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Abstract

This thesis performs a comparative analysis of several machine learning methods for

the asset pricing goal of predicting stock risk premia. In particular, the main goal is to

investigate the predictive performance of deep learning techniques with respect to traditional

linear models. For this purpose US stock characteristics’ data is used, for the period 1977 to

2021. Advanced deep learning models such as RNN with LSTM cells and CNN are used to

perform stock excess return predictions. I find that these models achieve the highest R2
oos

performance among all linear and non-linear models analysed. However, long-short decile

spread portfolios built on these techniques are not able to outperform the benchmark linear

model in terms of Sharpe ratio. This research supports the conclusion that deep learning

methods achieve their superior predictive performance thanks to their advanced ability of

capturing non-linear interactions and long-term dependencies among the predictor variables.
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1 Introduction

Forecasting financial risk premia has a central role in the empirical research in Asset Pricing.

At the beginning of the second half of the twentieth century, Markowitz (1952) revolutionized

the field of Asset Pricing with Modern Portfolio Theory. In the following years, Modern Portfolio

Theory was further integrated with state-of-the-art models, such as the CAPM model (Sharpe

(1964), Lintner (1965)) and the Fama-French three and five factor models (Fama and French

(1993), Fama and French (2015)), which represented a disruptive discovery for the creation of

factors able to describe financial returns with high explanatory power. However, this paper

does not focus on the goal of further improving the explanation of the cross-section of stock

returns, but rather aims at identifying efficient models able to predict future returns. Creating

accurate forecasts of expected stock returns is not only crucial for asset management institutions

when deciding on potential investment opportunities, but it’s also fundamental in the process

of creating portfolios for their clients that can efficiently leverage the excess alpha that is not

captured by traditional asset pricing models. Moreover, forecasting expected returns is also

extremely useful for the entire financial branch that deals with derivative products. Pricing

derivative products for risk management purposes requires excellent forecasts of expected stock

returns. Therefore, this research is highly relevant for institutions employing volatility and

downside risks’ forecast models for individual stocks or portfolios.

In this thesis the identification of relevant model architectures able to efficiently predict future

excess returns is performed by applying a machine learning methodology. Specifically, consider-

able attention is devoted to the application of non-linear model specifications and the comparison

between their predictive performance and the one of traditional (linear) empirical methods in

asset pricing. Given their extensive flexibility in dealing with high dimensional data and in cre-

ating powerful model specifications, machine learning methods are indeed extremely well suited

to the matter of predicting expected stock returns. This is also the case why the interest in

the application of these statistical models to financial matters has grown substantially in recent

years. However, the enhanced flexibility of machine learning models also makes them prone to

the risk of overfitting the data. This risk is addressed by applying regularization techniques and

by restricting the forecasts’ evaluation to their out-of-sample performance, making our analysis

robust against this threat.

The research of Gu et al. (2020) focuses on a wide selection of machine learning methods,

identifying neural networks among the models with the best predictive performance of future

returns. However, besides introducing Feedforward Neural Networks (FNN), Gu et al. (2020)

place limited emphasis on more advanced deep learning methods. In this paper I replicate most

of the machine learning models from the research of Gu et al. (2020), but I also implement three

additional deep learning models: Recurrent Neural Networks (RNN) with LSTM (Hochreiter

and Schmidhuber (1997)) and GRU unit layers (Cho et al. (2014)) and Convolutional Neural

Networks (CNN) (LeCun (1989)). Moreover, I also extend the analysis of Gu et al. (2020) in the

context of portfolio creation, leveraging the forecasts obtained for individual stock returns. In

particular, I analyse the relative performance of the aforementioned deep learning techniques in
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delivering risk-adjusted portfolio returns with respect to less complex linear models, such as the

benchmark OLS. Value-weighted and equal-weighted portfolios are created using a long-short

decile spread strategy and the results are compared against the benchmark OLS.

Therefore, this research will focus on the evaluation of the potential gains of deep learning

algorithms in predicting excess stock returns. In particular, the central research question is:

To what extent do deep learning algorithms such as RNN and CNN improve the predictive

performance of excess stock returns compared to traditional empirical asset pricing models?

Using data from CRSP for the period, I find that these models achieve the highest R2
oos

performance among all linear and non-linear models analysed. However, long-short decile spread

portfolios built on these techniques are not able to outperform the benchmark linear model in

terms of Sharpe ratio.

The remainder of this thesis is organized as follows. Section 2 describes the main literature

from the field. Section 3 describes the data and Section 4 discusses the methodology, while

Section 5 describes the main results. Finally, in Section 6 I discuss the conclusions of the

analysis.

2 Literature

2.1 Forecasting excess stock returns

Our research builds upon the existing literature that identifies relevant predictors of future

stock returns. In the second half of the twentieth century, Fama (1970) presented the “Efficient

Market Hypothesis”, stating that all available information in the market is already reflected in

the asset prices. Therefore, according to this hypothesis, predicting future stock returns relying

only on present information was unfeasible, as any potential future fluctuation being already

priced in. However, in later years Rosenberg et al. (1985) challenged this theory, providing evid-

ence for better performance of actively managed funds and, therefore, leaving open the debate

concerning the effectiveness of future returns predictability. Fama and French (1988) identified

dividend yields as a driving variable of future expected stock returns. Campbell and Shiller

(1988a) extended on this hypothesis by analysing the impact of dividends and expectations

of future dividends on expected returns. In particular, they provided evidence of the linear

forecasting relationship between the dividend-price ratio and future stock returns. Moreover,

in a subsequent paper, Campbell and Shiller (1988b) extended on their previous research, by

analysing the existent correlation between changes in expected future dividends and future ex-

pected returns, offering additional insights into the predictability of stock returns. Finally,

Jegadeesh and Titman (1993) provided evidence of the short-term return predictability power

of momentum, by constructing trading strategies based on this variable.

At the beginning of the twenty-first century, Cochrane (2008) once again rejects the Efficient

Market Hypothesis, emphasising the presence of some degree of asset returns’ predictability.
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Particularly, several factors that exhibit predictive power for future returns are found, such

as valuation ratios, dividend yields and macroeconomic variables. On the other hand, Welch

and Goyal (2008) performs time series regressions of stock returns on a wide collection of firm

characteristics that are suspected to drive risk premiums. Welch and Goyal (2008) present not so

encouraging results, not identifying any relevant firm characteristic able to provide meaningful

and robust empirical forecasting power. Moreover, Campbell and Thompson (2008) show that

while certain predictors may demonstrate some predictive power, a simple strategy relying on

historical averages is hardly beaten in an out-of-sample estimation. Finally, Rapach et al. (2010)

explore the combination of mutliple forecasts to deal with this problem, achieving statistically

and economically significant out-of-sample gains relative to the historical average over time.

