-risk robustness objective. In the objective function the expected goal
function and a dispersion measure of the goal function over the demand realizations
are taken into account. This is also very usual for interval-based uncertainty, see for
example [3], where different measures for risk are considered and their computa-
tional suitability is evaluated. Variance as measure for risk may be computationally
impractical, but it also does not take skewness of the goal function values into ac-
count, which may be interesting. Besides it is hard to give a clear interpretation to
such a mean-risk objective.

Another possibility is max(min) the worst-case objective value for a maximiza-
tion (minimization) problem. As the worst-case objective value has to be found by
maximizing or minimizing over the possible realizations of uncertain parameters.
Therefore such a problem becomes a maximin (minimax) problem. After finding
a solution, it is possible to say that the solution will be at least as good as some
value over all scenarios, which gives a concrete interpretation of the goal of robust
optimization, finding a solution that performs well under all parameter realizations.
There are both advantages and disadvantages to this approach. The advantage of
this approach is that there is no need for probability distributions. A disadvantage
is that the solution is dominated by the worst-case scenario.

A closely related robustness measure is absolute regret. For each parameter re-
alization the objective value of the solution is compared with the optimal objective
value possible when the information about the parameters would already have been
available. The difference between these two values is called the regret. The objective
is to minimize the largest regret, which also makes it a minimax problem. The idea
behind this measure is that the performance of the decision maker can be measured
in this way. After the realization of demand it is possible to see what the profit is and
to calculate what the profit could have been. The lower the difference, the higher is
the perception of the performance of the decision maker. The value per scenario over
which the maximum is taken in fact only differs by a constant, the optimal solution
under perfect information, from value per scenario over which the maximum is taken
in case of max(min) worst-case objective value, such that solution techniques are sim-
ilar. Related to absolute regret is the robustness measure of relative regret. For this
measure the regret is divided by the optimal value under perfect information to get
the relative regret. The largest relative regret is minimized. This is more interesting
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when the performance of the decision maker is measured by the percentage of sub
optimality of the chosen solution. The best robustness measure to choose depends
on the information available, some measures need probabilities, and the goals and
degree of risk-aversion of the decision maker.

All these maximin or minimax problems can be completely dominated by the
worst scenario. This may lead to undesirable effects for example when the worst
scenario is very different from the other scenarios and the performance of the solution
at the other scenarios is very bad. Therefore in [12] an approach was introduced called
α-reliability in which not all scenarios are taken into account. Under the assumption
of the availability of probabilities the minimum regret value over an endogenously
selected set with combined probability larger or equal than α is maximized. The
point of Daskin et al. is that for example an airport is never sized for an average day
or for a peak day. It does not treat the possibility that regrets in the tail are excessively
higher. In this thesis a recommendation of that paper in the case of unavailability is
used, N-reliability, and not applied on regrets but instead just on the goal function.
This is the same idea, but now the endogenously selected set should contain exactly
N scenarios. This set and the solutions for the variables are chosen such that the
minimum goal function of this set is maximal. In a further paper [8], Daskin made
another proposal based on endogenously selected scenario sets to eliminate worst
case scenario. The mean-excess regret model takes the mean of the regret. This is
clearly easier to calculate but the reason why to exclude worst-case scenarios in this
case is not completely obvious anymore.

Also proposed in [25] is a robustness measure which combines expected goal
function value and the sensitivity of the solution to changes in demand for a model
in which the expected demand is taken. The dual values for the variables in the
optimal solution of the constraints involving the uncertain parameters can be taken
as measure for sensitivity. However the general idea is that taking the expected
demand, still with this extra term in the goal function, does not result in very robust
solutions.

For the recourse models usually the solution robustness and model robustness
are the criteria were a robust optimization focuses on. However sometimes it is
also useful to have robustness in the solution itself, i.e. the second-stage variables
should be ‘nearly‘ equal over all scenarios. In [9] and [10], papers from 1987 and
1990, the differences of the solution of the scenarios are reactively evaluated after
the optimization. In the years from then on several papers were written in which
this robustness in the second-stage variables was taken into account in the objective
function, mostly with a multi-criteria objective as a result resembling to [23].

In 1997 [38] the concept of restricted recourse was introduced. This is an objective
that stands apart from model robustness and solution robustness and could be seen
as related to a new business goal called recourse robustness. In a constraint the dif-
ferences in second-stage variables is can be measured by the mean of the Euclidian
norm per scenario taken over the difference between the second-stage variables and
the mean second-stage variables over all scenarios. One of the alternatives is to take
the maximum of that Euclidian norm. These measures were restricted to be below a
certain threshold. When this threshold is lowered, the constraint is more strict and
consequently the cost of the solution (if the objective deals with costs) will become
higher. By solving the program for multiple decreasing values for the threshold,
a Pareto-curve can be made to compare costs and robustness in the solution. The
model can be solved by an iterative procedure in which a solution is made without
restrictions on recourse differences and based on that solution new bounds are added
for the recourse variables after which a new solution is made and so on. They pro-
posed multiple procedures and [5] tried to improve on that. In 2003 [6] appeared in
which the concept of limited recourse is introduced. There the focus is on models in
which in the first-stage an estimation is made and in the second-stage this estimation
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is adapted. In reality here only the variables of the first-stage and the variables of the
second-stage for this scenario will be observed. Now it would be very desirable if
the observed second-stage estimation is still very similar to the first-stage estimation.
No constraints on the difference between the second-stage variables is required, but a
constraint on the difference between first-stage variables and second-stage variables
would be very useful. This is the concept of limited recourse. Note that this will
usually imply that the second-stage variables are still not very different from each
other as they all are close to the first-stage variables. The procedure to tighten the
recourse limitations more and more is similar as in the previous articles. This article
seems to be the latest state-of-the-art.

Note that many optimizations are multi-objective optimizations. The usual way
to deal with multiple objectives is to construct a single aggregate objective function.
For each objective a scalar weight is defined. Those scalar weights are determined
by the optimizer-user and therefore this kind of objective functions are subjective.
Another disadvantage is that in this way not all non-dominated, or Pareto optimal,
solutions are found. Pareto optimal solutions, named after the Italian economist
Vilfredo Pareto, can be split in strong and weak Pareto optima. A strong Pareto opti-
mum is a solution in which no objective can be improved without worsening any of
the other objectives, while in a weak Pareto optimum no objective can be improved
without not improving any of the other objectives. As can be seen in chapter 4 of
[26] only solutions on the convex part of the Pareto front can be found. To overcome
these disadvantages sometimes other ways of optimization are tried, belonging to
the more general class of vector optimization. Thereby vector optimization under
uncertainty can be seen as a more general class of optimization under uncertainty.
Recently this topic gained interest, see for example [13]. It is a very interesting field,
but this thesis will deal with a single aggregate objective function.

4.2 Assumptions

At implementing methods for robust optimization in the Macro Planner a few as-
sumptions are made. These assumptions will be listed here and also a remark is
made on the practical quality of these assumptions. In general the assumptions are
chosen in a way to hold as much as possible for Macro Planner users such that the
proposed robust planning options will also have practical value. In that we focus
on the application of the Macro Planner to support long term strategic decisions,
because then a planning horizon is considered for which the parameters can not be
established with certainty. When the Macro Planner is used to find a Sales and Oper-
ations plan, a lot more information is available and robust planning makes less sense.

An assumption regarding the data uncertainty is that we only study uncertainty
in the demand forecasts. While, as said, in supply chains there are more sources of
uncertainty, we decided to focus only on demand, because about that probably most
information is available at companies. Another assumption is that the uncertainty
is in the form of scenarios, like HIGH, MEDIUM and LOW, not necessarily meaning
a scenario contains realizations that are strictly higher or lower than realizations in
another scenario. In every scenario there is a quantity for the expected demand per
period and sales segment, the sales forecasts. According to consultants with Macro
Planner experience this is more realistic than intervals for the demand. Moreover
correlation in demand is expected and it is easier to represent this with discrete uncer-
tainty. We will present both robustness measures which require risk and which also
suite uncertainty. So it is not really necessary to have probabilities for the scenarios.

In case there would be independence among the uncertain parameters and there
is a so-called full-factorial scenario design of data uncertainty, a set of total scenarios
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have to be created. The size of this set grows exponentially with the number of
uncertain parameters. Therefore this is not really the ideal situation, we rather
would like to have only a limited number of total scenarios. However we still try to
design our solution methods such that it can handle many scenarios.

Furthermore we assumed that the object value has a 1-to-1 relation with the quality
of the decisions made on the supply chain planning solution. Implicitly this assumes
that the planner used exactly the right parameters and weights in the goal function.
On average this assumption may be valid as sometimes parameters, the ‘certain‘
parameters, are overestimated and sometimes underestimated. For individual cases
this assumption will probably not be true, but without this assumption no model
would be possible.

We assume that the Macro Planner is run once and the decisions made for the plan-
ning horizon cannot be reversed or cancelled, a so-called here-and-now approach. In
this way our models are two-stage recourse models. In practise the Macro Planner
is run once or a few times per year to support decisions at the highest strategic level.
This means that maybe multi-stage recourse models could model situations with a
planning horizon of multiple years better. This would be a topic for further research.
For more information about multi-stage recourse models we refer to [35].

The assumption that the decisions cannot be reversed or cancelled is unrealis-
tic from practical perspective. In some sectors investments with a very long cost-
recovery-time are made, like building oil rigs in the oil sector, and then this is of
course very valid. But in fact in most businesses companies always have their possi-
bilities with an active management style to react by adaptations in the strategy on the
highest level when demand changes. Contracts can be adapted, extra subcontractors
can be hired, new infrastructure can be made etcetera. That is also the reason that in
business often the policy is to make a planning only on the most likely scenario and
analyze the consequences when demand is different. When there is an indication that
the demand is different from the most likely scenario new measures can be taken.
Still our model with this assumption is interesting from practical perspective as the
scrap prices we use can also be interpreted as costs for adapting strategies.

In fact this possibility for adaptations by the management hints at the appropriate-
ness of restricted recourse to model robustness when variables which are now marked
as scenario-independent variables will be marked as recourse variables. However a
model based on it would require more information about which strategy decisions
can be adapted in what way. It is unlikely that accurate information is available on
that and therefore we still see this model as a very valuable model.

Also about the decisions which can be made after information is revealed assump-
tions have to be made. When taking all variables on which the high level strategic
decisions have to be made equal across all scenarios it means that the quantity of a
product in each stocking point in period is equal across the scenarios. At the stocking
points having sales demands which are scenario-dependent now decisions have to
be taken in each scenario. The assumption is that the sum of quantity of all sales
demand of a product that is fulfilled at a stocking point in a period equals in every
scenario the supply plus the quantity that was carried forward from the previous
period minus the quantity that is carried forward towards the next period and the
quantity of dependent demand to be fulfilled (all first-stage variables). So that total
sum is always equal, but the division, how that quantity is allocated to the different
sales demands, can be chosen differently in each scenario. The consequence from
choosing an amount of a sales demand that is fulfilled is that in case the actual
parameter for the quantity of the sales demand is lower than the fulfilled quantity,
the difference is called the over produced quantity. The constraint indicating that
fulfilled quantity should be lower or equal than the demand quantity is therefore
changed such that the fulfilled quantity minus the over produced quantity should
be lower or equal than the demand quantity. The over produced quantity is simply
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scrapped.
The scrapping possibility for over produced quantity is introduced to overcome

feasibility problems. Otherwise the fulfilled demand should always have been lower
or equal to the smallest demand over all scenarios. Now the recourse problem has
relatively complete recourse which can be used in our solution procedures. It cannot
be called complete recourse because if a produced quantity per pispip would be
chosen negatively in the first stage, which is actually prevented by restrictions, no
feasible choice can be made for the fulfilled quantities any more.

An alternative option would be to introduce variables for extra carried forward
quantity per scenario and charge that with the inventory cost. However in the plan-
ning application the end inventory is not valuated. When it is completely uncertain
whether there will exist demand after the planning horizon this sounds reasonable.
Now it is far from imaginary that once carried forward inventory will also be in
inventory at the end of the planning horizon, while in reality these products would
be scrapped probably. On the other hand when there is a low demand in the current
period and a higher demand than expected in the next period it is completely unnat-
ural to scrap your products. This makes the chosen assumption quite debatable and
probably a combination of the possibility to scrap and the possibility to store over
produced products in inventory would be best. Finally note that we also assume it
is always possible to sell your products against a scrap price that also possibly is 0 or
negative.

4.3 Models

For the Macro Planner in accordance with our assumptions we will work with a two-
stage recourse model, in which fulfilling the demands and scrapping over produced
products are the recourse actions. Then we chose three robustness measures to
model and implement the maximization of the expected goal function, maximizing
the minimum goal function over the scenarios and N-reliability. Note that the first
measure only makes sense when probabilities are available, while the other two do
not need them. First the general form of the models is shown.

For the case of optimizing to the robustness measure of expected goal function
value, we have this model:

max cx +
∑

ω∈Ω
(pω ∗ dωyω)

st A1x ≤ b
A2x + Bωyω ≤ bω ∀ω ∈ Ω

x, yω ≥ 0

Here x represents the scenario independent variables and yω are the scenario depen-
dent variables. These are multiplied by parameters in the objective function. Later in
this section we will point out why the coefficients of the variables yω are not equal for
all forecast scenarios. In the constraints we have bω as right hand side, parameters
which are scenario dependent. This is natural as the constraint that fulfilled quantity
minus overfulfilled, to be scrapped, quantity should be lower or equal than parame-
ter Quantitysd,ω. Obviously this does not mean that every parameter in vector bω is
scenario dependent. An example is the quantity of a sales target. Some coefficients
of scenario dependent variables in the constraints are also scenario dependent as
will be explained later. From this model we will get the optimal first-stage decision
variables x and the optimal second-stage decision variables yω for all scenarios.

When the worst-case goal function value is maximized using the same terminol-
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ogy the model will look like this:

max min
ω∈Ω

(cx + dωyω)

st A1x ≤ b
A2x + Bωyω ≤ bω ∀ω ∈ Ω

x, yω ≥ 0

Note that it is possible and useful to rewrite this into a standard LP-formulation by
introducing an extra variable δ. This is the formulation we will use.

max cx + δ

st δ ≤ dωyω ∀ω ∈ Ω

A1x ≤ b
A2x + Bωyω ≤ bω ∀ω ∈ Ω

δ, x, yω ≥ 0

If we maximize this model, this objective function subject to these constraints, we
get the optimal first-stage decision variables x, the optimal artificial variable δ and
the optimal variable yω̃ for the scenario(s) endogenously identified as the worst-case
scenario(s). However we do not obtain the optimal values for yω for all ω ∈ Ω/ω̃. As
long as A2x + Bω ȳω ≤ bω and dω ȳω ≥ dωyω̃, ȳω is in the set of optimal solutions. As
we want to present not only the first-stage decisions but also the consequences for all
forecast scenarios, we have to find also the optimal solutions yω for those scenarios
that are not the worst-case scenarios. We can find those optimal values by solving
for all scenarios, ∀ω ∈ Ω

max dωyω
st A2x + Bωyω ≤ bω

yω ≥ 0

which will also come back as subproblem of solution methods presented in section
4.4.

When an optimization is made with N-reliablity, the model will look like this
with M being a very large value compared with the other possible values for the goal
function:

max min
ω∈Ω

(cx + dωyω + (1 − zω)M)

st A1x ≤ b
A2x + Bωyω ≤ bω ∀ω ∈ Ω∑

ω∈Ω
(zω) = N

x, yω ≥ 0
zω ∈ {0, 1}

Similar to the former robustness measure, also now this model can be rewritten, this
time to a mixed integer programming form due to the presence of binary variables.
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max cx + δ

st δ ≤ dωyω + (1 − zω)M ∀ω ∈ Ω

A1x ≤ b
A2x + Bωyω ≤ bω ∀ω ∈ Ω∑

ω∈Ω
zω = N

x, yω ≥ 0
zω ∈ {0, 1}

The observations of the worst-case goal function do also hold here. Only for the Nth
worst scenarios the optimal value for yω can be obtained. Be aware that for the N
scenarios which have a zω of 1 the value of M is not added such that they are the N
scenarios relevant for determining δ. For the other scenarios the model

max dyω
st A2x + Byω ≤ bω ∀ω ∈ Ω

yω ≥ 0

has to be solved to obtain their optimal values. Again this is necessary to present
the decision maker information on the consequences for all possible sales forecast
realizations.

To give these abstract models further interpretation we have to decide which
variables in the CapacityPlanningAlgorithm of the Macro Planner are first-stage
variables and which variables are second-stage variables. To read the rest of this
section, the description of the Macro Planner given in chapter 2 does not suffices. It
is required to read appendix A.

The chosen division is presented in table 4.1. According to our assumptions
most spill variables, like the total quantities supplied and the quantities of a supply
routing are structure decisions. On basis of the outcomes of these variables, high
level strategic decisions will be taken. For example the variables for carried forward
inventory are important for decisions on the design of stocking points. Therefore
they need to be fixed over all scenarios.

The other variables which will be chosen after the information about demand
becomes clear do not initiate strategic decisions and are therefore free to be chosen
optimally per scenario. FulfilledQuantitysd,ω is the only spill variable which is made
scenario dependent. For strategic decisions it is not important which demand is
actually fulfilled if it is for the same product and from the same sales segment and
the quantity is dependent of the quantity of demand. A newly introduced variable
is OverProducedsd,ω, which is a recourse variable. If in the second-stage it becomes
clear that too much is produced for a stocking point in a certain period it is possible to
scrap the product against a scrapping price. That quantity is called the over produced
quantity.

Note that the other second-stage variables are derived from the FulfilledQuantitysd,ω
variables and for them higher demands can have a negative influence on the goal
function value. This does not allow us to label a scenario for which another scenario
exist with a lower or equal quantity for each sales forecast as trivial when optimizing
the goal function value of the worst-case scenario.

22



First-stage variables Second-stage variables
Quantitysr FulfilledQuantitysd,ω
Quantityso OverProducedsd,ω
Quantityns UnfulfilledPercentagefg,ω
Quantityop UnfulfilledPercentagefgp,ω

MinimumQuantityNotMetut OverFulfilledQuantityst,ω
MaximumCapacityOverloadedut UnfulfilledQuantityst,ω

MinimumProductQuantityNotMetut,p OverFulfilledQuantitystp,ω
MaximumTimeOverloadedut UnfulfilledQuantitystp,ω

CarriedForwardInventorypispip RealFulfilledQuantityid,ω
SPCarriedForwardInventoryspip

UnallocatedSupplypispip
FulfilledQuantityd

Table 4.1: Variable division with respect to information

The concrete constraints in these two-stage recourse models are now:

Un f ul f illedQuantityst,ω ≥MinimumQuantityst −
∑

sd∈SDsals

(Ful f illedQuantitysd,ω

−OverProducedsd,ω) (4.1)

∀sals ∈ SalS, st ∈ STsals, ω ∈ Ω

Over f ul f illedQuantityst,ω ≥
∑

sd∈SDsals

(Ful f illedQuantitysd,ω −OverProducedsd,ω)

−MaximumQuantityst (4.2)

∀sals ∈ SalS, st ∈ STsals, ω ∈ Ω

Un f ul f illedQuantitystp,ω ≥MinimumQuantitystp

−
∑

sd∈SDsals |Startsd≤Startstp<Endsd and
∑

p∈P(STPonPstp,p×DinPISPIPsd,p,sp,t=1)

(Ful f illedQuantitysd,ω −OverProducedsd,ω)

(4.3)

∀sals ∈ SalS, stp ∈ STPsals, ω ∈ Ω

Over f ul f illedQuantitystp,ω ≥ −MaximumQuantitystp

+
∑

sd∈SDsals |Startsd≤Startstp<Endsd and
∑

p∈P(STPonPstp,p×DinPISPIPsd,p,sp,t=1)

(Ful f illedQuantitysd,ω −OverProducedsd,ω)

(4.4)

∀sals ∈ SalS, stp ∈ STPsals, ω ∈ Ω

Un f ul f illedPercentage f g,ω ≥ Ful f illmentPercent f g−∑

sd∈SDsals

(Ful f illedQuantitysd,ω −OverProducedsd,ω)/Quantitysd,ω (4.5)

∀sals ∈ SalS, f g ∈ FGsals, ω ∈ Ω

Un f ul f illedPercentage f gp,ω ≥ Ful f illmentPercent f gp−∑

sd∈SDsals |Startsd≤Startstp<Endsd and
∑

p∈P(FGPonP f gp,p×DinPISPIPsd,p,sp,t=1)

(Ful f illedQuantitysd,ω −OverProducedsd,ω)/Quantitysd,ω

(4.6)

∀sals ∈ SalS, f gp ∈ FGPsals, ω ∈ Ω
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(1 − IsEarlySupplyAllowed)
∑

ns∈NSpispip

Quantityns ≤
∑

d∈Ddpispip∪Idpispip

Ful f illedQuantityd +
∑

d∈Sdpispip

Ful f illedQuantityd,ω (4.7)

∀ω ∈ Ω, pispip ∈ PISPIP

UnallocatedSupplypispip =
∑

ns∈NSpispip

Quantityns +
∑

is∈ISpispip

Quantityis

+ CarriedForwardInventory(p,sp,t−1) − (
∑

d∈Ddpispip∪Idpispip

Ful f illedQuantityd +
∑

d∈Sdpispip

Ful f illedQuantityd,ω)

(4.8)

∀pispip = (p, sp, t) ∈ PISPIP, ω∈ Ω

0 ≤ Ful f illedQuantitysd,ω ≤ Quantitysd,ω + OverProducedsd,ω ∀sd ∈ Sd, ω ∈ Ω (4.9)

Un f ul f illedPercentage f gp,ω ≥ 0 ∀ f gp ∈ FGP, ω ∈ Ω (4.10)

Un f ul f illedPercentage f g,ω ≥ 0 ∀ f g ∈ FG, ω ∈ Ω (4.11)

Un f ul f illedQuantitystp,ω ≥ 0 ∀stp ∈ STP, ω ∈ Ω (4.12)

OverFul f illedQuantitystp,ω ≥ 0 ∀stp ∈ STP, ω ∈ Ω (4.13)

Un f ul f illedQuantityst,ω ≥ 0 ∀st ∈ ST, ω ∈ Ω (4.14)

OverFul f illedQuantityst,ω ≥ 0 ∀st ∈ ST, ω ∈ Ω (4.15)

RealFul f illedQuantityid,ω ≤ Ful f illedQuantityid ∀ω ∈ Ω, id ∈ IDpispip|
∑

sd∈SDpispip

(Quantitysd,ω > 0)

(4.16)

RealFul f illedQuantityid,ω ≤ Quantityid,ω ∀ω ∈ Ω, id ∈ IDpispip|
∑

sd∈SDpispip

(Quantitysd,ω > 0)

(4.17)

From these constraints it can be observed that the only reason that Bω is scenario
dependent is the presence of fulfillment goal constraints in which fulfilled quantity
and overfulfilled quantity are divided by the quantity of the sales demand under that
scenario. This is the direct consequence of the fact that unfulfillment is measured
as percentage. When the model would be a little bit adapted such that a penalty on
unfulfillment is given per quantity Bω reduces to B. The coefficients dω are scenario
dependent as in the goal function the fulfilled sales demand under a scenario is
rewarded with the revenue per unit of the sales demand under that scenario. As
explained in chapter 2 that revenue per unit is dependent on the quantity of the sales
forecasts netted to the sales demand. When another revenue per unit calculation
would be used it might very well be possible to reduce dω to d.

Returning to the division of variables we note that as the inventory demand can
be defined as a number of days times the sales quantity per day, the quantity is
sometimes scenario-dependent. For those inventory demands we still want to have
a fixed decision variable as it can form the basis of high-level strategic decisions, but
in the goal function only the real fulfilled quantity can be rewarded.

