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Abstract

Cellwise robust M (CRM) regression is an estimator which provides a map of cellwise

outliers. Additionally, it also produces vector regression coefficients that are robust against

vertical outliers and leverage points. It does so by making use of the SPADIMO algorithm,

which is an outlier detection method. Two alternative versions of the cellwise robust M

(CRM) regression estimator are introduced, using a different sparse regression method to

estimate the vector regression in the SPADIMO algorithm. Initially, a Sparse Non-linear

Iterative Partial Least Squares (SNIPLS) regression is used for the estimation of the vector

regression. There are two alternative versions of the cellwise robust M regression estimator,

one implements a Least Absolute Shrinkage and Selection Operator (LASSO) and the other

implements an Elastic Net regression instead of the sparse non-linear iterative partial least

squares regression. The new regression methods are tested on varying levels of contamination

using Mean Squared Error of Prediction (MSEP), Mean Absolute Error (MAE) and Rooted

Mean Squared Error of Imputation (RMEI) as the main evaluation measures. The overall

performance of the original cellwise robust M regression is more desirable. However, in

some specific cases, the original cellwise robust M regression is outperformed by one of the

introduced cellwise robust M regressions. This suggests that the cellwise robust M regression

estimator could be improved. We test the different methods on a simulated dataset and a

real-world Swiss nutrient composition dataset.
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1 Introduction

Linear regression is a widely used statistical technique that is crucial in various fields, such as

economics, finance, social sciences, engineering, and data analysis. Thus developing methods

that estimate sufficient parameters are favourable, since it improves the predictive performance

of these models. The least squares estimator is one of the most commonly used methods since it

adheres to several optimality criteria under the assumption of a normal distribution. However,

when these criteria are not satisfied the least squares estimator is not optimal. Recently de-

veloped methods still obtain satisfactory regression parameters which lead to decent predictive

performance of the models even in the presence of casewise deviations. Casewise deviations rep-

resent the differences between the predicted values and the actual values of the target variable for

each observation. In the presence of cellwise deviations, robust linear regression methods often

outperform least squares methods. These methods are extremely useful for financial analysis,

fraud detection and network intrusion detection. One of these methods is the CRM regression

(Filzmoser, Höppner, Otner, Serneels & Verdonck, 2020) which yields a map of cellwise outliers,

which are individual data points within a dataset that significantly deviate at the level of in-

dividual cells from the expected distribution. Additionally, it also produces vector regression

coefficients that are robust against vertical outliers and leverage points. Vertical outliers are

observations in a dataset that have extreme values on the vertical axis, which has a signific-

ant effect on the estimation of the regression models. Leverage points are observations that are

extreme in their predictor values and significantly affect the shape and position of the regression.

In order to account for casewise vertical outliers and leverage points, the CRM regression

estimator uses an iteratively re-weighted least squares algorithm. The weights initially used are

obtained from a robust MM estimator. In each iteration the Sparse Direction of Maximal Outly-

ingness (SPADIMO) algorithm (Debruyne, Höppner, Serneels & Verdonck, 2019) is applied, and

the cells that are significant for outlyingness are then detected. Outlyingness is defined as the

degree to which an individual observation deviates from the typical pattern of the rest of the

data. These cells are then down-weighted by the re-weighting algorithm. The CRM regression

produces regression coefficients that are highly robust and also obtain reliable cellwise outlier de-

tection. Filzmoser et al. (2020), showed that the CRM method is more efficient than a casewise

robust estimator.

This paper mainly focuses on the regression method used to estimate the vector regres-

sion in the SPADIMO procedure and its function in the CRM method. SPADIMO estimates

the vector regression using a Sparse Partial Least Squares (SPLS) regression. SPLS (Chun &

Keleş, 2010) regression can be estimated using the SNIPLS (Hoffmann, Filzmoser, Serneels &

Varmuza, 2016) algorithm, due to the fact that it is a univariate regression problem. On the

other hand, the vector regression can also be estimated using other sparse regression techniques

such as LASSO (Tibshirani, 1996) and elastic net (Zou & Hastie, 2005). According to Huang

et al. (2008), the main advantage of using LASSO is that its continuity and thus more stable

than subset selection, in which different combinations of predictor variables are evaluated and a

model is fit for each combination. Additionally, The LASSO is also computationally feasible for

high-dimensional data. Another option for the initial vector regression estimator in SPADIMO

is the adaptive LASSO (Huang, Ma & Zhang, 2008), which also has the oracle property even
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when the number of covariates exceeds the sample size. The oracle property states that if the

true underlying model is sparse and the design matrix satisfies certain conditions, then LASSO

will provide accurate estimates of the response variable. Zou & Hastie (2005) found that the

LASSO regression is often outperformed by the Elastic Net regression, while the models are

similar in sparsity. If the number of predictors exceeds the number of observations, the Elastic

Net is especially useful. A downside of the SPADIMO procedure is that it can only handle

up to 50% casewise contamination as shown in Filzmoser et al. (2020) and is not tested for

varying percentages of cellwise contamination. The expectation is that with the implementation

of LASSO or Elastic Net, instead of SNIPLS in the SPADIMO algorithm, a higher percentage

of contamination can be handled than by the original CRM regression. The research question

tackled in this paper is;

Which of the three regression methods, which are SNIPLS, LASSO or Elastic Net, is the most

effective at estimating the vector regression in SPADIMO used in cellwise robust M regressions

under different percentages and sorts of contamination?