2.2 Machine learning for forecasting excess stock returns

In recent times the popularity of machine learning techniques in the financial field has grown

substantially. In particular, given the frictions encountered in the application of traditional linear

models for asset returns’ predictions, the asset pricing field has witnessed increasing applications

of machine learning techniques. Specifically, recent literature of this new stream of research aims

at modeling non-linear dependencies between assets’ characteristics and returns, leveraging the

intrinsic propensity of machine learning methods to deal with large amount of variables and their

effectiveness in dealing with low signal-to-noise environments, such as the financial market. In

this context, Gu et al. (2020) analyse a wide variety of machine learning methods to predict

stock returns and construct sorted portfolios. In particular, their findings demonstrate that

deep learning techniques, such as feedforward neural networks, exhibit superior performance

compared to all benchmarks. This superiority is observed in terms of prediction accuracy as

well as the Sharpe ratio of prediction-sorted portfolios. Feng et al. (2018) are among the first

to apply machine learning algorithms to the prediction of asset returns. In particular, they find

the existence of nonlinear factors which explain predictability of returns.

An extensive part of the literature in deep learning is not only limited to feedforward neural

networks, as Gu et al. (2020) mainly focus on, but also explores the application of more advanced

techniques to financial data. Chen et al. (2023) introduce a generative adversarial network

(GAN) consisting of a recurrent neural network (RNN) with long short-term memory (LSTM)

cells to estimate a conditional stochastic discount factor (SDF) without specifying its functional

form. LSTM cells are used to model long-term macroeconomic dependencies to then be combined

with firm characteristics in a standard FNN. On the other hand, the GAN is a powerful tool

to identify portfolios with the most unexplained pricing information, such that the SDF can be

tuned accordingly. Another innovative paper in this field is by Cong et al. (2021), who create

a framework to construct optimal portfolios by using deep reinforcement learning. Once again,

in this framework LSTM is used to extract information and long-term dependencies from the

input features, such as firm fundamentals. These “Alphaportfolio” models yield extremely high

out-of-sample performance.
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Other streams of research in the application of machine learning techniques to financial pur-

poses are by Gu et al. (2021), who use a deep learning autoencoder to create latent factor

conditional asset pricing model, and by B. T. Kelly et al. (2020), who use Principal Component

Analysis to create another latent factor asset pricing model.

3 Data

The data consists of 92 firm characteristics and associated monthly simple returns obtained

from CRSP from January 1977 to December 2021. Furthermore, one-month and annual Treasury

bill yields are retrieved from the Kenneth R. French Data Library and used as a proxy for the

risk-free rate. This monthly and yearly observations are subtracted from the simple returns in

order to obtain excess returns, which is used as target variable in the analysis. Moreover, I use

standard filters to include only stocks listed on the NYSE, AMEX, or NASDAQ for more than

one year, and to exclude stocks with negative book equity or lag market equity.

Furthermore, as most of these figures are released to the public with a delay, it is important

to carefully deal with a potential forward-looking bias. Specifically, we assume that monthly

characteristics are delayed by at most a month, quarterly with at least 4 months lag, and

annually with at least 6 months lag. Hence, in order to predict returns at month t+ 1, we use

most recent monthly characteristics at the end of month t, most recent quarterly data by end

t− 4, and most recent annual data by end t− 6.

Missing characteristics are imputed using the local B-XS model of Bryzgalova et al. (2022).

Moroever, all stock characteristics are cross-sectionally standardized period-by-period in the

interval [-1, 1], following B. T. Kelly et al. (2019). This is called a rank transformation. More

specifically, the following formula is applied for each characteristic at a particular point in time:

zx =
rankx − 1

n− 1
× 2− 1,

where rankx is the rank of the value x in the column, the smallest value has rank 1 and the largest

value has rank n, with n being the total number of values in the column. This standardization

is performed because of its insensitivity to outliers and the improved model performance and

computational time that results from it.

In the analysis the data is split into 3 sets. The training (in-sample) set ranges from

1977/01/31 to 1990/12/31, the validation (in-sample) set from 1991/01/31 to 1999/12/31 and

the testing (out-sample) set ranges from 2000/01/31 to 2021/12/31. All models requiring hy-

perparameter tuning are trained using the training and validation set, while for methods with

no need for validation the two sets are merged together. Therefore, the actual evaluation of

the models is performed out-of-sample, recreating a realistic environment in which future stock

returns are of course unknown. Moreover, when forecasting out-of-sample on the testing set,

the model is re-fit every year (instead of every month) by means of an expanding window that

enlarges the training set while keeping the validation set fixed.
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The analysis is performed using both excess monthly and annual excess returns. To construct

annual returns several transformations are performed. First, log returns are computed as rt =

ln(1 + Rt), with Rt being simple monthly returns. Second, at every point in time, for every

firm that exhibits monthly returns for the past 12 months (current one included), the annual

log return is computed as the sum of the last 12 monthly log returns. Firms that miss at least

one observation in that time frame are dropped from the data set. Finally, annual continuously

compounded returns are transformed back into simple annual returns by taking Rt = exp(rt)−1.

The risk-free rate (annual Treasury Bill yield) is then subtracted from the simple annual returns.

Therefore, when fitting the models to annual data, the training and validation sets are shifted

by a year, keeping their initial length of respectively 14 and 9 years and shortening the testing

set by one year.

4 Methodology

The goal of this thesis is to assess whether machine learning algorithms improve the predictive

performance of expected stock returns compared to traditional linear models. This translates

to the problem of estimating stock excess returns r as a function f of some predictor variables

X and a vector of model parameters θ. Specifically, the estimation of stock’s excess returns can

be framed as an additive prediction error model of the form:

ri,t+1 = Et(ri,t+1) + εi,t+1,

where

Et(ri,t+1) = f(xi,t; θ).

Stocks are in this case indexed as i = 1, ..., Nt and months by t = 1, ..., T . Our goal is to

estimate several linear and non-linear specifications for the function f, maximizing the out-of-

sample explanatory power for realized excess returns ri,t+1. It is important to mention that

the function f (·) maintains the same form over time and across different stocks, such that the

model employs information from the entire panel, allowing for a stable estimation of stock’s risk

premia.

4.1 Linear Regression (OLS)

Our analysis starts with a Linear Regression model estimated using ordinary least squares

(OLS). Excess returns are modeled as a linear combination of stocks’ features and a parameter

vector, θ,

f(xi,t; θ) = x′i,tθ.

This model estimates the parameters θ by means of the standard least squares loss function:

L(θ) = 1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − f(xi,t; θ))
2
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By minimizing this loss function we are able to estimate the pooled OLS estimator that can be

expressed in the closed form solution θ̂ = (X ′X)−1X ′r. Of course, this closed form analytical

solution presents some advantages in terms of computational time with respect to other machine

learning method.

4.2 Linear Regression with Huber Loss function

One of the key assumptions of Ordinary Least Squares estimation lies in the homoskedasticity

of the shocks’ variances. However, if this is not the case, it is functional to estimate a linear

regression model with a weighted least squares objective function, such as:

L(θ) = 1

NT

N∑
i=1

T∑
t=1

wi,t(ri,t+1 − f(xi,t; θ))
2

This loss function is then effective in weighing different observations according to their statistical

or economical significance. In particular, a higher weight is generally given to observation with

smaller variance, given their higher degree of information.

