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Abstract

The Machine Reassignment Problem (MRP) improves machine usage given an

initial assignment of processes on machines. A new allocation is found that minim-

izes machine usage costs and process move costs, subject to several usage and as-

signment constraints. A more efficient allocation of processes leads to less electricity

usage, and an increased capacity on software applications like Google Docs. This

problem was first introduced in the ROADEF/EURO Challenge 2012 by Google,

and as this problem is NP-hard this paper uses two heuristics to solve the MRP.

In this research, we replicate Multi-Neighborhood Local Search (MNLS) by Wang,

Lü and Ye (2016), and propose a new Multi-Neighborhood Simulated Annealing

(MNSA) algorithm. MNLS finds the best solution 20% of the time, and outper-

forms MNSA which finds the best objective value in 8% of the cases.
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1 Introduction

With the quick growth of IT platforms, like ChatGPT or Google Docs, cloud computing

is becoming increasingly important in daily life. It is crucial to allocate the user requests

of these softwares over the available computing resources in an efficient manner, to ensure

low electricity costs and increase capacity (Canales, Rojas-Morales & Riff, 2020). This

NP-hard allocation problem is the Machine Reassignment Problem (MRP), and it includes

multiple NP-complete subproblems, like bin-packing (Gabay & Zaourar, 2016). To keep

these services available to a growing amount of users, we need heuristics that relatively

quickly move towards an optimal solution (one that sorts the user requests in the most

cost-efficient way over all available computing resources). This problem is the topic of

the ROADEF/EURO Challenge 2012 by Google, and many different heuristics related to

neighborhood searches have been proposed to optimize the MRP (Murat Afsar, Artigues,

Bourreau & Kedad-Sidhoum, 2016). Wang et al. (2016) introduce a new algorithm, Multi-

Neighborhood Local Search (MNLS), using local and tabu search optimization, and three

different neighborhoods. MNLS performs well when compared to existing literature, and

this research replicates the algorithm and uses it as a benchmark. This paper introduces

a new algorithm that performs Multi-Neighborhood Simulated Annealing (MNSA) using

the promising neighborhoods from MNLS. This leads to the following research question:

does MNSA outperform MNLS in the context of the MRP?

We find that MNLS is more robust than MNSA, and outperforms MNSA for most

instances. However, both algorithms manage to find the best-known solution 20% and

8% of the time, for MNLS and MNSA respectively.

In this research, the existing literature is discussed in Section 2, the problem descrip-

tion in Section 3, the methodology in Section 4, the results in Section 5, and lastly a

conclusion and discussion are given in Section 6 and 7.

2 Literature Review

The MRP is a relatively new problem, and only frequently appears in literature since

the ROADEF/EURO challenge 2012 by Google. Many different algorithms have been

proposed, most of which relate to various kinds of neighborhood searches. For instance

Gavranović, Buljubašić and Demirović (2012) propose a Variable Neighborhood Search

(VNS), Wang et al. (2016) present a Multi-Neighborhood Local Search algorithm (MLNS),

and Masson et al. (2013) introduce a multi-start iterated local search using two neigh-

borhoods. In literature, the two neighborhoods that are most often used are swap and

shift (Canales et al., 2020) and (Murat Afsar et al., 2016). Swap switches two processes

of different machines, and shift moves a process from one machine to another. Lopes,

Morais, Noronha and Souza (2015) use variations of these two neighborhoods, namely
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k–shift and k–swap, which are obtained by doing k successive shifts or swaps respectively.

Others, like Turky, Sabar and Song (2017); Hoffmann, Riff, Montero and Rojas (2015),

use double–shift and/or double–swap where only 2 processes are simultaneously shifted or

swapped, with the MLNS from Wang et al. (2016) specifically using one–shift, two–swap,

and a three–swap neighborhood where two processes on one machine are swapped with

another process on another machine. VNS, which won the ROADEF/EURO challenge,

also applies a Big Process Rearrangement (BRP) neighborhood, which is done by sim-

ultaneously shifting k processes to a specific machine, and shifting some processes from

this specific machine to other machines. The authors state that this is especially useful

for reassigning big processes in large instances (Gavranović et al., 2012).

In addition to different neighborhoods being used throughout the literature, several dif-

ferent local searches are also considered, like local search and simulated annealing. Lopes

et al. (2015); Gavranović et al. (2012); Masson et al. (2013) all use local search effectively,

while Wang et al. (2016) use a combination of local search and tabu search. Furthermore,

Portal, Ritt, Borba and Buriol (2016) use simulated annealing (SA) in combination with

the two-swap and one-shift neighborhoods, by selecting a random neighbor from one of

the two neighborhoods with a given probability. Despite only using the two most rudi-

mentary neighborhoods, they were fourth in the ROADEF/EURO challenge. This shows

promise for future research of SA in combination with multiple neighborhoods. Butelle

et al. (2016) propose a new method that runs Adaptive Variable Neighbourhood Search

on one thread, while running a Simulated Annealing based Hyper-Heuristic on another,

where the threads communicate the best-known solution to each other throughout the

procedure. The Simulated Annealing based Hyper-Heuristic combines different heuristics

and acceptance criteria, and considers the shift and swap neighborhoods. Turky, Sabar

and Song (2018) introduce an algorithm that simultaneously runs SA on different initial

solutions, using four different moves: shift, swap, double–swap, and double–shift.

