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Abstract

In personalized learning, learners decide which learning activities they want to participate

in. Though the concept has been proven effective, there are some difficulties implementing

it in the real world. One of the main challenges is creating schedules of high quality in a

short amount of time. The Hourly Learning Activity Planning Problem is a way to model

schedule creation. We use different experimental settings to test the effectiveness of two

solution methods for the problem: the proven Adaptive Large Neighborhood Search and the

novel Grey Wolf algorithm, which we adapted to the personalized learning setting. The Grey

Wolf algorithm shows great promise. With similar running times, it outperforms Adaptive

Large Neighbourhood Search in 429 out of 576 instances. The improvement is largest in the

hardest to solve instances, making it even more useful in practice.

1 Introduction

In traditional education large groups of students study the same materials, at the same speed,

at the same times. This ’one-size-fits-all’ approach to learning does not work optimally for

students who deviate from the average. Therefore, in many places around the world, schools are

moving towards personalized learning as their education system. The foundation of personalized

learning is the view that the learner drives their own learning. In practice this is often done by

having the learner decide which subjects they want to study, at which pace and at which level.

One of the logistical challenges schools face when moving towards personalized learning is

scheduling lessons. Many studies have been done regarding scheduling of lessons in a teacher-

class environment. The problem of making a timetable for all classes and teachers is NP-

complete, see Asratian and Werra (2002). Depending on the restrictions it can even by NP-

hard. Many different methods to solve these problems have been developed, both exact and

heuristics. Scheduling for personalized learning is an even more complex problem. This is due

to the learners having choice in which modules they follow. There are more possibilities to take

into account when trying to make a schedule. This difficulty holds schools back in implementing

some form of personalized learning.

One of the specific problems seen in practice is the short-term changes that sometimes need

to be made to schedules. This is necessary when, for example, a teacher calls in sick or, more

specific for the personalized learning setting, a student changes their learning demands. In

these cases, an updated schedule needs to be made quickly - often in the span of a few minutes

up to an hour. Wouda, Aslan and Vis (2023) have introduced the Hourly Learning Activity

Planning Problem (HLAPP) to model the creation of a one hour schedule according to learner

demands. Solving to optimality is possible, but takes too much time. Therefore they introduced

an Adaptive Large Neighborhood Search (ALNS) metaheuristic to solve the problem of creating

a one hour schedule quickly.

In similar research on the scheduling of nurse shifts, many solving methods have been ex-

plored to solve that problem, see Ngoo, Goh, Sabar et al. (2022). It has been observed that

different solution methods perform better than ALNS for the nurse-rostering problem. A lo-

gical extension of previous research would therefore be to test these better performing solution

methods on the problem of finding schedules for personalized learning. We adapt the Grey Wolf
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Optimization algorithm to our specific problem. Grey Wolf Optimization has mostly been ap-

plied to continuous optimization problems. In this paper we deal with a discrete problem. The

algorithm needed some adaptations to work on discrete problems, for which we used the paper

by Ngoo, Goh and Kendall (2022) as a starting point. They adapted the Grey Wolf algorithm

to work for the nurse-rostering problem.

We make modifications to their algorithm, to make it work for the personalized learning

scheduling problem. New mutation operators and a novel crossover operator are introduced. We

test our algorithm on generated data, with many different experiment parameters. From medium

school sizes to extra large, from small demand spreads to large and other differences. Our

algorithm produces better solutions than the ALNS metaheuristic in 429 out of 576 instances.

This is with a runtime set to 60 seconds, well within the 10 minutes set as reasonable timelimit

for the re-scheduling problem. Furthermore, the algorithm performs well across the board,

whereas ALNS mainly performs well for instances with small demand spreads. Since the Grey

Wolf algorithm obtains the best results allround, and gives the best results in the most difficult

to solve instances, these results show great promise for use in practice.

In the next Section a literature review of relevant papers on scheduling and the Grey Wolf

algorithm is given. Section 3 describes the hourly learning activity planning problem. In Section

4 we explain the methodology used to solve the problem. The results that we obtained are

presented in Section 5. Finally, Section 6 concludes and discusses the findings.

2 Literature

This literature review explores previous research in the field of scheduling, focusing on two

main categories: personalized learning and traditional school timetabling. Within personalized

learning there have been a few studies that address similar problems to the Hourly Learning

Activity Planning Prolbem (HLAPP) as discussed by Wouda et al. (2023). In the realm of

traditional scheduling, a lot more research has been conducted. A common theme is the use

of heuristics to find computationally efficient solutions. Also, an overview of previous research

into the Grey Wolf Algorithm is given. The algorithm has had great results in the realm of

continuous optimization. The method has not been applied to many discrete problems, though

a few cases can be mentioned.

First of all, a few studies have been done in the field of scheduling for personalized learn-

ing. Practical research has been done by Santiago et al. (2005). They presented a two-phase

heuristic to obtain schedules personalized for learners in Spain. A similar practical research was

conducted by Kristiansen, Sørensen and Stidsen (2011), where the planning of elective courses

within traditional time-tables is researched. In their paper the problem is modeled using integer

programming and exact solution methods are proposed, including a Branch-and-Price frame-

work using partial Dantzig-Wolfe decomposition. In their research on scheduling for personalized

learning, Kannan, van den Berg and Kuo (2012) study a very similar problem to ours, which

is completely centered around the learner. They developed an algorithm that splits the prob-

lem into sub-problems, and then solves it by using heuristics. However, reported computation

times are still very large. Aslan, Bakir and Vis (2020) researched scheduling for personalised

learning with a demand driven approach. They use a hyper-heuristic to generate week-long
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schedules. The performance of the hyper-heuristic is compared to a commercial solver, showing

promising results. Finally Wouda et al. (2023) did research on the same demand driven per-

sonalized learning situation, however, viewed as a one-hour scheduling problem. Their output

is a schedule for one hour. The main practical use is suggested to be for short-term changes

to a longer time-period schedule. In their research they used the Adaptive Large Neighbour-

hood Search (ALNS) meta-heuristic for solving. The meta-heuristic proved significantly more

computationally efficient than solving exactly.