We developed two alternative versions of CRM, CRM-LASSO and CRM-ElasticNet. These

alternative versions are the result of replacing the SNIPLS regression in SPADIMO with a

LASSO or Elastic Net regression. To answer the research question we performed several simula-

tion studies and examined a real-world dataset. We performed four different simulation studies,

one where the parameters were fixed, one where there was varying magnitude of outlyingness,

one where there was varying percentage of casewise contamination and one where there was

varying percentage of cellwise contamination. We found that generally CRM is preferred. This

is mainly due to the fact that CRM is significantly better at imputation than the other models,

and the predictive performance and bias are similar for the models. In the real-world example,

CRM-LASSO was preferred over the other models.

All source code and data used in this work can be found in the GitHub URL 1. The remainder

of this paper is organized as follows. In section 2, related works regarding the SPADIMO

algorithm and CRM regression are presented. Next, in section 3, we will discuss the real-world

dataset that is used in this paper. Section 4, explains the different regression methods and

evaluation methods used in this paper. Section 5, the simulation study and different simulation

settings will be clarified. Then, in section 6, the result of the simulation study and real-world

dataset application will be discussed. Finally, in section 7, the conclusion and answer to our

research question will be provided with suggestions for future work.

2 Related Works

This section discusses the main findings and conclusions from the papers concerned with CRM

regressions. This section also elaborates more on why the findings from the past papers discussed

below are relevant to the current research conducted in this paper. Additionally, we discuss how

our findings are a relevant contribution to the literature.

1https://github.com/joepweterman/CRM-LASSO-ENET.git
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The paper by Filzmoser et al. (2020) introduced a new method for robust outlier detection

named cellwise robust M (CRM) regressions. The paper applied CRM to the robust estimator

of an MM regression in a simulation study, in which CRM is compared to multiple different

estimator functions in order to assess the performance of the model. The other estimator

functions were: a conventional MM regression, MM regression combined with Deviating Data

Cells (DDC), Ordinary Least Squares (OLS) regression, and OLS combined with DDC. It was

found that the robust regression methods have a significantly better predictive performance

than the least squares method. If assumed that a linear model has generated the data, then

the authors found that CRM performance at imputation and detection of deviating cells is

preferred. Finally, the authors found that CRM is also preferred for estimating individual

regression coefficients. An important downside of CRM is that it will break down if applied to

datasets that contain over 50% of casewise outliers. We will use CRM, (Filzmoser et al., 2020),

as the baseline model in this current research.

The paper by Debruyne et al. (2019) introduced a method that estimates the univariate

direction of maximal outlyingness. The authors found that it is possible to reformulate the

estimation of the direction of maximal outlyingness into the normed solution of a least squares

regression problem. The authors suggest tackling that problem with SPLS (Chun & Keleş, 2010)

regression, preferably by using the SNIPLS (Hoffmann et al., 2016) algorithm. According to

the simulation study, SPADIMO has an average detection rate between 92.794% and 100% and

can find practically all contaminated variables. However, the average detection rate drops to

about 80% when the number of observations is smaller than the number of variables. SPADIMO

obtained a swamping rate, which is the rate where the estimated regression coefficients are based

towards zero when the true coefficients are non-zero, between 0.286% and 5.019%. However, for

swamped cases, SPADIMO typically loses performance after the first variable has been screened.

By implementing a LASSO or Elastic Net regression instead of the SNIPLS regression, we expect

to obtain a model which minimizes the swamping rate.

The paper by Hoffman et al. (2016) introduced a sparse non-linear iterative partial least

squares algorithm, which is a sparse regression method that searches for a sparse set of variables

that are essential for forecasting the outcome in cases where the ratio of the number of predictors

to the number of observations is significantly greater. The authors of this paper found, that

instead of using numerical optimization to calculate SPLS, the SNIPLS algorithm is able to use

the exact partial least squares solutions. Another advantage found by the authors is, that for

the outlyingness problem, the algorithm needs only a single model component, such as a single

latent variable, in order to detect the variables which contribute to outlyingness.

The paper by Tibshirani (1996) first introduced the LASSO regression method, which is used

for estimation in linear models. Since the LASSO regression estimates some coefficients that

are exactly zero while also estimating a subset of the coefficients as non-zero, which makes the

LASSO regression by definition a sparse regression method. The authors found that the LASSO

regression method has the advantages of subset selection and the Ridge regression. Having the

stability of the Ridge regression and having the interpretability of subset selection. The authors

also found that the LASSO regression performed best when there was a small to moderate

number of moderate-sized effects, outperforming the ridge regression and subset selection. In
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the scenario with a large number of small effects the ridge regression performs the best, however,

the LASSO regression does perform well.

The paper by Zhou & Hastie (2005) introduced the Elastic Net regression method, which

uses regularization and variable selection. While also being a sparse regression method, the au-

thors found that the Elastic Net regression method regularly outperforms the LASSO regression

method. When the number of predictors is much larger than the number of observations the

Elastic Net regression method is especially preferred. The authors found that the Elastic Net

regression method obtains a sparse model with good predictive performance.

There currently does not exist any research regarding the optimal regression method to use

for estimating the vector regression in SPADIMO. Knowing which regression method is most

effective at estimating the vector regression would lead to a better predictive performance of

SPADIMO. Additionally, CRM discards not as much information in the data as casewise robust

estimators, which means that an improved CRM would be useful in fields of research where data

is scarce.