3 Problem Description

The machine reassignment problem makes a more efficient allocation of processes over

machines starting from a given initial allocation. This reallocation is optimized using five

constraints, by minimizing five costs. The initial solution is denoted as Map0 and holds

a map connecting process pϵP to the machine mϵM this process is running on. Then

Map(p) equals the current machine m of a process p. The constraints and costs from the

GOOGLE/ROADEF Challenge are described in Sections 3.2 and 3.3 respectively. Table 1

shows an overview of all the constants of this problem and can be found in the Appendix.
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3.1 Variables

The two variables U(m, r) and TU(m, r) measure the usage and transient usage on a

machine and make up the basis of the constraints and costs. Transient usage measures

the resources still used on the initial machine of a process, after moving this process away.

For instance, for some processes disk space is used on both machines when it’s moved.

For both variables, bool refers to an indicator function, which is one if the statement is

true and zero otherwise.

U(m,r) The combined usage R(p, r) of resource rϵR from processes pϵP running on

machine mϵM .

U(m, r) =
∑
pϵP

bool(Map(p) = m) ∗R(p, r)

TU(m,r) The transient usage of resource rϵR on machine mϵM . The transient usage

equals the requirement R(p, r) if a moved process pϵP initially on machine mϵM

has transient usage for a resource rϵTR, and is zero when a resource rϵR− TR has

no transient usage.

TU(m, r) =


∑
pϵP

bool(Map0(p) = m ∧Map(p) ̸= m) ∗R(p, r) rϵTR

0 rϵR− TR

3.2 Constraints

Five constraints have to be satisfied in order for the MRP to be feasible, they are described

in this section using the variables from Section 3.1. The five constraints are:

Capacity constraints A machine mϵM has to have enough capacity C(m, r) for the

total usage U(m, r) of resources rϵR on m.

∀mϵM, rϵR, U(m, r) ≤ C(m, r)

Conflict constraints Processes pϵP of the same service sϵS must run on distinct ma-

chines in the current allocation Map.

∀sϵS, (pi, pj)ϵs, pi ̸= pj ⇒Map(pi) ̸= Map(pj)

Spread constraints The number of different locations lϵL where processes pϵP of the

same service sϵS run in the current allocation Map has to be greater than or equal

to a given minimum Smin.

∀sϵS,
∑
lϵL

min(1, |{pϵs|Map(p)ϵl}|) ≥ S min(s)

Dependency constraints If a service sa depends on a service sb, both in the service

dependencies set SD, then each process paϵP of service sa should run in the neigh-

borhood NE of a process pbϵP of service sb in allocation Map.

∀(sa, sb)ϵSD, ∀paϵsa,∃pbϵsb ⇒ NE(Map(pa)) = NE(Map(pb))
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Transient usage constraints For resources rϵTR which need transient usage, the usage

U(m, r) already on machine mϵM plus the transient usage TU(m, r) on m can not

exceed the capacity C(m, r) of machine m for resource r

∀mϵM, trϵTR, U(m, tr) + TU(m, tr) ≤ C(m, tr)

3.3 Costs

Next, we explain the costs and objective function, again using variables from Section

3.1. First, the five elements of the objective are introduced separately, and next the

full objective function is given. For each cost, Map0(p) denotes the initial machine of a

process pϵP , and the new machine p is moved to is specified as Map(p). The five costs

are:

Load cost The load cost of each resource rϵR is the usage U(m, r) of a machine mϵM

that exceed the given safety capacity SC(m, r).

f1(r) =
∑
mϵM

max(0, U(m, r)− S(m, r))

Balance cost As it is useless to have for instance CPU available, but no RAM, there

has to be a certain balance between resources rb1, r
b
2ϵB. This means the available

capacity of resources rb1 and rb2 on machine mϵM , i.e. capacity C(m, r) minus the

usage U(m, r), has to be balanced with target ratio targetb.

f2(b) =
∑
mϵM

max(0, targetb ∗ (C(m, rb1)− U(m, rb1))− (C(m, rb2)− U(m, rb2))

Process move cost The total cost of moving processes pϵP from their initial machine

Map0(p) to their new machine Map(p). bool is an indicator function, where one

corresponds to p being assigned to a new machine, and zero otherwise. PMC(p)

denotes the cost of moving p.

f3 =
∑
pϵP

bool(Map0(p) ̸= Map(p)) ∗ PMC(p)

Service move cost To balance moves among services sϵS the maximum number of

moved processes pϵP of one service is punished.

f4 = max
sϵS

(|{pϵS|Map0(p) ̸= Map(p)}|)

Machine move cost The total cost of moving processes pϵP from their initial machine

Map0(p) to their new machine Map(p), where MMC is the moving cost.

f5 =
∑
pϵP

MMC(Map0(p),Map(p))

Objective function All the costs are assigned a weight wt, which represents the punish-

ment of the corresponding cost. The goal is to find the solution with the minimum

objective value.

f(Map) =
∑
rϵR

wt1(r) ∗ f1(r) +
∑
bϵB

wt2(b) ∗ f2(b) + wt3 ∗ f3 + wt4 ∗ f4 + wt5 ∗ f5

5



4 Methodology

4.1 Neighborhoods

This paper uses the following three neighborhoods: one-shift, two–swap and three–swap.

These neighborhoods are also used in MNLS from Wang et al. (2016), which is a bench-

mark for this paper. All possible moves within a neighborhood with Map0 as a starting

solution are denoted by MV (Assignment), with mv indicating a move within this set

of moves. Then a neighborhood is defined as: N(Map) = {Map ⊕mv|mvϵMV (Map)}.
The neighborhoods are given below, using the formulation from Wang et al. (2016):

One-shift Moves a process pϵP to a machine mϵM .

MV1(Map) = {mv1(p,m)|∀pϵP,mϵM,Map(p) ̸= m}

Two-swap Swaps a process piϵP with a process pjϵP and reassigns these processes to

machines Map(pj) and Map(pi) respectively.

