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Abstract

Despite the many existent types of clustering algorithms, clustering mixed-type data in an

interpretable way remains a challenging problem. In this paper, Mixed Integer Linear Optim-

ization problems are introduced for finding cluster explanations, based on the characteristics

of the observations, when cluster allocations are already known or for jointly finding clusters

and their explanations. To examine which out of three distance measures is the most effective

in assigning observations to clusters and finding the corresponding cluster explanations, their

results are compared regarding the accuracy, being the fraction of observations within the

cluster satisfying the cluster’s explanation, distinctiveness, being the fraction of observations

outside the cluster that is true to the cluster’s explanation, and cluster explanations. The

extended unweighted Gower distance is preferred over the squared Euclidean distance and

the unweighted Gower distance since, in case of a different result between the tree distance

measures, it either provides better cluster allocations or finds shorter cluster explanations.

The results are obtained by analyzing six datasets differing in their feature types.

*The views stated in this thesis are those of the author and not necessarily those of the supervisor, second

assessor, Erasmus School of Economics or Erasmus University Rotterdam.



1 Introduction

Cluster analysis is the task of dividing observations in a dataset into different groups, based on

their characteristics, in such a way that the observations within a group are as similar as possible

but as dissimilar as possible to observations outside the group. Cluster analysis arises, among

others, in the domain of identifying fake news (Zhang, Gupta, Kauten, Deokar & Qin, 2019),

customer segmentation (Mihova & Pavlov, 2018), spam filtering (Nagwani & Sharaff, 2017),

detecting fraudulent or criminal activity (Prabakaran & Mitra, 2018), document organization

(Cui, Potok & Palathingal, 2005), player classification (Ramirez-Cano, Colton & Baumgarten,

2010), identifying risk factors in healthcare (Kolbe-Alexander, Conradie & Lambert, 2013) and

astronomy analysis (Jang & Hendry, 2007). Although the function of state-of-the-art clustering

algorithms is to discover and explain groups, they provide little insights (Bertsimas, Orfanoudaki

& Wiberg, 2021). Therefore, the goal of this research is to enhance the interpretability of cluster

analysis by enlarging its applicability based on cluster explanations that are both accurate and

distinctive.

Carrizosa, Kurishchenko, Maŕın and Romero Morales (2023) introduce a new approach to making

cluster analysis more interpretable. Rather than having long and hard-to-grasp explanations for

each cluster, the focus is on reducing the complexity to two simple statements while maintaining

clustering performance. Their approach is, however, limited to a distance measure that is

suitable for continuous features only (Lee, 2022), whereas most real-world related databases

consist of mixed-type data types. For example, employees have a gender (categorical), an income

(continuous), an educational level (ordinal) and are applicable for bonuses or not (binary).

Thereby, it is important to note that binary features are a special case of categorical features

having two categories and that ordinal features are categorical features with a clear ordering

of the categories (Palmer, 2019). Via the usage of the Gower distance, the applicability of the

approach of Carrizosa et al. (2023) can be enlarged by allowing it to account for more types

of features, which is also this paper’s contribution to the current literature, and therefore to

strengthen its interpretability.

Two mathematical optimization problems are introduced, namely one for explaining clusters

when cluster allocations are already known and one for finding clusters and their explanations

simultaneously. The extended unweighted Gower distance, if not performing similarly to the

squared Euclidean distance or unweighted Gower distance, either has the benefit of providing

better cluster allocations or finding shorter cluster explanations. These explanations are based on

the observation’s characteristics combined with the AND operator. To ensure these explanations

are easy to understand, the length of the explanation is limited to a single AND-contraction.
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The remainder of this paper is organized as follows. Section 2 covers a literature review on cluster

interpretability and mixed-type data clustering. Hereafter, Section 3 presents the problem de-

scription and Section 4 introduces the mathematical optimization problems that solely provide

explanations when clusters are given or simultaneously find clusters and their explanations.

Section 4 discusses the various datasets retrieved, followed by the results of the mathematical

optimization problems in Section 5. Lastly, some concluding remarks are made in Section 6.