Finally note that these restrictions could be relaxed. Now per scenario a certain
customer service level, and a productivity level is required. It is also possible to say
that the expected customer service or the expected productivity over all scenarios
should be on a certain level. The constraints would then become for the example of
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a fulfillment goal:

ExpectedUn f ul f illedPercentage f g ≥ Ful f illmentPercent f g−∑

ω∈Ω
pω ∗

∑

sd∈SDsals

(Ful f illedQuantitysd,ω −OverProducedsd,ω)/Quantitysd,ω

∀sals ∈ SalS, f g ∈ FGsals

where pω is the probability of forecast scenario ω. This implies that such a relaxation
is only possible for situations when probabilities are known. Relaxations for the
product fulfillment goal, sales target and product sales target works likewise. The
term ExpectedUnfulfilledPercentagefg is in the goal function penalized by the old
WeightFulfillmentGoal, but is taken outside the summation over the scenarios. It is
an relaxation in the sense that for every solution in total a lower or equal penalty is
given, such that a higher or equal objective value is assigned to the solution. This
holds especially for solutions in which the fulfillment goal under the old rules were
hardly ever reached in order to score better on the other business goals. Therefore it
is quite well possible that after this relaxation an optimal solution will be found with
a better score on the other business goals than in the old solution. In our models we
assume the planner wants to reach the fulfillment goal in every forecast scenario and
we will not elaborate on this relaxation further.

4.4 Solution Methods

In this section for the three models a number of solution methods are proposed.
These solution methods are largely based on methods described in the literature.
But here some new possibilities are proposed for problems, where only right-hand
uncertainty occurs.

4.4.1 Model I

The model which optimizes on the expected goal function can be solved by a LP
solver, for example using the simplex method because this so called deterministic
equivalent of the stochastic problem is a LP formulation. In fact this is the most nor-
mal solution and the solution implemented in the developed Robust Macro Planner.
However, this can still lead to larger computation times when the original determin-
istic problem is very large or the number of scenarios is large. After all the size of the
model is equal to the original size times the number of scenarios. In those cases it can
be interesting from computational point of view to investigate alternatives. However
current LP solvers of CPLEX are already very efficient and therefore it seems that try
to implement an own LP solving method designed for such large problems as for
example in [21] has a low chance to give an improvement.

But the structure of the problem, the scenario-dependent variables are used in
separate constraints, gives causes to investigate decomposition methods. To fully
exploit possibilities of decomposition methods we decided that unlike in the Macro
Planner implementation, we will focus on models in which unfulfillment is measured
by number of units unfulfilled and revenue per unit is obtained from taking the
average of the revenues per quantity of orders and sales forecasts instead of taking
the weighted average. The difference of the approximation of reality, would it be
worse, is for many cases minimal and by allowing dω and Bω to be reduced to d
and B the solution time could be lower for decomposition methods. However we do
acknowledge that it is slightly more natural to measure fulfillment as a percentage
and therefore this is a small weak point in the decomposition methods analysis.
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Furthermore to enforce relative complete recourse we introduced a variable
ToBeSpendpispip, which is equal to the amount flowing in to a pispip. In this way the
scenario independent inflow can be separated from the scenario dependent outflow
considered in the first-stage constraints and the second-stage constraints. From the
deterministic point of view this change does not change anything as the variables are
substituted in the solution process. Needless to say, when comparing the solution
times the decomposition methods obviously are only compared against deterministic
methods on the same problem, with the same assumptions for d and B.

Due to the special structure of the problem a stochastic Benders decomposition
(also called L-shaped decomposition), equivalent with Dantzig-Wolfe decomposi-
tion on the dual version of the problem, may be possible. This method is originally
introduced in [37] and since then an important tool in stochastic programming. The
idea of these decomposition methods is to split the problem into many subproblems
which can be solved a factor more than many quicker than the overall problem by
an LP-solver, thus reducing computation time when there are many scenarios. As
can be seen in [2] other optimizing software solutions recognize the possible benefits
of decomposition methods in robust optimization. In AIMMS you have the possi-
bility to convert a deterministic problem into a stochastic problem and as solution
method Benders decomposition is one of the two options. Also in literature Benders
decomposition for recourse models is much discussed. See for example section 3.2
of [18]. In [14] nested Benders decomposition designed for multi-stage problems is
discussed.

In the context of multi-stage problems there are apart from the nested Benders
decomposition approach which decomposes the problem to all the stages, leading to
problems per stage which are made of sub problems per possible parameter realiza-
tion, more decomposition methods of which the scenario decomposition method is
the most prominent one. The scenario decomposition method identifies a scenario as
one vector of parameter realizations from stage 1 until stage T. The problem is now
decomposed into problems per scenario in which the nonanticipativity constraints
are dropped. That are the constraints to ensure that variables should be the same up
to stage i for scenarios that have the same parameter realizations up to stage i. In [22]
this approach is studied extensively. Possibly the attractiveness of this alternative is
mostly the possibility of avoiding a nested structure. For a two-stage recourse model
this way of decomposition is actually never proposed, possibly because the lack of
nested structure in the stochastic Benders decomposition. Therefore we will only fo-
cus on the stochastic Benders decomposition as alternative to solving the large linear
program. Other decomposition methods which are interesting for a multi-stage case
but are not interesting for our two-stage model can be found in [20].

For this model I to apply stochastic Benders decomposition the form should now
first be rewritten to:

max cx + θ

st A1x ≤ b
θ ≤ Q(x)
x ≥ 0

with Q(x) =
∑
ω∈Ω(pω ∗Q(x, ω)), a probability-weighted aggregation of subproblems

Q(x, ω) = max {dyω|A2x + Byω ≤ bω, yω ≥ 0}
Note that the subproblem Q(x, ω) can also be formulated in it’s dual form:

Q(x, ω) = min {πω(bω − A2x)|πωB ≤ d, πω ≥ 0}

by the strong duality in linear programming. Remark that in this dual formulation
the feasible region is the same for every ω and every possible first-stage value x. The

26



first-stage and second-stage decisions are clearly separated now and the decomposi-
tion possibilities appear.

A single-cut stochastic Benders decomposition, the most common form, now works
as follows. First constraint θ ≤ Q(x) can be dropped to get the master problem (MP)
of the Benders decomposition. The (MP) is solved multiple times, each time leading
to a candidate solution (x̄, θ̄). In the first iteration θ̄ is obviously chosen as some
value but the idea is to generate optimality cuts in each iteration thus restricting θ
depending on the choice of x in further iterations. The objective function value which
can be reached by maximization non-increases in the number of added restrictions
for θ and therefore it is natural to set θ to infinity when generating the first candidate
solution. Observe that stochastic Benders decomposition is therefore a form of a
cutting plane method.

For each solution (x̄, θ̄) the optimality cuts are generated by solving Q(x̄). The cut
that can be introduced for candidate solution x̄ is then

θ ≤
∑

ω∈Ω
(pω ∗ π(x̄)ω(bω − A2x))

Here π(x̄)ω represent the optimal dual variables found for forecast scenario ω and
candidate solution x̄. The correctness of this new optimality cut can be understood
by observing that for x , x̄, all other possible solutions for the first-stage variables,
there exists an optimal π(x) in every scenario for which the value of the dual problem
is equal or lower than for π(x̄) as this is still a feasible solution of the subproblem
for that x but not necessarily an optimal one. Risking repeating it too much, we
would like to stress that this problem has relatively complete recourse and therefore
no feasibility cuts are needed.

After a finite number of iterations this method will converge to an optimal solution
for (x, θ). For this candidate solution the generated optimality cut is already satisfied
as equality. By remarking that the candidate solution always gives an upper bound
on the optimal objective value and that an x̄ with θ such that θ =

∑
ω∈Ω(pω ∗π(x̄)ω(bω−

A2x)) is a lower bound on the optimal objective value, it can also be stated as the
situation in which this lower bound and upper bound are equal. As there is a finite
number of feasible bases for each subproblem, only a finite number of cuts can be
generated and the procedure will converge in a finite number of steps. Then the
variables yω can be found again by solving the subproblems for this given x or by
looking it up from memory as the subproblems have already been solved for this x
to establish convergence.

Summarizing in steps the stochastic Benders decomposition works as follows:

Step 1 Solve (MP) generating a new candidate solution (x̄, θ̄). In the first iteration θ̄
is set as infinity.

Step 2 Solve Q(x̄) to generate the optimality cut θ ≤ ∑
ω∈Ω(pω ∗ π(x̄)ω(bω − A2x)).

If this constraint is already satisfied, stop; the candidate solution is the opti-
mal solution for (x, θ) and the solution for yω can be derived by solving the
subproblems. Else add that constraint to (MP) and go back to step 1.

As mentioned this procedure of the stochastic Benders decomposition using an
aggregated θ is called a single cut approach. In [7] another way to execute the same
Benders decomposition was suggested. It is equally well also possible to write the
problem as

max cx +
∑

ω∈Ω
pω ∗ θω

st A1x ≤ b
θω ≤ Q(x, ω) ∀ω ∈ Ω

x ≥ 0
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with Q(x, ω) still being defined as

Q(x, ω) = max {dyω|Byω ≤ bω − A2x, yω ≥ 0}

A similar decomposition procedure can be used. Now all the constraints θω ≤
Q(x, ω) are dropped to get the Master problem. In each iteration a candidate solution
(x̄, θ̄1, ..., θ̄|Ω|) is generated and after solving the subproblems a total number of |Ω|
constraints can be added:

θω ≤ π(x̄)ω(bω − A2x)

for every scenarioω ∈ Ω. Contrary to the previous method this is called the multicut
procedure.

There are pros and cons for both the single cut procedure and the multicut pro-
cedure. It cannot be said that in general one method performs better. In the single
cut procedure aggregation leads to a loss of information and in general (a counter
example was also given in [7]) less iterations with candidate solutions have to be
tried to obtain the optimal solution. On the other hand in the multicut procedure
the size of the (MP) will be larger and increasingly larger in the number of iterations.
If m1 represents the initial number of constraints in the (MP) and n1 is the size of
decision vector x, the size of (MP) expressed in number of constraints times number
of variables at iteration k+1 in a multicut approach will be (m1 + k ∗ |Ω|) ∗ (n1 + |Ω|),
while for a single cut this would be (m1 + k) ∗ (n1 + 1). Therefore the (MP) in the
multicut approach has in general a larger solution time. These effects are conflicting.
A suggested rule of thumb is that the multicut approach is preferable to a single cut
approach if the number of scenarios is not much larger than the number of decisions
variables of the original (MP). The intuition should be that when the number of sce-
narios is much larger the increase in size of the (MP) after adding the cuts is too large.

Traditionally the choice was to use a multicut procedure or a single cut procedure,
but in [36] an approach is suggested in which falls in between. In their algorithm
the level of aggregation is determined endogenously in each iteration. Their results
suggest this approach may lead to better results and therefore this is interesting for
our problem as well.

Their procedure called adaptive multicut is initialized as follows. Introduce for
each iteration k a partitioning set Ω(k) = {Ω1,Ω2, ...,Ωlk } with the elements of Ωi for
1 ≤ i ≤ lk being scenarios. This partitioning satisfies by definition Ω = Ω1 ∪ ... ∪Ωlk
and Ωi ∩ Ω j = ∅ if i , j. So every scenario is included in one set in each iteration.
Define the aggregate probability as pΩi =

∑
ω∈Ωi

(pω). A (MP) with added optimality
cuts in iteration k now looks like:

max cx +
∑

d=1,...,lk

θd

st A1x ≤ b

θd ≤
∑

ω∈Ωd

(pω ∗Q(x, ω)) ∀d = 1, ...lk

x ≥ 0

The outline of the adaptive multicut procedure in steps can now be given as:

Step 0 Set k=0 and initialize a certain set aggregation Ω(0).

Step 1 Solve (MP). Set k=k+1 and store the candidate solution of the Master Problem
as (xk, θk

1, ..., θ
k
lk

)

Step 2 Generate Ω(k) based on Ω(k − 1) according to some aggregation policy (for
example: scenarios without tight/active constraints are aggregated). Then
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sum the probabilities of the old aggregations to get the probability of the new
aggregation. Also delete the variablesθd which belonged to aggregations which
are now aggregated and introduce a new variables θd for the new aggregation.
Construct optimality cuts for the new aggregations by taking a weighted sum
over the old optimality cuts.

Step 3 Solve the subproblems Q(x, ω) to get new optimality cuts in the master prob-
lem. Stop if x satisfies the optimality cuts, x is optimal. Else add them to the
(MP) and go to step 1.

When doing this for our problem we should probably start with l0 = |Ω| to have a
pure multicut procedure and let the algorithm aggregate scenario’s afterwards. This
is motivated by the point that scenario’s cannot be disaggregated in this algorithm
such that the aggregation level can never become lower and multicut would oth-
erwise not have been possible. Note though that the authors recommend further
research on possibilities of disaggregation. For our model we will use the redun-
dancy threshold(δ) of the authors. It means that if more than a fraction of δ of the
optimality cuts for an aggregation is a redundant cut, a cut which is already satisfied
by the choice of x and θω, the aggregation is nominated to be aggregated.

Finally something specific can be noted for our model and in general stochastic
models with only right-hand uncertainty. Technology matrix B and cost vector d are
the same for all scenarios in our assumptions and therefore the feasible region is the
same for all duals of the subproblems Q(x, ω). This should lead to computational
advantages. For example it is said that in a paper of Wets from 1983 the concept of
bunching is introduced. The point is that solving one problem Q(x, ω) by the dual
simplex method leads to an optimal basis, sayB. This optimal basis is also dual feasi-
ble for every other right hand side (in the primal formulation) bω −A2x. It is possible
to check whether the basis is also primal feasible after calculatingB−1(bω−A2x). This
vector consists of the values we want to assign to dual variables π and obviously
they are obliged to be larger or equal than 0.

In this way it is possible to already find a solution for some subproblems Q(x, ω)
without doing any operations on the basis and then these subproblems can be re-
moved from the set of subproblems which need to be solved. The next subproblem
from this set can be solved by using the old optimal basis B and applying the dual
simplex method. When the optimal solution is found again the other subproblems
are checked to have the same optimal basis. This procedure continues until every
subproblem is solved or bunched as it is called.

A related idea to use the bunching method is trickling down. There is a set of
right-hand side values bω − A2x, lets call it R. Then we start with a first element
bω − A2x ∈ R. We solve it’s subproblem to optimality. We store it’s optimal basis in
the root of a tree. Then we pick the next element ofR and first we check ifB−1(bω−A2x)
is primal feasible. If this is primal feasible register this subproblem to the root note.
If it is not primal feasible, perform one step of the simplex method. Store the number
of the row which is removed from the basis and the row which is inserted in the basis
in a branch of the root node. If this basis is not primal feasible continue to make a
step of the dual simplex method and create a branch for the created node. Continue
until primal feasibility is reached.

Then we can continue by picking the next element of R. If the basis of the root
node is already primal feasible we add the subproblem to the root node. Otherwise if
that basis has a row which is not primal feasible for the subproblem that corresponds
to a row for which we made a step of the dual simplex method earlier and thus
created a branch, we move along that branch and it is already known which row is
inserted. And again we check for primal feasibility. If there were no branches already
in the tree for all primal infeasible rows, we have to perform a step of the dual simplex
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method and create a branch and node ourselves. We continue until primal feasibility
is reached. We continue until we have gone through all subproblems. The advantage
to the normal bunching is that once we found an optimal basis for one subproblem
and another optimal basis for another subproblem, obtained from n dual simplex
method steps, we can obtain the optimal basis for a subproblem which needs only a
part of those n steps at no price.

In [17] and [15] optimal settings for such a trickling down method are discussed.
Important questions are what needs to be stored in the nodes (the entering row, an
eta vector or something else) and what pivoting rules should be applied by choosing
on which row a step of the dual simplex method has to be made. Those choices turn
out to have an important effect on the calculation time. In this thesis we will not deal
with the implementation a trickling down method and we will only use the normal
bunching principle. For the sake of completeness we note that another technique
called sifting is sometimes mentioned for solving multiple LP’s with only right-hand
side differences and it is said to be introduced in article of Gartska and Rutenberg
from 1973.

Furthermore we propose some additional options for this problem when there is
only right-hand side uncertainty. An observation is when Q(x̄, 1) is solved this leads
to a cutθ1 ≤ π(x̄)1(b1−A2x) in the multicut case. However the obtained dual variables
can also lead to valid cuts for all other scenarios: θω ≤ π(x̄)1(bω − A2x). These cuts
could also be added to the master problem.

It might be that they are the optimal cuts for such a scenario for this x̄ (A). But
it is also possible that for such a scenario and such a x̄ it is just a valid suboptimal
cut. Then there are two options, (B1) it is for that scenario an optimal cut for another
value of x, (B2) there are no values of x for which it is an optimal cut for that scenario.
Anyhow it means that if 1 subproblem is solved, in principle |Ω| cuts can be obtained
of different quality. These cuts of different quality all give some information to the
(MP), but it has the downside of a (large) increased number of constraints. The
number of variables on the other hand remains the same. Now the effects of this
trade-off on the computation time cannot be stated theoretically, in some problems
the fraction of cuts of type (A) and (B1) may be large and in other problems the
fraction could be zero such that all extra cuts are rather worthless. The advantage
over just generating some random extreme points of the polyhedron describing the
feasible region of the dual variables is larger when there is more similarity between
forecast scenarios. Keep in mind that as it is not possible to give a general rule
defining which cuts never will be active, there is no possibility of identifying cuts of
type (B2), there is no procedure to delete cuts. We can try some methods based on
this observation.

If we would apply this to the single cut decomposition the story is different. When
we have for each π(x̄)ω in θ ≤ ∑

ω∈Ω(pω ∗ π(x̄)ω(bω − A2x)) a number of |Ω| possible
values we could in principle create |Ω||Ω| cuts. However, this would lead to a very
undesirable situation: with a much larger number of cuts than in the similar multicut
case we represent the same information. In this situation choosing the multicut
approach is thus a free lunch. Furthermore we did find another sensible set of rules
using the |Ω| possibilities for the |Ω| scenarios to create more than |Ω| cuts.

For the same price of solving |Ω| subproblems more information for other re-
alizations of x is gathered. The opposite idea is behind the approach of solving 1
subproblem without solving the other |Ω| − 1 problems. Then an amount of compu-
tation time is saved and still a reasonable amount of information is gathered. With
less information in general, there exist counterexamples, more iterations to solve
the (MP) are required. Also here a difference between the multicut procedure and
the single-cut procedure can be pointed out: in the multicut procedure it is certain
that one of the added cuts is an optimal one, while for the single-cut procedure it is
unlikely that the added cut is an optimal one.
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We now offer three choices in this model with only right-hand side uncertainty
for the generation of cuts in the multicut procedure. In all these choices it seems
desirable to apply the bunching method and to store previous optimal bases for the
subproblems to facilitate warm starts.

1 Traditional method This is the traditional method which solves all subproblems
to optimality in each iterations and does not use the π(x̄)ω values for generating
cuts on other scenarios. The only way it can make use of the special structure
of out problem is by the bunching method.

2 |Ω| ∗ |Ω| cuts per iteration This is the method in which all subproblems are solved
to optimality in each iteration and every valueπ(x̄)ω is used in |Ω| cuts such that
in total |Ω| ∗ |Ω| cuts are generated. The bunching method can also be applied
such that some subproblems do not have to be solved by a simplex method,
but can be given their optimal π(x̄) immediately.

3 Solve one subproblem to optimality This method is formally described by the
following steps:

Step 0 Initialize a = 1, start = 1 and initialize (MP). Go to step 1.

Step 1 Solve (MP) to get a candidate solution with x̄ being the candidate solu-
tion for the first stage variables in iteration k. Initialize i = 0. Go to step
2.

Step 2 Solve Q(x̄, a) by applying the dual simplex method and find π(x̄)a.
IF θ̄a ≤ π(x̄)a(ba − A2x) already holds
set a = a + 1,i = i + 1 and go to Step 2

IF a=start
STOP

ELSE Construct |Ω| − i cuts (not for scenarios earlier solved
to optimality for this candidate solution) with this solutionπ(x̄)a.
Set start=a

Go to Step 1.

Now it seems not to be literally true that in each iteration only one subproblem is
solved as when the found optimality cut of a subproblem is already satisfied another
subproblem is solved. However without loss of generality it can be said that this is
the same as two iterations in which one subproblem is solved as solving the (MP)
after a set of already included cuts is introduced is just recalling the last candidate
solution and costs no time. Informally the convergence of this algorithm in a finite
number of steps can be derived from the point that there are only a finite number
of extreme points in the feasible region of each subproblem for which in each step
a cut is found. Because in each iteration only 1 subproblem is solved, the bunching
method cannot be exploited here.

Parallel to the issue related to the choice between a single cut option and the multicut
option when the adaptive multicut algorithm was interesting it might be that in this
case a golden mean between option 2 and 3 can be found, a part of the subproblems
is solved to optimality. Possibilities one might think of are for example:

• solving more subproblems to optimality when the objective value of the (MP)
is not decreased enough during the last iteration

• solve in each aggregation in the adaptive multicut algorithm only one subprob-
lem to optimality

• solve in each aggregation in the adaptive multicut algorithm or all subproblems
or no subproblems to optimality
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Another option could be only to add cuts for a part of the scenarios in case solving
the (MP) is slowed down considerably by the number of constraints as most con-
straints we add now are redundant. However, it is not really possible in advance to
say which constraints are redundant and even in the normal multicut case there are
no proposals to add only cuts for certain scenarios in a major iteration, while it is
equally possible that it speeds up the algorithm. Therefore we will not consider such
an option.

To complete the story we have to mention the difference for the three choices if
single-cut or adaptive multicut is applied. As said, when aggregation occurs choice 2
is not really possible anymore. Choice 1, the traditional option, is of course applicable
in the single-cut or adaptive multicut procedure. It is clear that before the algorithm
ends at least once a total optimal cut is introduced.

Another critical view on stochastic Benders decomposition comes from Ruszczynski.
His point is that in a cutting plane method like stochastic Benders decomposition
the first optimality cuts may be inefficient and later on in the algorithm there is no
reliable possibility of deleting earlier cuts. Therefore he studies in [29], [30], [32]
and [31] his so called regularized Benders decomposition. His idea is to change the
objective of (MP) into a non-linear function

max
x
{− 1

2 ∗ ρk
∗ ||x − z||2 + cx +

∑

ω∈Ω
(θω)}

We will now call this changed master problem the regularized master problem,
(rMP). The advantage of this new object function is that the method is stabilized,
i.e. a candidate solution in an iteration will not be very different from the previous
candidate solution. Here the variable z, which is a feasible solution, is called the
reference point. In each iteration the reference point can be replaced by the candidate
solution, an exact serious step or an approximate serious step, or remain the same, a
null step. The candidate solution is found by applying bundle methods and in the
end the method still converges.

This means that it is now possible to discard the generated cuts which were only
meant to describe a θω accurately for a very different first-stage solution from the
model: after all this first-stage solution will not be a candidate in the next iterations
by the quadratic penalty. This will make the (rMP) smaller than a normal (MP) such
that it can offset the increased solution time due to the non-linearity. We will not im-
plement this method because it takes more effort to implement the solution method.
Therefore we also refer for a more detailed description to the papers of Ruszczynski.
At least it may be an interesting option.

To conclude we have many ways to solve our model I: solving the deterministic
equivalent or solving the decomposition method when it is possible to choose be-
tween single-cut multicut or adaptive multicut and for each of these choises there
are still some options. In the next chapter we will again highlight what was exactly
implemented.

4.4.2 Model II

As was shown the model which optimizes the worst-case goal function can also be
written as a deterministic LP formulation. Therefore it can also be solved by a LP
solver and again this is the way the implementation is done in the Quintiq software.
Like for the previous model we will propose decomposition methods besides.

We use the same assumptions regarding d, B and the relative complete recourse
characteristic. As already emphasized in section 4.3 after solving the big LP model,
small LP models have to be solved to obtain the optimal yω. We do not know which
scenario(s) are identified as worst by the algorithm as also scenarios other than the
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worst can have their yω solution be set such that the equality δ = dyω holds. And
therefore we have to solve |Ω| of these problems.