MV2(Map) = {mv2(pi, pj)|∀pi, pjϵP,Map(pi) ̸= Map(pj)}

Three-swap Here processes pi, pjϵP are swapped to machine Map(pk), and process pk

is swapped to machine Map(pi).

MV3(Map) = {mv3(pi, pj, pk)|∀pi, pj, pkϵP,Map(pi) = Map(pj)∧Map(pi) ̸= Map(pk)}

The neighborhood partitioning consists of three different techniques by (Wang et al.,

2016). Firstly, the neighborhoods are randomly partitioned into smaller parts of equal size.

Then when researching a neighborhood, the optimal move is found by iterating over all the

smaller partitioned neighborhoods and finding the best move within those. This means

the algorithms lose some of their search effectiveness but gain efficiency. Therefore, this

has to be a careful trade-off that is optimized using parameter tuning. Wang et al. (2016)

find that the speed of local search is too low for neighborhoods larger than 106 moves, and

that the search efficiency becomes too bad with neighborhoods smaller than 105 moves.

Thus the partitioned neighborhoods of N1, N2 and N3 have sizes max(1, |P |x|M |/105),
max(1, |M |/100) and max(1, |M |/50) respectively. In N1 the processes are partitioned,

whereas in N2 and N3 the machines are split up.

Next to the neighborhood partitioning technique described above, we decrease N2 and

N3 with two additional strategies. Firstly, at most ten processes are selected randomly

on all machines within the partition. Furthermore, we exclude non-promising pairs of

machines. Specifically, two machines are excluded if the lower bound introduced by Portal

et al. (2016) of the load cost and balance cost is equal to the sum of the load cost and

balance cost on these machines. As in this scenario, the odds of finding a good swap are

quite low, the machine pairing is not considered within the neighborhoods.
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4.2 Multi-Neighborhood Local Search

Since this paper uses MNLS by Wang et al. (2016) as a benchmark, this section shortly

describes the method. A multi-neighborhood search is done using the neighborhoods

from Section 4.1, where N1, N2 and N3 are sequentially explored. The exploration of a

neighborhood is stopped when the objective value stops making sizeable improvements,

when this occurs the next neighborhood is investigated.

Within each neighborhood we perform a move selection heuristic, which first considers

the best feasible move of a process that has not been moved in the past |P |/100 iterations,

like tabu-search. However, if a move exists that moves a process which has been used

in the past iterations, but gives a better objective than previously found in the entire

local search algorithm, the move is accepted. If this is not the case, the algorithm checks

whether the best feasible and non-tabu move has a better objective value than the best

one found so far within the current neighbohood, if so this accepted and else we accept

the best infeasible move. To fix this infeasible move one of two repair strategies is done.

Specifically, these repair strategies can fix the capacity constraints and the transient usage

constraints by moving processes away from a machine where the current usage exceeds

the allowed usage. If no such fix exists, we choose a random feasible move within the

neighborhood.

Once all neighborhoods have been explored, we perform a number of random moves

and complete another round of neighborhood search. Wang et al. (2016) follow two

different time-out conditions: a 300 second time-out as the Google ROADEF/EURO

Challenge prescribes, and a 3600 second time-out constraint.

4.3 Multi-Neighborhood Simulated Annealing

A disadvantage of local search is that it tends to get stuck in local minima. MNLS tries

to prevent this by making random moves at various points. Another way to work around

this problem is to allow for a solution to get worse, in order to escape local minima

by implementing Simulated Annealing. MNSA has different cycles of random moves and

within each cycle the ’temperature’ is lowered, this ensures that the objective value slowly

converges (Johnson, Aragon, McGeoch & Schevon, 1989), given that the parameters have

been tuned correctly. Similarly to Portal et al. (2016), we use a geometric cooling cycle,

which holds a constant temperature for n iterations, and then lowers this temperature with

a given cooling rate r. Similarly to MNLS, a random move is chosen from either the one-

shift, two-swap or three-swap neighborhood. In their paper Wang et al. (2016) highlight

the importance of including three neighborhoods in their search, by showing that the

combination with all three outperforms any other combination of neighborhoods. MNSA

chooses a random move from two-swap with probability α, a move from three-swap with

probability β, and a move from one-shift with probability 1 − α − β. The implemented
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algorithm is shown in Algorithm 1.

Algorithm 1 Simulated Annealing with a geometric cooling cycle

fbest ← f(Map0)
while time limit is not reached do

for cycle in 1:n do
Map←Map′ ⊕ random feasible move
∆← f(Map′)− f(Map)
if ∆ ≤ 0 then

Map′ ←Map
if f(Map′) < fbest then

fbest ← f(Map′)
end if

else
p← random number between 0 and 1
if p < exp(-∆/T) then

Map′ ←Map
end if

end if
end for
T ← rT
if fbest has not changed for 20n iterations & number of accepted moves < 0.1% then

T ← T0/100 ▷ T0 is the initial starting temperature
end if

end while
return fbest

4.3.1 Fast moves

An issue of neighborhood searches is that the feasibility and cost have to be calculated

for every possible move within a neighborhood, which leads to a slow running time. This

is especially important for MNSA, as the strength of simulated annealing is in making

many moves quickly. In order to speed this process up, instead of calculating the objective

or feasibility from the entire proposed Map ⊕ mv, where Map represents the current

allocation of machines, it is quicker to calculate the effect of just the move. Specifically,

the initial objective of Map0 can be calculated using the objective function given in

Section 3.3, then for all possible subsequent moves just the cost effect of that move can

be calculated. The move which gives the biggest negative cost difference is chosen. In

addition, as Map is already feasible (MNSA only accepts feasible moves), the only thing

that needs to be checked is whether allocating the machines and processes of the given

move leads to a feasible result.
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5 Results

The most commonly used dataset of the MRP consists of three smaller datasets (A, B

& X) from the ROADEF/EURO challenge 2012 by Google, the datasets are randomly

generated according to real-life Google statistics.