2 Literature review

Two major challenges of cluster analysis are cluster interpretability and mixed-type data (Plant

& Böhm, 2011). Plant and Böhm (2011) highlight that most clustering algorithms solely assign

observations to a cluster without explaining why or what distinguishes one cluster from an-

other. Moreover, most clustering algorithms are restricted to a single-typed feature only (Foss

& Markatou, 2018), and the ones that exist for mixed-type data generally use different op-

timization goals or separate cluster analysis for continuous and categorical features, sometimes

resulting in contradicting conclusions (Hendrickson, 2014).

2.1 Cluster interpretability

With the nature of cluster analysis to distinguish and describe the different clusters obtained, it is

usually not sufficient to solely separate observations into the different clusters without explaining

the clusters themselves (Chen, 2018). According to Chen (2018), interpretable clustering refers

to clustering algorithms that provide cluster explanations and explain the differences between

the clusters. Even though the importance of interpretable clustering is well-understood regard-

ing scientific understanding, safety, ethics, mismatched objectives and trade-offs (Doshi-Velez &

Kim, 2017), the explanatory power of state-of-the-art clustering algorithms still lacks (Bertsimas

et al., 2021). Interpretable clustering can be subdivided into two movements (Lawless, Kalag-

nanam, Nguyen, Phan & Reddy, 2022). Post-hoc algorithms take the output of a clustering

algorithm and try to fit an explanation to the different clusters, whereas integrated interpretab-

ility clustering algorithms find clusters and explanations simultaneously.

Although most clustering algorithms focus more on performance than interpretability (Bertsimas

et al., 2021), and thus require post-hoc algorithms for interpretability, post-hoc algorithms have

the risk of creating explanations that are implied by an algorithm itself rather than inferred

from the data (Laugel, Lesot, Marsala, Renard & Detyniecki, 2019). Kenny, Delaney, Greene

and Keane (2021) elaborate heron by making the distinction between integrated algorithms that

directly explain how a model is optimized using such-and-such methods or post-hoc algorithms
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that explain or justify the obtained solution by showing how this solution was reached since such-

and-such data was used. Integrated interpretable clustering methods, on the other side of the

spectrum, mainly cover decision trees, according to Bertsimas et al. (2021), in which features split

the observations into different leaves. Clusters are represented by (the conjunction of) leaves,

where the path from the root to the leaves (or a single leaf) corresponding to the cluster forms

the explanation of that cluster. A cluster spread across different leaves thus combines paths

using the OR operator (Carrizosa et al., 2023). Carrizosa et al. (2023) therefore introduced

an approach based on linear programming that limits the complexity of the rules assigned to a

cluster by restricting it to the AND operator only. The complexity of a single cluster could, for

instance, be reduced from ((LSTAT ≤ 9.95) AND (RM > 6.12)) OR ((LSTAT > 9.95) AND

(TAX ≤ 302)) for Classification and Regression Trees to (LSTAT ≤ 11.36) AND (RM > 6.086)

while keeping similar performance regarding homogeneity, accuracy and distinctiveness.

2.2 Clustering mixed-type data

Even though clustering algorithms for handling a single-typed feature are prevalent, few exist

for mixed-type data, and those that exist are often an imperfect utilization of approaches de-

signed for single-typed data (Foss & Markatou, 2018). More specifically, features are commonly

transferred to adhere to a specific feature type leading to, among others, a loss of information or

an increase in the number of dimensions (Foss & Markatou, 2018). The literature on clustering

mixed-type data is subdivisible into three literary movements (Tran, Fan & Shahabi, 2021),

namely transforming all features into continuous ones, transforming all features into categorical

ones or handling mixed-type data.

2.2.1 Ensure all features are continuous

The first branch of research concerns the conversion of non-continuous features into continuous

ones and then applying clustering algorithms designed for continuous features. In the case of

solely continuous features, the similarity between observations is more intuitive as, for example, a

55-year-old individual is more similar to a 45-year-old than to a 25-year-old (Lasaosa, 2021). The

distinction for non-continuous features is, however, less trivial since the difference between single,

married or divorced is not so obvious. Using an inaccurate encoding technique to transform

non-continuous features into continuous ones can therefore result in a misunderstanding of the

data by the clustering algorithm and thus an ensemble of meaningless clusters (Lasaosa, 2021).