Compared to personalized learning, scheduling for ’traditional’ schools has seen a bit more

research. Pillay (2013) gives an overview of studies done in this field up to 2013. We can see that

many different solution methods have been developed for this problem, mostly heuristics. Due

to the different datasets used, it can be difficult to compare solution methods directly. A clear

conclusion that can be made from the research is that heuristics are the only computationally

efficient way to solve school timetabling problems. The research does not agree on which heuristic

is best. Two later studies are of particular interest. Kiefer, Hartl and Schnell (2017) applied an

ALNS alogirthm, with great succes. Veenstra and Vis (2016) researched a re-rostering problem,

in a traditional rostering setting. In their case computation time for the optimization method

was crucial. They found that a heuristic was most efficient in this regard.

Many of these heuristics exist in the literature. Grey Wolf optimization is one of these,

with promising results. First introduced by Mirjalili, Mirjalili and Lewis (2014), it has since

been extended by researchers and applied to many different problems (Almufti, Ahmad, Marqas

& Asaad, 2021). The algorithm often produces near-optimal results, with short computation

times. Al-Betar, Awadallah, Faris, Aljarah and Hammouri (2018) have improved the algorithm

by changing the selection methods to be less greedy. Nadimi-Shahraki, Taghian and Mirjalili

(2021) made improvements in the neighbourhood searching of the algorithm, giving it more

exploratory freedom. Ngoo, Goh, Sabar et al. (2022) has adapated Grey Wolf for the nurse-

rostering problem, which has many similarities with the HLAPP model. In their research they

find that it performs better than six other methods that have been applied to their dataset.

Due to the proven performance in many applications, we adapt the Grey Wolf algorithm to the

HLAPP problem.

3 Problem and model

In a generalized personalised learning setting, there are four resources that need to be allocated.

There is the set of learners l ∈ L who demand certain learning activities. Similarly we have

the set of teachers t ∈ T , which can oversee learning activities. Next to that, the topics which

can be taught in learning activities are included, called modules m ∈ M . The last resource is

the classroom c ∈ C, which are the places where learning activities are scheduled. All these

resources are assumed to be finite.

The learners l have demands Dlm ∈ R≥0 of all modules m. There are two types of modules,

the ’instruction’ modules, where a certain module is actively taught, and a ’self-study’ module,

where a learner works on their most-demanded module under the supervision of a teacher, but

no active teaching. Schools generally prefer active teaching, therefore self-study of a module does

not meet the demand of the learner fully. The difference is modeled by a self-study parameter w
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(0 ≤ w ≤ 1), which gives a penalty to the demand met by the self study activity. The demand

for self-study of a learner is given by DlmS
, where mS is the module for self-study. The self-study

demand is given by w ∗ maxm∈M\mS
Dlm. The w parameter sets the penalty for self-study. The

demand is zero for modules that the learner is not eligible for.

Teachers t are not capable of teaching all modules m. This relationship is modeled through

a binary qualification matrix QT
tm ∈ {0, 1}. When teachers are qualified to teach module m, QT

tm

takes on the value 1, and 0 otherwise. All teachers are qualified to teach the self-study module.

Not all classrooms c can be paired with all modules m. For example, a gym class cannot be

held in a normal classroom and vice-versa. This relationship is also modeled through a binary

qualification matrix QC
cm ∈ {0, 1}. Classrooms also have a hard capacity in the form of seating

space, given by Nc.

The learners are paired with modules through the decision variable ylm, which takes on the

value 1, if the learner is scheduled for module m and 0 otherwise. Furthermore, activities are

modeled by the decision variable xmct, which takes on the value of 1 when module m will be

taught in classroom c by teacher t and 0 otherwise. There are two additional parameters which

can be set, to form additional hard constraints for the scheduled activities. The parameter δ−

sets a minimum to the number of learners in an activity and δ+ sets a maximum to the number

of learners in an activity.

The complete model is given by:

max
∑
l∈L

∑
m∈M

Dlmylm (1)

subject to:
∑
l∈L

ylm ≤
∑
c∈C

min(δ+, Nc)
∑
t∈T

xmct ∀m ∈ M\{mS} (2)∑
l∈L

ylmS
≤

∑
c∈C

Nc

∑
t∈T

xmSct (3)∑
l∈L

ylm ≥ δ−
∑
c∈C

∑
t∈T

xmct ∀m ∈ M (4)∑
m∈M

ylm = 1 ∀l ∈ L (5)∑
m∈M

∑
c∈C

xmct ≤ 1 ∀t ∈ T (6)∑
m∈M

∑
t∈T

xmct ≤ 1 ∀c ∈ C (7)∑
c∈C

xmct ≤ QT
tm ∀t ∈ T, ∀m ∈ M (8)∑

t∈T
xmct ≤ QC

cm ∀c ∈ C,∀m ∈ M (9)

ylm ≤ 1Dlm>0 ∀l ∈ L,∀m ∈ M (10)

ylm ∈ {0, 1} ∀l ∈ L,∀m ∈ M (11)

xmct ∈ {0, 1} ∀m ∈ M,∀c ∈ C,∀t ∈ T (12)
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The objective (1) is the sum of all the demands met by the assignment of learners. The goal is

to have as much demand met as possible. The first set of constraints (2) ensures that the number

of learners in an activity does not exceed the classroom limits, or the set maximum amount by

the school. Constraint (3) does the same for self-study activities, where the maximum limit set

by the school does not apply. The next set of constraints (4) applies the minimum activity size,

such that no activities are made with less learners than the minimum size. With constraints (5)

it is ensured that every learner is assigned to a module. Constraints (6) ensures that classrooms

are only assigned to at most one activity. Constraints (7) do the same for teachers. Constraints

(8) and (9) make sure that each teacher and classroom are suitable for assigned activities.

