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Abstract

This research examines whether random forests can predict optimal portfolio weights as

functions of macroeconomic variables for a gold-and-stock portfolio. Three portfolios are

created, one where the optimal weights for the gold index are modelled independently and

a second portfolio for the stock index. The third portfolio models the assets together in

terms of utility, where this is modelled as the portfolio variance. The weights are uniquely

reconstructed from the forecasted utility to form the third utility. Based on relative variable

importance and Accumulated Local Effect (ALE) plots, it becomes clear that the index

level of narrow money (M1) and the annual growth in housing prices are most important in

determining the stock and gold weights. Narrow money and broad money (M3) are the most

important features of the utility model. The portfolios are compared to three benchmark

portfolios, a Markowitz portfolio, a minimum variance portfolio, and a portfolio based on the

optimization process without the use of random forests. The stock and gold index models

offer slightly higher Sharpe ratios than the two simple benchmark portfolios, but they do

not outperform these significantly. The portfolio based on the reconstructed weights from

utility performs similarly to the benchmark portfolios.

The views stated in this thesis are those of the author and not necessarily those of the supervisor,

second assessor, Erasmus School of Economics, or Erasmus University Rotterdam.
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1 Introduction

It has been an ongoing practice to find optimal investment strategies over time. One of many

ways this can be done is by continuously rebalancing portfolio weights. A well-balanced portfolio

includes assets that deliver high returns while preventing significant losses. This could be a

portfolio with a stock and a bond in its simplest form, yet the relationship between these

assets is far from simple. The asset categories are complementary and substitutes (Boucher &

Tokpavi, 2019), where the sign of the correlation depends heavily on market conditions. In times

of economic growth or volatility shocks, the correlation is negative, while positive with inflation

shocks (Ilmanen, 2003). An extreme example of this correlation is the flight to safety in times

of economic downturn with a significant decline (rise) in stock (bond) prices. Similar patterns

are observed for gold, often considered a safe-haven asset (Ang, 2014). This implies that the

short- and long-run relationships between gold and stock indices can vary in different market

states (Chirwa & Odhiambo, 2020), such that optimal portfolio weights for these assets also

differ over time. Furthermore, Pellegrino (2021) describes how financial returns are linked to

macroeconomic fundamentals. Ultimately, the portfolio weights with a maximum Sharpe ratio

can be described as a function of macroeconomic variables.

Model estimation and statistical inference for this problem are challenging for various reas-

ons. First, macroeconomic variables are endogenous and highly correlated with one another. It

is trivial that without the proper adjustments, biases and multicollinearity occur. While well-

studied adjustments such as panel IV estimation can be a solution, IV estimators are complicated

to construct, and biases remain hard to avoid. Second, an increasingly large number of factors

can be used as explanatory characteristics, causing high dimensionality. Third, due to the high

correlation between economic variables, the interaction effects of the explanatory characterist-

ics should be adequately modelled, but the relations usually have non-linearities (Pellegrino,

2021). These difficulties could result in spurious overfitting and model misspecification when

conventional cross-sectional regression is used.

A natural solution could be implementing Markov-switching models, which capture the joint

distribution of asset returns in various market states. They allow for different relationships

between the financial returns in bear and bull markets, are more diversified, and provide a

better risk-return relationship compared to traditional mean-variance portfolios (Oliveira &

Valls Pereira, 2018). Furthermore, Ang and Bekaert (2004) show how a regime-switching model

can be used to ensure dynamic portfolio allocation. They find that switching between different

financial assets can add substantial value. However, Markov-switching models have mixed out-

of-sample forecasting performances (Guidolin, 2011). And most importantly, regime-switching

models only offer solutions as a discrete response variable. Yet, this research paper’s optimal

portfolio weights are a continuous response variable.

Regression trees can offer an alternative to Markov-switching models and are beneficial for

various reasons. First and most importantly, they allow optimal portfolio weights to be continu-

ous response variables. Furthermore, it is a widely-applied machine learning technique with an

intuitive economic interpretation, using recursive binary splitting on given criteria (Loh, 2011).

In their research, Samitas and Armenatzoglou (2014) conclude that the regression tree model

outperforms the Markov regime-switching model. Regression trees are a suitable solution for the

2



problem since they can model the complex and non-linear relationships between financial returns

and macroeconomic variables (Carrizosa, Molero-Ŕıo & Morales, 2021). The general problem is

that regression trees have a high chance of overfitting the data in the training sample and tend to

provide an unstable estimation, reducing forecast accuracy. Random forests offer improvements

upon these problems while having the same benefits as regression trees do (Breiman, 2001).

This paper takes inspiration from Bryzgalova, Pelger and Zhu (2021), who implement the idea

of regression trees to build cross-sections of stock returns. Similarly, this paper implements the

idea of regression trees to model optimal portfolio weights. More specifically, this research aims

to use random forests of macroeconomic variables to find how the save-haven asset gold reacts to

various market conditions in relation to a stock index, leading to the following research question:

To what extent can random forests predict the optimal portfolio weights as a function

of macroeconomic variables for a portfolio with a gold index and a stock index?

The relevance of this paper is twofold. First, it contributes to the existing academic literature

by extending the knowledge of the relationships between financial asset returns, optimal portfo-

lio weights, and macroeconomic factors. Furthermore, it assesses random forests’ applicability,

interpretability, and predictive performance for these relationships. While there is literature on

the effects of market conditions (e.g., business cycles) on asset returns and stock volatility, no ex-

isting literature currently takes the regression tree approach to predict optimal portfolio weights

in relation to macroeconomic factors. Second, this paper has social relevance. By defining the

portfolio weights as a function of market conditions and assessing the predictive performance of

regression trees with respect to these portfolios, trading strategies can be developed or improved

for practitioners worldwide to keep portfolio allocations optimal.

This research employs two datasets. The first set contains the monthly prices for the S&P

GSCI Gold Index and the S&P 500 Stock Index from January 1980 to December 2022, yielding

43 years of observations. Monthly returns are calculated for both indices and are added to the

dataset. The second set contains 42 macroeconomic variables from December 1989 to November

2022, yielding 32 years of observations. The first ten years of the portfolio data are used as

an estimation sample for expected returns and the sample covariance matrix. The next twenty

years of observations from both datasets are used as the training sample for the random forests.

The last thirteen years of both datasets form the test sample that assesses the performance of

the portfolios created from the random forests.

The monthly returns for the gold and stock indices are used to calculate optimal portfolio

weights at every time t in the sample. Optimal weights are defined as weights that maximize

the Sharpe ratio net of transaction costs. Following Kazak, Li, Nolte and Nolte (2022), a

utility function is constructed, which directly follows from the maximization of the Sharpe ratio.

Assuming that the investor is infinitely risk averse translates the optimization problem into the

minimization of the sample covariance matrix at every time t conditional on information known

at time t-1. Then the expected utility obtained from holding a portfolio with weights at time t

is equivalent to the portfolio variance. After obtaining optimal portfolio weights, two random

forests with macroeconomic features are trained on the optimal portfolio weights in the training

sample – one for the gold weights and one for the stock weights. In addition, a random forest
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with macroeconomic features is trained on the expected utility obtained from the optimization

problem.

These random forests create three portfolios for the stock-and-gold index over the test sample.

The macro features’ variable importance is measured for each random forest, and their Accu-

mulated Local Effects (ALE) are plotted and assessed. This allows for interpreting the various

macro features’ effects on the portfolio weights. Moreover, the out-of-sample performances of

the three portfolios are compared to three benchmark portfolios. Two are relatively simple

portfolios, a Markowitz (1952) portfolio – an equally weighted portfolio – and a minimum vari-

ance portfolio estimated once over the training sample without using random forests and kept

constant over the test sample. The third portfolio is created from the optimal weights created

without using a random forest. The differences in Sharpe ratios for the portfolios are statistically

compared using the robust Sharpe ratio test from Ledoit and Wolf (2008).

Generally, the level of narrow money available in the economy and the annual growth in hous-

ing prices is most important in determining the optimal portfolio weights for the independently

modelled stock and gold weights. For utility, narrow and broad money are the most important

macro features of the model. Narrow money has a step-wise positive effect on the gold weights

and a step-wise negative effect on the stock weights. A steep decline in gold weights occurs when

the annual growth of housing prices is larger than 5%. This is combined with a steep increase in

the stock weights when the annual growth of housing prices is larger than 5%. The ALE plots

also show that portfolio variance is minimal when the indices for narrow (M1) and broad money

(M3) are around 35.

The out-of-sample Sharpe ratios of the random forests for the gold and stock weights are

slightly larger than the simple benchmark portfolios. However, the difference is minimal, and

the portfolios do not significantly outperform the benchmark portfolios according to the test of

Ledoit and Wolf (2008). The portfolio based on the reconstructed weights from the forecasted

utility performs similarly to the benchmark portfolios. Unfortunately, the improvement that

random forests offer in other situations does not apply here, and the extra computational steps

do not achieve better out-of-sample results.

The remainder of this paper discusses the relevant literature on portfolio optimization and

regression trees in Section 2. Section 3 outlines the data, followed by the methodology in Section

4. Results are presented in Section 5, and Section 6 provides a discussion and conclusion of the

research.

2 Literature Review

One of the main practices in financial markets is the optimal allocation of assets, where an

investor wants to ensure more attractive returns while limiting her risks. Markowitz (1952) was

the first to state that agents should minimize risks by diversifying their investments by creating

portfolios. In his paper, Markowitz (1952) developed a mean-variance model that describes

the risk-return trade-off problem, which forms the basis of Modern Portfolio Theory. Hence,

portfolio allocation depends on agents’ preferences regarding expected risks and returns (Oliveira

& Valls Pereira, 2018). Optimal portfolios are said to be on the efficient frontier: the set of risk

and return combinations that establish minimum risk allocations for a given average portfolio
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return (Markowitz, 1952). Furthermore, all portfolios on the efficient frontier have optimal

Sharpe ratios (Sharpe, 1964). In other words, an investor aims to maximize the expected utility

that her portfolio yields at time t (Sharpe, 2007). This research assumes this is always done

out-of-sample. That is, the investor rebalances her portfolio at time t - 1 conditional on the

information available then. Defining utility as a function for portfolio returns penalized by

portfolio volatility is equivalent to optimizing the Sharpe ratio over the portfolio (Kazak et al.,

2022).