Here it is possible to make extra gains with a decomposition method as then these
problems are already solved. The possibilities are similar to those in model I, while
there are some differences for this less standard stochastic Benders decomposition
example. In the literature the combination of this kind of worst case problems and
stochastic Benders decomposition is seldom seen. In [4] another type of decomposi-
tion is discussed for a worst case problem. But the ideas are obviously a bit similar
to the ideas in the previous model. First note that the model can be rewritten to:

max cx + θ

st θ ≤ Q(x, ω) ∀ω ∈ Ω

A1x ≤ b
θ, x ≥ 0

with the subproblems being exactly as in model I:

Q(x, ω) = max {dyω|A2x + Byω ≤ bω, yω ≥ 0}
And note again that the subproblem Q(x, ω) can also be formulated in it’s dual form:

Q(x, ω) = min {πω(bω − A2x)|πωB ≤ d, πω ≥ 0}
As for model I the feasible region is the same for every ω and every possible first-

stage value x. The only difference with the multicut version for model I is thus that
there is only one variable ω.

Here the constraints θ ≤ Q(x, ω) for every scenario dropped to get the (MP). This is
solved multiple times to get candidate solutions (x̄, θ̄). Each iteration |Ω| cuts

θ ≤ (π(x̄)ω(bω − A2x))

can be introduced. As in the former model, a candidate solution is an optimal solution
if all generated optimality cuts for that candidate solution are already satisfied. At
least one of the satisfied generated cuts will be satisfied as equality. That occurs at,
given by the optimality cuts, the worst-case scenario for first-stage solution x̄. Then
it is easy, at least if the optimal bases and solutions of the latest subproblems are still
in memory, for the optimal candidate solution (x, θ) to get the optimal solutions for
variables yω as they are the dual variables of the solved dual versions of Q(x, ω).

Unlike for model I, there is now no possibility to use a single cut method or a
adaptive multicut method as nowhere occurs aggregation. However similarly to
model I the feasible regions of each subproblem are the same. Therefore we do have
also the three possibilities to use the fact that one generated solution for the dual
variables is feasible for all first-stage solutions and all scenarios. The traditional
method, the |Ω| ∗ |Ω| cuts per iteration method and the solve one subproblem to op-
timality method for this model work in the same way as explained at model I. Now
the solve one subproblem to optimality method can turn out very strong if there is
one scenario which is regardless of the choice for first stage variables worst and that
scenario is chosen to be optimized. After the scenario is optimized to optimality the
other scenarios have to be solved only once to derive the final optimality cut for those
scenarios. The candidate solution will already satisfy this cut and the procedure is
terminated.

Due to the maximin structure of the problem some further specific considerations
come into mind. When we have a candidate solution (x̄, θ̄) after a number iterations
(say k), we may think that after the coming optimality cuts the candidates for x may
remain in the neighborhood of x̄ and furthermore (as a consequence) we may think
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that the worst-case scenario(s) found at the candidate solution x̄ will also remain
worst-case scenario(s) in the neighborhood of x̄. As other scenarios are not expected
to become a worst-case scenario we expect cuts for those scenarios to be irrelevant.
Therefore we can think of a depth first search method. Only when a generated opti-
mality cut for our worst-case scenario on which we focus is already satisfied we have
to generate the other optimality cuts on order to prove optimality of the solution. It
can be described in the following steps:

Step 1 until k Apply as usual the stochastic Benders method with the traditional
method or the |Ω| ∗ |Ω| cuts per iteration method. After k steps, go to depth step
1.

Depth step 1 Generate a new candidate solution (x̄, θ̄). Identify for this candi-
date solution the constraint(s) and corresponding scenario(s) for which θ =
π(x̄)ω(bω − A2x̄) holds. Store these scenario(s) in the set S.

Depth step i+1 Generate optimality cuts by solving Q(x̄, ω) for all ω ∈ S. IF
the optimal optimality cuts already hold as equality, solve

all other subproblems Q(x̄, ω) to test whether these are
also satisfied.

IF all these constraints are satisfied, (x̄, θ̄) is the optimal
solution.
ELSE go back to Depth step 1 to initialize a new set S.

ELSE generate a new candidate solution. (x̄, θ̄) and generate cuts
from the subproblems in S. Identify for this candidate solution
the ω ∈ S for which there is no constraint which holds
as equality anymore and remove these from S.
IF S is empty, go to Depth Step 1.
ELSE go to Depth Step i+1.

This can be added to the three options as the depth search after k steps method. The
best value to be chosen for k will obviously be very problem instance dependent. To
explain the difference with the solve one subproblem to optimality method it is im-
portant to note that in the worst case goal function situation in the end the first-stage
candidate solution is indicated by the most tight cuts of the scenario(s) identified as
worst and an optimal cut for the other scenarios only serve as confirmation of the
solution. In the expected goal function the cuts of all scenarios are determining the
first-stage solution. In the solve one subproblem to optimality method just a scenario
is picked to be solved to optimality, while here the signals about the scenario(s) which
are expected to become worst are used to determine which scenarios are solved. It
is useful to start with k normal steps in order to get a reasonable signal about the
scenario(s) to be identified as worst.

To conclude there are a number of methods to be used here: solving the deterministic
equivalent or solving with Benders decomposition, when there are still possibilities
to make a choice between the traditional option, the generate |Ω| ∗ |Ω| method and
the solve one subproblem to optimality method. Besides we can switch to a depth
first search method after k normal steps. In the next chapter we will again highlight
what was exactly implemented.

4.4.3 Model III

Our third model may be harder to solve for large instances because it is an integer
programming model. In principle it could always be enumerated into |Ω|!

N!∗(|Ω|−N)! mod-
els of the form of model II but it could be possible to find a solution with less effort.
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We tried several solution methods.

But before we study the way of solving our model, first we have to address the
way to determine our important parameter big M. A natural suggestion would be
to solve deterministic LP models for each of the scenarios separately to get an upper
bound for the goal function value and to use this value as bigM. These are the old
deterministic LP models with as only difference an extra possibility of overproduc-
tion and the possibility of fulfilling inventory demand more than the quantity, when
the real fulfilled demand is required to be lower or equal than the quantity.

Remark now that if for exactly one of the scenarios such a LP model would be
unbounded, this does not immediately imply that the problem is ill-posed. After all,
the goal function for that scenario has no influence on the objective function if x is
chosen such that the subproblem has an unbounded solution: it can not be the Nth
worst scenario. However, for this special case we can denote that if for one scenario
the LP model is unbounded, for all scenarios it has to be unbounded. This can be
explained by the fact that all problems have the same constraint matrix except those
constraints for which the fulfilled sales demand plus the scrap should be lower or
equal than the quantity for a sales demand. Both fulfilled sales demand and scrap
are individually not bounded from above and if producing 1 product more on the
supply routings for which a maximum capacity is already reached, thus fulfilling 1
more and scrapping 1 more is attractive, it will be so for any quantity of the sales
demand. Therefore either all scenarios are unbounded and the problem is ill-posed
or no scenario is unbounded. Futher note that these new LP models also only
have right-hand differences such that it would be efficient to apply the dual simplex
method to compute bigM.

Note that once we solve all deterministic LP models the computational effort for
the N-reliability model is exactly the same as for a N-reliability model in absolute
regret. That model looks like

min δ
st δ ≥ O(ω) − cx + dyω − (1 − zω)M ∀ω ∈ Ω

Ax + Byω ≤ bω ∀ω ∈ Ω∑

ω∈Ω
(zω) = N

x, yω ≥ 0
zω ∈ {0, 1}

with O(ω) being the optimal value of the deterministic subproblem for scenario ω.
The difference between the worst-case robustness measure and the minmax absolute
regret measure is also this constant O(ω), and there solving of deterministic models
would be extra effort compared to the worst-case robustness measure. In N-reliability
it is done nevertheless for both. This means that if, in a project where this suggested
way to determine big M is used, for some reason a Macro Planner user prefers to use
an absolute regret objective this can easily be adapted.

However the described approach fails if it is also possible to have negative goal
function values, nearly always. When for a certain candidate solution x the positive
optimal value for a scenario which is included in the reliability set is more than big
M higher than the negative optimal value for a scenario which is not included, the
N-reliability method is messed up.

As we want to apply the Macro Planner to a general case in which negative goal
functions occur and in which a situation in which the goal function value can not be
bounded from below could easily occur, we want to make another proposal which
is however not really tailored to the specific problem instance. In the literature in
[8] possibilities to determine the upper bound on regrets are given, which can be
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considered to find a big M in this situation as well. Their alternative ‘MinimaxII‘ is
the possibility which requires least direct computation time. In the rest of the thesis
we choose this to be 1 ∗ 1010. In theory it might prove to be low, or it might prove
unnecessary high such that it slows done branch and bound methods, but that holds
for any choice.

Returning to the possible solution methods for our N-reliability models, again the
implementation in the Robust Macro Planner is just feeding the deterministic equiv-
alent MIP to CPLEX although as previously explained the model is there slightly
different. It will most probably use a kind of branch and bound procedure on the
binary variables indicating whether a scenario is selected. As announced in 4.3 after
solving the big MIP model, we still have no optimal values for yω. Therefore we
have to solve the |Ω| small subproblems to obtain their solutions. Here several de-
composition methods are listed. As N-Reliability is only mentioned in a few articles,
these decomposition methods are not discussed in literature, but again we use the
similarity with the previous models.

A requirement for decomposition methods is that there is a useful structure in the
problem and

∑
ω∈Ω(zω) = N spoils this somewhat, as there are now not only variables

(x) which come back in multiple constraints (∀ω ∈ Ω), but also a constraint which
uses variables of multiple scenarios. Some decomposition methods which would
normally be possible in robust optimization will not work out in this case due to the
constraint. An example is the scenario relaxation algorithm as in [4]. Although it is
designed for binary and continuous variables in the first-stage of a minimax problem,
it is not possible to use it in this situation. The subproblems of the Lagrange dual in
a scenario decomposition method are not independent anymore and therefore their
solution method cannot be applied.

But the previous seen stochastic Benders decomposition is still to be considered.
It is known that the presence of integer (binary) variables can be a reason to apply
Benders decomposition and that the presence of scenarios can be a reason to ap-
ply stochastic Benders decomposition, but it is unclear what to do when a mix of
these phenomena occur. We present two possibilities to partition the problem into
subproblems.

Normal stochastic Benders decomposition

This is totally similar to the methods for the previous models. Start with

max cx + θ

st θ ≤ Q(x, ω) + (1 − zω)M ∀ω ∈ Ω

A1x ≤ b∑

ω∈Ω
(zω) = N

x ≥ 0, zω ∈ {0, 1}
with

Q(x, ω) = max {dyω|A2x + Byω ≤ bω, yω ≥ 0}
As for all models in this chapter the feasible region of the dual version of Q(x, ω) is

the same for every ω and every possible first-stage value x.

A number of |Ω| constraints, all θ ≤ Q(x, ω) + (1 − zω)M are dropped to get the
(MP). This (MP) is solved multiple times to get candidate solutions (θ̄, x̄, z̄ω) and each
iteration |Ω| cuts

θ ≤ (π(x̄)ω(bω − A2x)) + (1 − zω)M
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can be introduced. A candidate solution is than an optimal solution if all generated
cuts for that solution are already satisfied. At least one of these satisfied cuts will
be satisfied by equality, the scenario which is identified as worst but |Ω| − N for
first-stage solution (x̄, z̄ω).

Like in model II there is no aggregation and therefore there are no single-cut or
adaptive multicut possibilities. As there is again only right-hand uncertainty and as
therefore the feasible regions of the subproblems are the same, we can vary in our
method by using the traditional method, the |Ω| ∗ |Ω| cuts per iteration method and
the solve one subproblem to optimality method for this problem. Also the depth
search after k steps method can be tried, when in the outline sketched in the previous
section (x̄, θ̄) should be replaced by (x̄, θ̄, z̄ω) and the constraint θ = (π(x̄)ω(bω −A2x))
should of course be replaced by θ = (π(x̄)ω(bω −A2x)) + (1 − zω)M. The by the model
identified worst-case scenario(s) is now just the by the model identified worst but
|Ω| −N scenario(s) for which a constraint is satisfied by equality.

The difference with the previous method is that the master problem is harder to
solve because it contains binary variables. This makes the computation time without
doubt larger than the time for solving model II. Other effects may be that the always
important optimal trade-off between solution time of the (MP) and the number of
times (MP) has to be solved, now turns out to be differently and therefore another
cut method is more efficient.

Nested Benders decomposition

Another option is to use nested Benders decomposition. This decomposition is nested
in the sense that our problem is decomposed in the problem of choosing the binary
variables, choosing the other first-stage variables and choosing the second-stage
variables. Write the problem as

max θ
st θ ≤ Q(z)∑

ω∈Ω
(zω) = N

zω ∈ {0, 1} ∀ω ∈ Ω

with Q(z), the problem consisting of choosing the first-stage variables given the
choice for the scenarios in the reliability set, being:

max cx + δ

st δ ≤ Q(x, ω) + (1 − zω)M ∀ω ∈ Ω

A1x ≤ b
x ≥ 0

and here, as usual, a subproblem per scenario is:

Q(x, ω) = max {dyω|A2x + Byω ≤ bω, yω ≥ 0}

which is in dual formulation

Q(x, ω) = min {πω(bω − A2x)|πωB ≤ d, πω ≥ 0}

For every x and every ω (and z, which does not come back in this subproblem) this
subproblem has the same feasible region. When problem Q(z) is solved by stochastic
Benders decomposition the constraints δ ≤ Q(x, ω) + (1 − zω)M or dropped and cuts

37



are added. If we write the dual variable generated for scenario ω in iteration k as πω,k
we have thus after K iterations of the form:

max cx + δ

st δ + πω,kA2x ≤ πω,kbω + (1 − zω)M ∀ω ∈ Ω, k ∈ 1, ...,K
A1x ≤ b
x ≥ 0

This could also be written into an equivalent dual form. We denote the vector with
dual variables of the constraint A1x ≤ b as µ and the dual variable of the cut from
iteration k for scenario ω as µk,ω. Then the dual formulation is:

min
∑

k=1,...,K,ω∈Ω
µi,ω(πω,kbω + (1 − zωM)) + µb

st
∑

k=1,...,K,ω∈Ω
µi,ωπω,kA2 ≤ c

∑

k=1,...,K,ω∈Ω
µi,ω ≤ 1

The general outline of the stochastic Benders method is now as follows:

Major Step 0 Constraintθ ≤ Q(z) is dropped to get (MP). For all Q(z) with z ∈ {0, 1}|Ω|
drop the |Ω| constraints δ ≤ Q(x, ω) + (1 − zω)M.

Major Step 1 For (MP) a candidate solution (z̄, θ̄) is tried for which optimality cuts
have to be generated from Q(z̄). In the first tryθ is denoted as a random variable
preferably plus infinity.

Major Step 2 To generate the optimality cuts, Q(z̄) has to be solved and that is itself
done by Benders decomposition. Set k = 1 and go to minor step 1.

Minor Step 1 To solve Q(z̄), a candidate solution (δ̄, x̄) is generated.

Minor Step 2 Subproblem(s) Q(x̄, ω) has(have) to be solved to obtain optimal-
ity cuts δ ≤ πω,k(x̄)(bω − A2x) + (1 − zω)M.

IF these cuts are already satisfied by (δ̄, x̄) then that is apparently
the optimal solution of Q(z̄). Go to Major Step 3.

ELSE add the constraints to Q(z̄), set k = k + 1

Major Step 3 Add constraint
∑

k=1,...,K,ω∈Ω µi,ω(πω,kbω+ (1−zωM))+µb−θ ≥ 0 to (MP).
IF the generated cuts are already satisfied by z̄, the solution is optimal.
ELSE go to Major Step 1.

Now for the task of solving the problems Q(z̄) obviously the same possibilities as for
model II apply as these models only differ by a constant. So the traditional method,
the generate all cuts method or the solve one subproblem to optimality method could
be tried next to the depth search after k steps option.

4.4.4 A general solving thought

Another interesting idea would be created when a planner would be interested to
see the solutions of all three models, such that she can a posteriori choose which
goal she should aim for. This seems plausible for a planner who starts making more
robust planning without having any idea of the consequences. Now a hypothesis
would be that once a model is solved the other models can be solved quicker. The
idea can be explained as follows. In solving model I with multicut stochastic Benders
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decomposition, model II with Benders decomposition or model III with either of the
two possibilities for Benders decomposition cuts of the form θ ≤ π(x̄)ω(bω−A2x) have
to be generated. These cuts are also valid cuts in the other models. In other words,
it is possible to add these constraints to the (MP) of the second model which is going
to be solved. This gives a similar trade-off as was caused by the earlier mentioned
choices for generating cuts: it gives more information, but it may cause an increase
in calculation time for the (MP). We expected the result of such a trade-off to be
very instance-specific. If there is one scenario which can be considered far ‘worse‘
than the other scenarios, a first stage solution x for a maximin problem will be far
different from the first stage solution for a problem with expected goal function such
that the cuts give less information. This hypothesis is not studied in the literature as
probably because it is usually assumed that the decision maker knows it robustness
measure beforehand. There are counterexamples, for example in [12] for the case of
α-reliability the input parameter α is varied from the value for which one scenario
is in the reliability set until 1 such that all scenarios are in the reliability set. No
considerations about efficiency in solving these problems sequentially are made.

4.5 Customer Benefits

After the literature search and assumptions made we proposed three robustness
models and solution methods for these models. But what are the expectations on the
benefits for customers? A brief summary is presented in this section.

The Macro Planner is used at maximum a few times per year to make a high-level
strategic planning. Because this frequency of planning is so low, there is always a
certain uncertainty about the demands that will be faced in the coming planning
periods. However decisions made on contracts about quantities to be ordered from
subcontractors are difficult to adjust later on and it directly influences the perfor-
mance results of the planning later on.

It is common for companies to analyze the planning performance of the chosen
planning if the demand forecast later turns out to be different after the planning is
made. Here models are suggested in which possible different demand forecasts are
already taken into account, such that the planning will be good or not so bad for any
realization of demand instead of making a planning optimal for one realization of
demand and possibly bad for the other scenarios. It is an advanced way of planning
for companies acting in an uncertain environment with the purpose of better results
in reality.

One of the three models can be used depending on the companies perception of
‘good‘ for any scenario. In a scenario is for every sales forecast a quantity determined.
If the expected goal function model is chosen we want to take our high level strategic
decisions such that our expectation of the final performance of the planning over the
possible scenarios is optimal.

If the worst case goal function is chosen we want to maximize the planning
performance we obtain if the worst scenario for our planning occurs. The company
has a guarantee that the performance is at least as high as this optimized value
when the demand realization will turn out to be one of the specified scenarios. Of
course no guarantee is available for unspecified possible scenarios. It is attractive for
companies which are very risk-averse.

If the N-reliability model is chosen the planning maximizes the performance when
the N-th best scenario would occur. This is attractive if the company wants to be sure
the performance is of a certain level unless one of the very unlikely (N+1)-th best,
(N+2)-th best, ... scenarios or an unspecified scenario occurs.

From these models it can be seen that for each risk-seeking type of company there
is a useful model and a next step in planning. Risk neutral companies can take advan-
tage of recognizing uncertainty and robust planning by maximizing their expectation
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over possible demand realizations such that better results are to be expected. Risk
averse companies can construct a planning in which they secure themselves against
the risk of other demand realizations. In the exceptional case of a risk seeking com-
pany N-reliability with N = 1 can be used to maximize on the best possible demand
realization.

40



Chapter 5

Robust Planning Results

In this chapter the results of robust planning will be explored by means of a com-
parison between robust planning and normal planning. This comparison is made in
the Macro Planner environment. Therefore, after presenting a numerical example to
give insight in the robust planning models presented in the previous chapter, we will
look at considerations which came up at the implementation of the new models in
the Macro Planner.

In the Macro Planner changes had to be made to make it possible to feed multiple
forecast scenarios, probabilities of these scenarios and scrap prices to the model. The
algorithm of the Macro Planner can be adapted such that there are three versions
in which the deterministic equivalents of the expected goal function, worst-case
goal function and N-reliability can be solved. This means that the algorithm had
to be changed such that the right variables, constraints and goal functions were
represented. Also a requirement was that the supply chain planning still could be
represented in a GUI in a meaningful way.

For the purpose of comparing the robust planning results for the different robustness
measures with the normal planning results we used a real dataset. This real dataset is
further described in section 5.4. Thereafter the differences between the supply chain
planning for the robustness measures and the normal approach for this dataset are
presented using the chosen KPI’s.

5.1 Numerical Example

We created a very small set of test data. The idea is that we can calculate the optimal
solutions ourselves and therefore obtain insight in the results of our models. Also
we can immediately spot incorrect outcomes of the Macro Planner and therefore we
will use this example also in the process of verification.

First here is a description of the test data. We have one stocking point ‘EndSP‘
in which there is demand for product ‘End‘, the only product in our supply chain.
The demand is from one customer, which represents the only sales segment in the
model. There is one unit, the end product supplier. This is an external source which
delivers End to our stocking point. There is only one period and the optimizer
settings are such that no pre-production is possible. There are two scenario’s, one
scenario in which the customer is immediately persuaded to buy our product, BUY,
and a scenario in which the customer hesitates and only buys some test units, TEST.
The price of product END is 50 euro and the sales forecast for scenario BUY is 100
while the forecast for scenario TEST is only 25. The probability of BUY is 0.3 and
therefore the probability of TEST is 0.7. There are no orders. The cost of ordering
one unit at our external source is 35 euro and the scrapping price of END is -5 as we
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have to pay 5 euro to let it be scrapped.
There are no fulfillment goals, sales targets, inventory targets, stocking point

maxima, external source minima or maxima or any other possibility not mentioned
in this text. The optimizer setting is such that both the revenue and the direct cost
is weighted with factor 1 while the capacity violations are weighted with 999999,
although that is unimportant because there are no maximum capacities.

Now we can see that optimizing according to the expected goal function robust-
ness measure optimizes

0.3∗ (50∗ (min {q, 100})−5∗ (max {q − 100, 0}))+0.7∗ (50∗ (min(q, 25))−5∗ (max(q−25, 0)))−35q

in which q should obviously higher or equal than 0, but in fact it is wise to chose
it higher or equal than 25 as that quantity is sold for sure and on these 25 items
a profit of 15 euro per item is made. Also it should be lower or equal than 100
as producing more would only yield costs for scrapping. This reduces the goal to
0.3 ∗ (50q) + 0.7 ∗ (1375− 5q)− 35q on interval [25, 100]. The solution should be q = 25.
The worst case goal function optimizes

50 ∗ (min {q, 25}) − 5 ∗ (max {q − 25, 0}) − 35q

as we know by the structure of our problem that TEST will be identified as worst
case scenario. This reduces to 5500 − 5q − 35q for interval [25,∞]. The solution will
be q = 25. Producing more would only give scrapping costs and when producing
less the missed income outweighs the less scrapping costs. The same holds for
N-reliability with N=2. For N=1

50 ∗ (min {q, 100}) − 5 ∗ (max {q − 100, 0}) − 35q

is optimized and now it basically should have a value on interval [0, 100] for q.
Then the expression is equal to 50q − 35q such that q = 100 is the optimal solution.
If the probabilities for the scenarios TEST and BUY are adjusted to 0.25 and 0.75
respectively, we expect the solution for the expected goal function measure to be
q = 100 as 50p − 5 ∗ (1 − p) = 35 holds for p = 8/11 and 0.75 > 8/11.