In the financial literature it is common knowledge that assets’ returns exhibit some “stylized

facts”, that need to be taken into account in order to perform robust analyses. In particular,

the distribution of financial returns is known to be non normal, with heavy tails and slightly

negatively skewed. Since OLS forecasting power is extremely sensitive to outliers, the Huber

robust objective function is implemented the training set in order to counteract the misleading

effect of fat-tailed observations. The Huber Loss, H (·), presents the usual squared loss for

relatively small errors, while for large errors it employs an absolute value loss scaled by the error

term δ and corrected by a term δ2. The Huber loss function takes the following form:

L(θ) = 1

NT

N∑
i=1

T∑
t=1

H(ri,t+1 − f(xi,t; θ), δ),

where

H(x, δ) =

x2, if |x| ≤ δ

2δ|x| − δ2, if |x| > δ

In our analysis, the parameter δ is set to be equal to the maximum between the 99.9 percentile

of the absolute residual and 1, in order to save computational time:

δ = max
(
|ri,t+1 − f(xi,t; θ)|0.999 , 1

)
.

4.3 Penalized Linear: Elastic Net

When predicting risk premia using a large amount of model parameters, the linear regression

model can exhibit overfitting, especially considering notorious low signal-to-noise ratio of stock

returns. In order to tackle this issue, regularization techniques are a popular approach in the

machine learning literature, given their ability to deteriorate in-sample performance to improve
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the out-sample one. In particular, a penalty term is added to the original loss function:

L(θ; ·) = 1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − f(xi,t; θ))
2 + ϕ(θ; ·)

Particularly, we use the “elastic net” penalty, taking the following form:

ϕ(θ;λ, ρ) = λ(1− ρ)

P∑
j=1

|θj |+
1

2
λρ

P∑
j=1

θ2j

The elastic net involves two non-negative hyperparameters, λ and ρ, which can be tuned

to achieve two specific regularizers. The first is obtained when setting ρ = 0, corresponding

to the “Lasso” (Tibshirani (1996)) or “L1” parameter penalization. When this regularization

is selected, the absolute value operator is applied to the paramaters in the objective function,

allowing the model to set coefficients of a subset of features exactly equal to zero. In this

manner, sparsity in the coefficients is ensured, introducing a principle of variable selection in

the model. On the other hand, when setting ρ = 1, the “Ridge” (Hoerl and Kennard (1970))

or “L2” regularization is introduced. In this specification, the parameters in the loss function

are squared; hence, when minimizing the loss function all the coefficients are shrunk towards

zero. This helps avoiding parameters unnecessary large in magnitude, introducing a shrinkage

principle in the estimation. Therefore, elastic net incorporates a linear combination of these two

regularization, allowing for both coefficient shrinkage and feature selection. The parameters λ

and ρ are tuned in the validation sample by means of coordinate descent.

4.4 Dimension reduction: PCR and PLS

As explained by Gu et al. (2020), forming linear combinations of predictors helps reduce noise,

isolating better the signal in the features, and helps decorrelate highly inter-related predictors.

In this thesis we analyse Principal Components Regression (PCR) and Partial Least Squares

(PLS), two prominent dimension reduction techniques.

These two techniques differ for their ability to incorporate the statistical goal of forecasting

returns in the dimension reduction step. In particular, while PCR fails to incorporate the

forecasting objective when selecting a set of linear combinations of components that retain

most of the common variation in the data, PLS performs dimension reduction by selecting the

predictors that experience the highest partial sensitivity of returns.

PCR and PLS are implemented by reorganizing the linear regression equation into matrix

form as follows:

R = Xθ + E,

where R is the N × 1 vector of ri,t+1, X is the N × P matrix of stacked predictors xi,t, and E

is a N × 1 vector of residuals εi,t+1.
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Both PCR and PLS aim at reducing the number of predictors from P to a much smaller

number of K linear combinations of them. Ultimately, the forecasting model can be expressed

as follows:

R = (XΩK)θK + Ẽ,

where ΩK is a P ×K matrix with columns w1, w2, . . . , wK that represent the weights given to

each row ofX for the creation of jth principal component. Therefore, the difference between PCR

and PLS lies in the choice of these weights, that in the former solve the following optimization

problem:

wj = argmax
w

Var(Xw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, . . . , j − 1,

while for the latter:

wj = argmax
w

Cov2(R,Xw), s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, . . . , j − 1

4.5 Regression Trees

As opposed to linear regression models, regression trees achieve the goal of modelling non-

linear interactions between the covariates and the dependent variable. Specifically, the tree

splits the data into several groups of observations and within each partition the average value of

the outcome variable is retained. The procedure to construct a regression tree is sequential and

starts with the choice of a maximum depth of the tree. At every step the groups of data obtained

from the previous iteration are further split into branches according to a threshold value of a

predictor variable. In Figure 1 a graphical representation of a regression tree is reported. In this

instance, a tree of maximum depth equal to three is considered, with the data being split into

several partitions based only on two features, size and value. At every node, the data is sorted

into two leaf nodes based on a specific feature and a numerical threshold. Finally, the predicted

return for an observation that lies in one of the end nodes is equalled to the average return of

the observations in that specific node. At every node of the tree a decision is to be made on the

split criterion to use. In particular, the algorithm of Breiman et al. (1984) is used in order to

select features and the threshold to split on. This algorithm at each iteration greedily selects a

splitting criterion such that the forecast error is minimized.

However, the great flexibility of regression trees to model non-linear patterns in the features

exposes them to the risk of overfit. To avoid this scenario, regularization techniques are crucial

in order to achieve a robust estimation out-of-sample. In our comparative analysis we explore

two prominent regularization techniques, namely “Bagging” and “Boosting”.

4.5.1 Random Forest

Bagging (Breiman (1996)), also known as booststrap aggregation, is a prominent regulariza-

tion technique in which B different bootstrap samples of size Nb are drawn from the data. To

every bootstrap sample is fit a tree and the final prediction is computed as the average of all the

individual tree predictions. We implement Random Forest (RF) (Breiman (2001)), a variation
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Figure 1: Example of a Regression Tree based on size and value. Figure retrieved from Bryz-
galova et al., 2021.

of bagging that ensures a reduction of correlation among the trees of different bootstrap samples.

In particular, this is achieved by the “dropout” feature, which regulates the number of features

used to select the splitting criterion. This helps building regression trees with a certain degree

of feature variation in low-level splits, reducing the correlation between the trees of different

bootstrap samples.

4.5.2 Gradient Boosting

Tree Boosting (Freund et al. (1999)) is a machine learning algorithm that combines multiple

shallow decision trees into a single strong predictive model. At each step, an additional tree of

the same depth is fitted to the prediction residual of the previous ones. The forecasts of the

ensemble of trees are combined together, but the forecasts created from past residuals are shrunk

by a factor ν ∈ (0, 1), referred to as learning rate. This is done in order prevent overfitting of the

prediction residuals. This iterative algorithm is stopped when a group of B trees is generated.