Economic theory suggests that stock prices should reflect expectations about future corporate

performance while corporate profits generally reflect the level of economic activities (Neifar et al.,

2021). This implies that financial asset prices vary under different market conditions. Empirical

applications show that the state of the economy can significantly impact the performance of

different financial assets. For example, riskier assets generally perform poorly and are much

more volatile during periods of low economic growth. In the past, stocks have shown to be

more volatile in times of economic downturn. At the same time, the gold price has increased

substantially with only the smallest increase in the likelihood of disaster (Ang, 2014). In line

with these observations, the investor can minimize her risks by investing more in gold during

economic downturn, i.e. the portfolio weight for gold should increase. Therefore, based on

theories from Ang (2014) and empirical applications, there is reason to believe that optimal

portfolio weights can be described as a function of macroeconomic variables.

2.1 The behaviour of gold and stock prices with macroeconomic variables

In their letter for the Federal Reserve Bank of Chicago, Barsky, Epstein, Lafont-Mueller and

Yoo (2021) conclude that gold prices reflect protection against bad economic times and that

pessimism about future economic activity affects gold prices. Moreover, Barsky et al. (2021)

find that long-term real interest rates negatively affect gold prices, and gold can be considered

an inflation hedge. Similar results follow from a recent article in Forbes, where Iuorio (2023)

discusses how gold performs with recession, inflation, and stagnation. First, during the past

recessions between 1973 and 2020, gold has outperformed the S&P500 six out of eight times by

37% on average. Second, in the period of hyperinflation between 1973 and 1979, gold gained a

35% annual return. During the 2021 inflation, gold started performing well, but its value dropped

by 20% later. According to Iuorio (2023), this was due to the Federal Reserve’s aggressive

policy to raise interest rates. Nevertheless, gold benefits from an overall increase in the money

supply (Iuorio, 2023). Finally, during stagflation in the mid to late 1970s, i.e. stagnant growth,

high inflation, and high unemployment, the Federal Reserve stimulus and fiscal intervention

caused investors to shy away from individual company stocks, where gold is often the alternative

beneficiary. According to Iuorio (2023), changes in the gold price are not necessarily caused by

market expectations and sentiment but more so by Federal Reserve policies. Gold prices react

negatively to an increase in the (long-term) interest rates but positively to an increase in money

(M1). This implies that a portfolio partly invested in gold is likely to react to changes in these

macroeconomic factors, and thus describing the optimal weights as a function of macro factors

is possible.

As Iuorio (2023) also discusses, individual company stocks tend to perform oppositely in
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the scenarios mentioned above. As equities are riskier, they also tend to attain higher returns,

especially when times are good (Ang, 2014). These patterns are observed in the data set dis-

cussed in the next section. Choudry, Hassan and Shabi (2015) provide a somewhat opposing

view, as they find that gold might not be a good safe haven asset during the financial crisis due

to the strong interdependence between gold and stock returns and stock market volatility. Yet,

Choudry et al. (2015) conclude that gold may be a hedge against stock returns and volatility in

more stable financial conditions. Al-Ameer, Hammad, Ismali and Hamdan (2018) confirm the

idea that there is a correlation between the gold and stock market that differs each period, in

size and sign. Based on this behaviour of the gold and stock prices under various market con-

ditions, there is reason to believe that a function of macro factors for the portfolio weights can

give interesting insights into portfolio performance when altering the weight of these two asset

classes. Oliveira and Valls Pereira (2018) discuss that optimal diversification choices using the

mean-variance framework assume risk and return parameters of the assets to be known. Yet, the

optimization is based on moment estimates with sampling errors that differ from actual risks

and returns. Furthermore, mean-variance portfolios themselves do not consider the different

states of the market. For example, the joint distribution of asset returns differs in bull and bear

markets. Therefore, the fact that risks and returns depend on the states of the market and that

the joint distribution of the returns is not independent and identically distributed (i.i.d.) should

be addressed when optimizing portfolio weights (Oliveira & Valls Pereira, 2018).

Following this line of arguments, a logical possibility would be using regime-switching models,

as Oliveira and Valls Pereira (2018) do. This captures the joint distribution of the portfolio

assets for each regime and the probability of switching from one regime to another. However, as

discussed in the previous section, Markov-switching regimes have significant disadvantages. The

return of a discrete response variable makes it difficult to apply these models to this research,

as portfolio weights are continuous variables. Moreover, they generally tend to be outperformed

by regression trees (Samitas & Armenatzoglou, 2014).

2.2 Regression trees and random forests

Regression trees are commonly used in machine learning and are decision trees for a continuous

dependent variable. Regression trees offer an alternative method to capture non-linear relations.

By recursively partitioning the data with a binary choice at every node, complex regression

models are simplified to a point where the data is tame enough to apply a simple regression

model. With that model, the value of the dependent variable can be estimated. The dependent

variable can be estimated as the sample mean of earlier predictions at a specific node. This is

why regression trees can fit almost any traditional model (Loh, 2014) and can thus be applied

to the problem at hand. The split decision in the tree is based on a threshold value. Common

practice is to use the minimum sum of squared errors as the criteria. While regression trees

can model complex interactions without assuming a model or distribution, they quickly tend

to overfit data in the training set, reducing forecasting accuracy. Furthermore, regression trees

can be unstable, as small data changes may lead to larger changes in the model (Rokach, 2016).

A solution would be to prune the regression trees, but these issues can better be tackled by

improving the regression tree through bagging or bootstrapping, e.g. with a random forest. A
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random forest consists of multiple trees, i.e. an ensemble of trees, in which their predictions are

combined into one final prediction. In the algorithm developed by Breiman (2001), B different

bootstrap samples are generated, where a separate tree is independently fitted for each sample.

The variables used to grow the tree in each sample are randomly chosen and thus vary across the

forest. With one regression tree, splits are done based on the best variable choice among the data.

In the random forest of Breiman (2001), splits are done based on the best variable choice among

a subset of predictors randomly chosen at that node. This is also called ”attribute bagging”.

In doing so, the random forest can significantly reduce a single regression tree’s variance. As

the random forest method forces an ensemble of different trees, the variance reduction is larger

compared to standard bagging.

Besides the computational benefits of trees and random forests, tree-based machine-learning

models are preferred over alternative machine-learning methods for portfolio allocation problems.

As Pinelis and Ruppert (2022) explain, tree-based models are non-metric because there are no

inherent assumptions of distributions in the data. Furthermore, decision trees are scale-invariant,

and the number of parameters that typically need to be optimized in a Random Forest is fewer

than in many other machine-learning models. Moreover, it is well-known that financial data and

especially expected returns are extremely noisy, reducing the out-of-sample performance of many

models. This is often due to changing relationships between predictors and the target variable

and potential shifts in the data distributions. To align this with the behaviour of gold and stock

prices, as Iuorio (2023) explains, the rise in gold prices could be explained by the inflation that

occurred in some recessions. In other recessions, gold prices quickly fell again due to the Federal

Reserve’s aggressive policy to raise interest rates. Sometimes, the increase in the money supply

(M1) was the cause for the high returns on gold. According to Pinelis and Ruppert (2022),

Random Forests can mitigate these complex and varying relationships between the splitting

variables and the response variable. Suppose one tree is grown to capture the relationship

between gold and inflation with the money supply. In that case, the tree may accurately predict

optimal weights for the gold index in some market environments but not in all. Other variables,

such as long-term interest rates or volatility, may correlate more with excess market returns in

specific periods. Since a Random Forest grows many trees with different variables, changes in

the data distributions or relationships may cause some trees to perform poorly. Still, the results

of the entire forest should remain mostly unchanged. Thus the forest helps to reduce noisy

data. Finally, random forests allow for easy interpretation, as it is relatively straightforward to

calculate variable importance and partial dependence for each feature (Breiman, 2001).

2.3 Transaction costs

An essential factor that must be considered when rebalancing the portfolio over time to maintain

optimal weights is that transaction costs are an essential part of the investment strategy. While

continuous rebalancing to maximize the Sharpe ratio at all times seems very promising, a penalty

needs to be introduced to account for the transaction cost of buying or selling (parts) of the

portfolio. Transaction costs can significantly impact performance (Detzel, Novy-Marx & Velikov,

2023) and can be accounted for by only rebalancing the portfolio if the new optimal portfolio

weights offer higher excess returns than the current portfolio weights plus a penalty for the
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transaction costs. Unfortunately, there is no real agreement in the literature on what a suitable

quantification of transaction costs, i.e. the penalty, should be. This paper uses the rule of

thumb as mentioned by De Nard, Ledoit and Wolf (2021) that the return loss (per month) due

to portfolio turnover is twice the amount of portfolio turnover times the chosen transaction cost.

Previous literature usually dealt with transaction costs of fifty basis points (bps) (DeMiguel,

Garlappi & Uppal, 2009). Nowadays, transaction costs are closer to five bps (De Nard et al.,

2021). This research assumes that transaction costs are five bps and thus ten bps of turnover,

equivalent to 0.1% of portfolio turnover. Portfolio turnover can be calculated as the sum of the

difference in weights between time t and t - 1. De Nard et al. (2021) also note that rebalancing

only monthly significantly diminishes the problem of transaction costs. Since this research is

restricted to data availability on macroeconomic variables, the portfolio weights can only be

rebalanced monthly, but transaction costs should still be accounted for.

3 Data

This research consists of two datasets. The first set contains financial data on the monthly

prices for the S&P GSCI Gold index and the S&P 500 stock index, which is retrieved

from Refinitv Datastream (2023) over the period January 1980 to December 2022, yielding

43 years of monthly observations. The second dataset contains macroeconomic data on 42

different macro factors obtained from Refinitiv Datastream (2023), OECD Database (2023),

the Chicago Board Options Exchange (2023), and Federal Reserve Economic data from the

Federal Reserve Bank of St. Louis (2023). The macroeconomic data is collected over the time

period from December 1989 to November 2022. The macroeconomic data is applied to the

portfolio weights out-of-sample with one lag, that is, weights determined for time t, are related

to the macroeconomic data at time t - 1. Throughout this research, the portfolio data is split into

an estimation sample of ten years – ranging from January 1980 to December 1989, yielding 119

observations; a training sample of 20 years – from January 1990 to December 2009, yielding 240

observations; and a test sample of 13 years – from January 2010 to December 2022, yielding 156

observations. The macroeconomic data is split two ways: a training sample of 20 years, yielding

240 observations, and a testing sample of 13 years, yielding 156 observations. The portfolio

data has no missing values, whereas a few occur in the macroeconomic data. This problem is

mitigated by setting the missing values to the average of the four neighbouring values.