We could also enrich this example using the old probabilities with a fulfillment
goal. In this numerical example we will use the normal fulfillment goal measured in
unfulfilled percentage. For our customer in the only period we add the fulfillment
goal that at least 80% of his demand has to be fulfilled, with a cost of 80 euro
per unfulfilled percent. We add the optimizer setting such that the costs of under
fulfillment are weighted by a factor 1. With such a large penalty for under fulfilling
the fulfillment goal, we get different objective terms and different solutions. The
objective for the expected goal function robustness measure becomes

z =



0.3 ∗ (5500 − 5q) + 0.7 ∗ (1375 − 5q) − 35q if q ≥ 100
0.3 ∗ (50q) + 0.7 ∗ (1375 − 5q) − 35q if 80 ≤ q < 100

0.3 ∗ (−6400 + 130q) + 0.7 ∗ (1375 − 5q) − 35q if 25 ≤ q < 80
0.3 ∗ (−6400 + 130q) + 0.7 ∗ (50q) − 35q if 20 ≤ q < 25

0.3 ∗ (−6400 + 130q) + 0.7 ∗ (−1600 + 370q) − 35q if 0 ≤ q < 20

It is easy to check that the optimal solution is q = 80. This is the first time we
encounter a solution which is not optimal for any of the scenarios. For the worst-case
robustness measure and the N-reliability measure with N=2 the objective reduces to

z =



min {5500 − 5q, 1375 − 5q} − 35q if q ≥ 100
min {50q, 1375 − 5q} − 35q if 80 ≤ q < 100

min {−6400 + 130q, 1375 − 5q} − 35q if 25 ≤ q < 80
min {−6400 + 130q, 50q} − 35q if 20 ≤ q < 25

min {−6400 + 130q,−1600 + 370q} − 35q if 0 ≤ q < 20

In this case the optimal solution is q = 1555
27 ≈ 57, 59. Remark that for this candidate

solution both scenario BUY and scenario TEST are identified as equally good/bad
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and thus worst. For the N-reliability measure with N = 1 on the other hand the
objective reduces to

z =



max {5500 − 5q, 1375 − 5q} − 35q if q ≥ 100
max {50q, 1375 − 5q} − 35q if 80 ≤ q < 100

max {−6400 + 130q, 1375 − 5q} − 35q if 25 ≤ q < 80
max {−6400 + 130q, 50q} − 35q if 20 ≤ q < 25

max {−6400 + 130q,−1600 + 370q} − 35q if 0 ≤ q < 20

Now the optimal solution is q = 100. For this candidate solution scenario TEST is
identified as worst scenario and scenario BUY as worst but one, in this case best,
scenario. When the probability of BUY gets higher (and the probability of TEST
lower) the higher the difference in expected goal function between the solution of
the expected goal function model and the worst case goal function solution and the
lower the difference with the N-reliability solution with N = 1.

Recall that we introduced a normal fulfillment goal. If we would had a fulfillment
goal in the interpretation of the models solved to compare solution times, the objective
for the domain 0 < 20 < q will be slightly different. Not fulfilling one unit is now
seen as not fulfilling 4% and therefore 320q was taken as penalty term in the part of
the goal function determined by scenario TEST (plus 50q from the possible revenue
gives 370q), while when the penalty would be 80 per unit, this would be replaced by
80q. In this example exactly the same outcomes will appear, but in general this is not
true.

In the next section we will describe datasets for which the effects of a single
parameter can not be identified so easily.

5.2 Macro Planner Implementation

From the point of view of Capgemini the implementation of the new robust planning
ideas in the Macro Planner is in the end very important to make the robust planning
ideas concrete. The considerations for this implementation consist mainly of practical
issues.

The suggestions for robust planning first have been implemented in the Macro
Planner. As Quintiq uses an object-oriented structure (the language is based on C++)
this structure had to be changed somehow. A detailed overview of the changes is
available in a document at Capgemini. It is quite possible that this design could be
chosen more efficiently. A Quintiq or IT specialist may find inefficiencies and possi-
bilities to improve the design. One example is that the structure of the Knowledge
Base determines how many effort is needed to feed data to the Macro Planner. Yet
no attempt has been made to find the most convenient option.

It should be mentioned that for each forecast scenario a probability is specified.
Sometimes, this is unknown. We assume that if the probabilities in the knowledge
base not sum up to 1 the probabilities are in fact unknown. The probabilities are then
set automatically at 1/|Ω| for all scenarios such that a weighted mean of values over
the forecast scenarios is equal to the arithmetic mean.

In the implementation we had to correct the strange revenue calculation mentioned
in chapter 2 to pass the verification checks and not specifically by the average as
proposed in 4.4. While only the deterministic equivalent is solved in the Quintiq
application there is no need to reduce Bω to B or dω to d. In the original situation
the revenue for the same sales demand can be higher in a scenario with a lower
sales forecast quantity and this irrational result can become painfully clear in the KPI
scoreboard when robust planning is applied.

First recall that the revenue per unit of a sales demand is determined in this
demand netting process by first summing the sales forecast quantities times the
revenues per quantity of these sales forecast if the total sales forecast quantity is
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higher or by the order quantities times the revenue per unit of these orders otherwise.
The revenue per unit follows by dividing this revenue by the total quantity of the
sales demand.

In this situation the first strange effect is that a lower sales forecast quantity can
lead to use the revenue per unit of the orders which is higher than those of the
sales forecasts. Furthermore a second strange effect is explained with an example.
Suppose you have two sales forecasts with different revenues from which a sales
demand is constructed having quantities of 2000 and 3000, of which the sales forecast
of 3000 has the highest revenue. If the quantity of 3000 is lowered to 2500, the
average revenue per unit is lowered and therefore fulfilling a quantity of 1500 will
yield a lower revenue than before. In general it should also be noted that fulfilling
the first amounts of a sales demand composed of multiple sales forecasts and orders
with different revenues will in practise always yield a higher revenue than the last
amounts. By using only one value revenue per unit a piecewise linear function is
approximated by a linear function.

Practically it was hardly possible to discover these ‘mistakes‘ in the normal Macro
Planner, but with multiple forecast scenarios it can visibly lead to an illogical result.
Therefore we had to adapt the method to determine revenue. To avoid approximat-
ing the piecewise linear function the whole principle of demand netting would have
to be adapted. Then after verifying the sales forecasts with the order quantities, they
cannot be aggregated into one sales demand but should be treated separately. We
try to adapt the method such that it keeps the error in the revenue estimate to a
minimum while sticking to the ideas of the original Macro Planner.

The proposed procedure is now per sales demand:

• First determine the quantity of a sales demand by the old demand netting
procedure: take the maximum of the total order quantity and the total sales
forecast quantity.

• ‘Include‘ an order or sales forecast totally in the sales demand if

- The summed quantity of orders and sales forecast with a higher or equal rev-
enue per unit is lower or equal than the quantity of the sales demand considered
(to which the order or sales forecast should be netted).

• ‘Include‘ an order or sales forecast partially in the sales demand if

- The summed quantity of orders and sales forecast with a higher revenue per
unit is lower than the quantity of the sales demand AND The summed quantity
of orders and sales forecast with a higher or equal revenue per unit is higher
than the quantity of the sales demand

• The included quantity of the order or sales forecast is then the remaining
quantity divided by the number of those orders and sales forecasts with an
equal revenue. Remark that this may be larger than the quantity of the order
of sales forecast itself, but it will not do any harm, because it is only used for
the purpose of calculating revenue.

• The order or sales forecast is not included

- otherwise

• The average revenue per unit by summing the included quantities times the
revenue per unit for the concerning order or sales forecast.

As said this will still result in an approximation of the revenue and the possibility of
failing for check 5 in the following subsection.
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Figure 5.1: KPI scoreboard

An important point of interest is how to design the GUI. The difficulty of visualizing
a robust planning even discouraged Quintiq to work on robust planning possibilities.
One issue is which KPI’s to include as the KPI’s now used in the Macro Planner are
only meaningful for one scenario. Another aspect is the Gantt chart and other GUI
components which use scenario-dependent data. All scenarios cannot be visualized
on a Gantt chart at once. Now we will explain how these issues are handled.

The visualization of only one scenario is solved by letting the object structure
intact and defining one scenario as main scenario. That scenario is shown in the
Gantt chart and it is possible to select in the GUI another scenario as main scenario.

As there is no information from comparable problems about meaningful KPI’s
on robustness, we chose this ourselves. The proposal for the KPI’s is to make a
scoreboard which indicates per original KPI what the minimum value, the maximum
value and the (weighted) expected value for the KPI is over all scenarios. This has
the advantage that a detailed comparison of the outcomes for different robustness
measures can be made, but we acknowledge it has also some disadvantages. One
disadvantage is that it is possible for the worst-case values of the KPI’s not to occur
simultaneously for the same scenario, while it does under another goal. This cannot
be seen from the KPI scoreboard. Another point is that the N-reliable goal function
optimizes on something which does not come back in the KPI’s. Remark also that
even when the N is stored and used to show the Nth worst KPI-score over the scenarios
it is questionable if it means anything as this not necessarily occurs in the Nth worst
scenario.

From the current KPI’s of profit, total revenue and demand fulfillment are clearly
scenario-dependent and can be worked out in a minimum, mean and a maximum.
Also the KPI on TargetInventoryLevel will now become scenario-dependent as it fully
depends on the quantity and the fulfilled quantity of inventory demands. Of these
two, the quantity of an inventory demand at a stocking point where sales demands
takes place, is scenario-dependent when the target inventory level is a number of days
times the sales demand quantity per day. Then the real inventory demand fulfilled
is automatically also scenario-dependent as it cannot be higher than the quantity.
Therefore this KPI also will be presented by a minimum, mean and maximum. The
KPI on Inventory Cost depends on the start and end inventory level of every pispip
in the supply chain planning. These depends on the total input quantity and the
total output quantity at the pispip which is equal under every scenario. While the
distribution of the outflow to the sales demands is different the total quantity flowing
out is equal. This means that this KPI still can be represented by one value. For the
total supply costs and total fixed cost the same holds. On the screen the result will
look as in figure 5.1.

The implementation in the Macro Planner is cross checked with the following
checks:

Check 1 When robustness measure N-reliability is chosen, a popup menu gives the
possibility to choose a number N and this N should only be chosen as an integer
between 1 and |Ω|.

Check 2 When the probabilities in the knowledge base have strange values, which
do not count up to 1, the optimizer should still give correct values and the
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KPI scores should be no different than when each scenario gets assigned a
probability of 1/|Ω| in the knowledge base.

Check 3 It should be possible to create a sales forecast in the Macro Planner, it should
be possible to edit a sales forecast and to copy it. After all this functionality is
present in the normal Macro Planning. This is the only part of the functionality
which is affected by the new robust planning ideas. It was for example not
possible to set inventory targets, or switch from quantity to days for inventory
targets.

Check 1 and 2 are checking whether the new ideas related to robust planning
are working out as they are intended. Apart from importing information from the
knowledge base, there used to be a possibility for adapting the knowledge in the
Macro Planner itself. We still want this to be possible and therefore we have check
number 3. Check 1 and check 2 are positive. Check 3 is also positive in the sense
that it is possible to create a sales forecast and it is possible to set the quantity of the
sales forecast for forecast scenario for the main scenario. Without changing the main
scenario it is not possible to set the quantity for these other scenarios.

5.3 Algorithm Verification

After implementing these models, it is very important to check whether all algorithms
do what they are required to do. These are the checks on the algorithm which must
hold under trivial requirements:

Check 1 When N equals the number of scenarios |Ω| the min-max goal function
planning and the N-reliability planning should yield the same result.

Check 2 When all scenarios have the same quantity for their sales forecasts, and are
thus identical, the supply chain planning should yield the same result for all
three robustness measures and for all possible N in the case of N-reliability.

Check 3 When we only have one forecast scenario, planning in the Robust Macro
Planner according to either of the three robustness measures leads to the same
result as planning with the original Macro Planner.

Check 4 If we apply the worst-case robustness measure on a dataset in which there
are no fulfillment goals, product fulfillment goals, sales targets and product
sales targets, the scrapping price is 0 and the quantities of the sales forecasts
are of the structure that the quantity of each sales forecast in LOW is lower or
equal than for the same sales forecast in MEDIUM as well as lower or equal
than the same sales forecast in HIGH the result should be the same as applying
the normal supply chain planning method on scenario LOW.

Check 5 For any result of the Macro Planner in which the relations between the
quantities of the scenarios are satisfying the description in check 4, the revenue
of scenario HIGH should be higher or equal than the revenue of scenario
MEDIUM and on it’s part it should be higher or equal than the revenue of
scenario LOW.

Check 6 Do the algorithms perform as is supposed for our very simple test set?

In the end all checks held for our robust Macro Planner application for the tried
data instances. In appendix C these chosen data instances are described.
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Figure 5.2: Supply Chain of Shoe box company

5.4 Shoe Box Dataset

Please note that this real dataset is anonymized in this description. The process in
reality is similar to the process that is described here but we use different names. We
regard the company as a shoe box producer.

To produce shoe boxes a number of steps have to be taken:

• First the raw material has to be obtained from the raw material supplier. There
is one type of raw material.

• Then it has to be processed to a carton possessing the characteristics a shoe
box needs. This can be obtained by processing the raw material by a product
routing operation on a machine of type A to 1 carton product.

• Thereafter a print is applied on the carton. Once the carton is printed it is already
clear which sizes it has and the end product is already defined. There are 14
possible printed products and consequently 14 possible finished products. The
carton product can be processed by a product routing operation on a machine
of type B to one of the 14 possible printed products.

• To process the printed product to its finished product, the printed product has
to be cut and folded on a machine of type C and type D respectively. The
folding has to occur immediately after cutting and therefore it both has to occur
on a machine in the same product line. That means one product routing can be
defined in which cutting and folding are subsequent product routing steps.

There are 3 plants in the supply chain. In these plants there are a number of so
called product lines (4, 2 and 1 respectively) and in these product lines there can be
machines of type A, B, C and D. As the distance between the product lines in a plant
is substantial there is a transport cost between the plants as well as a transport cost
between the product lines. However for some products there is no cost defined for
the transportation between plants and it is set as default to 0.

For each product line and each plant we created a stocking point. Furthermore
we create a virtual transport unit to model the situation that transport can take place
between stocking points at a certain cost. Also there is a raw material supplier at
which the can be ordered. A graphical representation of the network is shown in
figure 5.2. Here stocking points are represented by triangles and units by squares.
The abbreviation ‘PL1‘ means product line 1 and ‘SP PL1‘ consequently the stocking
point for production line 1. All stocking points of the production lines are connected
with the transport dummy and with the raw material supplier. The three plants
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have all their own stocking point which is only connected to the transport dummy
as output stocking point. At these stocking points sales demand occurs.

These sales demands consists of 5156 sales forecasts for a period of 18 months
ahead concerning 14 products and 3 plants. Note that the number of sales forecasts
in principle does not influence the computation time as sales demands are created
for every product in stocking point in period and every sales segment. However, the
higher the number of sales forecasts the more differences we expect to see.

In the network now four types of product routings are created:

• From the raw material supplier to a stocking point at a product line having no
input and as output the raw material at the stocking point of that product line.
An example in figure 5.2 is marked with the purple line. This product routing
has no costs.

• From a stocking point at a product line via the transport unit to a stocking point
at another product line having the same input and output products to model
transportation between the product lines. In figure 5.2 an example is marked
with the dark blue line. This product routing exists for all (14 + 14 + 1 + 1) =
30 (finished products, printed products, carton and raw material) products.
The marked example is an inter-plant transportation as the product lines PL6
and PL7 are in different plants. A similar product routing between PL1 and
PL2 would be an intra-plant transportation. These routings have different
transportation costs.

• From a stocking point at a product line via the transport unit to the stocking
point of its corresponding plant. This product routing has no costs and no
duration, its only purpose is to make it possible to specify demand on a stocking
point of a plant. Note that it is impossible to transport from the stocking point
of the plant to a stocking point of a product line. In figure 5.2 an example is
marked with the yellow line. This product routing exists for all 14 finished
products.

• From a stocking point at a product line via the product line to the stocking point
at that product line. This product routing represents a process and the product
routing operations can be specified on the machines available in the product
line. An example is marked with the green line in figure 5.2. This product line
exits for (1 + 14 + 14) = 29 (raw material to carton, carton to 1 of the 14 printed
products, 1 of the 14 printed products to 1 of the 14 finished products) different
input-output relations.

For the sales forecasts the forecast quantities of the normal forecast scenario fall
in the interval [4, 512000] units. Actually this is a reduced number as every unit in
reality accounts for 1000 units, but all other parameters are in reality specified per
1000 units. This will be called forecast scenario MEDIUM and the other forecast
scenarios are derived from it. We decided to give the scenarios LOW, MEDIUM and
HIGH probabilities of 0.3, 0.4 and 0.3 respectively but this was an arbitrary choice.
There are no fulfillment goals, product fulfillment goals, sales targets and sales target
products for this company. Once a shoe box has to be scrapped it can be recycled to
be used as raw material again but this is not completely without cost. It is decided
to give all shoe boxes a scrapping price of -0.01, such that scrapping 1000 shoe boxes
costs the same as selling 1 shoe box yields, to discourage scrapping.

The total planning horizon consists of 18 months from 1-jan-2010 to 1-jul-2011
and there are two periods before the start of the planning horizon. The total number
of products in stocking points in periods is now (14 + 14 + 1 + 1 + 4 + 1) ∗ 7 ∗ 20 +
(14 + 1 + 1) ∗ 3 ∗ 20 = 5860. This calculation can be explained by the fact that there
are three product levels, a level all products, a level with finished products, printed
products, semi-finished products and raw materials, and the third level with concrete
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products belonging to one of the four categories at the higher product level and also
for these categories pispip’s are created. So at the stocking points of product lines
the total number of products equals 35 while at the stocking points of plants where
only finished products can be stored the total number of products equals 16.

The choice of the optimizer setting is such that there is a weight of 1 for inventory
cost, revenue and direct costs, a weight of 999999999 for exceeding the capacity and
0 for every other goal. Early supply is allowed.

5.5 Shoe Box Results

As announced we will use the dataset of a company we describe as a shoe box
producer to generate multiple times a supply chain planning for a robustness measure
and to generate a normal supply chain planning. This is done for forecast scenarios
LOW, MEDIUM and HIGH in which MEDIUM is the original forecast quantity and
LOW and HIGH are 10% lower and higher, 20% lower and higher and 30% lower
and higher for setting i, ii and iii respectively.

Although this dataset does not comply completely with the description at check
4 of section 5.3 as the scrapping price is not equal to zero, the planning made with
N=2 for N-reliability is equal to the normal supply chain planning. The chosen -
0.01 as scrapping price is too negligible to the revenues and costs. The N-reliability
planning with N=3 is obviously equal to the worst case goal function planning
and therefore in tables 5.1, 5.2 and 5.3 summarizing measures on the supply chain
planning are given for only four robustness measures. We compare the outcomes in
terms of total supplied shoe boxes, total scrapping quantity for scenario MEDIUM,
expected revenue, minimum, expected and maximum profit, inventory quantity and
quantity transported. The inventory quantity is split into the raw material and the
carton product on the one hand and printed products and finished products on
the other hand as the first are measured in meters and the second in units. The
transported quantity is split into transportation inside plants (intra-plant transport)
and transportation between plants (inter-plant transport).

Although we said that the N-reliability planning with N=2 is equal to the normal
supply chain planning of the Macro Planner we can observe that the number of
meters in inventory and the number of units transported between plants is not equal
over the three settings. This can be explained by the fact that the raw material and
the carton product do not have inventory costs, and by the fact that some product
routings have no specified costs such that the optimizer is indifferent between the
solutions. As a consequence this problem can be seen as ill-defined, but on the
other hand high level decisions as for example on the capacities of machines can be
perfectly made.

After mentioning the consequences of N=3 and N=2 it is fair also to consider
N=1. Then N-reliability is obviously equal to planning on forecast scenario HIGH.

Graphical representations on the total number of shoe boxes planned to be pro-
duced by the planning and the minimum, expected and maximum profits over the
forecast scenarios are given in diagrams 5.3 and 5.4. It can be observed that when the
expected goal function robustness measure is applied the planned number of shoe
boxes to produce increases when the demand can deviate more. In other words the
possible extra revenue is apparently attractive enough to risk scrapping the products.
The deviation in total production between an expected goal function robust planning
and the normal planning for setting iii is 1.1% which may not seem much, but if we
refer to diagram 5.4 we see that the increase in expected profit by this robust planning
is already larger. This means that if other high-level decisions are taken based on the
other planning it will have an important consequence on the expected profit. From
diagram 5.4 we also see that for this producer it is possible to increase the worst case
profit by 36273772−32580042

32580042 ∗ 100 > 10% when the worst case goal function robustness
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Setting i Expected Worst case N-reliability (N=1) N-reliability (N=2)
Total Supplied shoe boxes 13380064 1296358 13712807 13338523
Total Scrapping Qty MEDIUM 51895 0 1195892 0
Expected Revenue 55745930 54701257 54142231 55385821
Expected Profit 36772644 36273772 34640215 36438047
Minimum Profit 34706602 36273772 29409851 32580042
Maximum Profit 37805738 36273772 39870579 38091477
Total Inventory (units) 1052193 999273.13 2952207.78 1761126.28
Total Inventory (m) 2920510 15564558 7800022 6391940
Total Inter-plant transport 1639259 1769091 1989822 1599249
Total Intra-plant transport 622128 580996 620366 613812

Table 5.1: Results for setting i

Setting ii Expected Worst case N-reliability (N=1) N-reliability (N=2)
Total Supplied shoe boxes 13440618 11898470 14086199 13338523
Total Scrapping Qty MEDIUM 103556 0 2202931 0
Expected Revenue 54479865 49936790 51896524 53731763
Expected Profit 35444926 33895976 31827982 34780150
Minimum Profit 30891471 33895976 22039485 27053719
Maximum Profit 37691017 33895976 41661478 38091477
Total Inventory (units) 1482506 1475703 2253629 1761126
Total Inventory (m) 3110714 3801320 10591555 3637126
Total Inter-plant transport 1722226 2621526 1343818 2059835
Total Intra-plant transport 630202 542358 628463 613812

Table 5.2: Results for setting ii

Setting iii Expected Worst case N-reliability (N=1) N-reliability (N=2)
Total Supplied shoe boxes 13487507 10411161 14451148 13338523
Total Scrapping Qty MEDIUM 151680 0 3210921 0
Expected Revenue 53173494 43694691 49571319 52064871
Expected Profit 34058155 30853705 28855327 33109382
Minimum Profit 24558424 30853705 14503530 21484493
Maximum Profit 38560865 30853705 43200557 38091477
Total Inventory (units) 1245864 1695067 3803018 1761126
Total Inventory (m) 3429822 10496493 7257938 2165837
Total Inter-plant transport 1700199 3853402 2103386 1599249
Total Intra-plant transport 635643 539994 635272 613812

Table 5.3: Results for setting iii



Figure 5.3: Supplied shoe boxes

Figure 5.4: Profit

measure is applied instead of the normal supply chain planning in setting i, while
the expected profit drops 36273772−36438047

36438047 ∗ 100 < −0.5%. Depending on the goals of
the shoe box producer this may be very interesting.

As a result, for the shoe box producer we conclude that using the robust Macro
Planner instead of the normal Macro Planner offers a lot of new possibilities with
different consequences compared to the normal planning.
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Chapter 6

Solution Method Results

In this chapter the results of applying the new posed decomposition methods for
the model in which Bω and dω are relaxed to B and d as mentioned in section 4.4 are
explored. First of all we consider topics encountered at the implementation. The
implementation is not done in Quintiq as the integration with CPLEX is currently
not at a level such that decomposition methods can be supported. For that reason
all proposed solution methods for which we will compare solution times are imple-
mented in a JAVA application with ILOG Concert Technology. Both Capgemini and
the Erasmus University have licenses for CPLEX that make it possible to run the
application.

In contrary to the previous chapter this will not deal with considerations on graph-
ical representation but solely on computional and numerical problems. Thereafter
we will describe the datasets for which we tested the solution methods. Multiple
datasets are chosen as the decomposition methods could have a strong performance
for datasets with certain characteristics. All these datasets are taken from the Macro
Planner environment as we will focus on the performance of the solution methods
for Macro Planner problems. In general it may be interesting to test the solution
methods for different robust planning problems, but this falls outside the scope of
this thesis. In the end the generated results are presented and interpreted.

6.1 ILOG Concert Technology Implementation

The implementation of the JAVA application with ILOG Concert Technology can be
seen as a sequence of two steps: constructing the problem, master problem and sub-
problems, and applying the algorithm to the problem.

First remarks can be made about the construction of the problem. It would be a
tremendous job to rebuild all Macro Planner logic in JAVA and luckily in the Quintiq
application there is a possibility to write the problem to a .lp file which can be read
by CPLEX or our JAVA application. Afterwards this problem should be decomposed
in the master problem and all subproblems. Unfortunately this turned out to be a
time consuming process, thus somewhat limiting the possible datasets to use. On
the other hand the possible datasets are also already limited by memory considera-
tions, either the CPLEX memory or the JAVA heap space. This is a pity as there is
only a chance to beat the approach of feeding the deterministic model to CPLEX for
really large problems. For problems of relatively small size we will expect the loss
of efficiency, caused by the fact that the methods are implemented by an amateur
programmer instead of the specialists at CPLEX, to be too significant.