Table 1: Overview of all instances with their characteristics.
Inst. ∥R∥ ∥TR∥ ∥M∥ ∥P∥ ∥S∥ ∥L∥ ∥N∥ ∥B∥ ∥SD∥
a1 1 2 0 4 100 79 4 1 1 0

a1 2 4 1 100 1000 980 4 2 0 40

a1 3 3 1 100 1000 216 25 5 0 342

a1 4 3 1 50 1000 142 50 50 1 297

a1 5 4 1 12 1000 981 4 2 1 32

a2 1 3 0 100 1000 1000 1 1 0 0

a2 2 12 4 100 1000 170 25 5 0 0

a2 3 12 4 100 1000 129 25 5 0 577

a2 4 12 0 50 1000 180 25 5 1 397

a2 5 12 0 50 1000 153 25 5 0 506

b 1 12 4 100 5000 2512 10 5 0 4412

b 2 12 0 100 5000 2462 10 5 1 3617

b 3 6 2 100 20,000 15,025 10 5 0 16,560

b 4 6 0 500 20,000 1732 50 5 1 40,485

b 5 6 2 100 40,000 35,082 10 5 0 14,515

b 6 6 0 200 40,000 14,680 50 5 1 42,081

b 8 3 1 100 50,000 45,030 10 5 0 15,145

b 9 3 0 1000 50,000 4609 100 5 1 43,437

x 1 12 4 100 5000 2529 10 5 0 4164

x 2 12 0 100 5000 2484 10 5 1 3742

x 3 6 2 100 20,000 14,928 10 5 0 15,201

x 4 6 0 500 20,000 1190 50 5 1 38,121

x 5 6 2 100 40,000 34,872 10 5 0 20,560

x 6 6 0 200 40,000 14,504 50 5 1 39,890

x 8 3 1 100 50,000 44,950 10 5 0 12,150

x 9 3 0 1000 50,000 4871 100 5 1 45,457

Dataset A consists of ten instances with the number of machines ranging from 4 to

100, and the number of processes spanning from 100 to 1000. Both B and X also have ten

instances, with the number of machines ranging from 100 to 5000, and the number of pro-

cesses varying from 5000 to 50000. Table 1 holds the most important characteristics of the

instances, with the columns listing the instances, numbers of resources, resources needing
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transient usage, machines, processes, services, locations, neighborhoods, balance ’triples’,

and service dependencies. Instances b 7,b 10,x 7 & x 10 were found to be infeasible, due

to their particularly large sizes.

Both the MNLS and MNSA algorithms are programmed in Java on a Microsoft Win-

dows 10 computer with Intel Core i5-10500 3.10GHz and 16 GB of RAM. Every algorithm

is run on only one core, and two running times are tested: the original 300s time limit of

the ROADEF/EURO Challenge 2012, and a 3600s time limit to see how the algorithms

converge.

5.1 Parameter tuning

We use the same parameter settings as optimized by Wang et al. (2016) for MNLS, and

we tune parameters for MNSA parameter ourselves. The MNSA algorithm is similar to

the two-neighborhood SA algorithm proposed by Portal et al. (2016), so we use the same

instances and values of parameters for tuning. All parameter combinations are tested

on all of the following instances: a1 4, a2 1, a2 2, a2 3, a2 5, b 1, and b 3. The val-

ues we evaluate are rϵ{0.91, 0.95, 0.97}, nϵ{104, 105, 106}, T0ϵ{107, 108, 109} and pairings

α, βϵ{{0.2, 0.1}, {0.2, 0.3}}. Due to time constraints only two α, β pairings are considered,

we choose the values which keep the probability of choosing a one-shift move the highest

as Portal et al. (2016) find the one-shift neighborhood to be more important than the

two-swap neighborhood in simulated annealing. The parameter are tuned under the 300s

time constraint. Next, the relative deviation with respect to the best-known value of

each instance under 300s is calculated, and we choose the parameter setting with the

lowest average relative deviation. Table 2 shows the average relative deviations of the

best parameter settings for three different sets of tuning instances. The average relative

deviations for all instances are much larger compared to the averages without a2 1. This

is due to the especially slow convergence of this instance. To prevent the settings from

being skewed toward this extreme case, it is taken out of consideration. In addition, the

relative deviation of b 3 is about 40 times larger than the other considered instances. As

the parameter settings with and without b 3 do not differ that greatly, we end up choosing

T0 = 107, α = 0.2, β = 0.3, n = 104, r = 0.91.

Table 2: Average relative deviations with respect to the best-known value for three dif-

ferent parameter settings, the light gray coloured boxes correspond to the best setting for

the instance in the column name.
All instances1 Without a2 1 Without a2 1 & b 3

T0 = 107, α = 0.2, β = 0.5, n = 105, r = 0.97 121678.88 7.44 1.14

T0 = 107, α = 0.2, β = 0.3, n = 106, r = 0.95 228463.39 7.32 1.07

T0 = 107, α = 0.2, β = 0.3, n = 104, r = 0.91 211305.48 7.33 1.01
1: Only refers to the instances used for tuning mentioned in Section 5.1
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5.2 Computational results

To assess the effectiveness of MNSA compared to MNLS, every instance is run five times

and the best objective is compared to the best-known solution (BKS) from the literature.