Gradient boosting is a variant of boosting that employs the gradients of the loss function in

order to train the creation of boosting trees. In our case, we employ the regularization technique

of Extreme Gradient Boosting (XGBoost) by Chen and Guestrin (2016), which makes use of

a weighted-quantile and sparsity-aware split finding that results to be computationally more

efficient. Moreover, we also implement Light Gradient Boosting Machine (LGBM), which differs

from Extreme Gradient Boosting in the tree growth strategy. While XGBoost grows trees level-

by-level, splitting all nodes at each step, LGBM uses a leaf-wise strategy, focusing on splitting the

leafs that generate the maximum loss reduction. Since LGBM focuses on the most informative

leafs, this usually implies a faster convergence rate, better model performance but also more risk

of overfitting. On the other hand, the level-wise growth strategy of XGBoost is more memory-

intensive and therefore slower in convergence, providing a more balanced tree structure that is

less prone to overfitting but also less able to capture fine-grained patterns in the data.

4.6 Neural Networks

The focus of the aforementioned models is to capture linear and simple non-linear inter-

actions (using splitting) between features and excess returns. Nevertheless, considering the

intricate structure of financial markets’ dynamics, highly complex and flexible non-linear model
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specifications are desirable in order to best capture the underlying relationship between stock

characteristics and excess returns. Neural Networks represent one of the pillars of machine learn-

ing methodology, given their extensive aptitude to model highly complex non-linear functions.

Hornik et al. (1989) proved that neural networks are theoretically able to model any continuous

function to an arbitrary level of precision, identifying them as “universal approximators” for any

smooth predictive association.

4.6.1 Feedforward Neural Networks

The first model architecture that we analyse is the traditional “feed-forward” network. Ana-

logously to the transfer of information in the human brain by means of neurons and synapses,

Feedforward Neural Networks (FNN) consists of a collection of nodes (neurons) that are organ-

ized into layers. Each node is connected to every other node in previous and subsequent layers.

More specifically, a FNN is composed by an input layer, L hidden layers with li nodes in each

layer i and a final output layer that aggregates the information into a final outcome prediction.

The overall number of hidden layers is referred as the depth of the model, from which follows

the connotation “Deep Learning”.

Considering the model architecture, every hidden layer is defined as a function of the layer

that preceded it. Hence the jth layer is identified as:

hj = σ(Wjhj−1 + bj),

with j > 1 and where the parameters are can be interpreted as weights and biases. We consider

FNN with up to 5 hidden layers, where the number of neurons in each layer is selected according

to the geometric pyramid rule. Hence, if for instance we are dealing with a network with 5

hidden layers, we would have layers with 32, 16, 8, 4, 2 nodes, respectively, while in case of only

1 hidden layer, 32 neurons will be the standard set-up. Therefore, we construct a FNN with the

following specification:

f(xt; θ) = Woutσ(WLσ(WL−1...σ(W1xt + b1)...+ bL−1) + bL) + bout

where σ(x) = max(x, 0) is the Rectified Unit (ReLU) activation function. This activation

function is particularly popular due to its ability in mitigating the vanishing gradient problem

and in encouraging sparsity in the number of active neurons.

The parameters θ = [b1, . . . , bL, bout,W1, . . . ,WL,Wout] are estimated minimizing the following

loss function, where it is included a “Lasso” L1 regularization term:

L(θ) = 1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − f(xi,t; θ))
2 + λ

P∑
j=1

|θj |

To minimize the loss function and train the neural network, a variant of Stochastic Gradient

Descent (SDG) that employs backpropagation and learning rate shrinkage is used, namely the

ADAM optimizer (Kingma and Ba (2014)). The learning rate, which controls the step size of

the descent, is shrunk as the gradient approaches zero, such that the problem of vanishing or
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exploding gradients is mitigated. Moreover, instead of a “Ridge” L2 penalty term in the loss

function, an “Early Stopping” regularization is implemented. This implies that the training pro-

cedure is halted when the validation performance starts to decrease, preventing the model from

overfitting. Furthermore, “Batch Normalization” (Ioffe and Szegedy (2015)) is used to reduce

the phenomenon of internal covariance shift that generates from the variability of predictors

across different regions of the network. By normalizing each hidden layer input in each training

step (a “batch”), this algorithm enhances the performance of the neural network, allowing for

higher learning rates and relying less on the initial parameter initialization. Finally, we make use

of a Dropout regularization, which works by randomly setting a fraction of the neurons to zero

during each training iteration. This helps introducing noise and variability during the training

process, making the neural network more robust, with improved generalization performance and

therefore less prone to overfitting. In order to strike a balance between preventing overfitting

in the early stages of the training and allowing the model to capture more intricate patters, the

dropout rate is set to gradually decline across epochs.

4.6.2 Recurrent Neural Networks: LSTM and GRU

Recurrent Neural Networks (RNN) are a variety of neural networks designed to process se-

quential data by means of feedback loops. This allows the information to persist in several

layers, making it possible to model long-term relationships, which are an intrinsic characteristic

of financial data. In this research, particular attention is placed on gated RNNs. This type of

networks are developed on the idea of creating paths through time that have derivatives that

neither vanish nor explode. Besides being able to accumulate information over time, gated RNNs

present the fundamental capacity of learning when the information accumulated is not anymore

useful to the network, clearing the old state of the cell when this is the case. In this research we

focus on two types of gated RNNs, namely “Long Short-Term Memory” (LSTM) and “Gated

Recurrent Unit” (GRU).

The long short-term memory (LSTM) model of Hochreiter and Schmidhuber (1997) represents

the first introduction of self-loops that don’t cause the problem of vanishing or exploding gradient

inside a RNN. In contrast to the classic hidden units of RNNs, LSTM model presents a system

of gating units that controls the flow of information. Specifically, an LSTM unit consists of a

cell, which performs the crucial mansion of managing the memory of the unit by means of a

linear self-loop, an input gate a forget gate and an output gate. At each step a new memory cell

c̃t is created taking the input xt and the previous hidden state ht−1:

c̃t = tanh
(
W c

hht−1 +W c
xxt + w0

c

)
.

The input it, output ot and forget ft gate are computed as follows:

it = σ
(
W i

hht−1 +W i
xxt + wi

0

)
,

ft = σ
(
W f

h ht−1 +W f
x xt + wf

0

)
,

ot = σ
(
W o

hht−1 +W o
xxt + w0

0

)
,
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Figure 2: Illustration of the components of a LSTM unit.

where σ represents the sigmoid function, which outputs a value between 0 and 1 and where Wh,

Wx, w0 are respectively the recurrent weights, input weights and biases associated to each type

of gate. The final memory cell ct and hidden state are then computed as:

ct = ft ⊙ ct−1 + it ⊙ c̃t,

ht = ot ⊙ tanh(ct),

where ⊙ denotes element-wise multiplication. Long-term dependencies are stored in the hidden

state ht and are used in the next layer. An overview of the structure of a LSTM unit is given

in Figure 2.