In the end the implemented algorithms are summarized in table 6.1. We will refer to
the letters of the methods in the results section. Unfortunately it was not possible to
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Reference Model Aggregation Option Special
A Expected Single Traditional
B Expected Single 1toOptimality
C(δ) Expected Adaptive Traditional δ as threshold
D(δ) Expected Adaptive 1toOptimality δ as threshold
E Expected Multi Traditional
F Expected Multi All
G Expected Multi 1toOptimality
H Worst Multi Traditional
I Worst Multi All
J Worst Multi 1toOptimality
K(k) Worst Multi Traditional Depth search after k steps
L N-reliability Multi Traditional
M N-reliability Multi All
N N-reliability Multi 1toOptimality
O N-reliability Multi Traditional Nested

Table 6.1: Implemented decomposition methods

apply the idea of bunching. This certainly increases the solution times in the results
and may also influence the relative strength of the decomposition methods.

The results of the algorithm are verified by considering their optimal solution
values. Those values should obviously be the same for the same dataset and the
same model for every solution method. However, this turned out not to hold exactly
for the N-Reliability models, and most likely not due to implementation errors but
to numerical errors. Because we introduced variables with really large coefficients
compared to other coefficients in the problem, there is a large risk for the problem
to be too ill-conditioned. When a problem is ill-conditioned a small change in the
parameters would result in a large change of the solution.

In CPLEX a small tolerance for the feasibility of variables is used, the degree to
which a variable may violate its (implicit) bounds represented by parameter RpEPS.
In our numerical example given in section 5.1 with default setting 10−6 for RpEPS
and bigM chosen as 1010, it can be explained that we will experience problems even
when solving the deterministic equivalent as 1010 ∗ 10−6 = 104 is already a higher
value than the difference between the goal functions of two scenarios. Actually we
wonder how the Macro Planner could deal with this problem correctly (it does) while
exporting the model to a .lp file, importing the .lp file in CPLEX and solving it leads
to the wrong solution.

But as said even more troublesome is that the fact that the problem may be ill-
conditioned. In our results we printed a condition number for the nested Benders
decomposition as it is possible to request the condition number of a linear program-
ming problem in CPLEX. The nested Benders decomposition is the only solution
method in which models are used without binary variables as decision variables, but
with the large parameter values connected to bigM, namely Q(z).

A condition number is defined as κ(A) = ‖A−1‖‖A‖. It is unclear which matrix
norm CPLEX exactly uses, but as explained in [27] if a condition number is high for
one matrix norm it will be high for all matrix norms. It is not so clear-cut for which
values of κ(A) a model should be called ill-conditioned and what the rounding error
consequences are. In [39] it is stated that round-off errors in the size of 2κ(A)−t can oc-
cur in which κ(A) is the condition number and t is the number of digits representing
a number. Doubles are represented by 14 or 15 significant digits in JAVA. Given the
condition numbers we will report in the results it is clear significant numerical errors
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can occur.

With these two important numerical aspects it is not surprising that we do not
reach the exact optimal value with our methods due to numerical problems. When
in subproblems cuts with multiple slightly incorrect coefficients are constructed, the
master problem can easily converge to a point in which for candidate solution (x̄, z̄ω) a
wrong value for θ is determined and therefore an incorrect solution is obtained. Then
the final candidate solution may also not be the correct optimal solution. We should
not exaggerate this, but in this way the incorrect optimal values for decomposition
methods in the N-Reliability context can be explained.

The nested decomposition method seems more resistant for these errors as in
problem Q(z) the value for the binary variables is already pinned to exactly 1 or 0.
The biggest risk is that the big cuts added in the master problem that are subject to
large rounding errors. Then it is possible to cause the problem to converge to the
wrong optimal solutions for the binary decision variables. To get the optimal value
of our decomposition method it may be more precise to request the optimal value
of the last solved Q(z) than to request the optimal value of the master problem. In
the normal decomposition methods the binary variables have to be chosen simulta-
neously with a lot of other variables and this may lead to even larger numerical errors.

It proved impossible to gather results for all these methods as memory problems
occurred and/or solution times were extraordinary. For method F, I and M this can be
explained by the large amount of redundant constraints added to the problem which
is apparently not appreciated. Anyway, it was already questionable to what extend
those methods would be really improving on just taking some random dual variables
for the subproblems. Also for the D(δ) only for dataset I results could be obtained.
For the other datasets JAVA heap space problems occurred. The problem here seems
to be the history of an aggregation, previous cuts and previous redundancies, that
needs to be stored and to be used in case of aggregation.

6.2 Data Description

The datasets we use are all based on a demo dataset, ‘sales demo metal data‘, currently
available in the Macro Planner. Although it is not strictly necessary to interpret the
results here a brief description will be given to show the Macro Planner relevance of
the tested datasets.

In the dataset there is raw material, slab (a semi-finished product), hot rolling coil
(a semi-finished product) and two finished products, thick coil and thin coil. The
planning horizon goes from 1-1-2010 to 1-1-2011 and is divided into time buckets of
a month. Two months are added in front to allow pre-producing. Demand in these
periods occurs only for end products thick coil and thin coil.

The network consists of 3 plants, casting, hot rolling and cold rolling, one supplier
of raw material, one supplier of slab and the possibility of subcontracting the task of
making hot rolled coil from slab. See figure 6.1. In between there are stocking points.
All stocking points can only store one type of product, except the final stocking point
CR coil SP, which can hold thick coil as well as thin coil. In total there are 9 product
routings in this network, for all units but Cold Rolling in which thin coil or thick coil
can be produced from hot rolling coil one.

There are maximum capacities on the stocking points of 5000 in every period and
for all machines in the plants shift patterns are defined such that there is a maximum
time. In all periods a maximum capacity for each subcontractor is defined. There
are 16 orders and 36 sales forecasts to determine the sales demands for the whole
planning horizon. The orders and sales forecasts are approximately equal divided
between the two sales segments, Europe and Asia. There is one fulfillment goal
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Figure 6.1: Supply Chain of Sales Demo Metal Data

which says that between 1-Jan-2010 and 1-Jan-2011 the goal is to fulfill 90% of the
demand from Asia. There are no product fulfillment goals, sales targets and product
sales targets.

The starting point for robust planning is this demo set with three forecast scenarios
as can be seen in table 6.2. The quantities under Q1, Q2 and Q3 now belong to forecast
scenario LOW, MEDIUM and HIGH respectively. The original forecast is not used,
but its total forecast quantity was 93000, somewhere between the total quantity of
MEDIUM and HIGH used here. We chose the scenario quantities such that the
total forecast quantity for scenario HIGH was higher and the total quantity of LOW
was lower than 93000. Furthermore LOW still has a higher quantity than MEDIUM
for some forecasts and MEDIUM still has a higher quantity than HIGH for some
forecasts. However, as mentioned before this is not necessary to prevent the worst-
case robustness measure to be equal to planning for scenario LOW.

The total number of variables in the master problem for the starting dataset is
2167 and the total number of constraints is 1186, while in each subproblem the total
number of variables is 7296 and the total number of constraints is 2798. After having
described the starting dataset for comparing the solution times, we will mention how
the dataset is adjusted to increase the problem size. It can be divided into increasing
the number of forecast scenarios and increasing the number of periods. Also the
spread of the quantities over the forecast scenarios is varied as some methods will
performe relatively better or worse for a higher of lower spread than others.

Dataset I The demo set with three forecast scenarios as explained above.

Dataset II The original sales demo metal data with 10 forecast scenarios. The 7 new
forecast scenarios are generated from a normal distribution with a mean of
2500 and a standard deviation of 750.

Dataset III The original sales demo metal data with 10 forecast scenarios. Of the new
forecast scenarios 5 are generated from a normal distribution with a mean of
2500 and a standard deviation of 750. Forecast scenario number 9 is a forecast
scenario in which every demand has quantity 1 and in forecast scenario 10
every demand has quantity 10000. In this way a kind of extreme spread is
simulated which will influence the identification of the worst scenario strongly.

Dataset IV The original sales demo metal data with twice as many periods (24 instead of
12). In the added year the capacities and all other data are equal to the original
year. This does not make the solution for the new year immediately identical
as the possibility of carrying inventory to the next year should be considered.
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SalesID Product Start End SalSegment Revenue Q1 Q2 Q3
1 Thin Coil 1-jun-2010 1-jul-2010 Asia 400 1000 3000 2900
2 Thin Coil 1-dec-2010 1-jan-2011 Europe 400 1500 1400 5000
3 Thick Coil 1-jan-2010 1-feb-2010 Asia 300 1000 3000 2900
4 Thin Coil 1-jul-2010 1-aug-2010 Asia 400 1500 1400 5000
5 Thin Coil 1-mar-2010 1-apr-2010 Asia 400 1000 3000 2900
6 Thin Coil 1-feb-2010 1-mar-2010 Asia 400 1500 1400 5000
7 Thick Coil 1-jun-2010 1-jul-2010 Asia 300 1000 3000 2900
8 Thin Coil 1-dec-2010 1-jan-2011 Asia 400 1500 1400 5000
9 Thick Coil 1-oct-2010 1-nov-2010 Asia 300 1000 3000 2900

10 Thin Coil 1-jan-2010 1-feb-2010 Europe 450 1500 1400 5000
11 Thin Coil 1-nov-2010 1-dec 2010 Europe 450 1000 3000 2900
12 Thick Coil 1-mar-2010 1-apr-2010 Asia 300 1500 1400 5000
13 Thin Coil 1-jan-2010 1-feb-2010 Asia 400 1000 3000 2900
14 Thick Coil 1-feb-2010 1-mar-2010 Asia 300 1500 1400 5000
15 Thin Coil 1-aug-2010 1-sep-2010 Asia 400 1000 3000 2900
16 Thin Coil 1-jun-2010 1-jul-2010 Europe 450 1500 1400 5000
17 Thin Coil 1-apr-2010 1-may-2010 Asia 400 1000 3000 2900
18 Thin Coil 1-oct-2010 1-nov-2010 Asia 400 1500 1400 5000
19 Thin Coil 1-oct-2010 1-nov-2010 Europe 450 1000 3000 2900
20 Thin Coil 1-may-2010 1-jul-2010 Europe 450 1500 1400 5000
21 Thin Coil 1-mar-2010 1-apr-2010 Europe 450 1000 3000 2900
22 Thin Coil 1-apr-2010 1-may-2010 Europe 450 1500 1400 5000
23 Thin Coil 1-aug-2010 1-sep-2010 Europe 450 1000 3000 2900
24 Thick Coil 1-dec-2010 1-jan-2011 Asia 300 1500 1400 5000
25 Thin Coil 1-nov-2010 1-dec-2010 Asia 400 1000 3000 2900
26 Thick Coil 1-jul-2010 1-aug-2010 Asia 300 1500 1400 5000
27 Thick Coil 1-nov-2010 1-dec-2010 Asia 300 1000 3000 2900
28 Thick Coil 1-aug-2010 1-sep-2010 Asia 300 1500 1400 5000
29 Thick Coil 1-apr-2010 1-may-2010 Asia 300 1000 3000 2900
30 Thin Coil 1-sep-2010 1-oct-2010 Europe 450 1500 1400 5000
31 Thin Coil 1-may-2010 1-jul-2010 Asia 400 1000 3000 2900
32 Thick Coil 1-sep-2010 1-oct-2010 Asia 300 1500 1400 5000
33 Thin Coil 1-feb-2010 1-mar-2010 Europe 450 1000 3000 2900
34 Thin Coil 1-sep-2010 1-oct-2010 Asia 400 1500 1400 5000
35 Thin Coil 1-jul-2010 1-aug-2010 Europe 450 1000 3000 2900
36 Thick Coil 1-may-2010 1-jul-2010 Asia 300 1500 1400 0

Table 6.2: sales metal demo data forecasts



Dataset V The original sales demo metal data with 50 forecast scenarios. The 47 new
forecast scenarios are generated from a normal distribution with a mean of
2500 and a standard deviation of 750.

Dataset VI The original sales demo metal data with 50 forecast scenarios of which the first
45 new are generated as in dataset V and then there is a forecast scenario in
which all demands are 10000 and a forecast scenario in which all demands are
1.

6.3 Results

In the following tables ‘sub solved‘ stands for the amount of subproblems solved,
‘agg‘ stands for the number of times aggregation occurred and ‘final agg‘ stands for
the final partitioning size when the algorithm terminates. The results are obtained
from runs on a computer with Pentium(R) D CPU 3.00 GHz processor and 1.99 GB
RAM at the university, but the tests are only performed on a single core.

As the number of results is small it is hard to come to any general conclusions, but
we will try to explain the results we got here in the best way. The first observation is
that the solution time of the decomposition methods is far from beating the solution
time of solving the deterministic model. But this was more or less expected as we did
not test for very large numbers of scenarios. There is not enough evidence to state
that the solution time of the deterministic method is growing larger in the scenarios
than the solution time of decomposition methods, so no further comparisons with the
deterministic version are made and we will stick to comparing the decomposition
methods. Remark that decomposition methods can also prove more useful when
instead of CPLEX an open source LP solver has to be used.

What can be observed from the results for the expect model is that the multicut
procedure is always dominant to the single-cut procedure. This is hardly surprising
as the rule of thumb mentioned earlier says that the multicut method is preferable
when the number of scenarios is not much larger than the size of the first stage deci-
sion dimension space. For our models the number of scenarios is clearly lower than
the number of first stage decision variables.

For all datasets the performance of method C falls between the performance of A
and E in every aspect. This can be explained by the fact that, although usually the
optimal partitioning size is between |Ω| and 1, it is here just |Ω|.

Our method B shows a bad performance overall, it needs in every dataset the most
iterations and the most computation time, except for the single result for D(0.05) in
dataset I. It indicates that the loss of tightness when only a part of the new cut is
obtained from solving the corresponding subproblem to optimality is very signifi-
cantly.

On the other hand, the idea of solving one subproblem to optimality should be
regarded as an interesting for these datasets when it is applied in the multicut pro-
cedure, when always at least one of the introduced cuts is really optimal. For all the
datasets method G yields the lowest number of times a subproblem has to be solved.
If we compare the results of dataset II and dataset III, and dataset V and dataset VI it
seems that a lower spread between the demand forecasts is advantageous for method
G which correspond to the intuition that the optimal dual variables for a subprob-
lem are a good approximation of the optimal solution for another subproblem if the
difference in the right-hand side is low.

The difference in the number of iterations between dataset I and dataset IV is striking.
It becomes totally clear that a large number of decision variables and a small number
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Expected model iterations sub solved solution value solution time agg final agg remarks
Dataset I
Determin 3.737172508923842 ∗ 108 125 (ms)
method A 403 1209 3.7371725089238423 ∗ 108 73321 (ms)
method B 586 1105 3.737172508923844 ∗ 108 76186 (ms)

method C(0.05) 126 378 3.737172508923844 ∗ 108 25890 (ms) 0 3
method D(0.05) 585 1117 3.73717250892384 ∗ 108 83407 (ms) 2 1

method E 126 378 3.737172508923843 ∗ 108 23389 (ms)
method F No Results
method G 298 306 3.7371725089238405 ∗ 108 27173 (ms)
Dataset II
Determin 3.678328993211823 ∗ 108 343 (ms)
method A 463 4630 3.6783289932118255 ∗ 108 259755 (ms)
method B 888 4180 3.678328993211825 ∗ 108 311254 (ms)

method C(0.05) 82 820 3.678328993211825 ∗ 108 54948 (ms) 2 4
method D(0.05) No Results

method E 68 680 3.678328993211824 ∗ 108 40389 (ms)
method F No Results
method G 191 232 3.678328993211826 ∗ 108 29140 (ms)
Dataset III
Determin −3.15607188274296 ∗ 108 297 (ms)
method A 630 6300 −3.1560718827428687 ∗ 108 358505 (ms)
method B 983 5499 −3.1560718827428686 ∗ 108 405486 (ms)

method C(0.05) 137 1370 −3.15607188274287 ∗ 108 94731 (ms) 5 2
method D(0.05) No Results

method E 81 810 −3.15607188274287 ∗ 108 49373 (ms)
method F No Results
method G 309 342 −3.15607188274286 ∗ 108 64495 (ms)
Dataset IV
Determin 6.827763060268685 ∗ 108 234 (ms)
method A 1830 5490 6.827763060268693 ∗ 108 2519443 (ms)
method B 2363 5027 6.82776306028683 ∗ 108 888479 (ms)

method C(0.05) 517 1551 6.827763060268683 ∗ 108 320503 (ms) 0 3
method D(0.05) No Results

method E 517 1551 6.827763060268683 ∗ 108 245778 (ms)
method F No Results
method G 1410 1422 6.827763060268685 ∗ 108 558068 (ms)
Dataset V
Determin 3.7247593263602334 ∗ 108 1827 (ms)
method A 651 32550 3.724759326360237 ∗ 108 1786402 (ms)
method B 2430 60031 3.724759326360237 ∗ 108 7100241 (ms)

method C(0.05) 95 4750 3.7247593263602364 ∗ 108 408049 (ms) 5 3
method D(0.05) No Results

method E 53 2650 3.7247593263602364 ∗ 108 161661 (ms)
method F No Results
method G 260 463 3.724759326360237 ∗ 108 288139 (ms)
Dataset VI
Determin 2.287361791233809 ∗ 108 2047 (ms)
method A 634 31700 2.2873617912338105 ∗ 108 1765306 (ms)
method B 1593 27923 2.287361791233809 ∗ 108 3236744 (ms)

method C(0.05) 74 3700 2.2873617912338084 ∗ 108 307994 (ms) 5 5
method D(0.05) No Results

method E 48 2400 2.2873617912338072 ∗ 108 146802 (ms)
method F No Results
method G 308 520 2.2873617912338087 ∗ 108 361589 (ms)

Table 6.3: Results for model expected



Worst Case iterations sub solved solution value solution time remarks
Dataset I
Determin 2.6545671300675368 ∗ 108 140 (ms)
method H 110 330 2.6545671300675374 ∗ 108 20863 (ms)
method I No Results
method J 283 294 2.6545671300675377 ∗ 108 27392 (ms) ‘M‘ was first scenario
method J 215 226 2.6545671300675377 ∗ 108 19739 (ms) ‘L‘ was first scenario

method K(50) 110 330 2.6545671300675374 ∗ 108 26580 (ms)
method K(5) 110 330 2.6545671300675374 ∗ 108 26579 (ms)

Dataset II
Determin 2.6245348969313005 ∗ 108 390 (ms)
method H 73 730 2.6245348969313014 ∗ 108 43351 (ms)
method I No Results
method J 245 286 2.62453489489307 ∗ 108 32358 (ms) ‘A‘ was first scenario
method J 307 344 2.6245348948930693 ∗ 108 45272 (ms) ‘I‘ was first scenario

method K(50) 78 628 2.6245348969313005 ∗ 108 43476 (ms)
method K(5) 125 461 2.6245348969313017 ∗ 108 35012 (ms)
Dataset III
Determin −5.986022508370819 ∗ 109 344 (ms)
method H 73 730 −5.9860225083708 ∗ 109 43132 (ms)
method I No Results
method J 64 82 −5.98602250837081 ∗ 109 7793 (ms) ‘I‘ was first scenario
method J 73 82 −5.986022508370817 ∗ 109 8230 (ms) ‘J‘ was first scenario

method K(50) 73 532 −5.986022508370803 ∗ 109 34075 (ms)
method K(5) 75 129 −5.986022508370813 ∗ 109 7965 (ms)
Dataset IV
Determin 4.418622295482726 ∗ 108 328 (ms)
method H 347 1041 4.418622295482727 ∗ 108 140188 (ms)
method I No Results
method J 1279 1291 4.418622295482726 ∗ 108 433808 (ms) ‘M‘ was first scenario
method J 1343 1354 4.4186222954827225 ∗ 108 391784 (ms) ‘L‘ was first scenario

method K(50) 347 1041 4.418622295482727 ∗ 108 253532 (ms)
method K(5) 347 1041 4.418622295482727 ∗ 108 244553 (ms)

Dataset V
Determin 2.6207209023334247 ∗ 108 2408 (ms)
method H 57 2850 2.6207209023334256 ∗ 108 167261 (ms)
method I No Results
method J 193 243 2.6207209023334232 ∗ 108 146506 (ms) ‘A1‘ was first scenario
method J 269 471 2.6207209023334253 ∗ 108 294295 (ms) ‘B1‘ was first scenario

method K(50) 57 2598 2.6207209023334256 ∗ 108 196100 (ms)
method K(5) 213 1263 2.6207209023334247 ∗ 108 92976 (ms)
Dataset VI
Determin −5.986022508370816 ∗ 109 1718 (ms)
method H 75 3750 −5.986022508370821 ∗ 109 218551 (ms)
method I No Results
method J 64 161 −5.98602250837082 ∗ 109 28196 (ms) ‘A1‘ was first scenario
method J 75 124 −5.986022508370815 ∗ 109 26916 (ms) ‘W2‘ was first scenario

method K(50) 75 2574 −5.986022508370821 ∗ 109 193844 (ms)
method K(5) 70 364 −5.986022508370814 ∗ 109 21448 (ms)

Table 6.4: Results for model worst case

of scenarios is unattractive for decomposition methods. However this occurs often
in Macro Planner puzzles.

It seems that for the worst case goal function models the performance of decompo-
sition methods relative to solving the deterministic equivalent is definitely better than
for the expected goal function model although the gap is still huge. Remark again
that the difference between dataset I and dataset IV is large for the decomposition
methods. The increased number of decision variables has a big effect.

For the worst case models we can see encouraging results for the new proposed
methods compared to the classical approach, method H. For method J the starting
scenario is mentioned. It is unimportant to know what the scenarios are to which
the letters refer, but the idea is that method J is executed with the a posteriori worst
scenario once and with an other scenario once. The differences can be quite low
which indicates that sometimes optimal cuts for the other scenarios have to be found
in order to prevent them to become the worst case scenario.

Especially in the case of a larger spread between the sales forecast quantities,
the depth search method performs also well compared to method H. This is to be
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N-Rel (N=1) large iterations iterations sub solved solution value solution time remarks
Dataset I
Determin 4.758464840950938 ∗ 108 515 (ms)
method L 289 867 4.7584577152504396 ∗ 108 626063 (ms)
method M No Results
method N 425 428 4.75845771525044 ∗ 108 2646403 (ms)
method O 4 1279 3837 4.758457715250437 ∗ 108 284045 (ms) Cond: 2.18 ∗ 1014

Dataset II
Determin 4.7255062583994514 ∗ 108 2745 (ms)
method L 316 3160 4.725506258399451 ∗ 108 16265014 (ms)
method M No Results
method N > 1000 > 24(u)
method O 12 3779 37790 4.72550625839945 ∗ 108 2462249 (ms) Cond: 1.76 ∗ 1014

Dataset III
Determin 4.7255062583994514 ∗ 108 998 (ms)
method L 367 3670 4.7255062583994544 ∗ 108 5646560 (ms)
method M No Results
method N > 900 > 24(u)
method O 11 3014 30140 4.725506258399449 ∗ 108 2226197 (ms) Cond: 1.94 ∗ 1014

Dataset IV
Determin 8.64067918696305 ∗ 108 2059 (ms)
method L No Results
method M No Results
method N No Results
method O 4 6014 18042 8.64067918696305 ∗ 108 3324986 (ms) Cond: 1.54 ∗ 107

Table 6.5: Results for model N-reliability

expected as then there is one worst scenario, while otherwise all scenarios may still
be worst. For our datasets apparently making traditional steps in the first k steps to
identify the worst scenario does not help much as for K(5) solution times are reported
that are always lower than the times for K(50).

In table 6.5 the results for N-reliability, when they were obtained, are presented.
In the nested Benders decomposition the condition number of the last Q(z) solved is
shown, but also for dataset IV condition numbers of the size of 1014 were recorded in
the process. By ad hoc methods, trying different values for bigM and for the epsilon
used to compare two doubles (for example in the stop criterion) and parameter
RpEHS in CPLEX, we obtained results which are mostly still close enough to the
optimal solution or which are optimal. Still we feel we should refrain from using
decomposition methods for these ill-conditioned problems.