Constraints (10) ensures that learners are only assigned to modules they are eligible for, so for

which Dlm ≥ 0. Lastly, constraints (11) and (12) set the y and x variables to binary variables.

Solving this problem does not lead to a schedule directly, for that an extra step is necessary.

Learners are assigned to modules by y and there are enough teachers and classrooms to host

those modules with learners ensured by x. To get a schedule, first all x activities are filled to the

minimum δ−, then the remaining learners are added to activities with their respective module.

When there are multiple activities of a module, one is filled until it is full (by δ+), then the

second one gets filled, etc. The order in which the activities is filled is by activity number. In

this way a schedule of activities is obtained.

4 Solution methodology

In this section we explain the methods used to obtain solutions to the HLAPP problem. We

first discuss the Adaptive Large Neighbourhoud Search method, introduced by Wouda et al.

(2023). The exact same methodology is used as in their paper. Next we introduce the Discrete

Grey Wolf algorithm, adjusted for the HLAPP problem. A Discrete Grey Wolf algorithm used in

nurse-rostering is used as a starting point, with small changes made. Custom mutation operators

and a custom crossover operator are introduced as well.

4.1 Adaptive Large Neighbourhoud Search

A general framework is given by Pisinger and Ropke (2010). This framework is used to create

the Adaptive Large Neighbourhood Search used here. The ALNS described is that of Wouda

et al. (2023). We cover the main parts of the method, being the algorithm itself, the intial

solution, destroy operators, repair operators, acceptance criterion, local search and operator

selection. For a full description we refer to Wouda et al. (2023).

The ALNS algorithm start with an initial feasible solution s.This solution should be a feasible

solution, however it does not need to be a solution of high quality. Then the algorithm iterates

for a fixed number of iterations. In each iteration, the current solution is destroyed by a destroy

operator and repaired by a repair operator. The operators are chosen by a roulette wheel. These

operations create a new solution, which is evaluated. The roulette wheel is updated based on

this evaluation. If it is the new best, a local search procedure is run, the output of which is set

as the new best solution. In the end the best solution is returned.

5



Algorithm 1 Adaptive Large Neighbourhood Search

Input: Initial feasible solution s

Output: Best observed solution s∗

s∗ := s, ρD := (1, ..., 1), ρR := (1, ..., 1)

repeat

Select destroy and repair methods dop ∈ OD, rop ∈ OR using ρD and ρR.

sc := rop(dop(s))

if sc is accepted then

s := sc

end if

if sc has a better objective value than s∗ then

s∗ := Local-Search(s∗)

s := s∗

end if

Update ρD and ρR

until maximum number of iterations is exceeded

return s∗

4.1.1 Initial solution

An initial solution is created by assigning all learners to self-study. The activities are scheduled

by selecting a random teacher (all teachers are qualified for self-study) t and suitable classroom

c. The classrooms are then filled up to their limit Nc. In our experiments it is impossible for

this initial solution to be infeasible, due to the amount of learners always being smaller than

the amount of learners the school can accommodate, and also enough teachers being available

to supervise. In practice it also very unlikely, since it requires a school to have more students

than it has space and teachers for them.

4.1.2 Destroy operators

The destroy operators remove part of the solution. Their goal is to remove around d learners

from their assignments.

Random activity removal:

This operator removes an entire activity from the solution. All learners assigned to that activity,

the corresponding teacher and classroom are set to unassigned. This procedure repeats until at

least d learners are removed.

Smallest activity removal:

The smallest activity is removed from the solution by this operator. Just like with random

activity removal, the learners, teacher and classroom are set to unassigned. The process is

repeated until at least d learners are removed.

Random learner removal:

This operator removes a random learner from an activity. The learner is set to unassigned. It

only does this move if the solution remains feasible, so no learners are removed that make the
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activity size too small (smaller than δ−). This process is repeated until d learners are removed,

or no more learners can be removed feasibly.

Worst regret learner removal:

This operator removes a set of learners that are the least met in their demands, seen as regret.

Regret is the difference between the demand met by their current assignment, and the maximum

demand that could be satisfied by a different assignment. All learners are sorted by their regret.

A total of d learners are selected to be removed. If the removal of a learner would result in

an infeasible solution, this learner is not removed. The d learners are selected using a skewed

distribution, which favours larger over smaller regrets.

4.1.3 Repair operators

The repair operators put the unassigned learners from the destroy operators in new assignments.

Solution feasibility is retained.

Break-out activity:

The unassigned learners are grouped by the modules they demand. The modules are sorted by

decreasing total learner demand. A module is scheduled, if δ− is respected and a suitable teacher

and classroom is available. The learners are then assigned to this module. If the module is a

second-degree module, a second-degree teacher is preferred over a first-degree teacher. Second-

degree meaning modules that are taught in the first three years of school, and a second-degree

teacher is only able to teach these modules, not modules from the last three years. A more

detailed explanation of second-degree and first-degree can be found in Section 5.1. The smallest

classroom that fits the learners is also preferred. If however the amount of learners is greater than

the maximum available classroom size, the largest classroom is chosen, to fit as many learners

as possible into the activity. In that case not all the learners are assigned to this module. Next

to that, this operator attempts to assign self-study learners into the new activities, when that

leads to a better solution.

This process is continued until all possible activities are scheduled. If there are learners left,

they get assigned according to the greedy learner insert, as seen below.