3.1 Portfolio data

The S&P 500 Index summarizes the performances of the 500 largest individual company stocks

in the United States and is chosen as a proxy for the performance of stocks. It is assumed

that the index is affected by market conditions in a similar manner as stocks would. The S%P

GSCI Gold Index is a renowned index chosen such that both indices considered in this research

are from the same provider. This ensures pricing is done similarly for both indices, making

them comparable. Figure 1 shows the price levels of both indexes over the entire sample, where

interesting patterns in the gold and stock index prices can be seen. The grey bars in the graph

indicate recessions based on National Bureau of Economic Research (NBER) data. The first
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Figure 1. Monthly Price Level for the S&P GSCI Gold Index (in blue on the left axis) and the

S&P500 Index (in red on the right axis).

Note. Grey strokes in the background indicate months in which a recession occurred, based on the
NBER Recession Indicator (National Bureau of Economic Research, 2023). Yellow background strokes
indicate interesting events not based on the NBER Recession Indicator.

recession noted was in 1980, after hyperinflation in the 1970s. Gold prices had risen during the

1970s, explaining the high GSCI Gold index price at the beginning of the 1980s. It was only

after the announcement of the aggressive Federal Reserve policy to raise interest rates that gold

prices fell sharply. Another recession followed quickly after, but this time the GSCI Gold index

dropped further due to the persistent negative effect of long-term interest rates on the gold price

(Iuorio, 2023). In 1991 a mild recession occurred, and gold prices did not spike again. The

recessions of 1981 and 1991 are the two past recessions in which the GSCI Gold index did not

outperform stocks. In all other past recessions, gold did. After the burst of the dotcom bubble

in 2001, stock prices fell quickly while gold steadily increased and captured an annual return

of approximately 6.9%. The largest reactions and interactions between the stock market, gold,

and recessions have occurred in recent years.

During the Great Financial Crisis (GFC) from 2007 to 2009, a sharp increase in the gold

price occurred right at the start of the recession in September 2007, even though the gold price

also fell with the largest decline in the S&P 500 index towards the end of the financial crisis.

This was due to the immense impact that the GFC had on the stock market, as any positive

outlook on the market was gone at that time. To end the crisis in 2009, the FED cut the funds

rate to almost 0%, causing the GSCI Gold index to shoot back up. Afterwards, the gold price

kept rising, partly due to the low funds rate and market sentiment. The GFC caused a great

recession in Europe, leading to the (near) default of Greece and other European countries. This

kept investors afraid of market instability and the possibility of another crash soon, which fed

the rise of the GSCI Gold index, as gold was truly seen as a safe-haven asset these days.

In 2013, marked by the first yellow stroke in Figure 1, gold prices finally dropped significantly,
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bursting the ”gold bubble”. Interestingly, this event does not coincide with a reaction from the

stock market, as seen in Figure 1. A reason for the drop in the GSCI Gold index is the recovery

of trust in the markets in both the United States and Europe, which would also explain why the

stock index steadily increased during this time. Nevertheless, the Covid-19 pandemic and the

subsequent market crash in 2020 showed investors’ trust in the commodity gold. While the S&P

500 falls, the GSCI Gold index shoots up, reaching an all-time high, and only slightly diminishes

in value after the financial crisis is more or less over. Finally, the S&P 500 experienced a drop

over the summer of 2022 due to the high inflation during that time. This is marked by the

second yellow stroke in Figure 1. Consequently, the GSCI Gold index rises but then also falls.

This is due to the FED’s policy to raise long-term interest rates, as Iuorio (2023) explains. To

summarize, the patterns observed over the past 43 years show how gold and stock prices interact

with one another in relation to macroeconomic features. This suggests a relation between the

optimal gold and stock portfolio weights and macroeconomic variables. This relation should be

modelled to see if it can give new insights or improve trading strategies.

The monthly asset returns for asset i at time t, Ri,t, are calculated as:

Ri,t =
Pt,i − Pt−1,i

Pt−1,i
, (1)

where Pt,i denotes the price at time t. This results in a TxN matrix, where N = 2 denotes

the number of assets included in the portfolio, and T = 516 is the total monthly observations.

Figures 2a and 2b show the monthly returns for the two assets. Both assets display volatility

clustering when a recession occurs (as marked by the grey strokes in the background). The

largest negative returns for the gold index are recorded during the hyperinflation period in the

1980s and the GFC. Stock returns display large negative returns more often during recessions,

especially during the GFC and the Covid-19 crises. From Figure 2, it is clear that the S&P

500 index has slightly higher returns on average (mean = 0.008) but also suffers from larger

negative returns. In other words, the S&P 500 index is more volatile and thus has a higher risk

premium. The S&P GSCI Gold index is less volatile but offers lower returns (mean = 0.003).

The descriptive statistics of both assets can be found in Table B2 in Appendix B.

3.2 Macroeconomic data

There is a large variety of possible macro factors available that can influence asset returns. For

example, Cutler et al. (1988) suggested the well-known variables Inflation, Volatility, Long term

interest rates, Short term interest rates, Real Money, Industry Production, and Real Dividends.

Empirical applications especially underline the importance of Inflation, Interest Rates, Real

GDP, Consumption, and the Volatility Index (VIX) (Ang, 2014). Maio and Philip (2013) apply

a factor representation of 107 macro factors to predict cross-sections in stock returns. Commonly

used factors applied in their paper are different variables of Housing Units started, Orders for

Durable Goods, Manufacturing, and Retail Trade. Maio and Philip (2013) also use Unemploy-

ment rates, Foreign Exchange rates, and the Consumer and Producer Price Indices. Finally,

market sentiment indexes can impact asset returns, of which the most well-known example is

the CBOE Volatility Index (VIX). Even small movements to the VIX can significantly impact
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Figure 2. Monthly Returns for the Financial Assets included in the Portfolio.

(a) S&P GSCI Gold Index (b) S&P 500 Index

Note. Grey strokes in the background indicate months in which a recession occurred, based on the
NBER Recession Indicator (National Bureau of Economic Research, 2023). Yellow background strokes
indicate interesting events not based on the NBER Recession Indicator. The red line represents a 0%
return. The blue line represents the mean of asset returns.

asset returns (Ang, 2014). Pooling the four databases used in this research, many macroeco-

nomic variables are available after filtering for data availability on the sample. It is important to

consider the maximum number of variables that can be applied in the model, as including many

variables increases the risk of overfitting and causes poor out-of-sample performance. Random

forests can mitigate this problem, whereas single regression trees cannot. This allows for a great

selection of variables in the model. Nevertheless, correlation among all variables should be as-

sessed before including variables in the model, as highly correlated variables are likely to decrease

predictive accuracy. The result is a TxK matrix, where K = 42 denotes the variables in the

data set and T = 396 denotes the total number of observations over time. For some variables,

transformations are necessary to include the variable. An overview of the included macroeco-

nomic features, their transformations, frequency, and their databases is presented in Table A1

in Appendix A. Furthermore, the descriptive statistics of the macro features are presented in

Table B1 in Appendix B.

4 Methodology

This section starts by discussing portfolio optimization, then continues with the model for trans-

action costs, and finishes with the implementation of random forests. First, the notation that is

used throughout the paper is introduced. At time t, optimal weights ω∗
t are found for a portfolio

with a stock and gold index, that is ω∗
t = (ω∗

G,t ω∗
S,t)

′ respectively. The portfolio should always

be fully invested, such that the sum of weights equals 1, or ωS,t = 1 − ωG,t. Formally, this can

be denoted as ωt ∈ S, where S = {ω ∈ RN : ω′ι = 1}. Furthermore, the weights for an asset

i are bounded by three times their leverage, that is −3 ≤ ωi,t ≤ 3. Important to note is that

throughout this research, portfolio weights are optimized out-of-sample. For every time t, the

optimal weights are estimated conditional on the information known at time t - 1. This requires

time-varying estimates for the mean and covariance matrix of the assets. Similarly to Kazak et
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al. (2022), the following assumption is made.

Assumption 1 First, consider the returns from the portfolio to be a random walk with a trend.

Then, on a filtered probability space, define a 2-dimensional vector for the monthly return process

rt{t=1,2,...} for the two assets. For every time interval [t - 1, t], rt is generated as:

rt ≡ µt +

∫ t

t−1
ΘsdWs, (2)

where µt is a bounded random variable, Θs is a continuous spot covolatility process, and Ws is

a Brownian motion process. Then Σt =
∫ t
t−1ΘsΘ

′
sds is the quadratic covariation of rt on the

time interval. For all ω ∈ RN and t, it is assumed that 0 < ω′Σtω < ∞ and that Σt is weakly

stationary and ergodic.

This assumption implies that Et−1[rt] = µt and Vt−1[rt] = Et−1[Σt] by construction, where

Et−1[·] = E[·|Ft−1] and Ft−1 denotes the information set at time t - 1. Finally, set Ωt = Et−1[Σt]

for notational convenience. Monthly returns for an asset i obtained at time t, Ri,t are multiplied

with the chosen portfolio weights to construct portfolio returns Rp,t = ω′
trt.

4.1 Portfolio optimization

At time t, an investor wants to rebalance her portfolio according to the information set Ft−1

to keep her portfolio weights optimal. Based on the above assumption and notation, the von

Neumann-Morgenstern theorem (von Neumann & Morgenstern, 1994) states that the investor

should maximize the conditional expectation of her utility for holding the portfolio ω′
trt. Solving

for the portfolio weights implies:

ω∗
t = argmax

ωt∈S
Et−1[U(ω′

trt)], s.t. ω′
tι = 1, (3)

where U(·) is the investor’s utility function, and the constraint ensures that a full investment

is made at time t. Similar to Kazak et al. (2022), this paper assumes a simple mean-variance

conditional utility function:

Et−1[Ut(ωt; γ)] = ω′
tµt −

γ

2
ω′
tΩtωt, (4)

where γ is the Arrow-Pratt risk-aversion coefficient. A choice must be made as it is almost

impossible to maximize returns and minimize risks simultaneously. Modelling µt with little noise

is very difficult (Bryzgalova et al., 2021; Jagannathan & Ma, 2003). Even more so, the Global

Minimum Variance Portfolio (GMVP) tends to have a better out-of-sample Sharpe ratio than

when expected returns are also included in the model (Jagannathan & Ma, 2003; Chakrabarti,

2021). Therefore, this research assumes γ = ∞, i.e. the investor is infinitely risk-averse. Then

the utility function can essentially be written as:

Ut(ωt) = −ω′
tΩ̂tωt, (5)
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where Ω̂t = Et−1[Σt] = E[Σt|Ft−1] is estimated as the sample covariance matrix at time t - 1.