Gated Recurrent Units or GRUs (Cho et al. (2014); Chung et al. (2014); Chung et al. (2015);

Jozefowicz et al. (2015)) differ from LSTM units in the fact the they combine the memory

cell and the hidden state into a single vector, simplifying the gating system. Since it employs

less parameters than LSTM, it is computationally more efficient, while still being effective in

capturing long-term dependencies. For more details on GRU and RNNs in general, we refer to

Goodfellow et al. (2016).

The model architecture, loss function and regularization techniques used to build these two

types of RNNs are similar to the ones employed for FNNs. Therefore, the main difference from

the architecture of FNNs is the introduction of layers of LSTM or GRU units, respectively,

between the input and the hidden layers.

4.6.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (LeCun, 1989) are another variety of neural networks,

popular in the field of image processing. As stated by Goodfellow et al. (2016), convolutional

networks are simply neural networks that use convolution in place of general matrix multiplication

in at least one of their layers. CNNs can be applied to financial time series by employing a 1-

dimensional convolution over the sequence of data. CNNs consist of convolutional layers, pooling

layers and kernels. Convolutional layers are used to extract features in the data by means of a set

of filters, also known as kernels. These kernels are used to perform the convolutional operation
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on the input data, identifying local patterns and features. The feature map is the output

produced from the convolutional operation and represents the activation of the learned features

at different locations of the input. Pooling layers are then introduced inside the network to

reduce the spatial dimension of the feature map, by aggregating neighbor values and retaining

the most relevant information. Moreover, CNNs are particularly well suited to our goal of

predicting excess returns using stock characteristics given their translation invariance property.

More specifically, pooling layers operate by extracting the presence of the most meaningful

features, regardless of their precise location. The translation invariance property is therefore

particularly useful for time series that exhibit time-varying patterns, making the output of the

convolutional operation robust to stochastic features’ patterns. Once again, the architecture,

loss function and regularization techniques are similar to those employed for FNNs. However,

convolutional and pooling layers are introduced between the input and the hidden layers. For

more details on Convolutional Neural Networks, we refer again to Goodfellow et al. (2016).

4.7 Performance Evaluation

The predictive performance of individual excess stock returns forecasts is assessed by means

of the out-of-sample R2:

R2
oos = 1−

∑
(i,t)∈τ3(ri,t+1 − r̂i,t+1)

2∑
(i,t)∈τ3 r

2
i,t

,

where τ3 indicates that the performance is computed only out-of-sample on the testing set.

It is important to notice that in the denominator the sum of squared excess returns is computed

without demeaning. This is the case because for individual stock returns using historical averages

as benchmark typically underperforms a naive forecast of zero substantially. This implies that

the historical average of stock returns is generally characterised by consistent noise, which lowers

the bar for good forecasting performance. Therefore, the R2 metrics is benchmarked against a

base forecast value of zero, making the analysis findings more robust and hence more meaningful.

Pairwise comparison of out-of-sample performance between models is made by means of the

Diebold and Mariano (1995) test statistic. In particular, I employ the Diebold-Mariano test

statistics developed by Gu et al. (2020), which compares the cross-sectional average of prediction

errors from each model, instead of comparing errors among individual returns. In particular,

the following test statistic is defined:

DM12 =
d̄12
σ̂d12

,

where

d12,t+1 =
1

n3,t+1

n3,t+1∑
i=1

((ê
(1)
i,t+1)

2 − (ê
(2)
i,t+1)

2),

ê
(1)
i,t+1 and ê

(2)
i,t+1 denote the prediction error for stock i at time t using each method, and n3,t+1

is the number of stocks in the testing sample, namely at year t+1. Finally, d̄12 and σ̂d12 denote

the mean and the Newey-West standard error of d12,t+1 over the testing sample. Newey-West

standard errors are employed given their robustness with respect to the presence of autocor-
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relation in the data. Byusing this regularizations, the Diebold-Mariano test statistics is more

likely to return appropriate p-values. The Diebold-Mariano test statistics are standard normally

distributed N (0, 1) under the null hypothesis of no difference between the two models.

Moreover, in order to identify the stock features that have a major influence on the cross-

section of stock returns,a variable importance measure is created for every covariate within each

model. In particular, I employ the variable importance measure V Ij of B. Kelly et al. (2019),

which is defined as the reduction in panel predictive R2 from setting all values of the jth variable

to zero while holding the other covariates fixed. This estimation is performed using the (in-

sample) training set, and for each variable the mean V Ij estimated after refitting the model

each year is retained.

4.8 Portfolio Construction

To further assess the predictive performance of the individual return predictions, machine

learning portfolios are created based on them. In particular, I construct portfolios by means of

a long-short strategy that at the end of each month sorts stocks into deciles, based on the each

model’s predictions. A zero-net investment strategy is then performed, by buying the stocks

with the highest expected return (decile 10) and shorting the stocks with the lowest expected

return (decile 1). To do so, all the models are fitted using as target variable simple returns

(without subtracting the monthly Treasury bill yield), with their predictive performance being

reported in the Appendix. The stocks are aggregated into portfolios using value-weight, with

the largest stocks by market capitalization earning bigger weights, and an equal-weight strategy.

In order to evaluate the performance of each portfolio, we employ several metrics. Given the

protfolio returns, average return and volatility are calculated by taking the mean and standard

deviation, respectively, and then annualized by multiplying by the square root of the number

of months in a year. The Sharpe ratio is computed by simply taking the ratio between mean

returns and volatility. Risk-free rate is neglected in the Sharpe ratio computation, as the main

goal here being to compare relative performance across all models.

5 Results

5.1 Individual forecasts performance

Table 1 presents the comparison of all machine larning methods in terms of their out-of-sample

predictive R2
oos. I compare a total of fifteen models, including OLS with all covariates, OLS-

3 (which preselects size, book-to-market, and momentum as the only covariates), PLS, PCR,

elastic net (ENet), random forest (RF), light and extreme gradient boosting regression trees

(LGBM, XGB), feedforward neural network architectures with one to five layers (NN1,...,NN5),

recurrent neural networks with LSTM and GRU units and convolutional neural networks (CNN).

For OLS I perform also the robust version with Huber loss function.
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Table 1: Monthly out-of-sample prediction performance (percentage R2
oos)

OLS OLS-3 PLS PCR ENet RF LGBM XGB FNN LSTM GRU CNN

+H +H (NN5)

All -0.20 -0.14 0.35 0.32 0.38 0.02 0.31 -0.72 0.38 0.52 0.49 0.43

Top 1000 -0.16 -0.08 0.25 0.32 0.35 0.01 0.55 -1.39 0.47 0.76 0.70 0.65

Bottom 1000 -0.60 -0.51 0.42 0.36 0.42 0.11 0.30 -0.29 0.39 0.47 0.44 0.39

Note. +H indicates the use of a Huber loss. For Feed Forward Neural Networks the best model is

reported. Estimation ranges from 1 to 5 hidden layers, with NN5 being the most performing model.