Moreover, since basic encoding approaches for converting non-continuous to continuous features

operate on single features at the time, the newly created features do not capture the correlation
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between the different features correctly (Tran et al., 2021). Other disadvantages of encoding

are an increased number of dimensions (one-hot encoding) and the imposition of non-existent

relationships (ordinal encoding).

One-hot encoding converts a categorical feature having c categories into c dummy features

assigning the value one to the binary features corresponding to its value and the value zero to

the other binary features. This procedure increases the number of dimensions substantially when

the number of categories is large. For example, the dataset on rental listings from the American

site Craigslist (van Fraassen, Hensen, de Wind & van Exel, 2023) contains the categorical feature

region with 404 different categories. One-hot encoding of this feature would highly increase the

dimensionality and sparsity since each observation now has an additional 403 features containing

the value zero. Moreover, as the number of features increases, the performance of continuous-

features-based measures like the Euclidean distance metric and the k-means method worsens,

as, respectively, poorer contrast between the furthest and nearest neighbor can be provided

(Aggarwal, Hinneburg & Keim, 2001) or the method becomes slower and less effective mainly

because the data has become more sparse (Boehmke & Greenwell, 2019).

Ordinal encoding enforces an ordered output that is not necessarily existent in the data. Tran

et al. (2021) provide the example of a dataset containing information on the area (continuous)

and color (categorical) of four different shapes (categorical). The shapes considered are triangles

having the color blue, circles having the color red, diamonds having the color red and squares

having the color blue. From the data, it could be induced that the blue shapes (i.e., the triangles

and squares) tend to have a small area and therefore triangles are more similar to squares than

to circles. However, ordinal encoding (i.e., triangle → 0, circle → 1, diamond → 2 and square →

3) imposes an ordinal relationship, meaning triangles are closer to circles than to diamonds, al-

though this ordering does not hold in reality. Moreover, for ordinal features, measuring distances

between the different values might be unsuitable since they need not be equidistant (D’Orazio,

2021). Løvik, Siglen and Bjorvatn (2022) provide the example of asking for customer satisfac-

tion measured on a seven-point scale ranging from highly dissatisfied to highly satisfied. The

options are highly dissatisfied, dissatisfied, somewhat dissatisfied, neither dissatisfied nor satis-

fied, somewhat satisfied, satisfied and highly satisfied. Taking highly dissatisfied as equal to one

and highly satisfied as equal to seven, it is assumed that the distance between highly dissatisfied

and dissatisfied is the same as the distance between neither dissatisfied nor satisfied and some-

what satisfied, since both differ one in their values, but this might not be the case (Løvik et al.,

2022). Alternatively, one-hot encoding these ordinal values loses information about the order.

The distance, for the satisfaction feature solely, between highly dissatisfied which is represented
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by (1,0,0,0,0,0,0) and dissatisfied which is represented by (0,1,0,0,0,0,0) is then the same as the

distance between highly dissatisfied and highly satisfied which is represented by (0,0,0,0,0,0,1),

since now the difference between two unequal and five equal binary features is taken.

2.2.2 Ensure all features are categorical

Another direction in research is that of converting non-categorical features into categorical ones

and consequently applying clustering algorithms designed for categorical features. The trans-

formation of continuous into categorical features, however, loses information since continuous

features are discretized into bins (Tran et al., 2021). Harrison and Pius (2020) refer to the case

of age dichotomized into young and old at 42. Then, a baby and a teenager are alike based

on their categorical age. Especially if the range of the values in a single bin is broad, like the

example of age, information is thrown away. Moreover, categorical features lack a natural order,

have high dimensionality and are limited to a certain number of dimensions since they fail to

cluster data in all dimensions (Saxena & Singh, 2016).