Tables 5 and 6 hold the BKS, best objective value (fbest), the average objective value

(favg), and the coefficient of variance (cv) for all instances and both optimization methods

under time-out conditions 300s and 3600s respectively. For a full evaluation, Tables 3

and 4 present the initial cost in column 2, the BKS, the best objective value (fbest), the

differential ratio between the best solution of the corresponding algorithm and the best-

know solution (r%), i.e. fbest−BKS
BKS

∗100%, the differential ratio between the best solution of

MNSA and the best solution of the benchmark MNLS (s%), i.e.
fbest,MNSA−fbest,MNLS

fbest,MNLS
∗100%.

5.3 Comparison MNLS and MNSA with best-known results

Table 3: Computational results of MNLS and MNSA under the 300-second time-out

condition.
MNLS MNSA

Inst. Init. Cost BKS fbest r (%) fbest r (%) s (%)

a1 1 49528750 44306501 44306501 0.00 44307915 0.00 0.00

a1 2 1061649570 777532177 810826359 4.28 887425469 14.13 9.45

a1 3 583662270 583005717 583006137 0.00 583662270 0.11 0.11

a1 4 632499600 244875206 291202548 18.92 525791949 114.72 80.56

a1 5 782189690 727578309 727578809 0.00 746311486 2.57 2.57

a2 1 391189190 161 17475691 10854366.46 156845733 97419609.94 797.51

a2 2 1876768120 720671548 1017016406 41.12 1281842544 77.87 26.04

a2 3 2272487840 1190713414 1495453534 25.59 1599217929 34.31 6.94

a2 4 3223516130 1680368578 1947384848 15.89 2338388083 39.16 20.08

a2 5 787355300 307150825 570346714 85.69 786237264 155.98 37.85

b 1 7644173180 3291069369 3631639759 10.35 6210331706 88.70 71.01

b 2 5181493830 1015496187 1373418522 35.25 3867606948 280.86 181.60

b 3 6336834660 156691279 4517824174 2783.26 6046849469 3759.08 33.84

b 4 9209576380 4677808036 7116516915 52.13 8775627983 87.60 23.31

b 5 12426813010 922944697 10997549814 1091.57 12047005890 1205.28 9.54

b 6 12749861240 9525851483 11249369781 18.09 12600973936 32.28 12.01

b 8 14068207250 1214291143 12991350689 969.87 13506272779 1012.28 3.96

b 9 23234641520 15885437256 21201173223 33.46 23019099273 44.91 8.57

x 1 7422426760 3044418078 3313077913 8.82 6127182421 101.26 84.94

x 2 5103634830 1002379317 1387717268 38.44 3566783214 255.83 157.03

x 3 6119933380 69970 4281486805 6118932.16 5925991719 8469232.17 38.41

x 4 9207188610 4721591023 7149085032 51.41 8904414850 88.59 24.55

x 5 12369526590 54132 10940061224 20209870.49 12079582925 22314950.11 10.42

x 6 12753566360 9546936159 11176251882 17.07 12552660920 31.48 12.32

x 8 11611565600 29193 10472774740 35874166.91 11001680751 37685923.19 5.05

x 9 23146106380 16125562162 21308367308 32.14 22788557085 41.32 6.95
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As Table 3 shows, under the 300-second time-out condition, MNLS manages to get the

best-known solution for three instances (a1 1,a1 3,a1 5). Whereas MNSA only reaches

the BKS once, for the easiest and smallest instance (a1 1), and it comes close for instance

(a1 3) with r% = 0.11%. The percental relative deviation (s%) in Table 3 shows that

MNSA never performs better than MNLS under this time limit. Only twice the difference

is around 0%, and for 16 instances MNSA deviates with more than 10% from the optimal

value of MNLS. This is likely due to the varying speeds at which the two algorithms

converge toward an optimal solution. As Wang et al. (2016) prove, MNLS is able to

quickly improve the objective by allowing for infeasible moves, whereas running time is

one of the main bottlenecks of simulated annealing Johnson et al. (1989).

Table 4: Computational results of MNLS and MNSA under the 3600-second time-out

condition. In order the columns hold: the instances, the initial cost, the best-known

solution (BKS), fbest and the relative deviation of fbest compared to the BKS (r%) for

both MNLS and MNSA, the relative deviation of fbest from MNSA compared to MNLS.
MNLS MNSA

Inst. Init. Cost BKS fbest r (%) fbest r (%) s (%)