Greedy learner insert:

This operator takes a random unassigned learner, and assigns it to the best available learning

activity. The solution has to remain feasible, so activities need to be smaller than min{δ+, Nc}
and the learner needs to demand the activity. If there is no available activity for the learner,

they are assigned to self-study. If there is no self-study activity available, or it is full, a new

self-study activity is created. In the rare case that there are no teachers or rooms available

for self-study, the learning activity with the smallest demand met is removed, to make room

for a new self-study activity. The learners from the learning activity also get assigned to the

self-study activity.

4.1.4 Acceptance criterion:

A new solution is not always accepted. The process to determine acceptance is Simulated

Annealing (SA) as described in Wouda et al. (2023). Solutions that improve the current solution

are always accepted. If they are not better, they have a chance to get accepted, in order to
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increase the exploration power of the algorithm. The worse the solution, the lower the chance.

Also, the more iterations have passed, the smaller the chance.

4.1.5 Local Search:

When a new best solution is found, Local Search is applied to improve the solution further. The

local search operator first determines all the possible assignment moves that can be made for all

learners, given the scheduled activities. It then applies the move with the best objective gain, if

feasible. This process is repeated until no more moves can be applied that improve the solution.

4.1.6 Operator selection:

We have multiple Repair and Destroy operators. A Roulette Wheel is used to determine which

repair and destroy operator should be used for an iteration. Each operator is given a weight,

which determines the chance that it is chosen. The weights are updated at each iteration,

according to their performance. The better performing operators get selected more often. The

method is explained further by Wouda et al. (2023).

4.2 Grey Wolf Optimization

the Grey Wolf algorithm is inspired by nature. Grey wolfs are considered apex predators,

meaning that they are at the top of the food chain. They hunt together in packs. An important

rule of the pack is the social hierarchy. There is an alpha (leader), beta (second in command),

and the rest are delta wolves. There is also a omega wolf, which could be considered the

scapegoat of the pack. In general, a Grey Wolf algorithm attempts to mathematically model

the social hierarchy and hunting techniques of grey wolfs, to ’hunt’ for a best solution. For more

details on this behaviour, and the original Grey Wolf algorithm for use in continuous problems,

we refer to Mirjalili et al. (2014).

We use the improved Discrete Grey Wolf Optimization algorithm by Ngoo, Goh, Sabar et

al. (2022) as a starting point. We have adapted this algorithm to the HLAPP problem. It can

be seen below in Algorithm 1. It general it works as follows, with more details being provided

in later sections. First, an initial solution is generated, see Section 4.2.1. A population of grey

wolfs is initialized, with each receiving the initial solution as position. Then, the positions of

each wolf get updated by applying mutation operators (see Section 4.2.2) until a number γ of

learners is mutated. A mutation operator is chosen with equal chance. Each mutation operator

mutates a random number ζ of learners. To obtain ζ, we draw from U(0.25, 0.75). This value

gets multiplied by γ to find the fraction of γ to mutate with this calling of the mutation operator.

After finishing mutating, the objective value for each wolf is calculated, and the Xα, Xβ and Xδ

get updated accordingly. If the Xα solution is better than the best solution, the best solution

gets updated to the Xα solution. A new position for all wolfs is generated by using the three

best solutions (Xα, Xβ and Xδ). A crossover operator is applied which combines these solution

to create a new solution. If the new solution is better than the best solution, the best solution

gets updated. This new solution is given as a position to all wolves, and the process is repeated

until the time limit is reached. When the time limit is reached, the best solution at that point

is returned.
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Algorithm 2 Discrete Grey Wolf Optimization

Input: Generate an initial solution s

Initialize a population of grey wolves, P = X1, X2, X3 ... Xn, with solution s

Xα = X1

Xβ = X2

Xδ = X3

s∗ = X1

repeat

for Each Xw in P do

repeat

Randomly select mutation operator with equal chance

Apply mutation operator, with ζ as number of mutations.

until mutations ≥ γ

end for

Sort the Wolfs by objective value, update Xα, Xβ and Xδ.

if Xα > s∗ then

s∗ = Xα

end if

Generate a new position sn using Discrete Blend Crossover(Xα, Xβ, Xδ)

if sn > s∗ then

s∗ = sn

end if

Assign sn to all Xw wolves in P.

until time > time limit

return s∗

4.2.1 Initial solution

The Grey Wolf crossover operator does not respond well to starting with the feasible solution

of ALNS, it performs better with an initial solution of higher quality. Therefore we generate an

initial solution as follows: All learners are set as unassigned. Then the repair operator of Section

4.1.3: ’break-out activity’ is applied. This results in a solution with many learners already in

instruction activities.

4.2.2 Mutation operators

To create random changes in the solutions, mutation operators are used. They are inspired by

evolution, where random genetic modifications lead to long term changes of species. Similarly,

here random mutations are applied to solutions. If they improve the solution, there is a high

probability they are carried over to later solutions. Two mutation operators are proposed:

Mutation 1: Learner reassignment

This operator removes ζ random learners from their assignment. These learners then get reas-

signed to other, or new activities, in the same way as the break-out operator of section 4.1.3.
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Mutation 2: Activity reassignment

This operator removes a random activity, setting all learners to unassigned. This process is

repeated until at least ζ learners are unassigned. Then these learners get reassigned with the

break-out operator.

4.2.3 Crossover operator

We introduce a crossover operator loosely based on the Blend Crossover introduced by Eshelman

and Schaffer (1993). The pseudecode can be seen in Algorithm 3. The crossover operator start

with three solution to combine, the Xα, Xβ and Xδ wolfs. The alpha wolf is set to be the new

solution. For each learner l, it is checked what module m they are assigned to. If the assignment

is agreed upon by all three input solutions, the assignment is kept, otherwise the learner is set

to unassigned. After doing this for all learners l, the assigned activities are checked if they

meet the minimum activity size requirement (δ−), since it is possible assignments have gotten to

small. First it is attempted to add learners from the unassigned set until the minimum activity

size is met. Only learners whose demand for the module (Dlm) is bigger than their demand

for self-study (DlmS
) are assigned. If there are not enough learners in the unassigned set to

meet the minimum activity size, the activity is removed and the learners are set to unassigned.