3 Methodology

In this section, SPADIMO and cellwise robust M regression are explained. Other sparse regres-

sion estimate methods used, such as SPLS, SNIPLS, LASSO and Elastic Net are also explained.

Also, we will explain different evaluation techniques used to assess the performance of the dif-

ferent regression methods discussed in this research. The codes of these methods can be found

on GitHub2.

3.1 SPADIMO

SPADIMO, as described in Debruyne et al. (2019), is an outlier detection algorithm that takes

as input a data matrix X = (x1, ...,xn)
T with dimension n x p, vector of case weights w are

initially obtained from MM regression estimator, index i ∈ {1, ..., n} of the observation on which

to apply SPADIMO, and grid of values L = [ℓ1, ℓ2] within [0, 1].

The weights wi are based on the squared robust Mahalanobis distance for every point x ∈
Rp are defined as follows:

m(x : µ̂µµr, Σ̂ΣΣr)
2 = (x− µ̂µµr)

T Σ̂ΣΣ
−1

r (x− µ̂µµr) (1)

where µ̂µµr and Σ̂ΣΣr denote robust estimates of location and scatter for X. The distance between

point x and the robust location is measured by the robust Mahalanobis distances. Under the

assumption of multivariate normality, the squared Mahalanobis distances are asymptotically χ2
p

distributed. Weights can then be obtained for each observation as follows:

wi =

1 m(x : µ̂µµr, Σ̂ΣΣr)
2 ≤ χ2

p,0.975

0 otherwise
(2)

The output of the SPADIMO algorithm is a sparse direction of maximal outlyingness a(η,xi)

2https://github.com/joepweterman/CRM-LASSO-ENET/tree/main
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for each η ∈ L and the corresponding subset of variable(s) contributing to outlyingness. A path

of sparse direction of maximal outlyingness a(η,xi) is defined by

a(η,xi) =
θ(η)

||θ(η)||
, with

θ(η) = argmin
βββ∈Rp

(
||yi

w −Xwβββ||2 + η

p∑
j=1

|βββj |

) (3)

where η is the optimal sparsity parameter for which the minimal number of parameters is

accepted, βββ the vector of the regression coefficients, yiw the ith basis vector in Rn and Xw =

(
√
w1(x1 − µ̂µµw)

T , ..., (
√
wn(xn − µ̂µµw)

T )T .

The first step of the SPADIMO algorithm is to standardize X to Z. This is done by first

subtracting a robust estimate for location and then dividing by a robust scale estimate. The

second step is to check the weight wi of the observation is equal to zero. If so then replace that

weight with a significantly small weight (e.g. 0.00001). The third step is to construct Zw =

(
√
w1z

T
1 , ...,

√
wnz

T
n )

T and yi
w. The fourth step is to set Z(η) = Zw to start the algorithm. The

fifth and last step is to decrease ℓ2 to ℓ1, then for each η ∈ L do:

Algorithm 1 SPADIMO algorithm

1: Estimate θθθ(η), which is the SPLS vector of regression coefficients regressing yi
w on Z(η) at

h = 1.

2: Calculate a(η,xi) =
θ(η)

||θ(η)|| .

3: Determine v = {j : θθθj(η) ̸= 0}, which is the subset of variables that contributes the most to

outlyingness.

4: Update Z(η) = Z(η)

{Zj |j∈v} , with Zj denoting the jth column of Z.

5: then compute r(z
(η)
i ;Z(η)), where z

(η)
i denotes the ith row of Z(η).

The stopping criteria of the algorithm is r(z
(η)
i ;Z(η))2 < χ2

α,q, where α is the required level

χ2 significance and q is the number of remaining columns of Z(η).

3.2 CRM

Cellwise robust M regression estimator was first introduced by Filzmoser et al. (2020). It is

the first estimator which provides a map of cellwise outliers, which is consistent with the linear

model. It also simultaneously provides a vector, consisting of regression coefficients, that is

robust against leverage points and vertical outliers.

In the sake of clear explanation, we split up CRM into two distinct algorithms. The first

algorithm (Algorithm 2) will be denoted as the iteratively re-weighted least squares algorithm

and the second as the imputation algorithm. We first define how the complete algorithm func-

tions. First, we apply a MM regression on the original observations in order to obtain the initial

estimator β̂. Then the iteratively re-weighted least squares algorithm is run, with the initial

estimator β̂ obtained from the MM regression. Then the iteratively re-weighted least squares

algorithm is run again, with the newly obtained imputed data XI and YI from the last step,

from which a new estimator β̂ is obtained and used. Then run the iteratively re-weighted least
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squares algorithm again with the weighted data and the least squared estimator obtained from

the previous step. The stopping criteria is satisfied when the mean absolute difference (MAD)

of the last two regression estimates is less than the predefined tolerance bound, until then it re-

peats the last step. A tolerance bound is a threshold or limit that is set to determine whether an

observation is considered an outlier or not. The iteratively re-weighted least squares algorithm

is defined as follows:

Algorithm 2 iteratively re-weighted least squares algorithm

1: The residuals are calculated based on the estimator β̂

ri = yi − xT
i β̂ for i ∈ {1, ..., n}.

2: Observations are detected as outliers if they satisfy
|ri|

cmedj |rj | > z0.95

where c = 1.4826 such that the mean absolute deviation is consistent.