a1 1 49528750 44306501 44306501 0.00 44307420 0.00 0.00

a1 2 1061649570 77535597 823639248 962.27 789624150 918.40 -4.13

a1 3 583662270 583005717 583662270 0.11 583662270 0.11 0.00

a1 4 632499600 244875206 283456068 15.76 531697704 117.13 87.58

a1 5 782189690 727578309 727578809 0.00 741642454 1.93 1.93

a2 1 391189190 161 11246769 6985470.81 49993472 31051745.96 344.51

a2 2 1876768120 720671548 941631477 30.66 1107342354 53.65 17.60

a2 3 2272487840 1190713414 1491729660 25.28 1568206223 31.70 5.13

a2 4 3223516130 1680368578 1890221061 12.49 1890122424 12.48 -0.01

a2 5 787355300 307150825 523176061 70.33 714292244 132.55 36.53

b 1 7644173180 3291069369 3558337887 8.12 5727273157 74.02 60.95

b 2 5181493830 1015496187 1143086505 12.56 3217086224 216.80 181.44

b 3 6336834660 156691279 1011874011 545.78 6043580421 3757.00 497.27

b 4 9209576380 4677808036 4677947894 0.00 8224770673 75.83 75.82

b 5 12426813010 922944697 4995944394 441.30 11874964569 1186.64 137.69

b 6 12749861240 9525851483 9526175217 0.00 12475568573 30.97 30.96

b 8 14068207250 1214291143 6939131896 471.46 13280341370 993.67 91.38

b 9 23234641520 15885437256 15983033582 0.61 21855860021 37.58 36.74

x 1 7422426760 3044418078 3275896226 7.60 5554500054 82.45 69.56

x 2 5103634830 1002379317 1128791787 12.61 3080428279 207.31 172.90

x 3 6119933380 69970 687060809 981836.27 5946752043 8498902.49 765.54

x 4 9207188610 4721591023 4724203042 0.06 8224506183 74.19 74.09

x 5 12369526590 54132 5658248639 10452587.21 12083416237 22322031.52 113.55

x 6 12753566360 9546936159 9546971105 0.00 12516063223 31.10 31.10

x 8 11611565600 29193 4986243933 17080172.44 10469695170 35863617.91 109.97

x 9 23146106380 16125562162 16288944372 1.01 21676250921 34.42 33.07
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To check if this discrepancy is indeed caused by the short running time, we also consider

Table 4 which holds the same variables under the 3600-second time-out condition. In this

case, MNLS gets the best-known solution five times and gets within 1% of the BKS

eight times. Similarly to the 300-second time-out condition, MNSA only gets to the best

solution once and comes close one other time with an r% of 0.11% for the same instances

as under 300 seconds. Looking at s% we find that for three instances MNSA and MNLS

perform similarly, with a deviation close to 0%, and MNSA once outperforms MNLS for

case a12 with a differential ratio of 4.13%. Despite MNSA working a little better with

the larger running time, MNLS still outperforms MNSA for 22 out of 26 instances.

Notably, the original MNLS by Wang et al. (2016) find r%’s smaller than 1% for 18

instances under 300s and for 23 instances under 3600s. This contrast is likely partly due

to the efficiency of the different programming languages (Java in this paper vs C++ in

Wang et al. (2016)). Furthermore, both Tables 3 and 4 show that for instances a2 1, x 3,

x 5 & x 8 that have to make the largest relative improvements from the initial cost to

the final best-known objective value, both MNLS and MNSA struggle with getting near

the BKS. For all these instances the r% is more than a million. This might be due to

the need for bigger moves with these instances, both MNLS and MNSA move at most 3

processes at the same time, whereas other well-performing methods for these instances,

like the Variable Neigborhood Search of Gavranović et al. (2012), have neighborhoods

that shift many more processes at the same time.
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5.4 Robustness of MNLS and MNSA

Table 5: Computational results of MNLS and MNSA under the 300-second time-out

condition. In order the columns hold: the instances, the best-known solution (BKS), fbest

& favg & the coefficients of variance (cv) for both MNLS and MNSA.

MNLS MNSA

Inst. BKS fbest favg cv (%) fbest favg cv (%)

a1 1 44306501 44306501 44306501 0.00 44307915 44573058 0.42

a1 2 777532177 810826359 820503855 0.73 887425469 896240512 1.55

a1 3 583005717 583006137 583417107 0.06 583662270 583662270 0.00

a1 4 244875206 291202548 301758989 6.72 525791949 548412126 3.06

a1 5 727578309 727578809 727578889 0.00 746311486 761862040 1.74

a2 1 161 17475691 40706008 106.34 156845733 190364491 11.90

a2 2 720671548 1017016406 1039711327 1.55 1281842544 1327017972 2.53

a2 3 1190713414 1495453534 1516538688 0.95 1599217929 1653350564 3.01

a2 4 1680368578 1947384848 1971589484 1.10 2338388083 2366766601 1.12

a2 5 307150825 570346714 580503948 1.57 786237264 786676060 0.06

b 1 3291069369 3631639759 3676285799 1.03 6210331706 6323579584 1.31

b 2 1015496187 1373418522 1433572228 2.53 3867606948 3986151516 2.29

b 3 156691279 4517824174 4550545277 0.60 6046849469 6119573739 1.57

b 4 4677808036 7116516915 7145995318 0.33 8775627983 8833808526 0.60

b 5 922944697 10997549814 11034106340 0.20 12047005890 12168038889 0.77

b 6 9525851483 11249369781 11304227986 0.31 12600973936 12632150894 0.27

b 8 1214291143 12991350689 13024886819 0.40 13506272779 13627680640 1.25

b 9 15885437256 21201173223 21255195379 0.30 23019099273 23068011873 0.24

x 1 3044418078 3313077913 3409288097 3.01 6127182421 6307488880 3.20

x 2 1002379317 1387717268 1410785798 1.65 3566783214 3677898115 3.64

x 3 69970 4281486805 4323142002 0.88 5925991719 5985100756 0.84

x 4 4721591023 7149085032 7167743576 0.26 8904414850 8975572107 0.77

x 5 54132 10940061224 11032984833 0.85 12079582925 12154003669 0.56

x 6 9546936159 11176251882 11266354572 0.71 12552660920 12672270435 0.64

x 8 29193 10472774740 10534868122 0.69 11001680751 11198562719 1.06

x 9 16125562162 21308367308 21492746469 0.72 22788557085 22888058620 0.33

Next, we evaluate the robustness of the results with the coefficients of variance of both

algorithms. In Table 5 MNLS and MNSA have 17 and 12 instances with a cv under the

1% respectively. Under the 3600-second time-out condition, MNLS has 12 instances with

a coefficient of variance lower than 1%, and MNSA has 8 instances, see Table 6. In both

tables, MNLS has more instances with a low cv, which is likely due to the influence of

randomness on both algorithms. Though MNLS does make random moves at various

points in the search, MNSA only makes random moves. In addition, the coefficients of

variance in this paper are based on only five runs, which implies that the differing seeds
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might still have an erratic effect.