But if we do want to use decomposition methods, the conclusion is clear. We
should use the nested decomposition method. The number of times a problem
with binary variables has to be solved increases rapidly for the other decomposition
methods and we even did not try N = 25 for the case of 50 forecast scenarios when
the branch and bound procedure will become much tougher when solving problems
with those binary variables. A lot of results could not be obtained due to a very large
solution time. Just looking at the number of iterations reveals only the effort if we
keep in mind that binary variables are involved.
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Chapter 7

Other Planning Ideas

In this chapter we will consider other possible extensions to the Macro Planner. First
we focus on opportunities to take CO2 emission in account when planning with the
Macro Planner, a theme which was in the beginning suggested as main subject by
Capgemini. To understand that interest in CO2 emission we will sketch its economic
relevance first. There we can also link the goals of robust supply chain planning
and planning on CO2 emission. Thereafter we will consider more concretely the
possibilities in the Macro Planner. The other section discusses capacity extension
which can be modeled in multiple ways in the Macro Planner and link it to the issues
of CO2 emission and robust planning. The explanation why robust planning became
the main subject of this thesis instead of these two interesting possible extensions is
that it was interesting from an operations research point of view and in comparison
with these possible extensions it was easier to obtain or simulate data.

7.1 Planning on CO2 Emission

Greenhouse gases are the gases in the atmosphere which absorb the infrared ra-
diation, which is emitted from earth to atmosphere as a result of solar radiation
absorbed by the earth. These greenhouse gases include for example carbon dioxide
(CO2 ), methane (CH4), nitrous oxides (NOx), and chlorofluorocarbons. The growth
of greenhouse gases in the atmosphere results in more infrared radiation absorption
and therefore a warmer planet. This is called the greenhouse effect. To slow down
the greenhouse effect, the emission of these gases should be reduced. In the past
there was no incentive for companies to contribute to the reduction, but their atti-
tude has changed. We will only mention CO2 . After weighting the emission of the
greenhouse gases with their global warming potential (GWP), CO2 is responsible for
more than 99% of the total weighted greenhouse gas emission.

7.1.1 Economic background

Companies are nowadays for various reasons taking responsibility or for their share
of the greenhouse gas emission. Naturally regulation is a key driver: the Kyoto
protocol formulates the goal of bringing the amount of greenhouse gas emission
down to the level of 1990 and the government wants to enforce that. Their idea
for reaching this goal is to shift the external costs from society to the supply chain
partners. Instead of using taxes in most countries an emission trading system is
used, in Europe the European Union Greenhouse Gas Emission Trading System (EU
ETS). In an emission trading system on national level emission rights for a year are
assigned to participating companies such that the total equals a certain cap. Within
the trading system the companies can buy or sell emission rights and when at the
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end of the year the emission exceeds the rights they have acquired, they have to pay
a penalty. Currently most companies voluntary participate in the trading system,
only for paper, utilities and cement industries participation is compulsory.

The trading has as consequence that companies with the lowest cost for reducing
their CO2 emissions are most inclined to sell their rights and in the end have to lower
their emissions. Therefore it is possible to say that the advantage of a trading system
over a tax system is that it ensures that the CO2 emission is reduced to a level below
the cap at the lowest cost for society. A disadvantage of the trading system is that it
may prove hard for the government to choose the right cap. An example could be
seen on the 15th of May 2006 when the amount of emission in the European union
was presented. The cap chosen was too low such that there was a surplus of emission
rights in the market and the price per ton emission dropped from 30 euro to 12 euro.
When a cap is chosen too high the prices of emission rights may rise explosively
such that it is more expensive to buy additional emission rights than to accept the
penalty of emitting more than the rights the company has. With respect to legislation
it is important to note that countries without CO2 constraints have a competitive
advantage in domestic and export which can lead to profit and possibly CO2 leakage
when customers are importing products with a larger emission from those countries.
That does also explain now the Kyoto protocol runs out in 2012 the importance of the
in 2009 held Copenhagen conference. If all countries would have agreed with new
regulations the basis of CO2 trading systems becomes much higher.

Other reasons for the pursue of lower CO2 emission come from other economic
players. For shareholders the environmental performance can be a non-financial
indicator for the stock price. Other companies, the trading partners, can influence
the sustainability policy when they prefer to trade with partners emitting less CO2 if
they are judged on the CO2 emission of their partners.

This leads to 2 desirable consequences for the company using the Macro Planner.
It wants to have a planning in which a minimum of CO2 emission is produced for
all reasons above. Moreover it wants to have an accurate forecast of the resulting
CO2 emission in advance such that it can base its trading behavior on this forecast.
A CO2 emission forecast has to be made a few times per year, just like the high level
strategic planning for which we designed robust planning. Therefore we think robust
planning is even more encouraging if CO2 emission is taken into account. A user
gets for each forecast scenario a clear picture of the extra rights she will have to buy
or sell on the trading market if the sales forecast occurs.

7.1.2 Measuring setting

A usual way to present carbon dioxide emission is the carbon footprint of a product.
It is defined as the carbon dioxide emitted across the supply chain for a single unit of
that product. That includes the production, the usage and the disposal of a product.
It seems reasonable to use this in the Macro Planner as well and assign such a number
to each supply. However, companies normally control a part of the life process of the
product and therefore one have to think over the scope of the problem in terms of the
organizational boundary when using such a number in the supply chain planning.
A more general scope question asks whether emissions caused by other actions than
operational controlled or maybe financial controlled should be included. To give an
example, the production of electricity which is used in a plant does not fall into the
operational controlled actions. It is not easy to answer that question. The answer
depends among others on whether the company is the largest in the supply chain,
when the audience often regard the total emission as the company’s responsibility,
or what at the time the regulations are. In the Macro Planner we will prefer to leave
all options open.

It is interesting to look at the conventions on the reporting of the emissions are.
For a company it is in their interest to publish the emission results in their social
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report, even if this is not obliged, if it has goals in emissions. Keeping track of emis-
sions can also lead to benefits like managing GHG risks and identifying reduction
opportunities. A definitive way of presenting these results is not established yet.
See for example [1], an annual report of the Dutch traffic and transport organization,
where a benchmark for the CO2 emission is introduced, but a lot of important data
is not known.

However the World Business Council for Sustainable Development and the World
Resources Institute work on the ‘Greenhouse Gas Protocol‘ which is a leading guide-
line nowadays. In 2001 they published the first ”The Greenhouse Gas Protocol: A
Corporate Accounting and Reporting Standard” and subsequently they developed
additional calculation tools. ISO, the International Organization for Standardization,
based their guideline ISO 14064-I: ”Specification with Guidance at the Organization
Level for Quantification and Reporting of Greenhouse Gas Emissions and Removals”
on the GHG protocol. If a company becomes member of ICROA, the International
Carbon Reduction and Offset Alliance, it is obliged to follow the GHG protocol and
the ISO 14064-I.

A normal approach for measuring the emission is not to measure a concentration
in the air but to calculate the emission is to use a proxy measure of activity of an
emission source and an emission factor with which it should be multiplied. The
complete approach according to the GHG protocol is:

1. Identify GHG emissions sources

2. Select a GHG emissions calculation approach

3. Collect activity data and choose emission factors

4. Apply calculation tools

5. Roll-up GHG emissions data to corporate level

In the Macro Planner itself it would be very illogical to store values for those proxy
measures and apply emission factors to them. If you compare it with the way
costs are taken into account this would be extraordinary detailed. Therefore we
will in the following section use parameters which should have been calculated
elsewhere before applying it to the Macro Planner. As shown in [24] calculators
for carbon dioxide emission of households can differ heavily in their outcomes.
This will be caused by different emission factors and by different default values on
measurement proxies. The calculations of these calculators lack any transparency.
Therefore choosing the right way of calculation for the parameters we want to include
in our Macro Planner model is a typical business intelligence problem and we prefer
to refrain from get our fingers burned on that issue. In Capgemini also a calculation
tool called Clint is developed, so there is some expertise in this field.

7.1.3 Macro Planner interpretation

In comparison with section 3.2 we have an extra business goal, CO2 emission. This
addition will result in a new KPI matrix like in table 7.1. We think that the effect of
the supply chain planning decisions on the emission business goal can be captured
in 2 KPI’s:

9 Total fixed CO2 emission: Sum of fixed emission per period of units and the
opening/closing emission of units.

10 Total CO2 emission of supply: Sum of emissions from the supply routings and
inventories.
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profit inventory satisfaction productivity emission
Supply Chain Planning
Quantity of supply to produce (1),(2),(3),(4) (4),(5) (6) (8) (10)
Sources used for supply (1),(3) - - - (10)
Operation allocation to machines (1),(3) - - - (10)
Demand served by supply (1),(2),(4) (4),(5) (6) - -
Inputs for Supply Chain Planning
Demand netting - - - - -
Fulfillment goal, sales target - - (6) (8) -
Inventory target decision - (4) - - -
Supply Chain Design (7) - - - (9)

Table 7.1: Planning Decisions versus Business Goals

This resembles for a large extend to the structure of cost, where there is fixed cost
and supply cost. Therefore the proposal for the parameters to use is also very similar
of the parameters for cost. To read the rest of this section, the description of the
Macro Planner given in chapter 2 does not suffices. It is required to read appendix
A. We suggest to include parameter fields in the knowledge base as stated in 7.2.
Some of these parameters are used to give values for fixed emission and contribute
thus to determining KPI 9 while others really affect the supply chain planning and
are used by the optimizer. The variables mentioned in 7.3 represent are the result of
the supply chain planning.

These parameters and variables should be sufficient to make a planning when
reducing CO2 emission is an important business goal. However as we have seen in the
previous subsections it is not always possible for a company to have all information
to calculate these parameters at its disposal. What to do when a value for a parameter
is missing?

As mentioned in [19] for example APS systems should in general not be built
needing data which is not available. If a value for CO2EmissionPerQuantitysr is
missing and is set to 0, subcontracting operations to the subcontractor of supply
routing sr is regarded as more favorable due to the CO2 emission of 0 and the
optimizer will assign large quantities to the supply routing. This will never have
been the intention of planning on CO2 emission. Similar statements can be made
for all parameters used in supply chain planning. From this example it can be no
surprise that choosing a value on basis of expert opinion is therefore always favorable
to any other solution. Missing parameters which are used for supply chain design
are frustrating the trouble of forecasting the emission.

If there is no calculation and no expert opinion for some parameter and there
is a thorough wish to consider CO2 emission in the supply chain planning it seems
best to choose the values for the missing parameters based on the other values.
Our proposal would be for CO2EmissionPerQuantityop to take an average over the
known values for CO2EmissionPerQuantityop in which the machine in op = (m, so)
is equal and the supply operation is from a supply routing that is a copy of the same
product routing. If these emission quantities are all unavailable an average has to be
taken over all the known values of CO2EmissionPerQuantityop for which the supply
routing is a copy of the same product routing. Else it should be set to the average of
all CO2EmissionPerQuantityop or if that is not possible to 0. The lesser preferred the
option, the lesser plausible it is. The same can be done for CO2EmissionPerQuantitysr
starting with the supply routings from the same product routings and then all supply
routings. For EndOfLifeFootprintp the average over all finished products can be taken
or else 0 should be chosen. For CO2EmissionPerQuantitypispip first the average over
all pispip’s from the same pisp should be chosen , then the average over all p and then
0. If the option is less preferred the assumption is less plausible. As a consequence
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Parameters for Emission
Parameter Domain Unit of Measure Definition

Parameters for supply chain design
FixedCO2Emissionut ∀ut ∈ UT (ton CO2 ) An emission that always occurs if

the unit is not closed. Possible to
construct from fixed emission per
day as is given in the knowledge
base

OpeningEmissionu ∀u ∈ U (ton CO2 ) An emission that occurs when a unit
is opened or started. As the opening
and closing decisions are performed
manually this parameter does not
come back in the optimizer.

ClosingEmissionu ∀u ∈ U (ton CO2 ) An emission that occurs when a unit
is closed or shut down. As the
opening and closing decisions are
performed manually this parameter
does not come back in the optimizer.

FixedCO2Emissionspip ∀spip ∈ SPIP (tonCO2 ) An emission that always occur for
the stocking point. To construct
from fixed emission per day in the
knowledge base.

TotalFixedEmission (ton CO2 ) Total fixed CO2 emission of all unit
periods and all stocking points in pe-
riods.

Parameters used in supply chain planning

CO2EmissionPerQuantityut ∀ut ∈M × T ( tonCO2
ton ) Production dependent CO2 emis-

sion for a machine, here dependent
on quantity.

CO2EmissionPerHourut ∀ut ∈M × T ( tonCO2
hour ) Production dependent CO2 emis-

sion for a machine, here dependent
on production time.

CO2EmissionPerQuantityop ∀op ∈ OPu,u ∈M ( tonCO2
ton ) This parameter is deduced from the

former two parameters and is actu-
ally used in the planning just like
CostPerQuantityop.

CO2EmissionPerQuantitysr ∀sr ∈ SRsc, sc ∈ SC ( tonCO2
ton ) The amount of emission a subcon-

tractor generates when producing
one ton. This can be seen as her car-
bon footprint.

CO2EmissionPerQuantitypispip ∀pispip ∈ PISPIP ( tonCO2
ton ) Inventory dependent CO2 emission

for a stocking point. An example
would be a stocking point in which
the inventory needs to be constantly
mixed.

EndOfLifeFootprintp ∀p ∈ FinalProducts ( tonCO2
ton ) The average amount of CO2 emitted

in the rest of the life of product p,
which is important if the company
wants to measure the CO2 on the
broadest scope.

Table 7.2: New CO2 parameters



Variables for Emission
Variable Domain Unit of Measure Definition

AverageFootprintp ∀p ∈ P ton CO2
ton Instead of calculating a value for CO2 emis-

sion per sales demand, a company wants
to link a product with a carbon footprint
value.

TotalCO2EmissionOfSupply ton CO2 This is in the end the value in which the
company is interested.

Table 7.3: New CO2 variables

our advice is to lower the weight for CO2 emission in the optimizer sharply when
less plausible options are chosen and take a significantly larger error margin into
account. Also it might be worthwhile to reconsider the idea of incorporating CO2
emission in the planning process if not everything can be calculated and not enough
expert knowledge is available.

Apart from the advantages of planning when CO2 emission is taken account
compared to normal planning we can now return to the 2 consequences of coupling
supply chain planning with CO2 emission and the effect of robust planning we
observe that CO2 emission is one of the goals to be minimized in the supply chain
planning. As the CO2 emission results directly from the first-stage decisions, it can
not be said that robust planning gives lower or for most scenarios a lower emission.
However if we would introduce a parameter for CO2 emission at scrapping of the
products, robust planning tries to minimize the scrapping per scenario and then we
would expect a lower or equal CO2 emission in all scenarios in comparison with
normal planning. It is possible to make a forecast on basis of the planning result in
the Macro Planner which is positive anyhow. Robust planning does lead to other
actions and another forecast, and if scrapping emission is taken into account multiple
outcomes for the CO2 emission depending on the scenario can be given which could
help to determine a more robust emission trading strategy.

7.2 Capacity Extension

For the possibility of capacity extension we will propose the opportunities to expand
or reduce the capacity in a supply chain we to take into account. We describe
which costs for these opportunities are defined and by that describe the scope for
the Macro Planner industry solution. This could be a starting point for the actual
implementation of capacity extension possibilities. We recognize the differences in
scope between users of the Macro Planner and describe them. We do not expect a
problem with data availability as these capacity extension problems will have been
encountered in the past such that there is some idea about the costs involved.

First observe the relation between this capacity extension idea and our earlier
ideas for the Macro Planner. When making a robust planning in which capacity
extension is taken into account it is more likely that terribly low occupancy rates
for plants or stocking points are avoided and the chance that the capacity limits the
production wishes of the company is also lowered. In some cases also an interesting
phenomenon could occur if we combine capacity extension and CO2 emission. It can
indicate that a machine should be replaced by a newer machine that produces fewer
CO2 which is a decision that maybe would not have occurred immediately to the
planner.

Capacities in owned resources occur in the quantity of stocking points and the num-
ber of time available on the machines. If capacity is a bottleneck in the supply chain
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planning those are resources at which something could be changed. The capacity
of a stocking point can change in many ways. We assume that in every period it
is possible to buy or sell capacity of a stocking point. The change in capacity will
come back in all subsequent periods by the nature of buying and selling. The other
possibility which will be encountered in practice frequently is to hire capacity in a
period. This has only effect on that period. On the other hand we assumed it is not
possible to rent capacity of stocking points. Experience has shown that it is often
undesirable to allow other parties in parts of the stocking point.

In our proposal buying or selling capacity results in a certain fixed cost for the
transaction, a variable cost for the amount bought and a variable cost for the amount
sold. The separation between selling and buying is debatable. The purpose of this
separation is the possibility to penalize buying an amount and selling the same
amount in the next period compared to keeping the capacity constant. However
the presence of fixed cost has already the same purpose. Also for hiring we define
a fixed hiring cost and a variable cost proportional to the capacity hired. We as-
sume the product capacity in a stocking point to be proportional to the total capacity.
Therefore no separate decisions on the product capacity have to be made. Obviously
a requirement is that the ‘new‘ capacity per period is always higher or equal than zero.

The other possibility to increase or decrease capacity in the supply chain is in the
plants. It could be possible to buy or sell a machine or to work more hours on a
machine than originally specified by the shift pattern. We always assume that the
same operation times are used for machines of one type. We also assume that there
are always enough employees to use the machines or that the cost of hiring and firing
employees is incorporated in the costs of buying and selling machines or changing
the number of hours worked. The effects of these actions can be classified as perma-
nently and temporarily. A changed number of machines in a period is used as input
for all subsequent periods. Operating a number of hours different than originally
specified by the shift pattern is applied only in the period itself and not taken forward
to the subsequent periods. Obviously the resulting ‘new‘ number of machines and
time per machine should be larger or equal than 0 in each period.

When buying or selling machines there is a variable cost or revenue for the unit
itself, but we assume there are no costs associated with finding a buyer or seller as
the possible partners are already known from previous transaction. Therefore we
propose not to include fixed cost. Also this part of the proposal is debatable when the
placement or removal from a machine is a large operation. A fixed cost for changing
the number of hours a machine is operated, cost for rescheduling employees, and
a variable cost depending on the number of hours changed can be defined. If this
amount of time is negative, the variable cost may be negative as well.

This would be our proposal and in Macro Planner terms the model is written out in
appendix B. Here a problem can be observed. When both the number of machines
and the number of hours worked on a machine is variable, the capacity in time is a
product of two variables and a non-linear term appears in a constraint. For this unde-
sirable effect a workaround can be thought of. At the moment it seems better only to
make one of the two decisions, number of operating hours and number of machines,
variable. An experienced planner might list a limited amount of attractive options
for the number of machines to be bought. It seems very reasonable that the only
sensible options are to buy or sell 1 machine. Then the decision of buying and selling
machines should remain the decision to be made manually in the supply chain design.

For a specific company, apart from the choices already given as debatable, more
parts of this description could not hold. If there are no fixed cost for buying or hiring
stocking point capacity, which could be for example when there is a regular renter
from which capacity is hired such that there are no ‘renter orientation costs‘, it is not
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most optimal to set these costs to 0. Immediately deleting all the binary variables
will speed up calculation time. The same holds of course for fixed costs incurred at
changing the operating time of a machine.

Besides it is to be expected for companies to have only a discrete set of possibil-
ities for hiring, buying and selling stocking point capacity. Hiring inventory space
can be hiring a building, hiring a box or anything and hiring 1.2 m2 does not seems
to be an option. Just as when transportation should occur in batches in the normal
Macro Planner instead of handling this discreteness we propose to search first for a
continuous solution and than solve multiple models in which the capacity extensions
or reductions is fixed to values around the values if the first solution.

After this proposal a final note on capacity extension in the context of robustness
can be added. In literature the favorite problems to study in robust planning are
P-median models, Uncapacitated Facility Location Problem models and Capacitated
Facility Location Problem models. In all the cases when a recourse model is applied
to these problems the first-stage decisions are supply chain design decisions, the
decision where to place the plants. The second stage decisions which are made after
information on the demand is revealed are the assignment of customers to plants
from which they are served, the supply process.

Translating this to our case, if a supply chain design decision as capacity extension
is very important for the Macro Planner user, it may be worth to develop another
planning application on basis of which these supply chain design decisions are made.
In that application the capacity decisions are made before information is revealed
and the supply decisions are only made after the information is revealed. This is
sensible when management has more possibilities to adjust the decisions made on
the planning than the possibilities to adjust capacities which is mostly the case in
practise. The link with the original Macro Planner for this application would be very
limited but it is an interesting direction to explore. After the decisions on the capacity
are made, the Macro Planner without capacity extension can be used to make the
supply chain planning.
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Chapter 8

Conclusions and
Recommendations

8.1 Conclusion

To construct a ‘good‘ supply chain planning for multiple forecast scenarios instead of
only one scenario as is current practice, we defined three two-stage recourse models.
After literature research we find these three models as representing different types
of risk-seeking behavior and having models for risk as well as uncertainty. For
the Macro Planner a concrete separation into first-stage and second-stage decisions
is made and this is implemented in Quintiq with a slightly adjusted underlying
structure and GUI design to get a new Robust Macro Planner.

When we tested this on a real dataset the supply chain planning for the expected
goal function robustness measure is different than the normal supply chain plan-
ning. In this example we saw for example that the total number of produced shoe
boxes increases if it is possible to have higher deviations (higher or lower) than the
expected demand. This would make it possible to increase the expected profit with
10% while planning according to the worst case goal function robustness measure
would increase the worst possible profit significantly without affecting the expected
profit too much. These effects will be different for every problem instance of course,
but at least it shows that there can be differences between a robust supply chain
planning and a normal supply chain planning.

We tried also alternative decomposition methods. This was however for a slight
adjustment in our model which allowed only right-hand side uncertainty. It should
be kept in mind that it is not possible to use a percentage-wise fulfillment goal any-
more. While these stochastic Benders decomposition methods are common in robust
optimization, we faced less-studied models as the worst case and N-reliability mod-
els and we faced only right-hand uncertainty. To exploit these characteristics we
came up with new options in the decomposition methods.

For the Macro Planner type of datasets we considered there was no possibility to
beat CPLEX as it was not possible to test really large examples among others due to
the time-consuming process of exporting the model from the Quintiq application and
importing it with ILOG Concert Technology. For small examples the it is less likely
to beat CPLEX and especially because CPLEX specialists program more efficient.
However, our decomposition methods may be more useful when CPLEX is not
available.

If we compare the decomposition methods against each other we see according
to our expectation that for the expected goal function model the multicut procedure
dominates the single-cut procedure. For these datasets the idea of solving one sub-
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problem to optimality could be an idea in the multicut case. For the worst case model
however the traditional method is performing less than our solve one subproblem
to optimality method and the depth search after k steps method. Depending on the
data characteristics, for example spread in forecasts, this may save a huge amount of
computation time. In implementing the decomposition methods for the N-Reliability
case we encountered numerical problems as this model can be ill-conditioned. If we
would apply decomposition models for N-Reliability we would advise the nested
Benders decomposition, but it may be wiser to refrain from it at all.

Other possibilities of increasing the attractiveness of the Macro Planner mainly
came back in chapter 7 and we will refer to it in the next section.

8.2 Recommendations

I do not claim to provide an application modeling all supply chain planning aspects
for an arbitrary or even any situation, but merely provide a framework for choosing
a right direction when situations in which topics as robustness are interesting are
encountered in practise. Therefore we will give here a few recommendations for
further research that suggested themselves during writing this thesis.

At first to answer the part of the main question which other possibilities could be
suggested, a reference to chapter 7 can be made. Two promising ideas for increasing
the attractiveness, incorporating CO2 emission or incorporating capacity extension,
are considered and although this is not made concrete, a lot of suggestions are made.

About the models proposed for robust planning in the Macro Planner it could be
said that as mentioned multi-stage models may be interesting when one takes into
account that the Macro Planner is not run once but maybe a few times per year.
Also in the Macro Planner models it might still be interesting to introduce recourse
variables for extra carried forward inventory or a combination of these variables with
the current variables.