2.2.3 Approaches that handle mixed-type data

The third field of clustering mixed-type data is the application of approaches able to handle

mixed-type data. Only a few such approaches exist, out of which the Gower distance is the most

popular distance measure (D’Orazio, 2021), and is derived from Gower’s similarity (Gower,

1971). To calculate the similarity between two observations, the Gower distance is computed as

the weighted average of partial distances across the different features, where the computation

of the partial distance depends on the specific feature type and ranges between zero and one.

Eventually, the overall Gower distance equals a number between zero and one, with zero im-

plying the two observations are equal and one implying the two observations are as different as

possible (Lasaosa, 2021). Moreover, missing values are accounted for since the Gower distance

disregards features having a missing value for one of the two observations. Obviously, observa-

tions containing missing values for all the features should be dropped (D’Orazio, 2021). Gower

(1971) restricted the Gower distance to continuous and categorical features, and Podani (1999)

extended it to ordinal features.

D’Orazio (2021), however, thinks of the Gower distance as misleading for two reasons. Firstly,

there is an unequal contribution of continuous and categorical features to the overall Gower dis-

tance. Since the partial distance between two observations for continuous features is calculated

as the absolute difference between the two values divided by the feature’s range, it is highly

affected by outliers. The partial dependence of a continuous feature thus only reaches a value

5



of zero when the two observations are exactly the same and a value of one when the two obser-

vations are on opposite sides of the spectrum. Otherwise, the value is somewhere in between

zero and one. For categorical features, the partial distance between two observations equals

zero if the two values are the same and one if different. Categorical values thus always equal

the minimum or maximum difference possible, whereas this is seldom the case for continuous

features. Secondly, this unbalanced contribution of continuous and categorical features becomes

more apparent when the number of categorical features increases. For instance, considering age

as a continuous feature and gender and marital status as dummy features, two individuals shar-

ing the same gender and marital status but having a very different age are considered closer to

each other than two individuals differing slightly in age but having a different gender or marital

status (D’Orazio, 2021). Expanding the number of categorical features by, for example, adding

a dummy for whether one wears glasses mitigates the effect of the (difference in the value of the)

continuous features even further.

To tackle the first drawback, D’Orazio (2021) suggests dividing the absolute difference in feature

values by the 25%-75% inter-quartile range rather than the whole range, for continuous features,

permitting less dependency on outliers. To deal with the unbalanced contribution of continuous

and categorical features, D’Orazio (2021) sets the distance between observations considered

close equal to zero. Observations are considered close when the absolute difference is less than

a certain width away based on the kernel density estimation or if the observations are nearest

neighbors from each other.

2.3 Contribution

This paper contributes to the current literature by combining the interpretability-based ap-

proach of Carrizosa et al. (2023) and the more widely applicable Gower distance (Gower, 1971)

extended by Podani (1999) and D’Orazio (2021). Essentially, the method of Carrizosa et al.

(2023) is altered to measure distances between observations differently, avoiding the drawbacks

of transforming feature types, and extending the scope of features with ordinal features.
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3 Problem description

Two different scenarios are considered, namely finding explanations when clusters are already

given, referred to as InterP, or simultaneously finding clusters and their explanations, referred

to as CinterP. Given the set of observations I, with indices i and j with i ̸= j, and the non-

overlapping clusters K, with index k, the objective of InterP is to find cluster explanations based

on the observations’ characteristics. These characteristics conform to the different features f

which together form the set F . A set of rules N , with index n, functions as candidate splits for

the features. For CinterP, on the other hand, only the set of observations is given such that the

aim is to find the optimal partitioning of the observations into |K| distinct clusters based on

their characteristics.

4 Methodology

This section introduces Mixed Integer Linear Optimization problems (MILPs), as described in

Carrizosa et al. (2023), for InterP and CinterP. Hereafter, the different distance measures, the

construction of the set of rules and the time complexity are elaborated on.

4.1 Cluster evaluation

For quantifying the clusters’ explanations, three criteria are considered (Carrizosa et al., 2023).