Table 6: Computational results of MNLS and MNSA under the 3600-second time-out

condition. In order the columns hold: the instances, the best-known solution (BKS), fbest

& favg & the coefficients of variance (cv) for both MNLS and MNSA.

MNLS MNSA

Inst. BKS fbest favg cv (%) fbest favg cv (%)

a1 1 44306501 44306501 44306501 0.00 44307420 45538687 2.44

a1 2 77535597 823639248 826535476 0.36 789624150 809429745 2.56

a1 3 583005717 583662270 583662270 0.00 583662270 583662270 0.00

a1 4 244875206 283456068 287252655 1.06 531697704 560352615 5.70

a1 5 727578309 727578809 727578909 0.00 741642454 749649236 1.14

a2 1 161 11246769 14993509 15.47 49993472 65773678 23.02

a2 2 720671548 941631477 971720641 3.25 1107342354 1155048098 3.89

a2 3 1190713414 1491729660 1512249759 0.97 1568206223 1624683393 2.98

a2 4 1680368578 1890221061 1938837296 2.10 1890122424 1958636036 4.39

a2 5 307150825 523176061 570943462 5.05 714292244 762267453 4.59

b 1 3291069369 3558337887 3728682071 3.44 5727273157 5945967454 2.76

b 2 1015496187 1143086505 1181836211 2.34 3217086224 3291500486 1.54

b 3 156691279 1011874011 1036476340 1.88 6043580421 6172632437 1.21

b 4 4677808036 4677947894 4678749048 0.03 8224770673 8341533435 1.34

b 5 922944697 4995944394 5083634804 1.21 11874964569 12097233821 1.24

b 6 9525851483 9526175217 9533828564 0.18 12475568573 12609101743 0.66

b 8 1214291143 6939131896 7013420470 1.05 13280341370 13466902525 0.87

b 9 15885437256 15983033582 16121235001 0.48 21855860021 21989369355 0.58

x 1 3044418078 3275896226 3413492334 2.28 5554500054 5753340305 2.24

x 2 1002379317 1128791787 1165299598 2.37 3080428279 3118163490 1.51

x 3 69970 687060809 747857383 8.28 5946752043 5988827640 0.67

x 4 4721591023 4724203042 4728218068 0.05 8224506183 8395914238 1.18

x 5 54132 5658248639 5682261256 0.46 12083416237 12131531840 0.28

x 6 9546936159 9546971105 9594649369 0.49 12516063223 12672182447 0.75

x 8 29193 4986243933 5028257538 1.36 10469695170 10981811247 2.92

x 9 16125562162 16288944372 16340115194 0.21 21676250921 21801946410 0.56
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6 Conclusion

In this research we study the Machine Reassignment Problem which is the topic of the

ROADEF/EURO Challenge 2012 by Google. We propose an algorithm, using Simulated

Annealing (MNSA) with a geometric cooling cycle and three neighborhoods. In addition,

we replicate Multi-Neighborhood Local Search (MNLS) by Wang et al. (2016) and use

this as a benchmark for our own algorithm. MNLS makes use of a combination of local

and tabu search optimization, with the same three neighborhoods as MNSA. This paper

answers the question whether MNSA outperforms MNLS for the Machine Reassignment

Problem. After tuning the parameters for MNSA, we run both algorithms five times with

two time-out conditions, 300 seconds and 3600 seconds. We find that our implementation

of MNLS either finds the best-known solution or gets close to it for about 20% of the

time, whereas MNSA only finds the best objective or comes close about 8% of the time.

Next to MNLS outperforming MNSA for most instances under both time conditions, we

also find that MNLS is more robust than MNSA. Thus this leads to the conclusion that,

in general MNLS does better than MNSA in the context of the Machine Reassignment

Problem.

7 Discussion

Lastly, we discuss the ways our algorithm could be improved and give some ideas for

future research. When comparing the original MNLS by Wang et al. (2016) with the

MNLS replication in this paper, we find that the original MNLS gets closer to best-

known solution. As this paper already implements efficient ways of checking the feasibility,

calculating the costs, and making a move, the better performance likely has to do with

the different choices for coding language. Wang et al. (2016) use C++ which tends to be

faster compared to java which this paper uses.

Next, MNLS outperforms MNSA in this paper. As MNSA just consists of random

moves, which can lead to large differences depending on the random seed, it might be

smart to run every instance more than five times to get a more accurate average objective

value. With the same reasoning it might be smart to use more random seeds in the tuning

of the parameters, and run every combination of parameters with every instance multiple

times. Since choosing the right parameters is essential in MNSA, it can be valuable to

check how much every neighborhood adds. The chosen parameters lead to only 10%

chance of choosing a three-swap move, which is the lowest setting tested. This might

mean that three-swap is not a good fit for MNSA, thus MNSA may improve with more

parameter tuning for the chances of choosing a neighborhood (α&β in this paper), and

with doing a careful analysis of how much a neighborhood adds by comparing solutions

when leaving this neighborhood in MNSA versus taking it out of MNSA.

16



In addition, for future research the neighborhoods used in MNSA can be made smaller

which increases the chance of picking a good move. For instance, the technique of only

looking at promising machine pairs introduced by Wang et al. (2016) may be useful.

Lastly, as neither MNLS nor MNSA performs well for instances which need big moves,

like swapping 10 processes at the same time, in future research it can be interesting to

look at neighborhoods that allow larger moves, like the Big Process Rearrangment from

Gavranović et al. (2012).
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A Code

The Appendix shortly describes the code used for the algorithms. The algorithms are

written in Java, using IntelliJ. Now follows a brief summary of the classes and their most

important methods.