On the decomposition methods it could be said that they have to be tested in
non-Macro Planner problems with an enormous amount of scenarios to establish
their worth in robust planning in general. Also the possibility of bunching should be
incorporated as this could decrease the solution time without doubt, but could not
be implemented in our application. Another point on which we did not elaborate in
this thesis is how to get a rule of thumb for choosing a right value for k in the depth
search after k steps method. This will be interesting when the method is used for
more problems.
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Appendix A

Mathematical Model

In this section the mathematical model currently used for solving the planning prob-
lem in the Macro Planner is presented. In total there exist 3 algorithms in the logic
behind the Macro Planner. Two of them are supporting manual actions in the Macro
Planner. One calculates the maximum quantity it is possible to plan on a supply
routing without violating capacity constraints. This is displayed as support for the
manual decision of creating a new supply routing connected to a new supply. The
other algorithm processes a manually created supply by allocating the operations in
an optimal way to the machines in a unit on which the operation can be carried out.
This allocation cannot be influenced by the user, but probably it is also very seldom
that a user is wanting to choose machines themselves in a strategic planning. The
focus is on the third and most important algorithm called CapacityPlanningAlgo-
rithm, which makes an automatic planning for the whole supply chain based on the
orders and forecasts. In this chapter that algorithm will be described, and all parts
of the Macro Planner which are not used by and not relevant for the CapacityPlan-
ningAlgorithm are omitted in this description.

A.1 Assumptions

In this mathematical model there are several assumptions made.

1. In the goal function only a cost term on the carried forward inventory at the
end of the period is used to model inventory costs, while in reality these have
to be paid on both end-inventory and inventory growth during a period.

2. Demand is continuously taking place over the time in a period. And if an
operation or supply routing is processed in a fraction of a period, it is regarded
as being spread and continuously taking place over the total period such that
it can also fulfill demand taking place at the beginning of the period. This is
equivalent with the assumption that demand is taken place at the end of the
period. This assumption is standard for most problems in the supply chain
optimization area like lot-sizing problems.

3. There is only continuous transport in the supply chain and no bulk transport is
taking place. Therefore no integer variables are needed to represent transport.

4. The cost structure is such that there are costs per quantity and/or costs per
period and/or opening and closing costs based on opening and closing events
specified in advance in the supply chain design for the units in the model.
So there is no possibility of expressing costs for starting and shutting down
machines in the supply chain design.
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5. Costs and revenues are not discounted: cash flows in the future are valued
the same as cash flows at the start of the planning period. This is common for
small models. Only if the planning horizon becomes very large it will become
interesting to drop this assumption.

In practise there will occur situations in which these assumptions won’t hold exactly.
When there is bulk transport in the supply chain, for example a batch of 500 should
be transported, there have to be set up some kind of branch or enumeration ap-
proach. If y is the outcome of the variable for the transport in the solution of a linear
programming model, the possibilities should then be branched on by/500c × 500 and
dy/500e × 500 as value for the concerned transport. So the algorithm should then be
executed multiple times, but the big amount of time concerned with the import of
knowledge bases to get the parameters when creating scenario’s only has to be done
once. The results from the LP runs usually come very quick. However, it should be
kept in mind that this approach with rounding on the variables which are required
to be integer does not guarantee an optimal solution. An example:

max 3x1 + 1.6x2 (A.1)

st 6x1 + 42 ≤ 24 (A.2)

−3x1 + 2x2 ≤ 0 (A.3)

x1 ≤ 3.5 (A.4)

x1, x2 ∈N (A.5)

The solution of the LP-relaxation is (3.5,0.75). When this is branched on the integer
values which will be obtained when rounding the solution, it is not possible to get
the optimal solution of (2,3) any more. An even more extreme example is:

max x2 (A.6)

st − 0.2x1 + x2 ≥ 0.7 (A.7)

−0.2x1 + x2 ≤ 0.9 (A.8)

x1 ≤ 2.5 (A.9)

x1 ≥ −0.5 (A.10)

x1, x2 ∈ Z (A.11)

The solution of the LP-relaxation is (2.5,1.4). All rounded solutions (2,1),(2,2),(3,1)
and (3,2) are infeasible as there is in fact only one feasible and therefore optimal
solution (1,1).

A.2 Sets

In table A.1 all the sets used in the mathematical model are listed. The sets are usually
objects in the Macro Planner logic, and they can be subdivided in different categories.
Some sets deal with the supply chain design, the fundamental of the whole system.
Some sets represent the different demands, which is sometimes defined on a part of
the supply chain. Also some sets deal with supply, the variables on these sets are
the outcome for the planning. These supplies can also be defined on sets from the
supply chain design.

In the definition of the sets is should be pointed out that in reality there are product
routings. Each supply routing is a copy of one product routing, which actually has
all the parameters now assigned to sets of supply routings or supply steps or supply
operations. So these parameters of supply routings is derived from the parameters of
the underlying product routings and only the variables for the quantity of a supply
routing, supply steps and supply operations of the supply routing, are determined
per supply routing. However, for the sake of simplicity here only sets are created
for supply routings. This does create more parameters, but has no influence on the
number of variables such that the model size is actually the same and this formulation

72



UnitSupply step 1 Supply step 2

SO

SO

SO

SO
PIPISP

PIPISP

PIPISP

Á

-

^

PIPISP

PIPISP

s
3





Quantitysr/Yieldsr Quantitysr

start , end; on machine: operation, speed on machine

Yield, start, end

A Supplypispip

Figure A.1: Detailed Routing Diagram

is equivalent. Furthermore the term PeriodTask is omitted. This is just equivalent
to part of an operation in a period which can be written down as (an operation,
a period). For clarity purposes the supply routing diagram is given here in more
details, A.1. The clear difference with a product routing diagram is that now periods
and quantities are mentioned.
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A.3 Parameters

In table A.2 all the parameters used in the mathematical model are listed. As there
are many parameters, the table consists of multiple pages. To get some order in the
parameters they are divided in categories. First there are the 0-1 parameters describ-
ing whether or not there is a relation between two elements of sets (objects). This is
mainly used for constructing conditioned sets in this model and called ‘Relation Pa-
rameters‘. Then there is a category of parameters describing the supply chain design.
This concerns capacity data, but also targets of the producer for other business goals.
Then there are ‘Parameters for Demand‘ as demands have not only a quantity but
also a revenue and more unique characteristics. Also there are ‘Parameters related to
Supply‘, which is mostly about the supply routings resulting in new supplies. At last
there are parameters which are only used in the goal function and used to balance
the different goals, ‘Goal Function Parameters‘. The values for these parameters for
the optimizer are set by the user. It is possible to create different optimizer settings
which can be selected to make a planning.

Not all of these parameters will be immediately clear and these parameters will
be explained further in this section. When there are relations between parameters
these will be presented. In fact, some parameters can also be substituted by the other
parameters.
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Week t Week t+1 Week t+2 Week t+3 Week t+4

Operation

(t+3)*7+2.15 days (t+4)*7+2.15 days

︷        ︸︸        ︷︷︸︸︷5.85 days 2.15 days

Example Operation of some Supply Routing

RelativeDurationInOperationop,t+3 = 5.85
7

RelativeDurationInOperationop,t+4 = 2.15
7

Figure A.2: RelativeDuration example

Two main concepts which can have some explanation are the parameters for
the time window of supply routings and the parameters on the cost of operations.
Furthermore some minor topics on parameters are mentioned.

A.3.1 Time window of Supply Routings

First two figures are presented in which the concepts can already be seen a bit:
figure A.2 in which one operation on a machine is displayed and the concept relative
duration is shown and figure A.3 which shows a supply routing with multiple steps.

Figure A.3 is for a supply routing defined on a controlled unit. Only then are the
supply steps and their cycle times interesting as they have to be planned on machines
owned by the producer which have a certain capacity. For supply routings defined
on a subcontractor it is not interesting which steps in that routing are actually taken.
Then it suffices to specify one default supply step and a leadtime to indicate how
much time it takes for the inputs to be processed to the outputs of the supply routing.
In this figure the cycle time is the amount of time needed to process inputs to outputs
of a supply step. The process time is the time it takes to actually process all input
quantity. It will be shown after the formal relations below that the process time is not
dependent of the quantity to be processed and is a parameter instead of a variable. It
is clear that for supply routings in own plants the leadtime is the sum of cycle times:
Leadtimesr =

∑
ss∈SSsr

(CycleTimess). After all, that is the time needed for the inputs to
go through all supply steps.

The next relations are formally used to calculate the time window for supply
routings:
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Period t Period t+1 Period t+2 Period t+3 Period t+4

Supply Step 1

Supply Step 2

Supply Step 3

Cycle times example Supply Routing in own Plant

Process TimeCycle Time

︷        ︸︸        ︷Cycle time of ss 3

Process TimeCycle Time

︷                ︸︸                ︷Length of period t+4

Process TimeCycle Time

︷︸︸︷Cycle Time of ss 2

Figure A.3: Cycle times example

Endsr = Endt

∀t ∈ T, pisp ∈ PISP, sr ∈ SRNS(pisp,t) (A.12)

Endss = Endss2 − CycleTimess2 if SequenceNrss2 = SequenceNrss + 1 < max
ss2∈SSsr

(SequenceNrss2) − 1

= Endsr if SequenceNrss = max
ss2∈SSsr

(SequenceNrss2)

∀ss, ss2 ∈ SSsr (A.13)

Endso = Endss

∀ss ∈ SS, so ∈ SOss (A.14)

Endop = Endso

∀u ∈ SC ∪M, op = (so,u) ∈ OPu (A.15)

84



Startop = Endop − (Endt − Startt + Leadtimesr)

∀u ∈ SC ∪M, pisp ∈ PISP, t ∈ T, ns ∈ NSpisp,t, sr ∈ SRns, ss ∈ SSsr, so ∈ SOss, op = (so,u) ∈ OPu

(A.16)

Startso = min
u∈SC∪M,op∈OPu

(Startop)

∀so ∈ SO, op = (so, u) (A.17)

Startss = min
so∈SOss

(Startso)

∀ss ∈ SS (A.18)

Startsr = Startss

∀ss ∈ SS|SequenceNrss = 1 (A.19)

RelativeDurationInOperationop,(u,t) =
(min{Endop, Startt} −max{Startop, Startt})

Endop − Startop

∀u ∈M ∪ SC, op ∈ OPu, t ∈ T (A.20)

EndProdsr = Endsr − CycleTimess

∀sr ∈ SR, {ss ∈ SSsr|SequenceNrss = 1} (A.21)

StartProdsr = Startsr − CycleTimess

∀sr ∈ SR, {ss ∈ SSsr|SequenceNrss = 1} (A.22)

RelativeDurationsr,t =
min{Endt,EndProdsr} −max{Startt, StartProdsr}

EndProdsr − StartProdsr

∀sr ∈ SR, t ∈ T (A.23)

The above relations are defining the time span of a supply routing. So this are
the relations by which is determined in which period the inputs are demanded for
a supply in a certain period t. Initially the end of a period determines the end of
a supply routing which supplies in that period, (A.12), and thereby the end of the
last supply step. The earlier supply steps should all finish the cycle time of the next
supply step before it’s end, such that a product processed by the earlier supply step
can also be processed by the next supply step before it’s end. This is expressed by
constraint (A.13). This can also be seen in figure A.3. The supply steps end a cycle
time before the next supply step ends. Then each supply operation ends at the end
of a supply step and each operation ends at the end of a supply operation.

By the duration of the operation a link is obtained with the start times in the
supply routing. This can be seen in constraint (A.16). The duration of an operation
is equal to the duration of the period for which the supply routing supplies when
the unit on which the supply routing is defined is a machine. This is a kind of
assumption. An operation can in reality of course be processed only during a part of
a period, but for the macro planning it is assumed that the process is going on during
the whole period. An operation should also never take longer than a period, because
some of the output would already be finished in an earlier period, which means it
would belong to a supply routing serving an earlier pispip. Intuitively it would
be logical if the quantity of an operation would influence it’s duration - and these
times are variables - but in this interpretation the quantity influences the number
of hours capacity needed during this duration of one period. If the supply routing
is defined on a subcontractor also the leadtime of the supply routing is added to
the duration. The reason is that for subcontractors the leadtime indicates how early
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demand already should take place before the process can start. This is equivalent to
the cycle times for a machine. For machines this is taken into account in (A.13) and
for subcontractors with only one supply step it is arranged at this moment.

From the start of the operations, we get the start of a supply operation by taking
the minimum start time of it’s operations, (A.17). Then the start of a supply step is
the minimum of the start of it’s supply operations, (A.18), and the start of a supply
routing is the start of the first supply step, (A.17).

From these start and endtimes it is possible to derive measures for relative dura-
tion. A relative duration of an operation in a time unit is called RelativeDurationInOperation.
This variable is used to calculate the quantity which is processed in a unit period.
It can be seen in figure A.2 The variable RelativeDurationsr,t is used to determine in
which period dependent demand should take place. Dependent demand is caused
in the first supply step and it starts already before the actual start of the supply step,
as the inputs have to be available a cycle time of the first supply step in advance.
However, it’s definition in (A.23) does not use the end of the first supply step, but
the end of the whole supply routing instead. This seems to be wrong and in a next
version of the Macro Planner this is defined otherwise. One would expect that (A.21)
used Endss instead of Endsr.

A.3.2 Cost of Operations

Then there are the costs of an operation. To determine them in the goal function a
parameter for the cost per quantity is given here.

CostPerQuantityop = CostPerQuantitysr

∀u ∈ SC, op ∈ OPu, so ∈ SOss, ss ∈ SSsr, sr ∈ SRsc (A.24)

CostPerQuantityop =
∑

{t∈T|Startop<Endt&Startt<Endop}
(CostPerHourut/RequiredCapacityop/Yieldss

+ CostPerTonut)/|t ∈ T|Startop < Endt&Startt < Endop|
∀u ∈M, op ∈ OPu, so ∈ SOss (A.25)

The first equation is used for supply routings of a subcontractor and the second
equation is for own controlled supply routings. For a subcontractor there is just a
cost per ton which she should process, while the cost of an own controlled supply
routing is depending on both quantity and required time. In the knowledge base
each machine has a cost per hour and a cost per ton. This is propagated to the
discrete unit-periods. The costs per hour should not be mistaken for fixed costs,
as these costs are for the time the machine is really busy. The cost of an operation
on a machine in a unit period per quantity is now composed of a cost per quantity
and a cost per time needed to process the quantity. From these costs the cost of an
operation on a machine can be obtained. Now this is done in constraint (A.25) by
taking an average over the periods in which the operation is processed. However, in
my opinion instead a weighted average by RelativeDurationInOperation would be the
right choice to get the cost per quantity of an operation. The costs per quantity in a
period when most of the operation is processed should be count more. In the goal
function that are the parameters used to really calculate costs of a supply routing on
a machine. There it will be multiplied by the incoming quantity of the operation,
which means that using the term Yieldss also here is wrong.

A.3.3 Other parameters

The yield of the next supply steps in the supply routing, excluding step ss, CombinedYieldss
is dependent of the combined yield and the yield itself of the subsequent supply step
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Supply Step Yield Combined Yield
1 0.9 0.66
2 0.6 1.1
3 1.1 1.0

Table A.3: Example yield and combined yield

in the supply routing: it is the product of these two. When a supply step is the last
step in the supply routing, such that its sequence number equals the total number of
supply steps, there are no next supply steps and the combined yield is 1 by definition.
This means that this parameter can be obtained by a recursive formula:

CombinedYieldss = CombinedYieldss2 ∗ Yieldss2 if SequenceNrss < |SSsr|
1 otherwise

∀sr ∈ SR, ss ∈ SSsr, ss2 ∈ {SSsr|SequenceNrss2 = SequenceNrss + 1}
These parameters are used to calculate the quantities of operations based on the

quantity of the supply routing, for example in constraint (A.31) and to calculate the
input quantity of a supply operation based on the output quantity as for example in
capacity constraint (A.39). To explain this important concept further, an example with
numbers for a possible supply routing with three supply steps is given in table A.3.
The yields are parameters from which the combined yield parameters are derived.

From these parameters it is also possible to deduct the total yield of the supply
routing as

Yieldsr = Yieldss ∗ CombinedYieldss ∀sr ∈ SR, {ss ∈ SSsr|SequenceNrss = 1}
or

Yieldsr =
∏

ss∈SSsr

(Yieldss) ∀sr ∈ SR

Another time-related parameter is Startsd, which is used in determining which
sales demands are taken into account by for example a product fulfillment goal. It
holds that the start of a salesdemand is equal to the start of the period from the pispip
to which it is related:

Startsd = Startt ∀sd ∈ SDp,sp,t

Per pispip there is always one inventory demand. In other words, if DinPISPIPd,pispip
for a pispip is summed over d ∈ Id the answer is always 1. The amount demand is
equal to the target of the pispip at the end of the period. This is intuitive when it is a
target. But the most important is to realize that it is a target for the end of the period.

Quantityid = TargetInventoryLevelpispip ∀(id, pispip) ∈ PISPIP × Idpispip

At last some words about the interpretation and relevance of some parameters.
The existence of a minimum (product) capacity for a subcontractor is to model the
contracts with subcontractors as good as possible. A reason that it is possible to define
different inventory item prices per pispip could for example be that in a product life
cycle the expectation for the revenue per sold item is declining. An interpretation of
the preference bonus for supply routings is maybe that for some reason a discount
linear related to the quantity of products on a supply routing is expected in the future.
As for the case that the price of a contract for a next period with an external supplier
is dependent on the number of products which have used the supply routing in this
planning horizon.
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A.4 Variables

In table A.4 all the variables used in the mathematical model are listed. Important
are the variables representing the quantity of a supply routing, Quantitysr. From
these variables for example Quantityns of new supplies are derived with equality
constraint A.26, and the variables Quantityso for supply operations are derived by
the equalities A.33 and A.32. Also completely independent are Quantityop, the
variables for the operations planned on a machine. This is explained in the section
on the constraints. At the demand side are the variables FulfilledQuantityd with
d ∈ Sd ∪ Id independent such that the optimizer can choose to which demand to
allocate the supplies of a pispip.

All other variables which are mostly used as measures for goals in the goal func-
tion can be derived from these demand and supply routing variables. It is possible
to substitute them by the above mentioned variables. This gives the conclusion that
the model size is in the order of the number of supply routings plus the number of
demands. And the number of demands is equal to the number of sales demands and
the number of inventory demands (=number of pispip’s). So the model of the Macro
Planner is in the order of nPeriods x nProduct Routings + nPeriods x nProductRout-
ings x nSupplyOperationsPerRouting x nMachines + nSalesDemands + nPeriods
x nStockingPoints x nProducts, which is in the order of nPeriods x nProductRout-
ings x nSupplyOperationsPerRouting x nMachines + nSalesDemands + nPeriods x
nStockingPoints x nProducts.

Also remarked in the section on constraints is that a variable for overloading the
maximum product capacity of a unit period would be expected in the list of variables,
but it is not.
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A.5 Constraints

The constraints listed in the model serve several purposes and there are hard and
soft constraints. In this section all constraints are listed and an explanation is given.
First we start with the constraints which hold everything together, the constraints
which control the in and outflow at the stocking points in each period:

Quantityns = (OutputFactorpisp,sr ∗Quantitysr)

∀pispip = (pisp, p) ∈ PISPIP, s ∈ NSpispip, sr ∈ SRns ∩ SROpisp (A.26)

(1 − IsEarlySupplyAllowed)
∑

ns∈NSpispip

(Quantityns) ≤
∑

d∈Dpispip

(Ful f illedQuantityd)

∀pispip ∈ PISPIP (A.27)

UnallocatedSupplypispip =
∑

ns∈NSpispip

(Quantityns) +
∑

is∈ISpispip

(Quantityis)

+ CarriedForwardInventory(p,sp,t−1) −
∑

d∈Dpispip

(Ful f illedQuantityd)

∀pispip = (p, sp, t) ∈ PISPIP (A.28)

CarriedForwardInventorypispip = UnallocatedSupplypispip + (Ful f illedQuantityid∈Idpispip )

∀pispip ∈ PISPIP (A.29)

SPCarriedForwardInventoryspip =
∑

p∈P
(CarriedForwardInventory(p,spip))

∀spip ∈ SPIP (A.30)

The quantity of a new supply, which is related to a pispip, is the total output
quantity of it’s supply routing times the factor of output going to the product in
stocking point of the pispip to which ns is related. See constraint (A.26). When
IsEarlySupplyAllowed is false, the sum of these new supplies to a pispip should
not exceed the total demand which is fulfilled in that period by products from that
stocking point, see (A.27). By the inventory targets and inventory demands it is
of course still possible to raise the inventory from period to period, but it is not
allowed to have already supplies for inventory, dependent or sales demand which
only takes place in subsequent periods. This constraint can be switched on or off
by specifying the IsEarlySupplyAllowed parameter of the optimizer to true. These
constraints are concerning supply. The constraint (A.28) is to define something
called unallocated supply as the quantity which is left after subtracting the fulfilled
demands from the incoming quantity in the pispip. In the later constraint (A.46) the
fulfilled demand will be restricted to be at most the demand which is faced in the
pispip. The unallocated supply concerns inventory as the amount which is carried
forward of a product at the end of a period is the sum of the fulfilled inventory
demand, to reach the inventory target in the next period, and the unallocated supply,
see (A.29). The total amount of products carried forward for a stocking point is the
sum of the amount carried forward per product over the products.
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∑

op∈OPso

(Quantityop) =
1

CombinedYieldss
×Quantitysr

∀sr ∈ SR, so ∈ SOss, ss ∈ SSsr (A.31)

Quantityso = Quantityss

∀ss ∈ SS, so ∈ SOss (A.32)

Quantityss =
1

CombinedYieldss
×Quantitysr

∀sr ∈ SR, ss ∈ SSsr (A.33)

These constraints determine from the total output quantity of a supply routing the
output quantities for the separate operations, supply operations and supply steps.
The relation with the supply steps is in constraint (A.33) arranged by the parameter
CombinedYieldss, a parameter which is explained in the parameter section. In (A.32)
the quantity of a supply operation is put equal to the quantity of it’s supply step
as these operations are carried out simultaneously. The sum of the quantities of
operations on machines has to be equal to the quantity of their supply operation
by constraint (A.31). It should be noted that this gives freedom to choose on what
machine what quantity is processed. Also important to hold everything together is
the constraint for fulfilled quantity:

Ful f illedQuantitydd =
∑

sr∈SRIpisp

(RelativeDurationsr,t) ×
Quantitysr

Yieldsr
× InputFactorpisp,sr

∀dd ∈ Ddpisp,t, (pisp, t) ∈ PISPIP (A.34)

Supply routings to obtain supplies result in dependent demands at the input
pisp’s of the supply routing, unless there are no input pisp’s in case it is a supply
routing for raw material. Then no dependent demand is made. These dependent
demands are divided over periods by the relative duration of the first supply step of
a supply routing in these periods. After all, the total input quantity is already needed
in the first supply step. In the parameter section some doubts were expressed about
the current way of calculating this. When a planning is automatically generated,
all dependent demand has to be fulfilled as otherwise next supply routings can not
be fulfilled and are useless. Therefore the variable FulfilledQuantitydd immediately
takes the quantity of dependent demand. This means by constraint (A.28) and also
the requirement that the UnallocatedSupplypispip should be higher or equal to zero
that for the pispip’s that serve as input for supply routings supply has to be created
which has to be done via supply routings. This gives dependent demand at other
inputs for which supply has to be created and so on. That means that sales demand is
only fulfilled when the supplies can be fulfilled from raw materials to end products.
Now the important quantities are defined it is possible to check the constraints for
the capacities in the supply chain:
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MinimumQuantityNotMetut

+
∑

op∈OPsc

(RelativeDurationInOperationop,sc,t ×Quantityop) ≥MinCapacityut

∀ut = (sc, t) ∈ UT, sc ∈ SC (A.35)

∑

op∈OPsc

(RelativeDurationInOperationop,(sc,t) ×Quantityop)

−MaximumCapacityOverloadedut ≤ TotalAvailableCapacityut

∀ut = (sc, t) ∈ UT, sc ∈ SC (A.36)

These constraints are soft constraints for the capacity which is available in periods
at units whose capacity is quantity-based (subcontractors). For each unit the number
of products which are processed in a period is the sum of the relative duration of
the operation in the unit period times the total number of products which should
be delivered as output by the operation over all the operations executed. If this is
less than the minimum capacity of a unit period the MinimumQuantityNotMetut
variable for which there is a penalty in the objective function becomes positive. If it is
higher than the available capacity of a unit period MaximumCapacityOverloadedut
on which there is a (different) penalty in the goal function should be positive.