3: Then for each outlying case the following steps will be taken:

* In order to obtain the outlying variables SPADIMO is applied.

* The values in the outlying variables will be imputed as is done in the imputation algorithm

(Algorithm 3) if not all variables have contributed to outlyingness.

* The new imputed matrix is denoted by X̂.

4: Update the residuals using the new imputed matrix

r̂i = yi − x̂iβ̂ for i ∈ {1, ..., n}.
5: Then use the Hampel weight function to calculate the case weights

wi = wH( |r̂i|
cmedj |r̂j |)

with again c = 1.4826.

6: The diagonal matrix with the case weights as the diagonal elements is defined as Ω =

Diag(
√
w1, ...,

√
wn).

Then update the imputed data as follows

XI = ΩX̂ and YI = Ωy.

The imputation algorithm is defined as follows:

Algorithm 3 imputation algorithm

1: The index of an outlier xi is defined as i.

2: The set of cellwise outliers detected in xi is defined as C.

3: Then detect xk1 and xk2 , which are the two nearest neighbors of outlier xi in the subspace

{1, ..., p} \ C. The neighbors also need to have wj = 1 for observation xj .

4: Then the outlying cells need to be imputed x̂iq = (xk1q + xk2q)/2 with q ∈ C.

3.3 Regression Methods

In the following section, all the relevant regression methods used in this research are discussed.

The regression methods are Sparse Partial Least Squares (SPLS), Sparse Non-linear Iterative

Partial Least Squares (SNIPLS), LASSO and Elastic Net.

7



3.3.1 SPLS

SPLS is used in situations where there are a large number of predictors and potential collinearity

among them. The main goal of SPLS regression is to identify a subset of predictors that are

most relevant to the response variable while simultaneously minimizing the number of predictors

used in the model.

SPLS, as defined in Chun & Keleş (2010), operates under the assumption that the response

matrix and predictor matrix have a basic latent decomposition. The response matrix is defined

as Y = TQT + F where Y ∈ Rn×q and predictor matrix as X = TP T +E where X ∈ Rn×p. P

and Q are matrices of coefficients (loadings), E and F are matrices of random error terms, and

K are the linear combination scores which are generated by matrix T . Then we solve subsequent

optimization problems in order to find the columns of W = (w1, ..., wk). Sparsity can then be

obtained from the component matrix T = XW . The following formula is used to determine the

kth direction vector wk for univariate Y :

wk = argmax
w

{corr2(Y,Xw)var(Xw)} subject to wTw = 1, wTΣXXwj = 0 (4)

for j = 1, ..., k − 1, where ΣXX is the covariance of X.

3.3.2 SNIPLS

SNIPLS is an algorithm that can be used to solve the SPLS regressions. SNIPLS (Hoffmann

et al., 2016) seeks to find a sparse set of variables that are most important for predicting the

response in scenarios where the number of predictors is significantly higher than the number of

observations.

We use the same notation as used by Hoffman et al. (2016). Define X as a column-wise

centered matrix and y as its centered response. We define the matrix E1 = X, and then for

h = 1, ...,H we calculate the weighting vector as follows:

vh = (|zh| − ηmaxi|zih|)⊙ I(|zh| − ηmaxi|zih| > 0)⊙ sgn(zh) (5)

where zh =
ET

h y

||ET
h y|| and the weighting factors are penalized by η, which is a fraction of its largest

element. ⊙ is the Hadamard (or element-wise) matrix product. The next deflated matrix Eh

is obtained by Eh+1 = Eh − tht
T
hEh

||th||2
where th = Ehvh. The weighting vectors of these deflated

matrices construct the columns of V . Then W = V (V TXTXV )−1 define the direction vectors

for the transformation of X and T = XW the scores.

3.3.3 LASSO

LASSO (Tibshirani, 1996) is a sparse regression method used for regularization and variable

selection. It is especially useful in high-dimensional datasets, specifically when the number of

predictors is lower than the number of observations. The LASSO regression adds a penalty

term to the ordinary least squares objective function. The penalty term is defined as the sum

of absolute values of the regression coefficients multiplied by λ, which is a tuning parameter.

Define xi = (xi1, ..., xip)
T as the predictor variables and yi as the response variable, where
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i = 1, ..., N . Denote β̂ as the LASSO estimate and define β̂ = (β̂1, ..., β̂p)
T . Then the LASSO

estimates are calculated as follows:

β̂ = argmin{
N∑
i=1

(yi −
∑
j

βjxij)
2} subject to

∑
j

|βj | ≤ λ. (6)

Here, we assume that xij is standardized and satisfies the following constraints; Σixij/N = 0

and Σix
2
ij/N = 1. We also assume that the tuning parameter is λ ≤ 0, which regulates the

amount of shrinkage in the regression.

3.3.4 Elastic Net

Elastic Net (Zou & Hastie, 2005) is a combination of the LASSO regression and Ridge regression

method (McDonald, 2009). It is a combination of L1 regularization (LASSO) and L2 regulariza-

tion (Ridge), which results in a balance between feature selection and coefficient shrinkage. Just

like LASSO, it is useful in high-dimensional datasets. However, it overcomes the limitations of

LASSO in situations with high multicollinearity among the predictors.