Figure 3: Visual comparison of the R2
oos statistics from Table 1

The first row of Table 1 reports the R2
oos for the entire sample. All the models are trained

using all 92 stock features. Both the OLS and OLS-3 models, which are trained using the Huber

loss function, perform slightly worse than a naive forecast of zero to all stocks in every month,

with an R2
oos of -0.20% and -0.14%, respectively. Therefore, restricting the amount of covariates

to size, book-to-market and momentum improves the out-of-sample performance of the model

minimally. Imposing some regularization techniques, such as dimension reduction, improves the

accuracy of the predictions substantially. When forming linear combinations of predictors via

PLS and PCR, the R2
oos improves remarkably, achieving values of 0.35% and 0.32%, respectively.

The rationale behind this improvement is that stock characteristics are notoriously noisy and

most of the times also redundant. Reducing the dimension of the feature space and combining the

characteristics into principal components helps in revealing the correlated signals, diminishing

their intrinsic noise. Another crucial regularization procedure is obtained by applying ENet. In

the model specification used in the analysis, the parameter ρ is set equal to 0.5, such that it

performs both feature selection (“Lasso”) and coefficient shrinkage (“Ridge”). When applying

this specification to the data, even better out-of-sample performance is achieved, with an R2
oos

of 0.38%. This further emphasizes the importance of variable selection and coefficient shrinkage

when dealing with an environment characterised by a fundamental low signal-to-noise ratio and

high multicollinearity.
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When analysing regression trees, the performance of Light Gradient Boosting Machine (LGBM)

stands out with respect to Extreme Gradient Boosting (XGB) and to random forest. LGBM

provides an R2
oos of 0.31%, which outperforms both the 0.02% of RF and the -0.72% of XGB.

The reason behind this surprising outcome could be identified by two factors. First, the bet-

ter propensity of LGBM compared to XGB to find model performance thanks to its leaf-wise

growth strategy, which focuses only on the most informative leafs. Second, both RF and XGB

grow trees level-by-level, making the training process more balanced but at the same time more

lenghty and less likely to identify fine-grained patterns in the data. Both RF and XGB were

tuned to estimate relatively shallow trees, given the lower computational cost.

Neural network methods are the best performing nonlinear method and best predictor overall.

In particular, for FNN the R2
oos peaks for the model architecture with five hidden layers, with a

value of 0.38%. However, it’s worth to note that the R2
oos for the specification with two hidden

layers also achieves a value of 0.38%, emphasizing the limited marginal benefit in increasing the

depth of the network. Surprisingly, feedforward neural networks perform just as well as ENet,

which is the most powerful linear specification.

In order to gain more insights into the value of incorporating nonlinear model specifications,

this paper includes three powerful deep learning methods: Recurrent Neural Networks (RNN)

with LSTM unit layers, RNN with GRU unit layers and Convolutional Neural Networks (CNN).

Starting from convolutional neural networks, CNN outperform FNN with an R2
oos of 0.41%,

leveraging the additional information captured by the convolutional and pooling layers. However,

the model specification that achieved the highest out-of-sample predictive performance is RNN.

Specifically, I implement two types of gated RNNs, namely “Long Short-Term Memory” (LSTM)

and “Gated Recurrent Unit” (GRU). The former slightly outperforms the latter, with R2
oos values

of 0.52% and 0.49%, respectively. These results point to the value of incorporating memory cells

that are able to capture long-term dependencies, which are a fundamental characteristic of

financial data.

The second and third row of Table 1 distinguish predictability for large stocks (stocks belong-

ing to the top-1000 by market capitalization each month) and small stocks (the bottom-1000

stocks each month). The predictions are taken from the forecasts of the full estimated model

(employing all stock observations) and then filtered by market equity each month. The baseline

patterns witnessed for the full sample carry over into the two subsamples. Figure 3 provides a

visual representation of the comparison in R2
oos statistics between the 3 samples. In particular,

OLS keeps performing relatively poorly, regularized linear models represent an improvement,

LGBM achives higher predictive performance for the top stock by market capitalization, while

the exact opposite holds for XGB. Moreover, among large stocks, deep neural networks exhibit

substantial out-performance, with R2
oos ranging from 0.57% for CNN to an astonishing figure

of 0.76% for RNN with LSTM cells. Hence, this emphasizes once again the unbeaten predict-

ive performance of deep learning methods, which demonstrate to be extremely successful in

forecasting large stocks’ excess returns.
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Table 2: Annual out-of-sample prediction performance (percentage R2
oos)

OLS OLS-3 PLS PCR ENet RF LGBM XGB FNN LSTM GRU CNN

+H +H (NN1)

All 27.1 25.6 27.2 24.8 26.7 30.6 36.7 33.8 36.6 32.4 29.3 36.2

Top 1000 24.7 23.1 24.6 22.2 24.1 29.8 34.9 31.7 36.6 30.4 27.5 34.6

Bottom 1000 26.5 24.9 27.0 24.4 26.2 29.1 35.3 32.8 35.0 32.9 29.0 35.8

Note. +H indicates the use of a Huber loss. For Feed Forward Neural Networks, the best model is

reported. Estimation ranges from 1 to 5 hidden layers, with NN1 being the most performing model.

Figure 4: Visual comparison of the R2
oos statistics from Table 2 over the annual horizon

Table 2 and Figure 4 display the results of the analysis conducted at the annual horizon. The

comparative performance of the different methods for the annual horizon differs substantially

from the monthly. First of all, the annual R2
oos is approximately two order of magnitude larger

for all the models. With this set-up non-linear models, such as regression trees and deep neural

networks, perform substantially better than linear and regularized-linear models. The biggest

difference in performance is indeed encountered for XGB and RF, which produce positive R2
oos

figures close to the one of LGBM. The reason behind such a remarkable improvement stands

in the ability of machine learning methods to capture patterns that are not merely short-term

oriented, but that on the contrary persist over periods of prolonged economic fluctuations.

18



Table 3: Comparison of monthly out-of-sample prediction using Diebold-Mariano tests

OLS-3 PLS PCR ENet RF LGBM XGB FNN LSTM GRU CNN

+H

OLS +H 1.06 1.74 1.73 1.85 1.08 1.92 -0.15 1.75 2.43 2.41 2.18

OLS-3 +H 1.83 1.81 1.95 1.06 2.04 -0.34 1.82 2.68 2.64 2.36

PLS -1.03 0.95 -1.16 0.02 -2.86 0.26 1.37 1.11 0.92

PCR 2.12 -1.05 0.14 -2.78 0.56 1.55 1.34 1.15

ENet -1.25 -0.08 -2.88 -0.04 1.20 1.00 0.68

RF 1.41 -2.47 1.06 1.56 1.41 1.34

LGBM -2.94 0.06 0.69 0.52 0.37

XGB 2.64 3.18 2.88 2.97

FNN 1.13 1.05 0.59

LSTM -0.55 -1.61

GRU -0.87

Note. This table reports pairwise Diebold-Mariano test statistics comparing the out-of-sample stock-

level prediction performance among thirteen models. Positive numbers indicate the column model

outperforms the row model. Bold font indicates the difference is significant at 5% level or better for

individual tests. Estimation ranges from 1 to 5 hidden layers, with NN5 being the most performing

model.