While much literature is spent on estimating conditional covariance matrices, this paper assumes

a simple model to focus on implementing regression trees. At the start of the training sample,

the estimation sample is used to obtain estimates for the sample mean µ̂t and covariance matrix

Ω̂t to optimize the portfolio weights for the first data point in the training sample. Afterwards,

a rolling window with ten years of observations estimates µ̂t and Ω̂t.

4.2 Transaction costs

As discussed in Section 2, transaction costs play an important role in a model for rebalancing

portfolio returns. For each portfolio re-balancement, the transaction costs (TC) can be calculated

following De Nard et al. (2021); DeMiguel et al. (2009):

TCt = 2c ·
N∑
i=1

|ωj,t − ωj,t−1| (6)

where c denotes the basis points, which are assumed to be c = 0.005, ωi,t−1 denotes the weight

of asset i before rebalancing at time t - 1, and ωi,t denotes the weight after rebalancing. The

portfolio variance is minimized for a target mean µ0 larger than transaction costs to implement

transaction costs in the portfolio optimisation algorithm. This ensures that the expected return

gain from rebalancing at least covers transaction costs and is, thus, more likely to give a net

positive return. The portfolio optimization problem can then be written as follows:

min
ωt

ω′
tΩ̂tωt

subject to ω′
t1 = 1

ω′
tµ̂t ≥ TCt,

(7)

where 1 denotes a 2x1 vector of ones, and TCt are the transaction costs for rebalancement at

t. Maximizing the utility function from Equation 5 is equivalent to minimizing this function

multiplied by −1, and thus also equivalent to optimizing the Sharpe ratio and tracing out

portfolios on the efficient frontier for a given target mean µ0 (Bryzgalova et al., 2021).

4.3 Random forests

In the training sample, two random forests are trained separately on the sets of optimal portfolio

weights obtained using Equation 7, such that there is one forest for the gold index and one for

the stock index. The optimal portfolio weights for an asset i are defined as a function of the

macro features in the random forest as follows:

ω̂i,t = Fi(Xt)

s.t. min
ωt

ω′
tΩ̂tωt,

(8)

where Fi denotes the random forest for asset i, and Xt denotes the macro features used in the

random forest. Note that this does not necessarily satisfy the investment constraint of the model

and, thus, cannot be directly implemented as a trading strategy. However, it is also interesting
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to see what the random forest models can predict for the portfolio weights and how these interact

with the model’s features. The implementation of modelling the two financial assets together is

discussed later.

4.3.1 Tuning hyperparameters and model estimation

As explained in Section 2, applying random forests to financial or macroeconomic data signi-

ficantly limits the risk of overfitting and instability that would occur when employing simple

regression trees. Therefore, pruning is necessary for regression trees, while this is not the case for

random forests. Even more so, Coulombe (2020) shows the out-of-sample performance of pruned

forests is equivalent to fully grown forests if and only if the forest is constructed of sufficiently

diversified trees. A well-diversified forest can be obtained by choosing the hyperparameters of

the forest correctly. For the random forests in this research, three parameters are considered,

i.e. the number of trees included in the model, B, the fraction of features used in each tree

as a subset of the total set of features, mtry, and the minimum sample size at each of the

terminal nodes, nodesize. Using previous literature from Coulombe (2021), nodesize should

be set to 15 for monthly data. Then, mtry is tuned for each random forest employing five-fold

cross-validation over the training sample with a random grid search for g = {1, 2, 3, ...10}. The
optimal value of mtry is assessed using three characteristics, Root Mean Squared Error (RMSE),

R-squared (R2), and Mean Absolute Error (MAE). For all random forests, RMSE was used to

select the final value of mtry. This five-fold cross-validation uses the R package caret. Finally,

B is chosen by assessing the out-of-bag error over an increasing number of trees. The error

does not significantly diminish for all forests after bagging 100 trees, as shown in Figure C1 in

Appendix C. This is also a commonly used value for B in previous literature (Pinelis & Ruppert,

2022). Therefore, B = 100 is selected for all forests. After parameter tuning, the model with

optimal parameters is estimated using the R package randomForest. For each tree, nodes are

split on the best improvement in the Mean Squared Error (MSE) using a subset of the macro

features of size 1
mtry

. Thus, at every step in the tree of random forest Fi, the splitting rule aims

to find the tree’s optimal feature and splitting value to minimise the overall MSE. This can be

formulated as follows:

min
c ∈ R, k ∈ Z

min
ω̂i

1

T

∑
t|Xk,t<c

ε2i,t +min
ω̂i

1

T

∑
t|Xk,t≥c

ε2i,t

 (9)

where ε2i,t denotes the squared error term obtained from the model in Equation 8. Furthermore,

k represents a macro feature from the set Zt, the subset of Xt randomly chosen for this tree using

mtry. c denotes the value on which the feature is split. This splitting procedure is recursively

applied until the minimum nodesize of 15 is reached. Then, the estimates from each tree are

averaged over all the trees in the forest to find the final estimates. The results of parameter

tuning and model estimation are presented in the Results section.

The independent random forest models predict new values for the optimal portfolio weights

in the test sample. Transaction costs are considered when calculating the optimal portfolio

weights in the training set, such that the weights cannot differ significantly between time t -
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1 and time t. This setup causes the random forest to predict the portfolio weights for time

t + 1 considerably close to weights at time t, automatically mitigating the transaction costs

problem. For asset class with predicted portfolio weight ω̂i
t+1, the weight for the opposite asset

j is calculated using the full investment constraint, ω̂j
t+1 = 1 − ω̂i

t+1. This method gives two

sets of predicted portfolio weights. For both sets, the portfolio returns are calculated over the

test sample as Ri
p,t+1 = ω̂i

t+1r
i
t+1 + ω̂j

t+1r
j
t+1, where the superscript i denotes that the weights

for the asset i are forecasted. The weights for the asset j are inferred. The performance of both

portfolios is evaluated over the testing sample as described in Section 4.3.4.

4.3.2 Modelling the financial assets together

A third random forest is grown on the investor’s utility captured from the optimal portfolio

weights in the training sample. The expected utility as in Equation 5 is calculated for the

training set from the optimal weights as defined by the optimization problem from Equation 7.

This essentially leads to a random forest based on the following formulation:

E[Ut] = min
ω

ω′
tΩ̂tωt = Fu(Xt) (10)

where Fu represents the random forest for the utility model with macroeconomic features Xt.

This results in a splitting rule that differs slightly from the splitting rule defined in Equation 9,

in the sense that the squared error terms are now obtained from Equation 10. Before estimating

the random forest, the hyperparameters of the forests are tuned using the approach described

in Section 4.3.1 in this subsection. After model estimation, utility is predicted using the test

sample of features and optimal portfolio weights. The portfolio weights at time t + 1 can then

be uniquely reconstructed by solving the following system of equations for the weight ωt+1:

ω̂∗′
t+1Ωt+1ω̂

∗
t+1 = ût+1

ω̂∗′
t+11 = 1,

(11)

where ût+1 denotes the predicted utility at time t + 1 using the random forest model. Further-

more, Ωt+1 = Et[Σt+1] = E[Σt+1|Ft], and 1 denotes a vector ones similar to Equation 7. Like

the weights obtained from the independently modelled random forest, the weights are used to

assess portfolio performance over the test sample. For notational convenience, the returns at

time t obtained from this portfolio are denoted as R∗
p,t+1 = ω̂∗

G,t+1rG,t+1 + ω̂∗
t+1rS,t+1.

4.3.3 Interpreting random forests

The intuitive interpretations of random forests are instrumental in this research to assess the

individual effects of the macroeconomic features on the portfolio weights with an estimate for

variable importance. Variable importance uses the internal out-of-bag (OOB) observations cre-

ated by the random forest, i.e. the observations not used in growing the trees due to sampling

with replacement (Breiman, 2001). For every tree, a subsample is considered OOB, for which

its prediction accuracy is calculated using MSE. Then the values of every k-th variable are ran-

domly permuted in the OOB sample, and the model is re-estimated with this OOB data, where

the MSE is obtained. Variable importance (VI) is now computed as the percentage increase
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in the MSE when the variable is included in the tree versus when the variable is permuted.

Variables with a relatively large increase in MSE are considered more important. VI is averaged

over all the trees and normalized by the standard deviation of the differences to obtain the final

estimate (Breiman, 2001). The drawback of VI is that the estimates tend to be more biased

when features are highly correlated, which is the case in this research. Randomly permuting

the variables more than once can establish more stable results, but these improvements tend

to be small. Therefore, the results from variable importance should be treated with caution.

Estimates of variable importance are presented in the Results section.

This paper set out to find the optimal portfolio weights as functions of the macroeconomic

variables to forecast the optimal portfolio weights. The marginal relation between the features

and the response variables in each forest is assessed using Accumulated Local Effects (ALE) plots,

a correlation-robust version of the more well-known Partial Dependence (PD) plots (Apley &

Zhu, 2020). PD plots estimate the marginal distribution of variable k from the complete set of K

macro features relative to all other features excluding k. An estimation of the partial dependence

between variable k and the portfolio weights is obtained by averaging over the trees. While this

leaves for intuitive interpretation, PD plots are based on the assumption that the features from

the random forest are independent. However, dealing with macroeconomic variables implies a

high correlation among the features. ALE plots do not suffer from this disadvantage, as ALE

plots focus on the difference in the average prediction that results from the feature (Apley &

Zhu, 2020). In other words, an effect of 0.1 in the ALE plot for a particular value of a feature

implies that that value of the feature causes the response variable to be 0.1 larger than its

average prediction. Since ALE plots are better suited for the dataset used in this research, ALE

plots instead of PD plots are used. The ALE plots for each model’s nine most important features

are presented in the Results section. The other plots are shown in Appendix C.