Denote the given data by (y,X), the penalty parameter by (λ1, λ2) and the augmented data

by (y∗,X∗). We use the same notation as in (Zou & Hastie, 2005). A LASSO-type problem is

solved by the naive Elastic Net as followed:

β̂∗ = argmin
β∗

|y∗ −X∗β∗|+ λ1√
(1 + λ2)

|β∗|1 (7)

Then, using the fact that β̂(elastic net) =
√
1 + λ2β̂

∗ and that β̂(naive elastic net) = (1/
√
1 + λ2)β̂

∗

then it holds that β̂(elastic net) = (1 + λ2)β̂(naive elastic net).

Résumé Regression Methods

In the two alternative CRMmethods introduced in this paper, the SNIPLS algorithm in SPADIMO

is replaced by a LASSO regression and an Elastic Net regression. We used the R-package ”crm-

Reg” 3 as the basis for the code. However, some changes to specific functions were required. The

files that needed new versions were the crm.R, spadimo.R, predict.crm.R. In the SPADIMO.R

file the main thing that needed to be changed was the spadimo.exs function, which was the initial

estimation of the vector regression in SPADIMO, which is originally a SNIPLS regression. In our

code we replaced the SNIPLS regression with a LASSO and Elastic Net regression, expecting

that it would improve the initial estimation of the vector regression and thus the performance

of the CRM model. In order to evaluate the two alternative CRM models different evaluation

methods were used, which will be discussed in the next section.

3.4 Evaluation Methods

Three different evaluation methods are used to assess the relative performance of the different

methods. The evaluation methods are the Mean Squared Error of Prediction (MSEP), the Mean

Absolute Error (MAE) and the Root Mean Squared Error of Imputation (RMSEI).

3https://cran.r-project.org/web/packages/crmReg/index.html
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3.4.1 MSEP

MSEP evaluates the performance of a predictive model, it does so by quantifying the average

squared difference between the predicted values and the true values of the dependent variable.

Which is useful for assessing the predictive performance of a regression. The MSEP of a model

is defined by Filzmoser et al. (2020) as followed:

MSEP =
1

nclean

∑
i∈I

(ŷi − yi)
2 (8)

where nclean is the number of uncontaminated cases and I contains the indices of the uncon-

taminated cases.

3.4.2 MAE

The MAE is used to evaluate bias for the individual regression coefficients. MAE can also be

used to assess the robustness to outliers of the regression method. The MAE is defined by

Filzmoser et al. (2020) as followed:

MAE =
1

p

p∑
j=1

|β̂j − βj | (9)

where p is the number of variables, β̂ is the model predicted β.

3.4.3 RMSEI

The RMSEI is used to measure the average difference between the true values and the imputed

values of the dataset. CRM generates an imputed matrix of the contaminated matrix Xc, which

we denote by Ximp. The RMSEI reports the performance of each imputed matrix Ximp and is

defined by Filzmoser et al. (2020) as follows:

RMSEI(Ximp,X) =

√√√√ 1

np

n∑
i=1

p∑
j=1

(ximp
ij − xij)2 (10)

where n is the number of cases generated and p is the number of variables.

4 Simulation Study

In this simulation study, the performance of CRM (Filzmoser et al., 2020), applied to the robust

coefficient estimator of an MM regression (Maronna, Martin, Yohai & Salibián-Barrera, 2019)

is compared to two alternative versions of CRM. The version where the SNIPLS regression is

replaced with a LASSO regression will be referred to as CRM-LASSO, and the version where

SNIPLS is replaced by Elastic Net will be referred to as CRM-ElasticNet. The simulation

study will establish which version of CRM is most efficient under different levels and types of

contamination. The simulation study performed is similar to the simulation study performed by

Filzmoser et al. (2020). The upcoming sections will discuss the simulation setting, the method

of adding contamination and the regression method setting.
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4.1 Simulation Setting

In this simulation study, we use a p-dimensional multivariate normal distribution to generate

the data. The distribution has µ = (0, ..., 0)T and covariance matrix Σ, that is structured such

that Σi,i = 1 for i = 1, ..., p, Σj+1,j = Σj,j+1 = 0.5 for j = 1, ..., p− 1 and Σ is zero everywhere

else. The number of observations generated is equal to 400, so n = 400, and the number of

variables generated is equal to 50, so p = 50. Then, we obtain the data matrix X ∈ Rnxp.

The response variable for the uncontaminated data is generated as follows:

y = 1nβ0 +Xβ + ϵ (11)

where the intercept is set to 10 and β is defined as a vector with length p. The random values

of β are obtained from a standard normal distribution that has been normalized to length 10.

We define the error term ϵ as a length n vector of random values from a normal distribution

with a mean of 0 and a standard deviation of 0.5. The clean data is represented by (y,X) and

the regression coefficients are represented by (β0,β).

4.2 Adding Contamination

In order to establish which version of CRM is most efficient under different levels of contamina-

tion, we need to define the method of adding contamination. The contaminated matrix will be

denoted by Xc. The casewise outliers are generated by randomly selecting a fraction r = 5%

of the observations in X. So, in this study r × n = 20 rows of X will be casewise contamin-

ated. The fraction of contamination is mainly fixed, however, later the different magnitudes of

contamination will be varied. Denote Ic ⊂ {1, ..., n} as the random subset of 20 selected case

indices. The cellwise outliers are generated by randomly selecting ř = 10% for each case i ∈ Ic

of the predictor variables. In this study, ř × p = 5 cells will be contaminated, so there will be

5 cellwise outliers. Let Jc
i ⊂ {1, ..., p} denote the subset of 5 selected variable indices for each

i ∈ Ic. The effect of varying percentages of ř will also be investigated, in order to investigate

the capabilities of the models at handling different levels of cellwise outliers.