Firstly, the observations within a single cluster must be as similar as possible, which corresponds

to minimizing the cluster’s intra-homogeneity that is quantified by a distance measure. Secondly,

the cluster’s explanation should be true for as many observations within the cluster as possible,

referred to as accuracy. The accuracy equals the number of observations within the cluster sat-

isfying the cluster’s explanation divided by the total number of observations within the cluster,

and thus ideally equals one. Thirdly, the cluster’s explanation should be false for as many obser-

vations outside the cluster as possible, referred to as distinctiveness. The distinctiveness equals

the total number of observations outside the cluster satisfying the cluster’s explanation divided

by the total number of observations outside the cluster, and thus ideally equals zero. Each

observation can only belong to one cluster, meaning there is no overlap between the clusters.
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4.2 InterP

To provide explanations when clusters are already known, the accuracy and distinctiveness are

optimized. Observations can either be labeled or clusters can be obtained via another clustering

algorithm, using this formulation as a post-hoc algorithm.

4.2.1 Mathematical optimization model

Each cluster k is associated with a set of observations gk such that
∑|K|

k=1 gk = I and gk∩gk′ = ∅,

for k ̸= k′. The set of rules, which is elaborated on in section 4.5, can be split into S different

groups of features, with index s, corresponding to (groups of) the different features, such that

N = ∪|S|
s=1Ns and Ns ∩ Ns′ = ∅ for s ̸= s′. The explanation of a cluster eventually equals

the conjunction of rules selected for that cluster, joined by the AND operator. Additionally,

the parameter zksn equals one if, for (the group of) feature(s) s, rule n ∈ Ns is chosen for the

explanation of cluster k, and zero otherwise, with a maximum of λ explanations per cluster

joined by the AND operator. Similarly, the parameter bisn equals one if observation i satisfies

the explanation n ∈ Ns and zero if not. All parameters bisn together form the compatibility set

B. The decision variable γki equals to one if observation i is true to the explanation assigned

to cluster k, irrespective of what cluster observation i is in, and otherwise equals zero. The

mathematical optimization model can then be formulated as follows:

min −
|K|∑
k=1

∑
i∈gk

γki + θ

|K|∑
k=1

|K|∑
k′=1,k′ ̸=k

∑
i∈gk′

γki, (1)

s.t.
∑
n∈Ns

zksn ≤ 1, ∀k ∈ K, ∀s ∈ S, (2)

1 ≤
|S|∑
s=1

∑
n∈Ns

zksn ≤ λ, ∀k ∈ K, (3)

γki +
∑
n∈Ns

(1− bisn)zksn ≤ 1, ∀k ∈ K,∀s ∈ S,∀i ∈ gk, (4)

γki +

|S|∑
s=1

∑
n∈Ns

(1− bisn)zksn ≥ 1, ∀k ∈ K, ∀k′ ∈ K, k ̸= k′, ∀i ∈ gk′ , (5)

zksn ∈ {0, 1}, ∀k ∈ K,∀s ∈ S,∀n ∈ Ns, (6)

γki ∈ {0, 1}, ∀i ∈ I, ∀k ∈ K. (7)

The objective (1), respectively, maximizes the number of observations that are true to the

explanation of the cluster it is assigned to and minimizes the number of observations outside

the cluster satisfying the cluster’s explanation weighted by θ. Equal importance of accuracy

and distinctiveness implies θ = 1. Constraint (2) ensures only one rule can be chosen for each

group of features, together with constraint (6). A minimum of one and a maximum of λ rules
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can be chosen for each cluster because of constraint (3). Constraints (4)-(5) are introduced

to ensure γki is well-defined. In light of the direction of the objective function, the definitions

of the observations that are false to the explanation of its cluster (corresponding to the first

part of the objective function) and observations that are true to explanations of other clusters