Finally, all unassigned learners are added back in to the new solution by greedy learner insert,

as seen in Section 4.1.3. Finally the newly made solution is returned.
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Algorithm 3 Discrete Blend Crossover

Input: Three parent solutions: Xα, Xβ and Xδ

Output: New solution Xw

for Each learner l do

if ylm is the same for Xα, Xβ and Xδ then

Set ylm of Xw same as Xα, Xβ and Xδ.

end if

if ylm is not the same for Xα, Xβ and Xδ then

Add learner to the set unassigned U

end if

end for

for activity in Xw do

if # learners in activity < δ− then

repeat

for learner l ∈ U do

if activity is preferred over self-study then

Add learner to activity

end if

end for

until learners in activity = δ− OR all learners checked

end if

if # learners in activity < δ− then

remove activity

Add learners of activity to U

end if

end for

Place all unassigned learners in Xw using greedy learner insert

return Xw

5 Results

In this section we present our results. We first start with the experimental design. It is explained

what experiments are run and which parameters differ between experiments. Next, it is explained

how the results have been obtained. In Section 5.2.1 the performance of the solution methods are

compared against the exact solver and each other. Optimality gaps, the number of learners in

instruction activities and runtimes are discussed. Finally in Section 5.2.2 the effects of changing

experiment parameters on solution quality is discussed. We compare these results with results

found by Wouda et al. (2023).

5.1 Experimental design

The data is supplied by Wouda et al. (2023). We run the same 144 experiments, all a different

permutation of the parameters seen in Table 1. This gives a broad spectrum of different school
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parameters, that influence the size and difficulty of the problem. There are also parameters

that schools themselves can influence. The self-study parameter and instruction classrooms and

capacities can be changed very easily by schools. Schools also have some influence over the

teacher qualification distribution.

Table (1) The experiment parameters

Parameter Levels

Self-study penalty parameter (w) 50%, 75%

Demand spread (sigma) 0, 1, 2, 3

School size (# learners) 800, 1200, 1600

Teacher qualification distribution (1;0;0), (0.5;0.5,0), (0.4;0.4;0.2)

Instruction classrooms and capacities
Regular number of classrooms of 32 capacity,

double the number of classrooms of 16 capacity

Minimum activity size 5

Maximum instruction activity size 30

For each experiment, we use the first 4 instances created by Wouda et al. (2023). Each

instance has defined learners, modules, teachers and classrooms, with corresponding demands,

qualifications and activity size constraints. All instances have activity size constraints of 5 as

a minimum and 30 as a maximum (δ− and δ+ respectively). Each regular classroom has a

capacity of 32 learners, and the large self-study classrooms a capacity of 80 learners. There are

576 modules in each instance, made up of 12 courses, with each 48 modules, nominally 8 per

year of study.

Three different school sizes are considered:

• Medium (M): 800 learners, 80 teachers, 40 instruction classrooms, 3 large self-study

classrooms

• Large (L): 1200 learners, 120 teachers, 60 instruction classrooms, 4 large self-study

classrooms

• Extra Large (XL): 1600 learners, 160 teachers, 80 instruction classrooms, 6 large self-

study classrooms

It is likely that group sizes in personalized learning are smaller than in traditional education.

Due to the ability for learners to follow different modules from the same course at the same

time, groups will become smaller. Therefore, schools could choose to place walls in all their

classrooms, splitting them in half. It would double the number of classrooms, while cutting the

maximum capacity in half to 16. Half of the experiments have this policy applied.

The 12 different courses do not get equal learning hours in practice. The number of teachers

per course should also not be equal. We set teacher qualifications to the same fraction as weekly

hours spend by learners on a specific course. To give an example, if the course English is on

average taught three hours a week, with a 30 hour schedule, 10% of teachers will be English

teachers.
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Apart from that, teachers are also split into three different qualifications: first-degree, second

degree and third degree. A first degree teacher can teach all modules from the course they teach.

A second degree teacher can only teach students from the first three years of education. A third

degree is not qualified to teach, however, they can supervise a self-study activity. Three distri-

butions are examined here: (1;0;0), where all teachers are first-degree, (0.5;0.5;0), where half of

the teachers are first-degree and half are second-degree and (0.4;0.4;0.2), where 40% of teachers

are first-degree, 40% are second degree and 20% of teachers are third-degree. In economic sense,

first-degree teachers are almost always more expensive than second-degree teachers, and second-

degree teachers more expensive than third-degree teachers. We test if different distributions of

teacher qualifications has a significant impact on solution quality.

The learner demands are generated as follows. A random demand is generated for each

course. First, a module to demand is selected. The point where the learner should be following

nominal progression is obtained by taking the midpoint of the year they are in. This is computed

by taking the year they are in yl ∈ {0, 1, ..., 5} and applying the following function: µl = 8yl+4.

Then, to introduce randomness in the selected module, we draw from N(µl, σ), where σ differs

between experiments, and takes on one of the values from the demand spread of Table 1. A

higher value of σ will thus give a bigger demand spread. The result gets rounded to the nearest

integer in {1, 2, ..., 48}, which is then selected as the module this learner will demand. The actual

demand value is drawn from an Exp(β = 2) distribution, which ensures non-negative values.