4.3.4 Out-of-sample performance of the portfolios

To summarize, three portfolios are created for the test sample. Two portfolios are based on the

independently modelled trees for the gold and the stock index, where each portfolio is created

by forecasting the weights for one of the two financial assets and inferring the other weight from

these forecasts. The third portfolio is created by modelling utility and uniquely reconstructing

its weights. Furthermore, a benchmark portfolio is created from the weights obtained from the

quadratic programming problem described by Equation 7. The performance of each portfolio p is

estimated by tracking the portfolio returns over time and by tracking estimates for the expected

return, i.e. µ̂p, and the standard deviation (volatility), i.e. Σ̂p. Finally, each portfolio’s Sharpe

ratio is calculated as ŜP p = µ̂p/Σ̂p. The performance of the portfolios is compared with each

other. It is also benchmarked against the portfolio based on the weights from Equation 7 and

two relatively simple portfolios. The first is a Markowitz portfolio, i.e. an equally-weighted

portfolio, and the second is a portfolio where the optimal weights are estimated once over the

training sample and are kept constant throughout the test sample.

It is also of interest to statistically compare the performance of the portfolios. The Sharpe

ratios of the six portfolios are compared using the robust prewhitened HAC test from Ledoit

and Wolf (2008) for hypothesis testing with the Sharpe ratio. For each portfolio p and q, the
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following null hypothesis is tested:

H0 : ŜRp − ŜRq = 0, (12)

such that rejecting the null hypothesis implies that one portfolio significantly outperforms the

other. The comparison of the out-of-sample performance of the portfolios and the corresponding

test statistics are presented in the Results section.

5 Results

Equation 7 in the previous section describes the optimization process used in this research.

Note that the objective of the optimization process was to minimize the variance to maximize

the Sharpe ratio. Figure 3a shows the results from this optimization process for the portfolio

weights. The weight for the stock index tends to have the upper hand in the allocation, whereas

the weight for the gold index is only larger for a few occurrences. Often the gold weight quickly

decreases after that. However, sharp increases in the gold weight do not seem to coincide with

the recessions, as noted by the NBER Recession Indicator. Only in 2020, the increase in the

gold weight coincides with the recession. Here, a flight-to-safety effect can be observed, as the

weights for the gold index increase sharply during the crisis while the stock weights decrease.

However, there seems to be a lagged effect during the 1990 recession and the Great Financial

Crisis (GFC) from 2007 until 2009, but there was a decrease in the weight during the recession

in 2001. These lagged effects are also visible in Figure 3b, where significant losses were still

incurred during the crises in 2009 and 2020. Random forests can offer a solution where the idea

is that changes in macroeconomic variables imply changes in portfolio weights. In this manner,

the weights can be predicted more accurately, and the lagged effect becomes smaller. Therefore,

this section continues by describing the parameter tuning and model estimation. Afterwards, the

interpretation of the random forests is discussed. This section concludes with the performance

of the portfolios created in this research.

5.1 Tuning hyperparameters and model estimation

The parameter mtry describes the fraction of random features used in creating a single tree in the

random forest and is tuned to its optimal value using a grid search with five-fold cross-validation

on the training sample. Table 1 shows the results for each model, where an mtry of 6 implies

that 1
6 of the features is randomly selected to grow the trees in the forest. Furthermore, the

number of trees is set to 100, as is often done in previous literature (Pinelis & Ruppert, 2022).

Figure C1 in Appendix C supports this choice, showing that the OOB errors stabilize when 100

trees or more are used. Following Coulombe (2021), the minimum node size is set to 12, as this

paper deals with monthly returns. After parameter tuning, the random forests are re-estimated

with the chosen parameters and the training sample. The last column of Table 1 represents the

MSE obtained for the last tree (100th tree). Note that the values for the MSE of the gold and

stock weights are quite small. This seems promising, but caution must be taken here because

the differences in weights between observations are already minimal, leading to smaller squared

errors. Even more so for the utility model, as these contain even smaller values for the response
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Figure 3. Optimal Weights and their Returns for the Training and Test Sample based solely on

the Portfolio Optimization Problem from Equation 7

(a) Optimal Portfolio Weights over Time (b) Returns for the Optimal Weights

Note. Grey strokes in the background indicate months in which a recession occurred, based on the
NBER Recession Indicator (National Bureau of Economic Research, 2023). Yellow background strokes
indicate interesting events not based on the NBER Recession Indicator. In Figure 3a on the left, the
gold weights are in blue and the stock weights in red). In Figure 3b on the right, the red line
represents a 0% return. The blue line represents the mean of asset returns. The black dotted line
represents the split for the training and test sample.

variable. The ”pseudo” R2 of the model is also noted. This is R2 = 1−MSE/V ar(y), where y

denotes the response variable. The out-of-sample performance for the random forests is assessed

using the Sharpe ratios for the test sample, which is discussed in Section 5.4.

Table 1. Results for Hyperparameter Tuning of the Random Forests and Mean Squared Error

(MSE) After Parameter Tuning

Model mtry Nr. of trees Min. node size MSE R2

Weights for gold index 6 100 12 6.876 ∗ e−4 0.856

Weights for stock index 5 100 12 6.578 ∗ e−4 0.862

Utility model 4 100 12 2.406 ∗ e−9 0.965

Note. mtry represents the number of random features used in each tree as the fraction of the total

number of features.

5.2 Variable importance

The estimator for variable importance (VI) assesses the increase in MSE when a feature is

randomly permuted compared to when it is included in the forest, such that variables with a

relatively large increase in MSE are considered more important. Since the features used in this

research are often correlated, each variable is permuted three times, and the average increase

in MSE over these three observations is taken. This should stable the estimators for VI a bit,

as correlation can often cause unstable estimations of VI if the variable is permuted only once.

However, these VI results should still be interpreted with caution. Figures 4a and 4b show

the relative VI, i.e. the variable importance of a feature as a percentage of the total variable
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importance for all the features, for the nine most important features from the random forests

models with gold and stock weights. The complete overviews of variable importance for both

models are presented in Figures C2 and C3 in Appendix C. Furthermore, the increase in MSE

is reported for both models in Tables D1 and D2 in Appendix D. For both stocks and gold, M1

or narrow money (without any transformations) – with a relative VI of 7.389% for gold and a

relative VI of 6.681% for the stock weights – and the annual growth in housing prices – with a

relative VI of 7.278% for gold and a relative VI of 5.382% for the stock weights – are the most

dominant features in the data set. This partly confirms the statements of Iuorio (2023), as he

discusses how the performance of the commodity gold is dependent on changes in money (M1).

Other important variables for both models are the capacity utilization rate, short-term in-

terest rates, the quarterly forecast of these rates, the Fed Funds rate, and broad money (M3).

For gold, exports and public debt are also considered important. Construction expenditures

and personal consumption also seem relatively important for the stock weights. Interestingly,

inflation does not seem important when assessing the portfolio weights, even though gold is

often seen as an inflation hedge (Barsky et al., 2021). Similarly, long-term interest rates do not

seem as important for this set-up’s gold and stock weights, while short-term interest rates rank

among the most important features. This also contradicts some of the remarks from Barsky et

al. (2021). The unemployment rate and the VIX also do not seem important, ranking relatively

low for both models. Moreover, GDP lists as the 12th and 10th most important variable for

the stock and gold weights, respectively. Even though the literature describes the level of GDP

to be quite influential (Ang, 2014). Finally, it is interesting that the NBER Recession is not

considered important in any of the three models considered in this research, as it ranks last or

second-to-last in every model.

Relative variable importance for the nine most essential features from the random forest

model with utility is shown in Figure 4c. The total figure is presented in Figure C4 in Appendix

C, and the whole table can be found as Table D3 in Appendix D. Note that the utility, according

to Equation 5, is the portfolio variance multiplied by minus one, but that here it is modelled as

the portfolio variance itself. That is, a lower portfolio variance increases utility. This is done

for interpretational convenience. Therefore, the relative VI shows what variables are important

for reducing the variance of the portfolio. Figure 4c shows that narrow (M1) and broad money

(M3) are especially important in determining the variance of a gold and stock portfolio with a

relative VI of 7.117% for M1 and 6.867% for M3. The top five most important variables are

public debt, Gross Domestic Product (GDP), and housing prices. Furthermore, sales of new

family houses, government consumption and investment, unit labour costs and private fixed

investments make up the top nine. Interestingly, GDP is considered more important in this

model than the previous two models, with a relative VI of 6.602%/. Multiple variables differ

from the most important ones for the gold and stock weights. For example, housing prices and

sales of new family houses rank much lower, while they are in the top nine for the utility model.

A possible explanation for this phenomenon is that the utility modelled in the random forest

is already as small as possible as it is the decreased portfolio variance. This implies that some

effects from the macro features are already controlled by choosing optimal weights, and thus

effects cancel out. As the variables are all correlated, this might leave room for different features
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to become more critical.

Figure 4. Relative Variable Importance for the Macro Features from the Random Forests

(a) Relative Variable Importance for the Gold Weights

(b) Variable Importance for the Stock Weights

(c) Variable Importance for Utility

Note. The full figures with all features are presented in Appendix C.

5.3 Accumulated Local Effects

Using the relative importance discussed in the previous subsection, the nine most important

features are selected for each model, and their accumulated local effects (ALE) are analyzed

using ALE plots. The plots for the remaining 33 features in each of the models are presented in
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Figure 5. The ALE Plots for the Nine Most Important Features from the Random Forests Model

for the Gold Weights

Figures C5, C8, and C11 in Appendix C. As described in the Methodology section, accumulated

local effects should be interpreted as the main effect of the feature at a specific value, compared

to the average prediction of the response variable. Any time an effect of a feature on the response

variable is described in this section, it is meant that this is the ’extra’ effect of the feature on

the average prediction, not the effect of the feature itself.
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Figure 6. The ALE Plots for the Nine Most Important Features from the Random Forests Model

for the Stock Weights

Figure 5 shows narrow money has a step-wise positive effect on the weights for the gold index.