(corresponding to the second part of the objective function) need to be precise as the objective

would otherwise set them equal to one and zero, respectively. In the case of observation i′

belonging to cluster k′, but not being a true positive case for the cluster k′, γk′i′ must equal

zero. If rule n′ ∈ Ns is chosen, zk′sn′ = 1 and bi′sn′ = 0 since observation i′ is not explained by the

cluster, implying constraint (4) reduces to γk′i′ +1 ≤ 1. Together with constraint (7), γk′i′ then

thus equals zero for cluster k′. On the other hand, for all clusters k ̸= k′, the constraint becomes

redundant since
∑

n∈Ns
(1 − bi′sn)zksn ≤ 1. If observation i′ is also true to the explanation

assigned to another cluster, say cluster k′′ with k′′ ̸= k′, γk′′i′ must equal one. Since observation

i′ satisfies the explanation of cluster k′′,
∑|S|

s=1

∑
n∈Ns

(1 − bi′sn)zk′′sn = 0, meaning γk′′i′ = 1,

due to constraint (5). Constraint (5) becomes redundant when observation i′ is false for the

explanation of another cluster.

4.3 CinterP

For the multi-objective MILP formulation that simultaneously finds |K| clusters and their ex-

planations, the intra-homogeneity, accuracy and distinctiveness are optimized jointly.

4.3.1 Mathematical optimization model

The parameter δij denotes the distance measure used to quantify the difference between the

normalized observations i and j, for which different measures are taken as further explained in

section 4.4. Moreover, there are four binary decisions, associating true with one and false with

zero, being whether observation i is a member of cluster k, represented by xki, whether rule

n ∈ Ns is chosen for explaining cluster k, represented by zksn, whether observation i is true to

the explanation assigned to its cluster, represented by ai, and whether observation i is outside

cluster k but true to the explanation assigned to cluster k, represented by βki. Assuming the

number of clusters is known a priori, or otherwise heuristics like the elbow method can be used

to determine |K|, the formulation of the mathematical optimization model is as follows:
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min

|K|∑
k=1

|I|−1∑
i=1

|I|∑
j=i+1

δijxkixkj − θ1

|I|∑
i=1

αi + θ2

|K|∑
k=1

|I|∑
i=1

βki, (8)

s.t.

|K|∑
k=1

xki = 1, ∀i ∈ I, (9)

∑
n∈Ns

zksn ≤ 1, ∀k ∈ K,∀s ∈ S, (10)

1 ≤
|S|∑
s=1

∑
n∈Ns

zksn ≤ λ, ∀k ∈ K, (11)

αi + xki +
∑
n∈Ns

(1− bisn)zksn ≤ 2, ∀k ∈ K,∀s ∈ S,∀i ∈ I, (12)

βki + xki +

|S|∑
s=1

∑
n∈Ns

(1− bisn)zksn ≥ 1, ∀k ∈ K,∀i ∈ I, (13)

xki ∈ {0, 1}, ∀k ∈ K,∀i ∈ I, (14)

zksn ∈ {0, 1}, ∀k ∈ K, ∀s ∈ S,∀n ∈ Ns, (15)

αi ∈ {0, 1}, ∀i ∈ I, (16)

βki ∈ {0, 1}, ∀k ∈ K,∀i ∈ I. (17)

The objective function (8) covers all three criteria, as described in section 4.1, by minimizing the

distance between observations within the same cluster (i.e., the intra-homogeneity), maximizing

the true positive rates (i.e., the accuracy) weighted by θ1 and minimizing the false positive rates

(i.e., the distinctiveness) weighted by θ2. Given each observation is associated with one cluster

only, constraint (9) is introduced to ensure this, together with the binary constraint of xki (14).

Moreover, for each group of features, only one rule can be chosen, which is imposed by constraints

(10) and (15). For interpretability purposes, a minimum of one and a maximum of λ rules can

be chosen for each cluster because of constraints (11) and (15). Constraints (16) and (17)

enforce the domain of αi and βki, respectively. Without introducing any additional constraints,

the objective would set all αi equal to one and all βki to zero. Therefore, to ensure these two

variables are well-defined, constraints (12) and (13) are added. In the case of observation i′

belonging to cluster k′, meaning xk′i′ = 1, but not being a true positive case for the cluster k′,

αi′ must equal zero. If rule n′ ∈ Ns is chosen, zk′sn′ = 1 and bi′sn′ = 0 since observation i′ is not

explained by the cluster, implying (12) reduces to αi′ + 1 + 1 ≤ 2 for cluster k′ and thus αi′ ≤

0. Together with constraint (16), αi′ then equals zero for cluster k′. On the other hand, for all

clusters k ̸= k′, the constraint becomes redundant since xki′ = 0 and
∑

n∈Ns
(1− bi′sn)zksn ≤ 1.