A.1 DataInitialization

This class reads the data files and turns all constants into the data structures used in

the code. All instances are described in two seperate data files: one holding the current

allocation, and one holding all constants described in Table 1.

A.1.1 readAssignment

This method reads the current allocation of processes and machines.

A.1.2 readModel

This method transfers all constants into data structures by reading them out of an excell

file.

A.2 AdditionalDataStructures

This class does three things: it initializes all variables used in the code, it updates the

variables (the setters) and it returns the variables (the getters). The variables kept track

of are U(m, r), TU(m, r) introduced in Section 3.1, and it holds additional data structures

proposed by Portal et al. (2016) which ensure that the running time is as low as possible.

A.2.1 Initializers

Update the variables from the entire allocation of machines and processes.

A.2.2 Setters

All setters get the index of the moved process, the machine this process is moving from

and the machine this process is moving towards. It updates the corresponding variable

by just calculating the effect of this one move, instead of recalculating the variable for the

entire new allocation.

A.2.3 Getters

Return the variables.
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A.3 AdditionalNStrategies

This class does the neighborhood partitioning techniques of MNLS described in Section

4.1.

A.3.1 processesConsidered

Returns ten random processes on each machine.

A.3.2 machinePairsConsidered

Returns all machine pairs that are considered using the technique of finding promising

machine pairs from Section 4.1. This is done by finding all possible 2-combinations and

calculating the lower bound.

A.4 ConstraintsPortal

All constraints are verified in this class. To ensure quick running time, every constraint

is checked by just considering if feasibility changes with the one move made within the

neighborhood. As there are three neighborhoods, which move either one process, two

processes or three processes at the same time, every neighborhood has their own constraint

methods. An example of a method is: conflict constraints for the one-shift neighborhood.

Every method returns a boolean, true if the constraint is not violated and false otherwise.

A.5 FasterCosts

All costs are calculated in this class. Like ConstraintsPortal, to ensure quick running

time every neighborhood has its own methods for calculating costs. There is two kinds of

methods within this class.

A.5.1 initializeCost

These methods compute the cost for the entire current allocation. Every cost explained

in Section 3.3 has its own method.

A.5.2 differenceCostNeighborhood

Here the difference in cost a move causes is calculated. An example of such a class is

differenceBalanceCostTwoSwap, which computes the difference in balance cost for making

a given move from the two-swap neighborhood.
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A.6 FirstRepairStrategy

This class tries to repair an infeasible move for MNLS, see Wang et al. (2016) for more

details.

A.7 SecondRepairStrategy

This class tries to repair an infeasible move for MNLS, see Wang et al. (2016) for more

details.

A.8 Neighborhood

This class holds three different methods, one for each neighborhood. Within each method

a move from the neighborhood is calculated. These methods either return the best feasible

move, the best infeasible move or a random move.

A.9 LocalSearch

This class implements the local search procedure of MNLS.

A.9.1 localSearchAlg

Performs a general local search of a given neighborhood. This method implements al-

gorithm 5 from Wang et al. (2016). At every iteration method moveSelection within

this same class is called. When the time from the time-out condition runs out, the best

objective value is returned.

A.9.2 moveSelection

This method implements algorithm 6 from Wang et al. (2016). In this algorithm the class

Neighborhood (see Section A.8) is called to return either a feasible move, an infeasible

move or a random move from a given neighborhood. If a good infeasible move is found it

calls either FirstRepairStrategy (Section A.6), or SecondRepairStrategy (Section A.7) to

fix this move.

A.10 Extension

This class implements the simulated annealing algorithm from this paper.

A.10.1 simulatedAnnealing

Performs the algorithm described in Section 4.3. It does this by calling one of three

methods within this same class: oneShift, twoSwap or threeSwap which all return a
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random move from their neighborhood. When the time from the time-out condition runs

out, the best objective value is returned.

B Constants in the MRP

Table 7: Description of all constants used in the MRP
Constants Description
M The set of machines, M = m1,m2, ..,mk with |M | = k
P The set of processes, P = p1, p2, .., pq with |P | = q
R The set of resources, R = r1, r2, .., rd with |R| = d
TR The set of resources which need transient usage, TR = tr1, tr2, .., trh with |TR| = h and TR ⊆ R
S The set of services, S = s1, s2, .., sf with |S| = f . Processes are divided over services, services are disjoint
L The set of locations, L = l1, l2, ..., lg with |L| = g. Machines are partitioned into locations, locations are disjoint
N The set of neighborhoods, N = n1, n2, .., nv with |N | = v. Machines are partitioned into neighborhoods,

all neighborhoods are disjoint
SD The set of service dependencies, SD = sd1, sd2, ..., sdz with |SD| = z
B The set of triples, B = b1, b2, ..., be with |B| = e. A triple consists of three values: two resources and the

target ratio of these two resources
NE(m) The neighborhood of machine mϵM
C(m, r) The capacity of resource rϵR on machine mϵM
SC(m, r) The safety capacity of resource rϵR on machine mϵM
R(p, r) The requirement of resource rϵR for process pϵP
Smin(s) The minimum number of different locations where at least one process of service sϵS should run
PMC(p) The cost of moving process pϵP from its original machine
MMC(m,m′) The cost of moving any process pϵP from machine mϵM to machine m′ϵM . ∀mϵM,MMC(m,m) = 0
wt1(r) The weight of load cost for resource rϵR
wt2(r) The weight of balance cost for triple bϵB
wt3, wt4, wt5 The weights of process move cost, service move cost and machine move cost in this order
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