MinimumProductQuantityNotMetut,p +
∑

op∈OPsc

(RelativeDurationInOperationop,ut ×Quantityso) ≥

MinProductCapacityut,p

∀((sc, t), p) ∈ UTP (A.37)

∑

op∈OPsc

(RelativeDurationInOperationop,ut ×Quantityso) ≤

MaximumProductCapacityut,p

∀((sc, t), p) ∈ UTP (A.38)

The first constraint works the same as (A.35), but now it is formulated for the
specified minimum capacity per product in a unit period, and only over the supply
operations which produce this product should be summed. The second constraint
involves the maximum capacity per product in a unit period. However, this con-
straint is very different from (A.36) in the sense that it is a hard constraint. This choice
seems strange as it prevents ‘planning under infinite capacity‘ from really planning
under infinite capacity. The alternative is of course to turn this constraint into a soft
constraint and introducing a variable MaximumProductCapacityOverloadedut,p.

∑

op∈OPm

(RelativeDurationInOperationop,t ×Quantityop/RequiredCapacityop/Yieldss)

−MaximumTimeOverloadedut ≤ TotalAvailableTimeut

∀(m, t) ∈ UT,m ∈M (A.39)

This is the unit capacity constraint for the machines (or time-based unit in gen-
eral) for which there is a maximum capacity defined measured in time units. As
the time a process takes is defined by the total input quantity divided by the
RequiredCapacityop, first the input quantity has to be determined by dividing the
output quantity by the yield. Then it should be multiplied by the fraction of the
operation taking place in the period and then the time can be calculated.

Of course there is also a maximum capacity at the stocking points. This is not
arranged by soft constraints, but just simply as a hard constraint, see (A.59) and
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(A.58). And then there are also the soft constraints related to the business goals of
customer satisfaction and productivity.

Un f ul f illedQuantityst ≥MinimumQuantityst −
∑

sd∈SDsals

(Ful f illedQuantitysd)

∀sals ∈ SalS, st ∈ STsals (A.40)

OverFul f illedQuantityst ≥
∑

sd∈SDsals

(Ful f illedQuantitysd) −MaximumQuantityst

∀sals ∈ SalS, st ∈ STsals (A.41)

Un f ul f illedQuantitystp ≥MinimumQuantitystp

−
∑

sd∈SDsals |Startsd≤Startstp<Endsd and
∑

p∈P(STPonPstp,p×DinPISPIPsd,p,sp,t=1)

(Ful f illedQuantitysd)

∀sals ∈ SalS, stp ∈ STPsals (A.42)

OverFul f illedQuantitystp + MaximumQuantitystp ≥∑

sd∈SDsals |Startsd≤Startstp<Endsd and
∑

p∈P(FGPonP f gp,p×DinPISPIPsd,p,sp,t=1)

(Ful f illedQuantitysd)

∀sals ∈ SalS, stp ∈ STPsals (A.43)

Un f ul f illedPercentage f g ≥ Ful f illmentPercent f g − (
∑

sd∈SDsals

(Ful f illedQuantitysd/Quantitysd) × 100)

∀sals ∈ SalS, f g ∈ FGsals (A.44)

Un f ul f illedPercentage f gp ≥ Ful f illmentPercent f gp−
(

∑

sd∈SDsals |Startsd≤Start f gp<Endsd and
∑

p∈P(FGPonP f gp,p×DinPISPIPsd,p,sp,t=1)

(Ful f illedQuantitysd/Quantitysd) × 100)

∀sals ∈ SalS, f gp ∈ FGPsals (A.45)

When for a sales target the target minimum is not reached or the target maximum
is exceeded, UnfulfilledQuantityst or OverFulfilledQuantityst are forced to become
positive and this will give a penalty in the objective function. The same holds for the
product sales targets. For a fulfillment goal (product) the soft constraint to determine
the value for UnfulfilledPercentagefg or UnfulfilledPercentagefgp. It will be positive
when the percentage of fulfilled quantity of the concerned sales demands is lower
than the fulfillment percentage that was specified in the fulfillment goal. It will get
a penalty in the goal function. The relation between sales demand and sales target
products/product fulfillment goals is set by taking the sales segment, the product and
the start and end dates into account. All sales demands defined for a period which
starts after the start of the FGP/STP and before the end of the FGP/STP are taken into
account. However for sales targets and fulfillment goals there is currently an easily
repairable bug as the start and end of the ST/FG is not taken into account.Then there
are still many constraints which defines the domain for the variables:

94



0 ≤Ful f illedQuantityd ≤ Quantityd ∀d ∈ Sd ∪ Id (A.46)

Un f ul f illedPercentage f gp ≥ 0 ∀ f gp ∈ FGP (A.47)

Un f ul f illedPercentage f g ≥ 0 ∀ f g ∈ FG (A.48)

Un f ul f illedQuantitystp ≥ 0 ∀stp ∈ STP (A.49)

OverFul f illedQuantitystp ≥ 0 ∀stp ∈ STP (A.50)

Un f ul f illedQuantityst ≥ 0 ∀st ∈ ST (A.51)

OverFul f illedQuantityst ≥ 0 ∀st ∈ ST (A.52)

MinimumProductQuantityNotMetut,p ≥ 0 ∀(ut, p) ∈ UTP (A.53)

MaximumProductCapacityOverloadedut,p ≥ 0 ∀(ut, p) ∈ UTP (A.54)

MinimumQuantityNotMetut ≥ 0 ∀ut ∈ UT (A.55)

MaximumCapacityOverloadedut ≥ 0 ∀ut ∈ UT (A.56)

MaximumTimeOverloadedut ≥ 0 ∀ut ∈ UT (A.57)

0 ≤CarriedForwardInventorypispip ≤MaxCapacitypispip ∀pispip ∈ PISPIP (A.58)

0 ≤SPCarriedForwardInventoryspip ≤MaxCapacityspip ∀spip ∈ SPIP (A.59)

UnallocatedSupplypispip ≥ 0 ∀pispip ∈ PISPIP (A.60)

Quantitys ≥ 0 ∀s ∈ {NS ∪ IS} (A.61)

Quantityso ≥ 0 ∀so ∈ SO (A.62)

Quantitysr ≥ 0 ∀sr ∈ SR (A.63)

Quantityop ≥ 0 ∀op ∈ OPu,u ∈M ∪ SC (A.64)

With all these constraints the solution space is defined. Now the objective function
will indicate which of these candidate solutions will be the best for the optimizer.

A.6 Objective Function

The optimization used here is a multi-objective objective optimization as several per-
formance measures for different business goals are taken into account and weighted
in relation to each other. Therefore there are many parts in this objective function and
they will be presented separately with explanation below. A distinction can be made
in the terms of the goal function that represent real cost and have an influence on the
business goals of profitability, and terms that measure other goals or set penalties
on soft constraints. Note that the objective function is maximized. Furthermore
remark that the goal function will give an optimal value z, but the most interesting
information for the user about the solution is normally what it displayed by KPI’s on
the supply chain planning output.

z = −
∑

(p,sp,t)∈PISPIP

(WeightInventoryCost ∗ InventoryItemPricep,sp,t ∗ YearlyInterestRate∗

Endt − Startt

YearDuration
∗ CarriedForwardInventoryp,sp,t)

This term is to give a weight on the inventory cost over the year, by weight
WeightInventoryCost. Notice that in accordance with the first assumption only
CarriedForwardInventory is taken into account. After a planning is made a CostOfInventoryp,sp,t
is calculated declaratively by the application. This does take WIP inventory into ac-
count and will lead to a slightly different result. However, for the optimizer above
formulation is also working and in production problems the assumption of paying
inventory costs on the end inventory is common.

+
∑

sd∈SD

(WeightRevenue × Ful f illedQuantitysd × RevenuePerQuantitysd)
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This term focuses on the business goal of profitability: the KPI total revenue is
measured. WeightRevenue is the weight for this term.

−
∑

u∈M∪SC,so∈SOss ,op=(so,u)

(Quantityop/Yieldss ∗ CostPerQuantityop ∗WeightDirectCost)

This term in the goal function denotes the direct cost of supply which is KPI
(3). These costs come from all the operations processed in the supply chain horizon.
For each operation the quantity is adjusted to the incoming quantity as the cost per
quantity is defined on that amount which is to be processed. Of course the yield
of all operations by subcontractors is 1, such that there is actually just a cost on the
output quantity. The structure of the parameter CostPerQuantityop of an operation
was described in the section about parameters.

The other terms have not directly anything to do with costs, revenues or profits.
First some terms in which penalties are assigned for violating soft constraints will be
given.

−
∑

ut∈UT

(MaximumCapacityOverloadedut)

×WeightFiniteCapacity ∗ f inite + WeightIn f initeCapacity ∗ (1 − f inite)

There is a penalty on the capacity overloaded in a unit period with quantity
based capacity. This weight penalty should be different for optimizer settings which
indicate planning with finite capacity and planning with infinite capacity. When
finite is 1 the very high WeightFiniteCapacity is selected which would make it
relatively unattractive to overload a subcontractor and when finite is 0 the low
WeightInfiniteCapacity is selected. Note that the solution space of both versions is
the same, only the values of the objective function is different for the solutions. It
seems that defining one WeightCapacity per optimizer setting which is very high
when that optimizer setting is for planning under finite capacity and low when it is
for planning under infinite capacity would also have been enough.

−
∑

ut∈SC×T

(MinimumQuantityNotMetut) ×WeightMinimumCapacity

−
∑

(ut,p)∈UTP

(MinimumProductQuantityNotMetut,p) ×WeightMinimumCapacity

Here a penalty on the under loading of a unit period is added, when less than
expected is demanded from subcontractors. This weight is not affected by the choice
for finite of infinite planning. Also a penalty on the under loading of a product for a
unit period is added. As mentioned before the maximum product capacity is a hard
constraint, so no penalty is set on the overloading of a product capacity in a unit
period.

The other objective function terms indicate other non-cost-related goals or pref-
erences.

−
∑

st∈ST

(WeightSalesTarget × (Un f ul f illedQuantityst + OverFul f illedQuantityst))

−
∑

spt∈STP

(WeightSalesTargetProduct × (Un f ul f illedQuantitystp + OverFul f illedQuantitystp))

Here a penalty is given when the minimum level of a sales target is not reached
or the maxmimum level of a sales target is exceeded. Note that the penalty for
these possibilities is equal. Also a penalty is given when the minimum level of a
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product sales target is not reached or the maxmimum level of a product sales target
is exceeded. The penalty for these possibilities is again equal.

−
∑

f g∈FG

(WeightFul f illmentGoal × CostPerPercentDeviation ×Un f ul f illedPercentage f g)

−
∑

f gp∈FGP

(WeightFul f illmentGoalProduct × CostPerPercentDeviation ×Un f ul f illedPercentage f gp)

Here penalties are given on the percentage by which the fulfillment goals are not
reached and on the percentage by which the fulfillment product goals are not reached.
Excessive realized fulfillments are obviously not penalized as Un f ul f illedPercentage
cannot be negative.

+
∑

sd∈Sd

(WeightCustomerSatis f action ∗ Ful f illedQuantitysd)

The word WeightCustomerSatisfaction is a bit misleading as here actually the
KPI for the business goal of productivity, the total fulfilled demand, is measured and
weighted.

+
∑

id∈Id
(WeightInventoryTarget ∗ Ful f illedQuantityid)

This term is specific for measuring how well the inventory target is reached.
However it would maybe be more logical to weight the percentage of fulfillment of
the inventory targets instead of the fulfilled quantity of inventory demand, as that
suggestion is the KPI. Also intuitively this should be clear: it is less desirable to fulfill
a certain quantity of inventory targets when the targets are much higher than when
it is exactly equal to the targets.

+
∑

pispip∈PISPIP

(
∑

sd∈Sdpispip

(WeightPriority × RevenuePerQuantitysd

× Ful f illedQuantitysd × (Prioritysd −WeightPriority)))

This is to promote fulfilling sales demands with higher priorities. However the
exact interpretation of this term is unclear. It is strange that the weight of the priority
is subtracted from the priority and actually this is a bug in the Macro Planner. An
advantage of this is also that it could help to prevent multiple solutions: when
revenue is equal and fulfillment goals and sales targets are reached already, deciding
from which sales segment demand to fulfill is possible in many equally good ways.
This is prevented when the priorities are unequal.

+
∑

sr

(WeightRoutingPre f erence ×Quantitysr × Pre f erenceBonussr)

This constraint sums the total preference bonus of the supply routings in the
planning weighted with WeightRoutingPreference.
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Appendix B

Capacity Extension Model

The proposal of parameters and variables for capacity extension is straightforward
as they have a similar structure of the costs. In tables B.1 and B.2 the parameters
and variables are given respectively. Not only extra parameters are specified. When
introducing the option of capacity extension it is indefensible to keep regarding the
capacity constraints as soft constraints. These should be changed to hard constraints
on the new capacity. Here it should be noted that if one wants to plan against infinite
capacity it suffices to set the WeightExtraMachine and WeightShi f tCosts to a very low
number. Therefore the old WeightFiniteCapacity and WeightIn f initeCapacity, the goal
function terms in which they played a role, and the penalty variables used in these
goal terms can be deleted.

In this model we will also use two variables that do exits in the current model but
are not used in the optimizer, TotalCapacityPerUnitut and TotalAvailableCapacityPerUnitut.
They denote respectively the total number of hours in the period and the total num-
ber of hours the machine is operated according to the original shift pattern. For
the newly introduced parameters the units of measure are not always natural. For
example the parameter VariableCostBuyPlusspip is expressed in terms of ($/ton) for
computational purposes. This means that in reality a price per squared meter has to
be converted.

For the newly introduced variables also new constraints have to be defined. Most
important is that capacities or number of operating hours will not turn out lower
than 0. Furthermore the binary variables should be kept track off and the variables
representing a balance depend on earlier values for buy and sell variables.
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Parameters for Capacity extension
Parameter Domain Unit of Measure Definition

CostPerUnitBoughtu ∀m ∈M ($/unit) The cost of buying an extra machine or the
revenue of selling a machine.

FixedCostShiftChangeut ∀ut ∈M × T ($) This represents fixed cost when a deviation
from the intended shift pattern is made.

VariableCostShiftChangeut ∀ut ∈M × T ($/hour) When a deviation is made this represents
the cost per hour deviation.

FixedHireCostspip ∀spip ∈ SPIP ($) When stocking point capacity is hired this
represents fixed cost (for searching a suit-
able building for example).

FixedBuyCostspip ∀spip ∈ SPIP ($) When stocking point capacity is bought or
sold this represents fixed cost (for finding a
seller or buyer for example).

VariableCostBuyPlusspip ∀spip ∈ SPIP ($/ton) The price per amount of bought capacity.
VariableCostBuyMinspip ∀spip ∈ SPIP ($/ton) The revenue per amount of sold capacity.

VariableCostHirespip ∀spip ∈ SPIP ($/ton) The cost per amount of stocking point ca-
pacity hired.

WeightExtraHired The factor with which the hire costs are
weighted in the goal function of the opti-
mizer.

WeightExtraBought The factor with which the costs for buying
and selling are weighted in the goal func-
tion of the optimizer.

WeightShiftCost The factor with which the costs using an-
other operational time for the machines
than originally specified is weighted.

WeightExtraMachine The factor with which the costs and rev-
enue for buying and selling machines are
weighted.

Table B.1: New capacity extension parameters



Variables for Capacity extension
Variable Domain Unit of Measure Definition

NewMaxCapacityspip ∀spip ∈ SPIP (ton) After buying, selling and hiring capacity
this is the new available amount.

NewMaxCapacitypispip ∀pispip ∈ PISPIP (ton) This is the new available capacity per prod-
uct in the spip.

CapacityBuyedspip ∀spip ∈ SPIP (ton) Capacity bought for this stocking point in
period.

CapacitySoldspip ∀spip ∈ SPIP (ton) Capacity sold for this stocking point in pe-
riod.

CapacityHiredspip ∀spip ∈ SPIP (ton) Capacity hired for this stocking point in pe-
riod.

SaldoUnitsut ∀ut ∈M × T (units) This represents how many machines u in
time period t are available.

UnitsBoughtut ∀ut ∈M × T (units) This gives how many machines are bought
or sold in this period.

AvailableHoursut ∀ut ∈M × T (hours) The number of hours available in period t
per machine u.

ExtraHoursPerUnitut ∀ut ∈M × T (hours) The extra number of operating hours for
machine u in period t.

IsCapacityBuyedspip ∀spip ∈ SPIP 1 stocking point capacity is bought or sold
in this period; 0 otherwise

IsCapacityHiredspip ∀spip ∈ SPIP 1 stocking point capacity is hired in this pe-
riod; 0 otherwise

IsShiftChangedut ∀ut ∈M × T 1 another operation time is used than spec-
ified by the shift pattern; 0 otherwise

Table B.2: New capacity extension variables

NewMaxCapacity(sp,t) = MaxCapacity(sp,t) +
∑

s≤t

(CapacityBuyed(sp,s) − CapacitySold(sp,s))

∀(sp, t) ∈ SPIP

SaldoUnits(m,t) = NumberO f Units(m,t) +
∑

s≤t

(UnitsBoughtm,s)

∀((m, t) ∈M × T)

AvailableHoursut = TotalAvailableCapacityPerUnitut + ExtraHoursPerUnitut

∀(ut) ∈M × T

ExtraHoursPerUnitut ≤ IsShi f tChangedut ∗ TotalCapacityPerUnitut

∀(ut) ∈M × T

UnitsBoughtut ≤ IsNewNrO f Unitsut ∗M
∀(ut) ∈M × T

CapacityHiredspip ≤ IsCapacityHiredspip ∗M
∀spip ∈ SPIP

CapacityBoughtspip ≤ IsCapacityBoughtspip ∗M
∀spip ∈ SPIP
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CapacitySoldspip ≤ IsCapacityBoughtspip ∗M
∀spip ∈ SPIP

NewMaxCapacitypispip = NewMaxCapacityspip ∗
MaxCapacitypispip

MaxCapacityspip

∀pispip ∈ PISPIP
SaldoUnitsut ∈N+ ∀ut ∈M × T
0 ≤ AvailableHoursut ≤ TotalCapacityPerUnitut ∀ut ∈M × T
NewMaxCapacityspip ≥ 0 ∀spip ∈ SPIP
CapacitySoldspip ≥ 0 ∀spip ∈ SPIP
CapacityBoughtspip ≥ 0 ∀spip ∈ SPIP
CapacityHiredspip ≥ 0 ∀spip ∈ SPIP
IsShi f tChangedut ∈ {0, 1} ∀(ut) ∈M × T
IsCapacityHiredspip ∈ {0, 1} ∀spip ∈ SPIP
IsCapacityBoughtspip ∈ {0, 1} ∀spip ∈ SPIP

In these constraints M is a very large number. Now the old unit capacity con-
straints of the type time and the stocking point constraints can be changed to:

∑

op∈OPm

(RelativeDurationInOperationop,t ×Quantityop/RequiredCapacityop/Yieldss) ≤

SaldoUnitsut ∗ AvalableHoursut

∀(m, t) ∈ UT,m ∈M

SPCarriedForwardInventoryspip ≤ NewMaxCapacityspip

∀spip ∈ SPIP

CarriedForwardInventorypispip ≤ NewMaxCapacitypispip

∀pispip ∈ PISPIP

In the goal function the following terms can be added for capacity extension.

+
∑

spip∈SPIP

(CapacityBoughtspip ∗ VariableCostBuyPlusspip + CapacitySoldspip ∗ VariableCostBuyMinspip+

IsCapacityBoughtspip ∗ FixedBuyCostspip) ∗WeightExtraBought

+
∑

spip∈SPIP

(CapacityHiredspip ∗ VariableCostHirespip+

IsCapacityHiredspip ∗ FixedHireCostspip) ∗WeightExtraHired

+
∑

ut∈M×T

(ExtraHoursPerUnitut ∗ VariableCostShi f tChangeut+

IsShi f tChangedut ∗ FixedCostShi f tChangeut) ∗WeightShi f tCost

+
∑

ut∈M×T

(UnitsBoughtut ∗ CostPerUnitBoughtu) ∗WeightExtraMachine

This model can not be implemented easily in the Macro Planner because of the
non-linearity in the constraints. Another point of interest is that it is to be expected
for most value of the parameters that at the end of the planning horizon a lot of
machines and stocking point capacity are sold. Obviously this leads to a bad starting
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point for the periods after the planning horizon. One simple solution would be
to ignore the results for the last periods of the planning horizon, when you are
confident enough that the end-of-horizon effects do not influence the planning in
earlier periods. Another solution would be to value the assets at the end of the
planning horizon in the goal function. Anyhow this is an open issue.
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Appendix C

Verification Details

Check 1 holds for the sales demo metal data with 3 forecasts scenarios which we
introduced as starting point if we set the probability of LOW to 0.1, the probability of
MEDIUM to 0.6 and the probability of HIGH to 0.3 if we set N to 3. We can use this
data and these probabilities for the other checks as well. With holds is meant here
that the KPI scoreboard displays the same values and the goal total when we print
this in the server output is the same for using 1 optimizer setting, an option defined
in the knowledge base, ‘Setting 4: Finite with pre-production and fulfillment goal‘.
The weights in the goal function for this setting are: CustomerSatisfaction = 1, Direct
Cost = 1, FiniteCapacity = 99999999, FulfillmentGoal = 100000, InfiniteCapacity =
0.01, InventoryCost = 1, InventoryTarget = 10, Revenue = 10 and the other weights
are zero.

For check 2 we changed the knowledge of the sales demo metal data such that the
quantities for LOW and HIGH are set equal to the quantities of MEDIUM. It turns out
that all measures, expected goal function, worst case goal function and N reliability
with N=1,2,3 yield the same result. This means that the KPI scoreboard displays the
same values and the goal total when printed in the server output is equal. This is
again only done for the before mentioned setting 4.

Check 3 is done on only forecast scenario MEDIUM of the sales demo metal data,
which gets assigned a probability of 1, although this is not strictly necessary as 1 is
the value the application would set if the probability is not equal to 1. The scrap price
is still set on 0. Note that if the scrap price would be larger than 0 for this situation,
the outcomes may be different. It means that due to the higher scrap price the trade-
off for the optimizer between scrap price and bonuses by for example preferred
product routings and the cost of producing may be made differently. In general even
for a scrap price of 0 the Robust Macro Planner may theoretically indicate that it
is advantageous to produce more than the demand and to scrap it. Then we feel
that the outcome of the Robust Macro Planner fits better to the preferences of the
customer. In other words this check could have failed without having an error in the
robust algorithms, but if this check fails multiple times it is a strong indication there
is. For our demo set indeed it turns out that planning in the Robust Macro Planner
for all three options yield the same result as the normal Macro Planner gives.

For check 4 and 5 we used the same data set. We first have to mention that
a trivial requirement for check 4 is of course that the cost of producing a finished
product should be larger than 0, but this is normally true. This holds also for
our changed version of the knowledge of our sales demo metal data. We deleted
the fulfillment goal for Asia, the only fulfillment goal in the knowledge. We set
the quantities of LOW alternating to the quantity of MEDIUM minus 100 and the
quantity of MEDIUM. We set the quantities of HIGH alternating to the quantity of
MEDIUM plus 100 and the quantity of MEDIUM. We have costs in every supply
routing and therefore the trivial requirement is satisfied. We again applied optimizer
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setting 4. Check 4 holds in the sense that the obtained minimum profit, minimum
revenue, supply cost, inventory cost, total fixed cost, maximum demand fulfillment
and minimum inventory fulfillment at the worst case robust outcome match with
the profit, revenue, supply cost, inventory costs, total fixed costs, demand fulfillment
and inventory fulfillment in the normal outcome for scenario low. Check 5 also holds.

For check 6 we used the numerical example from section 5.1. Indeed all the results
turned out to be as expected.
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[9] Dupačová. Stochastic programming with incomplete information: A survey of
results on postoptimzation and sensitivity analysis. Optimization, 18(4):507–532,
1987.
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