5.2 Results

The model presented in section 3 is programmed in Python 3.10. We use Gurobi to obtain

exact solutions. The ALNS metaheuristic is also programmed in Python 3.10, and uses the

open-source package ALNS, made by Wouda and Lan (2023). The Grey Wolf Algorithm too

was programmed in Python 3.10 and uses parts of the ALNS metaheuristic.

For exact results, to compare the metaheuristic and Grey Wolf with, the exact results found

by Wouda et al. (2023) were used. These results were publicly available. Reproducing these

results ourselves took too much time and computation power. To solve, they used two Intel

Xeon E5 2680v3 2.5 GHz CPU cores with 32 GB of memory. The solver was given 8 hours

of runtime. This solved 88% of instances. The remaining instances were given another run on

the two processors with 64GB of memory and two days time. After this 99% of instances were

solved.

Both the ALNS and the Grey Wolf algorithm were solved using the M1 Pro processor with

16gb of memory for all instances. The metaheuristic was run with the parameters set to the

values used by Wouda et al. (2023). They did extensive tuning to find optimal paremeters.

They used a Bayesian optimisation package to do hyperparameter optimisation called SMAC3

(Lindauer et al., 2022).

We did some empirical testing for the parameters of the Grey Wolf algorithm. We found

that setting the number of wolfs to 30 and the mutation rate to 40% produced good results. We

set the parameter γ to always be half of the number of learners. So at each iteration, a large

number of mutations are made. Also, the runtime was set to 30 seconds and 60 seconds. We

noticed that longer runtimes than 60 seconds did not result in significantly better results in most
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instances. We did not perform hyperparameter optimization to optimize these parameters.

5.2.1 Performance of ALNS and Grey Wolf

We have taken the exact results of optimizing the ILP formulation of the problem as a baseline

for comparing the performance of different solution methods. First of all, we have run an

experiment where we gave the ILP 10 minutes of solving time, and took the best solution at this

point. For this, we used the ILP results obtained by (Wouda et al., 2023). Important to note

is that these results were obtained on a very powerful computer, and in most cases could not

be obtained with our computer. We will compare these results with the ALNS and Grey Wolf

methods. However, due to the different computers used, this might not a fair comparison. Table

2 gives an impression of the results that the M1 Pro with 16gb of memory would obtain in terms

of optimality gaps after ten minutes for medium school sizes at demand spreads of 1, 2 and 3.

As we can see in Table 2, the gaps are very small when run on our computer. This is in line

with the results found by the researchers, since they also find very small gaps at small school

sizes, increasing in demand spread. This leads us to think that the ILP gaps the researchers

have found, can be directly compared with the results found of ALNS and Grey Wolf when run

on our computer.

Table (2) The average of the optimality gaps of the ILP after ten minutes for a medium school
size run on the M1 Pro processor with 16gb of memory.

Demand spread Gap (%)

1 0.00052

2 0.00200

3 0.00849

In Figure 1 the performance of the different solution methods is shown, with the optimality

gap as metric. The gap between the objective value of the solution and the optimal solution is

measured. We can see that the ILP after ten minutes performs by far the best. In most cases

it attains, or nearly attains the optimal solution value. The figure does not show the outliers

however. There are a few cases where the gap is more than 12%. Another thing to note is

that most computers won’t be able to run the ILP, because a very large amount of memory

is required for most instances. That is why the heuristics are necessary. We can see that the

ALNS heuristic performs reasonably well, with the optimality gap averaging 2.2%. The Grey

Wolf algorithm on average outperforms ALNS. We can see that it has a lower average gap, of

1.6% with 30 seconds of runtime and 1.3% with 60 seconds of runtime.. When running for 30

seconds, the Grey Wolf algorithm is best 413 out of 576 instances. When run for 60 seconds, it

outperforms ALNS in 429 instances out of 576.
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Figure (1) Optimality gaps of ILP after 10 minutes, ALNS and Grey Wolf after 30 seconds
and 60 seconds.

Diving deeper, we can see that the best performing solution method differs by the parameters

set for the experiment. In Figure 2 an overview is given of the optimality gaps for different school

sizes and demand spreads. It is displayed as box-plots, in which the white line represents the

mean, the boxes 25% of observed values on both sides of the mean and the whiskers the minimum

and maximum gaps (excluding outliers).

For medium schools we observe that the ILP after 10 minutes in most cases arrives at or

very near the optimal value. This is due to the smaller size of the problem. The ILP is fast

enough in this case to solve to optimality in a relatively short time. We also see that the ALNS

methods performs very well at a demand spread of 0. However, at higher demand spreads it is

outperformed by Grey Wolf, by a large margin. Both on average and in terms of spread, the

Grey Wolf has results closer to the optimal value at both 30 and 60 seconds of runtime.

At large school sizes we once again see that the ILP performs best, on average, in all cases.

However, at larger demand spreads we do observe that at least 50% of instances have a gap

larger than 0. ALNS once again outperforms Grey Wolf in the case of a demand spread of zero.

At higher demand spreads Grey Wolf outperforms ALNS, the gaps are both significantly smaller

and the maxima are lower.

The pattern continues for extra large schools. The ILP finds the optimal solution at demand

spread zero. ALNS outperforms Grey Wolf at demand spread zero. At higher demand spreads

we see that Grey Wolf outperforms ALNS, although, at demand spread one, the maxima are

higher than that of ALNS. One thing we observe for the first time, is the Grey Wolf algorithm

outperforming the ILP after 10 minutes. At demand spreads of two and three, we see that Grey

Wolf has a smaller average gap and the maxima are also smaller.