Table 3 assesses the statistical significance of the difference in model performance at the

monthly interval. In particular, Diebold and Mariano (1995) test statistics are reported for a

pairwise comparison of a column model versus a row model. The Diebold-Mariano test statistics

are standard normally distributed N (0, 1) under the null hypothesis of no difference between the

two models. A positive value therefore means that the column model outperforms in forecasting

power the row model. Bold numbers denote significance at the 5% level for each individual test.

The first conclusion that we can infer from Table 3 is that OLS is outperformed by almost

every model, even though only deep learning methods do so in a statistically significant man-

ner. Moreover, it is interesting to notice that penalized regression (ENet) performs better than

dimension reduction techniques, with its improvement over PCR being statistically significant.

While XGB is definitely the worst performing model, RF and LGBM do no present particular

improvement over linear regularized and dimension reduction models. Deep learning models,

such as LSTM, GRU and CNN, are the only models that outperform linear models and XGB

with statistical significance. In particular, RNN with LSTM cells outperforms any other model,

but with the difference being not statistical significant at the 5% level.

5.2 Variable importance and marginal relationships

I now investigate the relative impact of individual features for the in-sample performance of

each model using the measure described in Section 4.7. For each method, I calculate the reduc-

tion in R2 from setting all values of a given predictor to zero within each training sample. The

mean across all training samples is computed, creating an overall variable importance measure

for each method. These measures are then standardized to sum one, such that comparisons can

be made within models. Note that characteristics can exhibit also negative values (equivalent to

an improvement in model performance when set equal to zero in the training sample), therefore

for some models the sum of the top 20 characteristics could potentially exceed one, to be then
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balanced out by the importance variables of the features at the bottom of the ranking. Figure 5

reports the top-20 stock-features for each model according to the variable importance measure.

Figure 5 reports overall rankings of characteristics for all models. For each model I rank

the 92 characteristics using the variable importance measure of Figure 5. Their rankings are

standardized between 0 and 1, to allow for comparison across models. For each stock feature,

the sum of the ranks across all models is computed. The characteristics are then sorted so that

the highest total ranks are on top and the lowest ranking characteristics are at the bottom. The

color gradient within each column shows the model-specific ranking of characteristics from least

to most important (lightest to darkest).

Figure 5 and Figure 6 give an overview of the most influential characteristic for each model.

By looking at the individual models of Figure 5, a common pattern cannot be identified easily.

While PLS seems to prioritize risk measures such as market beta (beta) and beta squared

(betasq), PCR depends heavily on price trends variables such as long-term reversal (mom36m)

and short-term reversal (mom1m). ENet, poses particular importance on liquidity variables such

as turnover and turnover volatility (turn, std turn) while also maintaining dependence on short-

term reversal (mom1m) as PCR. Moving to deep learning methods, FFN seems to be dominated

by fundamental signals such as the growth in long term net operating assets (grltnoa), while for

CNN trading variables dominate by importance, namely with the number of zero trading days

(zerotrade) and with the dollar tarding volume (dolvol). Finally, RNNs are particularly sensitive

to a total return volatility (retvol) in case of LSTM unit layers, and by accounting measures

such as capital expenditues an inventory (invest) in case of GRU unit layers. Once again, the

advanced ability of LSTM cells to capture temporal dependencies is emphasized its increase in

performance when dealing with time-varying variables such as return volatility.

Focusing on Figure 6, the most influential characteristics appear to be size (mvel), asset growth

(agr), industry momentum (indmom), long-term reversal (mom36mm), volatility of liquidity

(std dolvol) and dollar volume (dolvol). Hence, a mixture of liquidity varaibles, price variables

and fundamental variables identify as most relevant predictors across all models. If linear and

regularized linear models appear to identify these variables as more relevant, it is interesting to

remark neural networks are driven by a broader range of characteristics, justifying their ability

to extrapolate intricate patterns and relationships from the input data set.
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Figure 5: Variable importance for the top-20 most influential variables in each model. Variable
importance is an average over all training samples. Variable importance within each model is
normalized to sum to one.
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Figure 6: Rankings of ninety-two stock-level characteristics in terms of overall model contri-
bution. Characteristics are ordered based on the sum of their ranks over all models, with the
most influential characteristics on the top and the least influential on the bottom. Columns
correspond to the individual models, and the color gradients within each column indicate the
most influential (dark blue) to the least influential (white) variables.
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5.3 Portfolio Forecast Performance

While individual forecast performance has been analyzed extensively in the previous section,

the focus is now placed on the comparison of predictive performance of machine learning methods

for aggregate portfolio returns. Table 4 and 5 report the result of the analysis using equal-weight

portfolios and value-weight portfolios. The results align partly with the analysis carried out

previously on individual forecasts. When looking at Table 4, it can be noticed that while for

individual forecasts deep learning methods such as LTSM, GRU and CNN perform extremely

well, when using the same prediction in order to form a long-short decile strategy, the out-of-

sample performance falls drastically. On the other hand, Feedforward neural networks (FNN)

perform in line with the expectations, with NN1 being the most powerful model achieving an

average realized monthly return of 1.7%. However, the highest risk-adjusted performance is

obtained with PLS, which returns on average 1.7% per month (20.4% on an annualized basis),

with a monthly volatility of 8% (27.7% annualized) and an annualized out-of-sample Sharpe ratio

of 0.74. When comparing this last figure to OLS-3, it can be witnessed an improvement of 72%

in terms of Sharpe ratio, definitely outperforming the benchmark. It’s also interestinhg to notice

that while LGBM outperformed RF and XGB in terms of individual stock returns predictions,

now the situation is completely swapped, with XGB and RF achieving out-of-sample Sharpe

ratios of 0.59 and 0.45, respectively, against the 0.28 of LGBM.

Table 4: Performance of equal-weight machine learning portfolios

OLS-3 PLS PCR

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 0.43 0.89 6.98 0.44 0.02 0.54 6.60 0.28 0.27 0.71 6.74 0.36

High (H) 2.52 1.86 8.13 0.79 2.95 2.25 9.07 0.86 2.65 1.81 8.90 0.71

H - L 2.09 0.96 7.69 0.43 2.92 1.7 8.03 0.74 2.37 1.10 7.98 0.48

ENet RF LGBM

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 0.36 0.55 6.81 0.28 0.81 1.06 7.24 0.51 1.16 1.06 7.01 0.52

High (H) 2.56 1.91 8.46 0.78 1.50 2.14 9.05 0.82 1.45 1.64 7.40 0.77

H - L 2.20 1.36 7.76 0.61 0.69 1.07 8.35 0.45 0.29 0.58 7.32 0.28

XGB NN1 NN3

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 1.65 0.79 7.98 0.34 -0.40 0.69 7.81 0.31 0.68 0.70 8.08 0.30

High (H) 3.47 2.21 8.40 0.91 3.38 2.39 8.96 0.92 2.26 1.67 7.64 0.76

H - L 1.82 1.42 8.31 0.59 3.77 1.7 8.52 0.69 1.57 0.97 7.93 0.42

GRU LSTM CNN

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 0.95 1.38 7.93 0.60 1.19 1.26 6.60 0.66 0.85 1.06 7.05 0.52

High (H) 1.87 1.01 6.77 0.52 1.60 1.37 7.65 0.62 2.14 1.37 7.85 0.60

H - L 0.91 -0.37 7.45 -0.17 0.41 0.11 7.25 0.53 1.29 0.31 7.54 0.14

Note. In this table, we report the performance of prediction-sorted portfolios over the 22-year out-

of-sample testing period. All stocks are sorted into deciles based on their predicted returns for the

next month. Columns “Pred,” “Avg,” “SD,” and “SR” provide the predicted monthly returns for each

decile, the average realized monthly returns, their standard deviations, and Sharpe ratios, respectively.