The contaminated matrix Xc is defined as follows:

xcij = x̄j + ksj + e = x̄j + k

√√√√ 1

n− 1

n∑
l=1

(xlj − x̄j)2 + e (12)

for all i ∈ Ic and j ⊂ Jc
i . Where x̄j is the mean value of variable j, k is the level of casewise

contamination, sj is the standard deviation of variable j, and e a random variable of the standard

normal distribution. The contaminated data is represented by (y,Xc). We will repeat the

simulation study for different levels of k later in the paper.

4.3 Regression Methods Setting

The CRM, CRM-LASSO and CRM-ElasticNet are fitted to the contaminated data (y,Xc).

For all the CRM regression estimations the same parameter settings as (Filzmoser et al., 2020)

are used. The relative tolerance of converging the regression coefficients is set to 0.01 and the
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outlyingness factor used for SPADIMO is set to 1.5. The maximal number of simulations is also

set to 100. In our code we made use of the package ’glmnet’ 4, for the LASSO regression we

use the standard settings used in the package. For the Elastic Net regression, we also use the

standard settings, except for the tuning parameter α which is set equal to 0.5.

5 Results

In this section, the results of the simulation study will be discussed according to the previously

defined evaluation methods. We performed four different simulation studies and one real-world

example, the results of each study will be discussed in the corresponding subsection.

5.1 Simulation Results Fixed Parameters

In this simulation study, all the parameters are fixed, in order to test how to models perform

in a fixed environment and to see if we obtain the same results as Filzmoser et al. (2020). We

assume k, denoting the magnitude of outlyingness, to be equal to 6, the percentage of casewise

contamination to be equal to 5% and the percentage of cellwise contamination to be equal to

10%. Each result is the reported average of 100 simulation instances. In Figs. 1-2, boxplots are

used to display the results. At the bottom of the figures, which displays the average outcomes

for each approach, the best result is printed in bold.

Figure 1: Boxplot of the MSEP (left) and MAE (right) for CRM, CRM-LASSO and CRM-
ElasticNet

Fig. 1 shows that all three methods have a similar MSEP, meaning that all three methods

have a similar predictive performance. Please note that both CRM-LASSO and CRM-ElasticNet

slightly outperform the regular CRM according to MSEP. From Fig. 1, we can derive the bias of

the regression coefficients in the presence of cellwise outliers of the different methods. A lower

MAE means that the regression method is less biased towards the regression coefficients. Fig. 1

shows that CRM-ElasticNet is the least biased, however, the difference in the values is minimal.

4https://cran.r-project.org/web/packages/glmnet/index.html
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Figure 2: Boxplot of the RMSEI for CRM, CRM-LASSO and CRM-ElasticNet.

From Fig. 2, we can derive the performance of the different CRM regressions at imputing the

true values for cellwise outliers. Fig. 2 shows that CRM significantly outperforms CRM-LASSO

and CRM-ElasticNet. Thus, it can be concluded that CRM is significantly better at imputing

the true values for the cellwise outliers than the other models. Please note that the CRM-LASSO

and CRM-ElasticNet have the exact same RMSEI, this is probably caused by the fact that the

two models are so similar in nature. Both models have similar predictive performance and bias,

however, CRM performs significantly better at imputation. Hence, we conclude that the CRM,

in the fixed parameter setting, is preferred over the CRM-LASSO and CRM-ElasticNet.

What should be noted is that we do not obtain the same values for the CRM regression as

Filzmoser et al. (2020). Although the difference in the obtained values is likely insignificant, it

should be noted that the difference is likely due to a different seed and or a different processor.

All models are computationally efficient, however, CRM-LASSO and CRM-ElasticNet do take

significantly less time to execute. The execution times for the CRM algorithm were on average

9 seconds, for the CRM-LASSO algorithm it took on average of 5 seconds and for the CRM-

ElasticNet it took on average of 5.1 seconds. The execution times were measured on an Intel

core i7 10th generation with 1.30 GHz and 10.2 GB RAM.

5.2 Simulation Results varying Magnitude of Outlyingness

In the previously presented figures, the magnitude of outlyingness was fixed. Now, we will vary

the parameter k, which controls the magnitude of outlyingness. The goal of this simulation study

is to find the optimal sparse regression for SPADIMO under varying magnitudes of outlyingness.

We report the simulation result for k ∈ {0, 1, 2, ..., 8} for the MSEP, MAE and RMSEI. Figs.

3-4 illustrate the average results across 10 simulations.
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Figure 3: Average MSEP (left) and average MAE (right) for CRM, CRM-LASSO and CRM-
ElasticNet for varying levels of magnitude of outlyingness, denoted by parameter k.

Fig. 3 shows that the MSEP indicates that for less severe contamination, where k is less

than 5, CRM-LASSO performs the most consistent. However, when the contamination gets

more severe it can be seen that the three CRM versions perform similarly, with CRM-ElasticNet

slightly outperforming the other models. Fig. 3 shows that in the case of k = 1, 4, 6, 7 CRM-

ElasticNet has the least biased parameter estimation. We can thus conclude from the MAE that

CRM-ElasticNet outperforms the other methods regarding parameter estimation.