In general we can see that at a demand spread of zero, the ILP always attains the optimal

solution within 10 minutes. ALNS also performs well on these problems. The Grey Wolf method

does not performs as well as ALNS, although the solutions remain close to the optimal value, so

could still be viewed as acceptable. From demand spreads of 1 and above, we observe that Grey
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Wolf outperforms ALNS. The average gap is smaller in all cases. One thing to note however, is

that the maximum gaps are larger in a few cases, notably at large school size with a demand

spread of 2 and 3 and extra large schools with a demand spread of 1. ILP after ten minutes

outperforms both ALNS and Grey Wolf in most cases. However, when the problem gets to a

certain complexity, Grey Wolf yields better results. We observe this at the extra large school

size with a demand spread of 2 and 3.
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Figure (2) Optimality gaps of ILP after 10 minutes, ALNS and Grey Wolf after 30 seconds
and 60 seconds, for each school size and demand spread.

Another, and in practice highly relevant, metric for solution quality is the number of learners

in instruction activities. A school usually prefers as many learners in instruction activities as

possible. In Figure 3 the number of learners in instruction activities in the optimal ILP solution

is plotted against the same number for ALNS and Grey Wolf. A number as close to the ILP

number is preferred. The results show that higher demand spread makes it harder to get close

to the optimal solution. We observe a big difference between the optimal solution and ALNS
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in some cases. For example at the medium school size with demand spread 3, the ALNS has,

on average, almost a hundred less students in instruction activities, a 30% decrease. Grey Wolf

performs a lot better than ALNS in all instances, except at demand spread zero, where they

both perform well. This is in line with the results seen in Figure 2. We see that the difference

in optimality gap results in significant real-world differences: more students get assigned to

instruction activities when using the Grey Wolf algorithm, which is desirable.
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Figure (3) The solution quality compared to the optimal solution, in terms of number of
learners in instruction activities.

Besides solution quality, runtimes are an important metric for performance. We know that

the practical application of the HLAPP problem requires fast runtimes, preferably under 10

minutes. On our computer, with an M1 Pro processor and 16gb of memory, the runtime of

the ALNS metaheuristic consistently stayed well below 10 minutes, even under 90 seconds. In

Figure 4 the histogram of runtimes is shown. We can see that many instances are solved in

around 30 seconds. We also see a peak at runtimes of a little less than a minute. This is also

one of the reasons we ran the Grey Wolf algorithm with a runtime of both 30 seconds and 60

seconds, to give a fair comparison with ALNS. Also longer runtimes were empirically shown to

lead only to small, if any, improvements to the solution.
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Figure (4) The runtimes of the ALNS metaheuristic.

5.2.2 Effects of school parameters

In Section 5.1 we outlined a few parameters schools can change and policy choices they can

implement. In this section we investigate the effects of changing these parameter and choices

on the best possible solution for the model. We use the results obtained by Grey Wolf in 60

seconds for this purpose and use the amount of learners assigned to self-study as a measure of

schedule quality. A high number of learners assigned to self-study means that the model had

difficulty scheduling large groups of learners for activities. We prefer to have as many learners

as possible to be scheduled to an instruction activity. We will compare the results found with

results obtained by Wouda et al. (2023). We expect the results to be similar, since the used data

is the same. The only difference is the solution method. Wouda used the exact results (ILP) to

obtain these figures, we use the results from the Grey Wolf algorithm. The figures can be found

in Appendix A.

In Figure 9 shows that higher demand spread leads to a higher number of learners in self-

study. This effect is especially pronounced for smaller schools. It is an expected effect of higher

demand spread, since it leads to less people demanding the same module. Therefore it is harder

to create large activities. The stronger effect for smaller schools is due to too few learners

demanding the same module, making the possible activity size too small to schedule in some

cases.

Next we will discuss varying the self-study penalty ω. Lowering the ω leads to a bigger

penalty for self-study in comparison to instruction activities. In Figure 6 we observe that giving

self-study a bigger penalty leads to less learners in self-study. This is indeed expected, since the

bigger penalty results in more modules being preferred over self-study for learners, which leads

to more possibilities to schedule a learner in an instruction activity.

In Figure 10 it is shown what splitting classrooms does for the schedule quality. As expected,

it reduces the number of learners in self-study, as there can now be more activities scheduled
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of different modules. It comes at a risk of taking away larger activities, namely, those of size

bigger than 16. However, this is only an issue for very small demand spreads and larger schools.

In most cases it is already hard to schedule groups of those large sizes.

Finally, we investigate the effect of teacher qualification distribution. In Figure 8 it is shown

that the difference between (1;0;0) and (0.5;0.5;0) is negligible. Therefore, it is economically

efficient to hire both first-degree and second-degree teachers. The introduction of third-degree

teachers does degrade the schedule quality somewhat. It results in an increase of self-study

learners of around 10%. We then varied the teacher qualifications by introducing a variable q.

The teacher distribution can be written as (1−q; 0; q). Experiments have been generated varying

q in (0, 0.1, ..., 0.9, 1). Also each of the demand spreads and school sizes are taken into account.

The self study parameter ω is set to 50%, δ− to 5, δ+ to 30 and the classrooms are not split.

This results in 132 experiments, which we solved with Grey Wolf given 60 seconds of runtime.

Figure 11 shows the effect of different values of q on the solution quality, for different school

sizes. We can see that for values of 0.5 and lower, the solution quality stays approximately the

same. At higher values, the solution quality quickly degrades, and at a value of 1 all learners

are in self-study. These results are seen for all school sizes.

As expected all these results confirm the results found by Wouda et al. (2023). Since we

used the same data this was to be expected. The only real difference is the solution quality.

The Grey Wolf results across the board have slightly more learners in self-study. This does not

affect the impact changing the parameters have on the solution quality however.