Annual growth in housing prices shows a significant drop in gold weights if prices increase by

more than five per cent in one year. Increases in the capacity utilization rate seem to impact

the weights for the gold index positively if the capacity utilization rate is sufficiently large. In

contrast, the short-term interest rates and the fed funds rates have a significant adverse effect,

especially when larger than seven per cent. Interestingly, the latter is not observed for short-

term interest rate forecasts. One of the reasons could be that this variable is forward-looking

and might already contain information that the short-term interest rates and fed funds rates do

not have. Exports, broad money (M3) and public debt have a somewhat alternating effect on

the optimal weights for the gold index, where they do not increase the average prediction much

but can have a negative impact between specific ranges.
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Figure 7. The ALE Plots for the Nine Most Important Features from the Random Forests Model

for Utility

In general, for the effects observed in Figure 5, the inverse is observed for the stock weights

in Figure 6. Where there is a step-wise positive effect of narrow money on the gold weights, this

effect is step-wise negative for the stock weights. Similarly, a significant increase occurs for the

stock weights when annual growth in housing prices is larger than five per cent, while a signific-

ant decrease occurs for the gold prices. The capacity utilization rate, short-term interest rates,

fed funds rates, and short-term interest rate forecasts show similar inverse behaviour, where the

short-term rates positively affect the stock weights, and the capacity utilization rate negatively

affects the stock weights. M3 has an alternating effect over different values of M3 but seems

to have an overall negative effect on the stock weights. This corresponds to the adverse effect

observed for M1. Instead of public debt and exports, construction expenditures and personal

consumption are among the most important variables for the stock weights. Personal consump-

tion has an alternating but slightly more positive effect, whereas construction expenditures seem

to alternate more around the average prediction.
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The ALE plots for the utility model in Figure 7 show that the portfolio variance is lowest

when the narrow and broad money indices are around 35. A somewhat parabolic relation

is generally observed for many of the essential variables. M1, M3, public debt, GDP and

government consumption and investment all have an optimal range in which the features decrease

the portfolio variance the most. Sales of new family houses, unit labour costs, and private fixed

investments have a hyperbolic relation to the portfolio variance, where an increase in these

features decreases portfolio variance. Housing prices seem to increase the portfolio variance,

especially when the price index is around 95.

5.4 Out-of-sample performance of the portfolios

This research essentially creates three portfolios, one where the gold weights are modelled, and

the stock weights are inferred, one that works vice versa, and one where utility is modelled,

and both weights are reconstructed. Furthermore, the weights obtained from Equation 7 are

also summarized in a portfolio to serve as a benchmark for comparison. The out-of-sample per-

formances of these portfolios are assessed in multiple manners. First, the weights and portfolio

returns are compared to the estimated weights and returns in Figures 3a and 3b. Figure 8 shows

the forecasted weights from the random forest models. Remember that the weights presented in

Figure 3a solve the quadratic programming problem from Equation 7 and that these weights are

determined out-of-sample. As shown in Figure 8, there is quite a difference between the weights

defined as optimal by the random forest models and the quadratic programming problem. This

does not necessarily mean that one or the other is better. As mentioned, the optimal weights

from Equation 7 seem to have some lagged effects, while the random forests could tackle this

problem. In general, the random forests seem to predict a higher weight for the gold index and a

lower weight for the stock index compared to Figure 3a. Interestingly, the random forest models

do not necessarily predict a flight-to-safety for the gold index, as no increase was predicted for

these weights during the Covid-19 crisis in 2020. Nevertheless,

Figure 8. Forecasted weights from the Random Forest Models for Gold and Stocks.

(a) Forecasted Gold Weights (b) Forecasted Stock Weights

Note. Forecasted values for the gold weigths are in blue and its optimal values according to Figure 3a

are in turquoise. Forecasted values for the stock weights are in red and its optimal values in pink.
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both for the gold and stock weights, the burst of the gold bubble – as marked by the first yellow

strokes in both figures – is predicted accurately by the random forest models, with a sharp drop

in the gold weights and a simultaneous sharp increase in the stock weights. A similar occurrence

can be observed during the second set of yellow strokes, where the gold price fell after the

announcement of the aggressive policies of the FED. Since this research shows that the gold and

stock weights primarily depend on the level of narrow money and broad money, this could be

a direct reason for the quick adjustment that the random forests predict, and again confirms

the ideas of Iuorio (2023) that the performance of the gold index is especially dependent on

measures taken by the FED, which in this case is increasing the money in the economy. On the

other hand, the NBER recession indicator ranks lowest or second-to-lowest in all of the models,

which explains why the gold and stock weights, as predicted by the random forest, do not react

much to the Covid-19 crisis. This is possibly why flight-to-safety is not observed for the random

forest forecasts during this crisis.

Figure 9 shows the realized returns for both portfolios with the forecasted weights from

Figure 8. Here, it becomes clear that the forecasted weights do not significantly gain from the

random forest predictions, compared to the realized returns obtained using only Equation 7.

Furthermore, it seems to be the case that the portfolio is still exposed to a significant amount of

market risk, as a significant loss occurs during the Covid-19 crisis. This implies that the random

forest is not good at mitigating this market risk, given the features used in this research. An

explanation could be that the relative VI is small for the NBER Recession indicator, such that the

random forest misinterprets moments in which flight-to-safety should occur to minimize losses.

Therefore, the random forests do not provide a significant benefit over the simple optimization

problem from Equation 7. This is also confirmed by the Sharpe ratios presented in Table 2,

Figure 9. Returns Obtained from Forecasted weights for the Random Forest Models for Gold and

Stocks.

(a) Returns for Forecasted Gold Weights (b) Returns for Forecasted Stock Weights

Note. The dark grey line represents a 0% return. The blue line represents the mean of asset returns

obtained from the optimal weights from Figure 3a. The turquoise and pink lines represent the mean

return realized by the forecasted weights. The dark blue and red lines represent the realized returns

from the forecasted weights. The black lines represent the returns as in Figure 3b.
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where the forecasted gold and stock weights from the random forests provide a Sharpe ratio of

0.201 for the gold weights and 0.201 for the stock weights.

Figure 10a shows the weights as reconstructed from the utility model following Equation 11.

The patterns for the reconstructed weights and those found in Figure 3a are somewhat similar.

Yet, the effect seems dimmed in that weight changes are less significant than those obtained from

the quadratic programming problem. Again, the reconstructed weights adjust pretty well to the

periods marked by the yellow strokes but do not seem to react as much to periods indicated as

a recession by the NBER.

The consequence of the random forest not being able to recognize times of recession is the

significant loss obtained during the beginning of 2020, as shown in Figure 10b. Also, the realized

returns for the reconstructed weights are volatile in other periods, leading to the portfolio’s

lesser performance. This is also confirmed by Table 2, which shows that the portfolio with

the reconstructed weights has a low Sharpe ratio of 0.196. This implies that it is slightly

outperformed by the independently modelled weights and the optimization problem without the

random forest.

Figure 10. Reconstructed Weights from the Utility Model and the Realized Returns from the

Reconstructed Weights.

(a) Reconstructed Weights (b) Realized Returns for the Reconstructed Weights

Note. The dark grey line represents a 0% return. The blue line represents the mean of asset returns

obtained from the optimal weights from Figure 3a. The green line represents the mean return realized

by the reconstructed weights. The dark green lines represents the realized returns from the

reconstructed weights, whereas the black lines represent the returns as in Figure 3b.

5.4.1 Comparison of the out-of-sample performances

Finally, comparing the performance of the portfolios against two benchmark portfolios is inter-

esting. The first is the Markowitz portfolio, and the second is a minimum variance portfolio

(MVP) estimated once over the training sample. Table 2 presents each portfolio’s estimated

mean return, standard deviation and Sharpe ratio. Overall, the mean return of the Markowitz

and MVP portfolios is slightly smaller than those created in this research paper. However, the

standard deviation for the benchmark portfolios is often slightly smaller than those from this re-

search. Hence, no portfolio necessarily outperforms the benchmark portfolios, confirmed by the
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slight differences in Sharpe ratios. Unfortunately, the portfolio with the reconstructed weights

does not outperform any other portfolios, while the independently modelled portfolios seem to

have a slight gain compared to the benchmark portfolios.

Table 2. Out-of-Sample Performance Comparison for the Three Portfolios and Simple Portfolios.

Portfolio Mean returns St. Deviation Sharpe ratio

Gold weights forecasted 0.007 0.034 0.201

Stock weights forecasted 0.007 0.034 0.201

Reconstructed weights 0.007 0.033 0.196

Weights from Equation 7 0.007 0.034 0.206

Markowitz Portfolio 0.006 0.033 0.197

Minimum Variance Portfolio 0.006 0.033 0.196

Note. The numbers are rounded to three decimal places.

Table 3 presents the test statistics from the robust test from Ledoit and Wolf (2008) for the

difference in Sharpe ratios between a portfolio p on the rows and a portfolio q in the columns.

In this manner, every test statistic represents the null hypothesis as presented in Equation 12.

As shown in Table 2, there are only minor differences in Sharpe ratios. The test statistics from

Table 3 confirm this, as none of the portfolio differences is significant. Based on these results, it

can be concluded that the benefits of continuously rebalancing the portfolio and modelling the

weights for the portfolios with random forests are minimal.

Table 3. Test Statistics for the Difference in Sharpe Ratios with the Prewhitened HAC Test from

Ledoit and Wolf (2008).

Portfolios Gold forecasted Stock forecasted Reconstructed weights Weights from Equation 7

Gold forecasted - 0.000 (0.001) 0.005 (0.005) -0.005 (0.007)

Stock forecasted 0.000 (0.001) - 0.004 (0.012) -0.005 (0.007)

Reconstructed weights -0.005 (0.005) -0.004 (0.012) - -0.010 (0.009)

Weights from Equation 7 0.005 (0.007) 0.005 (0.007) 0.010 (0.009) -

Markowitz Portfolio -0.004 (0.004) -0.004 (0.003) 0.001 (0.003) -0.009 (0.009)

Minimum Variance Portfolio -0.005 (0.005) -0.005 (0.004) 0.000 (0.003) -0.010 (0.010)

Note. The test statistic represents the difference in Sharpe ratios between portfolio p on the rows and

portfolio q as the columns, such that the null hypothesis is as in Equation 12. Standard deviations are

in brackets, where * marks significance at the 5% level. Numbers are rounded to three decimal places.

6 Discussion and Conclusion

This paper set out to find optimal portfolio weights for a gold-and-stock portfolio using random

forests to answer the following research question:

To what extent can random forests predict the optimal portfolio weights as a function

of macroeconomic variables for a portfolio with a gold index and a stock index?
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To answer this research question, two datasets with monthly observations are used. One with

portfolio data for the gold and stock prices from January 1980 to December 2022, yielding 43

years of observations. The other dataset consists of the macroeconomic variables from December

1989 to November 2022, yielding 33 years of observations. Optimal weights are created out-of-

sample, serving as the random forests’ training sample. Three random forests are modelled, one

for the weights of the gold index, one for the stock index, and a third for the utility obtained

from holding the portfolio with optimal weights. Based on these random forests, predictions for

the optimal portfolio weights are made for the test sample.