Figure 4: Average RMSEI for CRM, CRM-LASSO and CRM-ElasticNet for varying levels of
magnitude of outlyingness, denoted by the parameter k.

Fig. 4 indicates that for CRM-LASSO and CRM-ElasticNet an increase in k will lead

to an increase in the RMSEI, this results in a depreciating performance of the regressions at

imputing the true values for cellwise outliers, this might be caused by the overfit effect. CRM
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is roughly the same for the different values of k. The average RMSEI with a varying magnitude

of contamination confirms again that CRM is clearly better at imputing the true values for the

cellwise outliers. Also, the capabilities of CRM-LASSO and CRM-ElasticNet are identical at

predicting or imputing missing values in a dataset. This could again be due to the fact that the

regressions are closely related.

We can conclude that CRM is the preferred model under varying magnitudes of outlyingness.

This is mainly, again, because of the difference in performance of imputation. CRM significantly

outperforms the other models at imputation, and the difference in predictive performance and

bias is not significant enough to prefer another model.

5.3 Simulation Results varying Percentage of Casewise Contamination

In this section, we vary the percentage of casewise contamination. The goal of this simulation

study is to reveal the breakdown behaviour of the models and to investigate if one of the models

is better equipped to handle a higher percentage of casewise contamination. Figs. 5-6 show

the evaluation methods under different percentages of casewise contamination. Starting from

no contamination, up to 50%.

Figure 5: Average MSEP (left) and average MAE (right) for CRM, CRM-LASSO and CRM-
ElasticNet for different fractions of casewise contamination.

From Fig. 5 we see that from the MSEP we can conclude that all models start to break

down around the 40% contamination mark, with CRM-ElasticNet breaking down the slowest.

Until the 40% casewise contamination, the models have an identical average MSEP, after the

40% casewise contamination CRM-LASSO average MSEP increases the fastest. Fig. 5 indicates

that when the casewise contamination is higher the CRM-LASSO and CRM-ElasticNet are

more biased than the CRM. CRM-ElasticNet is the least biased between 25% and 40% casewise

contamination. Overall, CRM has the lowest average MAE and is thus the least biased.
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Figure 6: Average RMSEI for CRM, CRM-LASSO and CRM-ElasticNet for different fractions
of contaminations.

Additionally, Fig. 6 shows that CRM has the best accuracy of imputation under varying

percentages of casewise outliers. We conclude that CRM is still the preferred model under

varying percentages of casewise contamination. Since the three models perform similarly in

MSEP en MAE, however, CRM has a lower RMSEI for all percentages of casewise contamination.

Suggesting that the predictive performance and regression biases of the models are similar, but

CRM being clearly better at imputation.

5.4 Simulation Results varying Percentage of Cellwise Contamination

In this section, we vary the percentage of cellwise contamination. The goal of this simulation

study is to reveal if one of the models is better equipped to handle a higher percentage of cellwise

contamination. Figs. 7-8 show the evaluation methods under different percentages of cellwise

contamination. Starting from 5% cellwise contamination, up to 50%. This illustrates how the

different models are able to handle extreme or atypical observations. Figs. 7-8 illustrate the

average results across 10 simulations.
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Figure 7: Average MSEP (left) and average MAE (right) for CRM, CRM-LASSO and CRM-
ElasticNet for different percentages of cellwise outliers.

Fig. 7 shows the MSEP which indicates how the accuracy and predictive performance of the

different models vary under different percentages of cellwise outliers. CRM-LASSO generally

outperforms CRM, except for around 35% of cellwise contamination then the CRM performs

the best. Fig. 7 shows the MAE which gives us the bias in the regression coefficients of the

different models under varying percentages of cellwise outliers. CRM-ElasticNet is generally the

least biased, however, CRM is preferred for around the 10% and 30% of cellwise contamination.

What should be noted is that the CRM-ElasticNet varies the most in the values of the average

MAE.

Figure 8: Average RMSEI for CRM, CRM-LASSO and CRM-ElasticNet for percentages of
cellwise outliers.

Fig. 8 shows the accuracy of the imputation of the different models under varying percentages
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of cellwise outliers. CRM clearly outperforms the other models, which would suggest that CRM

is the best performing model regarding imputation. We can conclude that the CRM is the best

equipped model to handle different percentages of cellwise contamination. In MSEP en MAE,

the three models perform similarly, however, CRM has a lower RMSEI for all percentages of

casewise contamination. Suggesting that the predictive performance and regression biases of the

models are similar, but CRM is clearly better at imputation. Meaning that the CRM model is

preferred.

5.5 Results Real-World Example

Figure 9: Boxplot of 10% trimmed RMSEP values for the CRM, CRM-LASSO and CRM-
ElasticNet.