All portfolios are equal weighted.

Table 5 reports the analysis performed on value-weight machine learning portfolios. The first

thing that is evident is the fall in performance when using value-weights. This is likely to be
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caused by the fact that the statistical objective functions employed in the prediction procedure

minimize equally weighted forecast errors. In this scenario, NN1 is still the best performing

model with an out-of-sample Sharpe ratio of 0.45. RNN and CNN still perform quite badly,

being outperformed by linear models such as OLS and ENet.

Table 5: Performance of value-weigth machine learning portfolios

OLS-3 PLS PCR

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 0.41 0.66 5.49 0.41 0.02 0.62 5.83 0.37 0.27 0.61 5.25 0.40

High (H) 2.45 1.41 8.58 0.57 2.81 0.97 8.26 0.41 2.55 0.96 8.44 0.40

H - L 2.03 0.75 7.26 0.36 2.80 0.35 7.17 0.17 2.27 0.35 7.05 0.18

ENet RF LGBM

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 0.35 0.54 5.59 0.33 0.82 0.57 5.98 0.33 1.16 0.78 5.06 0.53

High (H) 2.47 1.29 7.46 0.60 1.45 1.15 8.06 0.50 1.39 0.96 5.73 0.58

H - L 2.12 0.74 6.64 0.39 0.63 0.58 7.13 0.28 0.22 0.18 5.46 0.11

XGB NN1 NN3

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 1.66 0.66 6.51 0.35 -0.38 0.30 7.76 0.13 0.75 0.32 7.69 0.14

High (H) 3.15 1.14 6.95 0.57 3.16 1.51 10.50 0.50 2.16 0.83 6.55 0.44

H - L 1.49 0.48 6.78 0.25 3.54 1.21 9.25 0.45 1.41 0.51 7.15 0.25

GRU LSTM CNN

Pred Avg SD SR Pred Avg SD SR Pred Avg SD SR

Low (L) 0.98 0.72 5.40 0.46 1.19 0.44 5.70 0.27 0.87 0.58 5.93 0.34

High (H) 1.87 0.98 5.56 0.61 1.59 0.71 5.88 0.42 2.20 0.93 6.66 0.48

H - L 0.89 0.26 5.53 0.16 0.40 0.27 5.81 0.16 1.33 0.35 6.33 0.19

Note. In this table, we report the performance of prediction-sorted portfolios over the 22-year out-

of-sample testing period. All stocks are sorted into deciles based on their predicted returns for the

next month. Columns “Pred,” “Avg,” “SD,” and “SR” provide the predicted monthly returns for each

decile, the average realized monthly returns, their standard deviations, and Sharpe ratios, respectively.

All portfolios are value weighted.

Finally, it is interesting to see how taking a short position in the bottom decile, for every

method in both the portfolio configurations, always leads to sacrificing part of the positive

returns achieved by taking a long position in the top decile. This may be caused by the fact

that in general terms, if we exclude the Dot-com bubble of the early 2000s and the Recessions

of 2008-2009 and 2020, the stock market has has always performed positively in the twentieth

century. The out-of-sample period taken into consideration definitely overlaps with this positive

period ofr the market, possibly pointing at the cause of underperformance when shorting the

bottom decile.

6 Conclusion

The main question addressed in this thesis is whether recurrent neural retworks (RNN) with

LSTM and GRU cells and convolutional neural networks (CNN) improve the predictive per-

formance of excess stock returns compared to traditional asset pricing models.

By performing a comparative analysis of several machine learning methods, it can be con-

cluded that the aforementioned deep learning methods are among the best performing model
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in predicting risk premia. The economic justification of this phenomenon standing in their in-

nate ability of capturing non-linear interactions among predictors and long-term dependencies

in the data. However, even though they outperform all the other machine learning methods

analysed, this improvement is only statistically significant with respect to OLS. Furthermore,

when building long-short decile spread portfolios using simple return predictions, feedforward

neural networks provide the best Sharpe ratio performance, while more advanced deep learning

methods such as RNN and CNN are among the worst performing models. This means that good

forecasting performance on individual excess returns does not necessarily imply good portfolio

performance, given the two different problem structures. Moreover, I also find that while linear

models agree on a small set of dominant predictive signals, such as liquidity variables, price

trends and fundamental ratios, deep learning methods draw form a wider set of characteristic

variables. This reinforces the idea that, unlike the other machine learning methods, deep learn-

ing networks are able to construct predictions by extrapolating intricate features’ patterns from

several sources inside the data.

In summary, machine learning techniques represent an added value to the field of asset pricing

in the context of risk premia prediction. In order to further establish their predictive power,

these techniques should be tested for other markets, time frames or by using different model

architectures. Further research could be dedicated to their application in the construction of

portfolios that take into account of real market frictions, such as for instance trading costs.

Lastly, given their high adaptability in predicting risk premia, these techniques could be further

tested to forecast the assets’ market volatility.
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Appendix

Table 6: Monthly out-of-sample prediction performance using raw returns as target variable
(percentage R2

oos)

OLS OLS-3 PLS PCR ENet RF LGBM XGB FNN LSTM GRU CNN

+H +H

All -0.20 -0.14 0.44 0.41 0.47 -0.33 0.39 -0.67 0.45 0.53 0.44 0.48

Top 1000 0.10 0.18 0.40 0.44 0.47 -0.96 0.51 -1.36 0.66 0.70 0.52 0.60

Bottom 1000 -0.31 -0.23 0.48 0.43 0.49 -0.14 0.40 -0.23 0.42 0.50 0.46 0.47

Note. +H indicates the use of a Huber loss. For Feed Forward Neural Networks, the best model is

reported, with the estimation ranging from 1 to 5 hidden layers.

Figure 7: Visual comparison of the R2
oos statistics from Table 3 using raw returns as target

variable
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Programming code

The programming code has been uploaded in the file ”Final Main.zip”. The code consists of

the following folders:

• Data Preparation: this folder contains a Python noteboook file in which the data is pre-

processed in order to be fed properly to the Main code.

• Code: this folder contains all the Python file in which the machine learning models are

performed and predictions are computed. The main.py file represents the core of the

analysis, with all the models specifications. Other files include some classes for the different

typed of models, such as NN.py for neural networks for instance.

• Analysis Results: this folder contains two Pyhton notebooks in which further analyses,

such as the portfolio formation or the Diebold Mariano tests, are performed.
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