In general, narrow money (M1) and the annual growth in housing prices are the most im-

portant features for predicting the stock and gold weights in the random forests model. Other

important features are short-term interest rates, short-term forecasted interest rates, the Fed

funds rate, the capacity utilization rate, and broad money (M3). For utility, i.e. the variance of

the portfolio, narrow and broad money are the most important. Other important variables are

public debt, GDP, unit labour costs, and housing prices. Narrow money and the capacity util-

ization rate have an overall positive effect on the gold weights. In contrast, the annual growth

in housing prices, short-term interest rates, and the Fed funds rate have an overall negative

effect. For the stock weights, these relationships are inverted. In the utility model, the features

seem to have a parabolic or hyperbolic relationship with the portfolio variance. Narrow and

broad money, public debt, and GDP are parabolic, whereas unit labour costs have a hyperbolic

relationship with the portfolio variance.

The independently forecasted weights for the gold and stock index show that the predictions

of the random forests do not detect recessions well. This is likely because the NBER recession

indicator has low relative variable importance in every model. This leads to a persistent loss

in returns during a crisis such as the Covid-19 crisis in 2020. Unfortunately, this also implies

that the out-of-sample performance for the portfolios created from the forecasted gold and stock

weights do not statistically outperform the benchmark portfolios. The weights reconstructed

from the utility model change moderately over the test sample. While this is good for limiting

transaction costs, the reconstructed weights do not adapt well to signals from macroeconomic

features, especially in recessions. This causes the portfolio with the reconstructed weights to

perform similarly to the benchmark portfolios.

To conclude, the portfolio rebalancing with the random forests of macroeconomic features

used in this paper does not achieve significantly higher out-of-sample Sharpe ratios than simple

benchmark portfolios such as the Markowitz (1952) portfolio. While the conclusions drawn

from the variable importance and ALE plots for the random forests are interesting and con-

firm some other empirical findings, no significant benefits are realized using random forests to

model optimal portfolio weights. Considering the computational efforts compared to a simple,

equally-weighted portfolio, the random forests models should be significantly improved to provide

investors with an excellent alternative to the benchmark portfolios.

The most important limitation of this research is the high correlation among the features

in the random forests. This causes noisy estimates in variable importance and can increase

overfitting in the model. While random forests are a better alternative to model these highly-

correlated variables than simple regression trees, it might very well be the case that this causes
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bad out-of-sample performance. When the model cannot determine the most relevant variables

in the dataset, i.g. the variable that decreases the MSE the most, single trees in the forest are

likely to provide wrong estimates for the response variable. If this occurs often in the tree, it

can worsen the performance of the entire forest.

Another limitation of the random forests and regression trees is that they tend to be not

very good at extrapolating observations out-of-sample. Given the previously fitted data from the

training sample, random forests predict values based on where you end up in the tree in the test

sample. Therefore, it is more likely that the random forest predicts a value that it has visited

before in the training sample or that is within the values observed at a certain leaf node in the

training sample. This could cause the portfolio weights not to react as significantly to some of the

signals from the macro features compared to the optimal portfolio weights. Consequently, this

might explain why the random forests are less good at predicting sharper increases or decreases

in the stock or gold weights.

Finally, the random forests in this paper use the MSE as splitting criteria. While this is most

commonly done for random forests, it might not be the most suitable choice for portfolio weights.

As transaction costs bound changes in portfolio weights, the weights tend to be relatively close

to one another from period to period. On top, forecasting the portfolio weights results in small

values – most often between zero and one – such that errors in forecasted values also tend to

be relatively small. Squaring values smaller than one leads to even smaller values, making it

hard for the random forests to detect which variables offer the best split and which variables

significantly increase model performance and which do not.

Based on previous literature and other empirical applications, random forests are still prom-

ising in this line of research. It is, however, a must that the models are improved first. Therefore,

I suggest the following for future research. First, an interesting suggestion would be to investig-

ate whether the problems with high correlation among macro features can be solved. A possible

solution could be to include a very limited amount of features in the sample and restrict the

random choice for features to variables that are not correlated as much. This could offer trees

in the forest that consist of features with relatively low correlation. Furthermore, mtry could be

even larger, so only small fractions of the total set of features are included in each tree.

Unfortunately, the second limitation is harder to improve, as random forests inherently have

this limitation. A possible suggestion could be to obtain a larger data set, such that leaves are

visited more often and better estimates are provided for the response variables. Finally, the

third limitation can be mitigated by adjusting the splitting criteria. Therefore, a suggestion for

future research could be first to determine the optimal splitting criteria, e.g. Root Mean Squared

Error, Mean Absolute Error or other criteria. Then, the optimal splitting criteria can possibly

be used to provide better random forest models, such that better forecasting performance is

obtained.
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A Macroeconomic variables and their transformations

Table A1. Macroeconomic Variables and their Transformations as used in the Random Forests.

The Frequency of the Data and the Databases from which the Data is obtained are also mentioned.

Macroeconomic Variable Transformation Frequency Database obtained from

Long-term interest rates - Monthly OECD

Long-term interest rates forecasts - Quarterly OECD

Short-term interest rates - Monthly OECD

Short-term interest rates forecasts - Quarterly OECD

Fed funds rate - Monthly FED St. Louis

Yield ten-year treasury-bill - Monthly FED St. Louis

Inflation (% annual growth) - Monthly OECD

Inflation (% annual growth) Demeaned Monthly OECD

Unemployment rate - Monthly Refinitiv Datastream

Volatility (VIX) - Monthly CBOE

Exchange rate EUR/USD - Monthly Refinitiv Datastream

Exchange rate GBP/USD - Monthly Refinitiv Datastream

Narrow money (M1) - Monthly OECD

Narrow money (M1) Monthly growth Monthly OECD

Narrow money (M1) Annual growth Monthly OECD

Broad money (M3) - Monthly OECD

Broad money (M3) Monthly growth Monthly OECD

Broad money (M3) Annual growth Monthly OECD

Gross Domestic Product (GDP) (level) - Quarterly Refinitiv Datastream

Real GDP forecasts (annual growth) - Quarterly OECD

Housing prices - Quarterly OECD

Housing prices Quarterly growth Quarterly OECD

Housing prices Annual growth Quarterly OECD

NBER Recession Indicator - Monthly St. Louis FED

Personal consumption expenditures - Quarterly Refinitiv Datastream

Government consumption and investment - Quarterly Refinitiv Datastream

Private domestic fixed investment - Quarterly Refinitiv Datastream

Exports - Quarterly Refinitiv Datastream

Imports - Quarterly Refinitiv Datastream

Foreign reserve assets - Quarterly Refinitv Datastream

Public debt - Quarterly Refinitiv Datastream

Consume confidence index - Monthly Refinitiv Datastream

Industrial production index - Monthly Refinitiv Datastream

Unit labour costs - Quarterly Refinitiv Datastream

The table continues on the next page
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Macroeconomic Variable Transformation Frequency Database obtained from

Capacity utilization rate - Monthly Refinitiv Datastream

Housing authorized - Monthly Refinitiv Datastream

New private housing units started - Monthly Refinitiv Datastream

New private housing units authorized - Monthly Refinitiv Datastream

Construction expenditures - Monthly Refinitiv Datastream

Bankruptcy filings - Quarterly Refinitiv Datastream

Goods and Services balance - Monthly Refinitiv Datastream

Sales of new family houses - Monthly Refinitiv Datastream
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B Descriptive statistics

Table B1 shows the descriptive statistics for the macroeconomic variables included in the data.

Table B1. Descriptive Statistics for the Macroeconomic Features Included in the Model over the

period December 1989 to November 2022

Variable Name in dataset Mean St. Dev Min. Max.

Long-term interest rates LongInterest 4.270 2.030 0.620 8.890

Long-term interest rates forecasts LongInterestForecasts 4.270 2.023 0.650 8.703

Short-term interest rates ShortInterest 2.920 2.376 0.090 8.420

Short-term interest rates forecasts ShortInterestForecasts 2.913 2.371 0.100 8.437

Fed funds rate FedFunds 4.394 2.384 0.050 19.100

Yield ten-year treasury bill TreasuryYield10 2.716 2.037 0.550 15.840

Inflation Inflation 3.321 1.630 -2.097 14.756

Inflation demeaned InflationDemeaned -0.699 1.630 -5.442 5.715

Unemployment rate Unemployment 6.170 1.730 3.500 14.700

Volatility (VIX) Volatility 19.740 7.797 9.450 68.510

Exchange rate EUR/USD FXEUR 0.839 0.110 0.635 1.181

Exchange rate GBP/USD FXGBP 0.643 0.081 0.480 0.887

Narrow money (M1) M1 level 103.650 0.015 26.240 683.920

Narrow money (M1) Monthly M1 monthly 0.0111 0.120 -0.033 2.388

Narrow money (M1) Annual M1 annual 0.160 0.573 -0.054 3.612

Broad money (M3) M3 level 69.760 40.149 26.170 180.180

Broad money (M3) Monthly M3 monthly 0.005 0.005 -0.006 0.064

Broad money (M3) Annual M3 annual 0.062 0.040 0.002 0.269

Gross Domestic Product (GDP) (level) GDP 13622 5310 5754 26138

Real GDP forecasts (annual growth) RealGDPgrowth 0.025 0.047 -0.299 0.353

Housing prices Housing level 97.050 19.521 73.390 152.430

Housing prices Monthly Housing monthly 0.005 0.013 -0.037 0.041

Housing prices Annual Housing annual 0.022 0.048 -0.126 0.134

NBER Recession Indicator NBERRecession 0.091 0.288 0.000 1.000

Personal consumption expenditures PersonalConsumption 9146 3690 3654 17750

Government consumption and investment GovConsumpInvest 2548 925 1180 4575

Private domestic fixed investment PrivateFixedInvest 2331.100 932.076 940.100 4508.200

Exports Exports 1551.400 713.480 515.400 3065.000

Imports Imports 1993.200 929.575 598.200 4074.400

The table continues on the next page
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Variable Name in dataset Mean St. Dev Min. Max.