Last, a 10-fold cross-validation is performed on the real-world data, using CRM, CRM-LASSO

and CRM-ElasticNet. The data used in the real-world example is obtained from the Swiss

nutrition database (Nährwerttabele, Infanger E. Schweizer , 2015). The original data set contains

965 food products, however, since some of the food products contain missing values we only

consider the first 193 food products which are complete. We consider the following variables;

energy kcal, protein, water, carbohydrates, sugars, and cholesterol is the response variable. A

10-fold cross-validation allows for a more robust evaluation of model performance. Additionally,

it helps understand the bias-variance tradeoff and provides a better estimate of generalization

performance. Fig. 9 shows that CRM-LASSO outperforms CRM and CRM-ElasticNet. This

could be because it is a robust measure that removes the influence of extreme values. Basically

removing one of the weaker points of CRM-LASSO, which could be the reason why CRM-LASSO

outperforms CRM.
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6 Conclusion

The purpose of this research is to assess which regression method is most effective at estim-

ating the vector regression in SPADIMO used in cellwise robust M regressions under different

percentages and types of contamination. CRM-LASSO replaces the SNIPLS regression with

a LASSO regression in SPADIMO, which was then used in CRM. Similarly, CRM-ElasticNet

replaces the SNIPLS regression with an Elastic Net regression in SPADIMO, which was then

also used in CRM. Three main evaluation methods are used, namely MSEP, MAE and RMSEI.

The simulation study is performed in three different settings: one with fixed contamination, one

with varying magnitude of contamination, and one with varying levels of casewise outliers.

Taking all results previously presented into consideration it can be concluded that the three

models have a very similar predictive performance in all the different simulation settings and

that the models also have a similar regression bias. However, CRM significantly outperforms

the other models at imputation. All things equal, this means that CRM is preferred over CRM-

LASSO and CRM-ElasticNet in the different simulation settings tested. What should be noted

is that CRM-LASSO is preferred in the real-world example, however, this does not outweigh

the performance of CRM in the simulation studies. Thus we can conclude that CRM is the

most effective regression method, out of the methods we tested, and that SNIPLS, which is

used in CRM, is the best regression at estimating the vector regression in SPADIMO used in

cellwise robust M regressions under different percentages and sorts of contamination. Meaning

that CRM generally is preferred over CRM-LASSO and CRM-ElasticNet. Mainly because the

RMSEI of CRM is in all cases much more desirable, and the results which were desirable for the

other models are not significant enough to outperform the overall performance of CRM.

Some limitations of our research should be noted. Our code cannot handle every combination

of parameters and observations, the number of observations needs to be at least two times as

big as our number of parameters. This means that we could not test the situation where the

number of parameters is bigger than the number of observations, in which we would expect the

CRM-ElasticNet to outperform the other models. We would have also liked to perform more

extensive research on the real-world data, which would have allowed a more in-depth analysis

of which cellwise values the models would have identified. However, due to a time shortage, we

were not able to do so.

For future research, one could look to implement other sparse regression methods in the

SPADIMO algorithm, such as the adaptive LASSO regression (Zou, 2006) or the sparse shooting

S regression (Bottmer, Croux & Wilms, 2022). Another idea for future research is to investigate

the effect of different weight functions used in SPADIMO. Currently, a Mahalanobis weight

function is used, however, the Hampel-Huber or Huber weight functions (Huber, 1981) could

also be implemented. This could be interesting because there is no current research done in this

field.
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A Code Overview

All R scripts below are the newly introduced scripts which are not already in the ’crmReg’ R

package. The first five scripts are dedicated to the replication of the results from this paper.

The next six scripts are dedicated to the contribution of this research.

CRM simulations part1.R, includes the simulation study with the fixed parameters. It

then calculates the average Mean Squared Error of Prediction (MSEP), Mean Absolute Error

(MAE), and Rooted Mean Squared Error of Imputation (RMSEI) over a hundred simulations

for the CRM, CRM-LASSO and CRM-ElasticNet.

CRM simulations part2.R, includes the simulation study where the level of contamina-

tion is varied. So the MSEP, MAE and RMSEI are calculated under a varying parameter k, and

are then reported for the CRM, CRM-LASSO and CRM-ElasticNet.

CRM simulations part3.R, includes the simulation study in which the percentage of case-

wise contamination is varied. So, the MSEP, MAE and RMSEI are again calculated for different

percentages of casewise contamination and are then reported for the CRM, CRM-LASSO and

CRM-ElasticNet.

CRM simulations part4.R, includes the simulation study in which the percentage of cell-

wise contamination is varied. So, again, the MSEP, MAE and RMSEI are calculated for different

percentages of cellwise contamination and are then reported for the CRM, CRM-LASSO and

CRM-ElasticNet.

Nutrients.R, includes an R script in which a 10-fold cross-validation is performed, with as

data the Swiss nutrients data.

crm lasso.R, is an altered version of crm.R file, where instead of the normal spadimo.R is

used the spadimo lasso.R is used.

crm enet.R, is an altered version of crm.R file, where instead of the normal spadimo.R is

used the spadimo enet.R is used.

spadimo lasso.R, is an altered version of spadimo.R where the function spadimo.exs is

replaced by a new function, which uses a LASSO regression instead of a SNIPLS.

spadimo enet.R, is an altered version of spadimo.R where the function spadimo.exs is

replaced by a new function, which uses a Elastic Net regression instead of a SNIPLS.

predict.crm lasso.R, is an altered version of predict.crm.R and includes the predict func-

tion for the fitted CRM-LASSO model.

predict.crm enet.R, is an altered version of predict.crm.R and includes the predict func-

tion for the fitted CRM-ElasticNet model.
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B Appendix

Figure 10: Average MSEP for each of the regression methods under different parameter obser-
vations ratios.

Figure 11: Average MAE for each of the regression methods under different parameter observa-
tions ratios.
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Figure 12: Average RMSEI for each of the regression methods under different parameter obser-
vations ratios.
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