6 Conclusion

In personalized learning, scheduling is one of the main challenges. Wouda et al. (2023) have

proposed both a problem, the HLAPP, and a metaheuristic solution method, ALNS, for re-

scheduling purposes in personalized learning. We have extended their research by introducing a

new solution method for this problem, in the form of the Grey Wolf algorithm. We have found

that Grey Wolf outperforms ALNS in 429 out of 576 instances of our dataset. It also does this

in a comparable amount of time, namely 60 seconds. In general, the ILP formulation of the

HLAPP problem, given 10 minutes of runtime, yields the best results. However, this is not a

fair comparison. The ILP has a complexity that results in a high memory requirement to even

start solving. In many cases the common 16gb of memory is not enough to solve. That is where

ALNS and Grey Wolf come in. They do not require large amounts of memory, or a very powerful

processor. When comparing these two, Grey Wolf clearly performs better. Both on average, and

in most instances. The only exception is experiments with a demand spread of zero, which in

practice is not realistic. Our conclusion is therefore that Grey Wolf is a better solution method

for the HLAPP problem, especially for real-world applications.

In this real-world, schools might find it beneficial to make certain policy decisions to improve

schedule quality. We show that it is beneficial to split classrooms, resulting in double the

classrooms of half the size. This can be achieved with the installations of partition walls in

regular classrooms. Also, it is shown that having a mix of first-degree and second-degree teachers

is economically efficient. Schools have the choice to employ a small amount of third-degree

teachers, but this comes at a small cost of schedule quality. When classrooms are not split,
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there is more room for third-degree teachers without affecting schedule quality.

There are some limitations to our research. The metaheuristic and Grey Wolf Algorithm

make obtaining quality schedules in short amount of times possible. However, the HLAPP

problem itself is not quite ready for practical use. The problem is proposed for re-scheduling

purposes. Meaning, there already exists a more long term schedule but due to short term

shocks (for example a teacher becoming unavailable), certain activities have to be rescheduled.

In practice, it may be very important to make as little changes as possible to the long-term

schedule. The HLAPP problem makes an entirely new schedule for the single hour, which might

result in many different assignments and activities. We therefore recommend extending our

research to take into account a long-term schedule. We suggest adding a soft-constraint to

the objective function, which takes into account the number of changes made to the long-term

schedule. This could however make the model more complicated to solve.

We also recommend further research into the Grey Wolf algorithm. A clear improvement

that could be made is the addition of hyperparameter optimization. Also, a different way of

selecting mutation operators might improve the algorithm. For example, a roulette wheel or a

neural network could be used to select mutation operators. Another thing that could improve the

algorithm is the addition of more mutation operators. A swap move is often used in literature,

where two assignments are swapped. Another improvement that could be made is extending the

crossover operator to take into account the learner assignments from the alpha, beta and delta

wolfs, where they did not have the same assignment. By simply ignoring those assignments,

setting these learners to unassigned and using greedy insert, a lot of information is lost. Finally,

it may be worthwhile to look into the addition of a local search procedure.
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A Figures of effects of parameters
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Figure (5) Histograms of the activity sizes for each demand spread
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Figure (11) Solution quality for many different teacher distributions
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B Programming code

B.1 Inside src

analyse.py: Code that creates tables that report all important findings for an experiment for

a specific solution method.

constants.py The set parameters used by ALNS (unchanged)

greywolf.py The main algorithm of Grey Wolf, it calls the mutation and crossover operators.

Outputs a best solution.

heuristic.py The main heuristic file, it calls the alns package.

ilp.py The maian ILP file, it creates the problem, sets constraints and calls on gurobi to solve.

make experiments.py It creates the experiment instances (unused).

results.py The facts and figures of the extension are reported from here.

results paramater effects.py Here the figures are created for the replication part, where the

parameter effects are measured.

runAnalyse.py A simple script that loops through the experiments and runs analyse.py for all

of them.

runGreywolf.py A simple script that loops through experiments and instances and runs grey-

wolf.py for all of them.

runHeuristic.py A simple script that loops through experiments and instances and runs the

heuristic for all of them.

runIlp.py A simple script that loops through experiments and instances and runs the ilp.py

for all of them.

runValidator.py A simple script that loops through experiments and instances and runs val-

idor.py for all of them.

tune.py A script that runs the hyperparameter optimization (unused).

validator.py A script that checks if the obtained solution for a or multiple solution methods is

valid.

B.2 Inside classes

For all of these classes no meaningful changes can be reported.

Activity.py

Classroom.py

Learner.py

Module.py

Problem.py

Result.py

Solution.py

Teacher.py
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B.3 Inside crossover operators

discrete blend crossover.py This is the crossover operator as explained in the methodology.

It calls upon greedy insert to reassign unassigned learners.

B.4 Inside destroy operators

For all of these classes no meaningful changes can be reported.

random activities.py

random learners.py

regret learners.py

smalles activities.py

B.5 Inside functions

For all of these classes no meaningful changes can be reported.

initial solution.py

learners to remove.py

pairwise.py

problem.py

B.6 Inside local search

For this class no meaningful changes can be reported.

reinsert learner.py

B.7 Inside mutation operators

activity reassignment.py This class removes random activities from the solution, then applies

break out to create new activities and finally applies greedy insert to assign the last learners to

the new solution.

greedy insert.py This class greedily inserts unassigned learners to modules. This is not a

mutation operator on its own.

learner reassignment.py This class removes random learners from their assignments and

removes activities if they get too small. It then applies break out to create new activities.

Finally greedy insert is run to assign the final unassigned learners.

B.8 Inside repair operators

For all of these classes no meaningful changes can be reported.

break out.py

greedy insert.py
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B.9 Inside rules

These classes represent the restrictions to check. No meaningful changes can be reported.

activity size.py

classrooms to modules.py

classrooms to teacers.py

learner preferences.py

learners to classrooms.py

learners to modules.py

learners to teachers.py

module classroom room type.py

teacher module qualifications.py

teachers to classrooms.py

teachers to modules.py

B.10 Data

The used data and results can be found in the map ’experiments’ inside ’src’.
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