Foreign reserve assets ForeignAssetsReserve 102866 41072 64222 253217

Public debt PublicDebt 11805 7805 2953 31420

Consumer confidence index ConsumerConfidence 95.180 26.530 25.300 144.700

Industrial production index IndustrialProduction 89260 13.144 60.310 104.120

Unit labour costs UnitLaborCosts 95.820 12.123 74.220 127.920

Capacity utilization rate CapacityUtilizationRate 78.770 3.716 64.570 85.010

Housing authorized HousingAuth 112.030 36.651 36.300 211.900

New private housing units started PrivateHousingStarted 1320 393 478 2273

New private housing units authorized PrivateHousingAuth 1345 408 513 2263

Construction expenditures ConstructionExpenditures 937.600 342.474 424.800 1840.300

Bankruptcy filings BankruptcyFilings 40392 15872 12748 73232

Goods and Services balance GoodsServicesBalance -35616 21277 -102536 -63

Sales of new family houses SalesNewFamilyHouses 699.000 251.501 270.000 1389.000

Note. The numbers are rounded to three decimal places.

Table B2 shows the descriptive statistics for the portfolio data used in this research.

Table B2. Descriptive Statistics of the Prices and Monthly Returns for the S&P GSCI Gold

Index and the S&P 500 Stock Index over the period January 1980 to December 2022

Variable Mean St. Dev. Min. Max.

S&P GSCI Gold Price 430.900 294.742 148.800 1156.400

S&P 500 Price 1197.200 1032.166 102.200 4796.600

S&P GSCI Gold Returns 0.004 0.051 -0.197 0.301

S&P 500 Returns 0.008 0.045 -0.219 0.157

Note. The numbers are rounded to three decimal places.
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C Additional Figures

Figure C1 shows the OOB errors, where the OOB errors stabilize when 100 trees are grown in

the forest.

Figure C1. The Out-Of-Bag (OOB) Errors for an Increasing Amount of Trees Grown in the

Random Forests.

Note. The OOB errors for the model with gold weights are in blue on the left axis, the OOB errors for

the model with stock weights are in red on the left axis, and the OOB errors for the utility model are

in green on the right axis.

Figures C2, C3, and C4 show the variable importance for the three random forest models.

Figure C2. Variable Importance for the Macro Features from the Random Forest Model for the

Gold Weights
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Figure C3. Variable Importance for the Macro Features from the Random Forest Model for the

Stock Weights

Figure C4. Variable Importance for the Macro Features from the Random Forest Model for

Utility
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C.1 ALE Plots for the Gold, Stock, and Utility models

Figure C5. The ALE Plots for the Remaining 33 Features from the Random Forests Model for

the Gold Weights in order of importance according to Figure C2.

The figure continues on the next two pages.
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Figure C8. The ALE Plots for the 33 Remaining Features from the Random Forests Model for

the Stock Weights in order of importance according to Figure C3.

The figure continues on the next two pages.
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Figure C11. The ALE Plots for the 33 Remaining Features from the Random Forests Model for

Utility in order of importance according to Figure C4.

The figure continues on the next two pages.
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D Additional Tables

Table D1 presents the variable importance for the Random Forest model with stock weights.

Table D1. Variable Importance for the Random Forest Model with Gold Weights

Variable Relative Importance (in %) Increase in MSE (in %)

M1 level 7.389 0.089

Housing annual 7.278 0.088

CapacityUtilizationRate 5.479 0.066

Exports 4.705 0.056

ShortInterest 4.703 0.057

M3 level 4.570 0.055

ShortInterestForecasts 4.327 0.052

FedFunds 4.105 0.050

PublicDebt 3.799 0.046

FXEUR 3.700 0.046

PersonalConsumption 3.555 0.043

GDP 3.138 0.038

GovConsumpInvest 3.068 0.037

LongInterestForecasts 2.908 0.035

TreasuryYield10 2.746 0.033

Housing monthly 2.730 0.033

UnitLaborCosts 2.670 0.032

ConstructionExpenditures 2.535 0.031

IndustrialProduction 2.007 0.024

BankruptcyFilings 1.920 0.023

SalesNewFamilyHouses 1.913 0.023

PrivateHousingAuth 1.860 0.022

PrivateFixedInvest 1.716 0.020

PrivateHousingStarted 1.711 0.020

ConsumerConfidence 1.654 0.020

Volatility 1.632 0.020

Unemployment 1.608 0.019

FXGBP 1.474 0.018

ForeignAssetsReserve 1.334 0.016

The table continues on the next page
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Variable Relative Importance (in %) Increase in MSE (in %)

GoodsServicesBalance 1.150 0.014

LongInterest 1.055 0.013

InflationDemeaned 0.884 0.011

Housing level 0.792 0.010

HousingAuth 0.705 0.009

M1 monthly 0.588 0.007

Inflation 0.587 0.007

M3 annual 0.544 0.007

Imports 0.520 0.006

M1 annual 0.366 0.004

RealGDPgrowth 0.235 0.003

NBERRecession 0.173 0.002

M3 monthly 0.170 0.002

Note. Numbers are rounded to three decimal points. The Relative Importance is also shown in

the graphs in Appendix C.

Table D2 presents the variable importance for the stock model.

Table D2. Variable Importance for the Random Forest Model with Stock Weights

Variable Relative Importance (in %) Increase in MSE (in %)

M1 level 6.681 0.076

Housing annual 5.382 0.062

ShortInterestForecasts 4.833 0.055

ShortInterest 4.654 0.053

CapacityUtilizationRate 4.569 0.053

M3 level 4.491 0.051

FedFunds 4.477 0.051

ConstructionExpenditures 4.239 0.048

PersonalConsumption 3.937 0.045

GDP 3.562 0.041

Exports 3.370 0.039

PublicDebt 3.333 0.038

FXEUR 3.116 0.036

GovConsumpInvest 2.924 0.033

Housing monthly 2.841 0.033

FXGBP 2.528 0.029

Imports 2.527 0.029

The table continues on the next page
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Variable Relative Importance (in %) Increase in MSE (in %)

LongInterestForecasts 2.488 0.028

PrivateHousingAuth 2.444 0.028

SalesNewFamilyHouses 2.395 0.027

UnitLaborCosts 2.218 0.025

ConsumerConfidence 2.181 0.025

PrivateFixedInvest 1.961 0.022

IndustrialProduction 1.798 0.021

TreasuryYield10 1.758 0.020

BankruptcyFilings 1.656 0.019

LongInterest 1.592 0.018

Unemployment 1.336 0.015

M1 annual 1.266 0.014

GoodsServicesBalance 1.241 0.014

ForeignAssetsReserve 1.163 0.013

HousingAuth 1.091 0.012

Volatility 0.976 0.011

PrivateHousingStarted 0.955 0.011

Housing level 0.833 0.010

M1 monthly 0.780 0.009

InflationDemeaned 0.772 0.009

Inflation 0.653 0.007

M3 annual 0.593 0.007

RealGDPgrowth 0.195 0.002

M3 monthly 0.106 0.001

NBERRecession 0.087 0.001

Note. Numbers are rounded to three decimal points. The Relative Importance is also shown in

the graphs in Appendix C.

Table D3 represents the variable importance for the utility model.

Table D3. Variable Importance for the Random Forest Model with Utility

Variable Relative Importance (in %) Increase in MSE (in %)

M1 level 7.117 9.745e-07

M3 level 6.867 9.403e-07

PublicDebt 6.711 9.189e-07

GDP 6.602 9.041e-07

Housing level 5.620 7.696e-07

SalesNewFamilyHouses 5.216 7.142e-07

The table continues on the next page

50



Variable Relative Importance (in %) Increase in MSE (in %)

GovConsumpInvest 4.964 6.797e-07

UnitLaborCosts 4.687 6.418e-07

PrivateFixedInvest 4.429 6.064e-07

Exports 4.208 5.762e-07

PersonalConsumption 3.575 4.895e-07

GoodsServicesBalance 3.139 4.299e-07

PrivateHousingStarted 2.750 3.765e-07

PrivateHousingAuth 2.741 3.754e-07

LongInterest 2.546 3.486e-07

Imports 2.533 3.469e-07

IndustrialProduction 2.293 3.140e-07

LongInterestForecasts 2.183 2.989e-07

BankruptcyFilings 2.153 2.948e-07

Housing annual 2.117 2.899e-07

FedFunds 1.948 2.668e-07

ShortInterestForecasts 1.924 2.635e-07

CapacityUtilizationRate 1.890 2.588e-07

ConsumerConfidence 1.441 1.974e-07

ConstructionExpenditures 1.388 1.900e-07

ShortInterest 1.047 1.434e-07

Unemployment 0.970 1.328e-07

FXGBP 0.930 1.274e-07

TreasuryYield10 0.883 1.209e-07

HousingAuth 0.869 1.190e-07

InflationDemeaned 0.852 1.166e-07

Housing monthly 0.611 8.371e-08

M1 annual 0.589 8.059e-08

Inflation 0.584 7.995e-08

FXEUR 0.539 7.387e-08

Volatility 0.410 5.617e-08

M3 annual 0.333 4.557e-08

ForeignAssetsReserve 0.228 3.119e-08

RealGDPgrowth 0.074 1.006e-08

M3 monthly 0.023 3.086e-09

NBERRecession 0.008 1.146e-09

M1 monthly 0.008 1.038e-09

Note. Numbers are rounded to three decimal points. The Relative Importance is also shown in

the graphs in Appendix C.
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E Programming code

First, I cleaned the portfolio and macroeconomic data in Excel, i.g. I calculated simple portfolio

returns and organized the data. Afterwards, the datasets are loaded into R with the script

”Main Script.R”. This is the script in which almost all of the modelling for this research

paper is done. The script ”themed apa Annegien.R” ensures all plots this paper presents

follow the APA guidelines. The script is mainly based on the function theme apa() from the

jtools package in R.

The script ”ALE plot function.R” creates the ALE plots for the macro features in the

dataset, which is obtained from the package ALEplot in R. Only minor modifications are done

with the script, mainly to change the axis titles. Finally, the script ”ledoit and wolf Sharpe

ratio test.R” is the script that performs the Ledoit and Wolf (2008) test for the Sharpe ratios.

The functions in this script are directly obtained from the codes from the paper presented by

Michael Wolf on his website.
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