For βk′i′ , constraint (13) becomes redundant when cluster k′ is considered as then xk′i′ = 1. For

any cluster k ̸= k′, meaning xki′ = 0, such that observation i′ is true to the explanation of that

cluster, both bi′sn and zksn equal one such that βki′ ≥ 1. Since βki′ cannot be larger than one,
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due to constraint (17), βki′ must equal one.

Although the objective function (8) is straightforward to grasp, the mathematical optimization

model is non-linear due to the product of the two binary decision variables xki and xkj . To

benefit from the properties of a linear mathematical programming model, which is being faster

at achieving the deterministic global optimum (Toragay, 2019), the binary decision variable ykij

is introduced and equals to the product of xki and xkj , meaning ykij = xkixkj . Consequently,

the intra-homogeneity part of the objective function is replaced by the linear formulation of∑|K|
k=1

∑|I|−1
i=1

∑|I|
j=i+1 δijykij . To impose ykij is well-defined and only equals one if both xki and

xkj are equal to one, and otherwise becomes redundant, the constraint xki+xkj − ykij ≤ 1,∀i ∈

{1, ..., I − 1}, ∀j ∈ {i+ 1, ..., I},∀k ∈ K is introduced. With this linearization, the problem can

be written as a MILP as follows:

min

|K|∑
k=1

|I|−1∑
i=1

|I|∑
j=i+1

δijykij − θ1

|I|∑
i=1

αi + θ2

|K|∑
k=1

|I|∑
i=1

βki, (18)

s.t. (9)− (17), (19)

xki + xkj − ykij ≤ 1, ∀i ∈ {1, ..., I − 1}, ∀j ∈ {i+ 1, ..., I},∀k ∈ K, (20)

ykij ∈ {0, 1}, ∀i ∈ {1, ..., I − 1}, ∀j ∈ {i+ 1, ..., I},∀k ∈ K. (21)

To give the three objectives approximately the same scaling, the intra-homogeneity is divided

by I2max
ij

{δ2ij}, the accuracy by I and the distinctiveness by I (Carrizosa et al., 2023).

4.4 Distance measures

To evaluate the effect of the distance measure and thus the quantification of similarity between

observations, three different distance measures are compared, which are the squared Euclidean

distance, the unweighted Gower distance and the extended unweighted Gower distance. Note

that the distance measure only applies to the MILP of CinterP.

4.4.1 Squared Euclidean distance

Due to its convenient properties, among which are symmetry and definiteness, forms of the

Euclidean metric are often used as a distance measure in cluster analysis (Mimmack, Mason &

Galpin, 2001). The squared Euclidean distance between two observations i and j equals the sum

of the squared differences between the corresponding feature values υi and υj of, respectively,

observations i and j. Categorical features, including binary and ordinal features, are one-hot
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encoded. The squared Euclidean distance δSEij can then be formalized as follows:

δSEij =

|F |∑
f=1

(υ
(f)
i − υ

(f)
j )2. (22)

4.4.2 Unweighted Gower distance

To calculate the distance between observations i and j, the Gower distance δGij is defined as

the weighted sum of partial distances, which is the product of the indicator variable d
(f)
ij and

distance variable δ
(f)
ij , across the different features f , where the computation of the partial

distance depends on the specific feature type. Only if the values υ
(f)
i and υ

(f)
j are non-missing

for observations i and j and feature f , d
(f)
ij equals one. Otherwise, d

(f)
ij equals zero, implying

υ
(f)
i or υ

(f)
j , or both, are missing. In other words, d

(f)
ij = 0 implies feature f does not contribute

to the overall distance between observations i and j. Because of its nature, indicator variable

d
(f)
ij thus accounts for missing values. The weight w(f) of a single feature towards the overall

distance is predefined. Each partial distance d
(f)
ij δ

(f)
ij ranges between (and including) zero and

one such that the overall Gower distance also ranges between (and including) zero and one,

with zero implying the two observations are equal and one implying the two observations are as

different as possible (Lasaosa, 2021). The formula for the Gower distance is as follows:

δGij =

∑F
f=1w

(f)d
(f)
ij δ

(f)
ij∑F

f=1w
(f)d

(f)
ij

. (23)

The unweighted Gower distance corresponds to setting the weight of each feature towards the

overall distance equal to one, i.e. w(f) = 1, ∀f ∈ F . The unweighted Gower distance is also

considered throughout this paper as the weighting scheme is outside the scope of this paper.

The unweighted Gower distance then reduces to:

δGij =

∑F
f=1 d

(f)
ij δ

(f)
ij∑F

f=1 d
(f)
ij

. (24)

The calculation of δ
(f)
ij depends on the feature type of f and its calculation is represented in

Table 1. If all features are continuous, binary or categorical, the unweighted Gower distance

is equivalent to the Manhattan distance, Jaccard coefficient or Simple Matching Coefficient,

respectively (Hajnal & Loosveldt, 1998).
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Table 1: Gower distance measure per feature type and type of Gower distance

Gower distance Feature type δ
(f)
ij

Unweighted

Continuous

∣∣∣υ(f)
i − υ

(f)
j

∣∣∣
max{υ(f)} − min{υ(f)}

(eq1)

Categorical

{
1 if υ

(f)
i = υ

(f)
j

0 if υ
(f)
i ̸= υ

(f)
j

(eq2)

Extended unweighted

Continuous


0 if υj ∈ Vυi∣∣∣υ(f)

i − υ
(f)
j

∣∣∣
IQRf

if υj /∈ Vυi AND
∣∣∣υ(f)

i − υ
(f)
j

∣∣∣ < IQRf

1 if
∣∣∣υ(f)

i − υ
(f)
j

∣∣∣ ≥ IQRf

(eq3)

Categorical

{
1 if υ

(f)
i = υ

(f)
j

0 if υ
(f)
i ̸= υ

(f)
i

(eq4)

Ordinal use (eq3) given υ
(f)
i =

r
(f)
i −1

R(f)−1
AND υ

(f)
j =

r
(f)
j −1

R(f)−1
(eq5)

Note. υ
(f)
i (υ

(f)
j ) represents the value of observation i (j) for feature f , max{υ(f)} (min{υ(f)}) the maximum (minimum)

value of feature f over all observations, Vυi the set of q nearest neighbors of observation i, IQRf the interquartile range

for feature f , r
(f)
i the rank number of observation i for feature f and R(f) the maximum rank number of feature f .

4.4.3 Extended unweighted Gower distance

The extended unweighted Gower distance differs in two aspects from the unweighted Gower

distance as proposed by Gower (1971). The first extension lies in the alteration of the distance

measure for continuous features such that it accounts for the unequal contribution of continuous

and categorical features (D’Orazio, 2021). If observation j is one of the q nearest neighbors of

observation i, represented by the set Vυi with |Vυi | = q, the distance between the two observations

is set to zero. The value of q is generally set to
√
n (Arat, 2019), thus this value is also considered

throughout this paper. If observation j is not one of the q nearest neighbors of observation i

and the absolute difference is larger than the 75% interquartile range, the distance is set to one.

Otherwise, the distance is calculated as the absolute difference in feature values of υ
(f)
i and υ

(f)
j

divided by the interquartile range. The second extension lies in the additional distance measure

for ordinal features, as proposed by Podani (1999). An ordinal feature f has a given rank, i.e.

observation i has rank r
(f)
i , that is converted to a continuous value based on its rank, after which

it is treated like other continuous features. See also Table 1.

4.5 Set of rules

The set of rules N functions as possible candidate splits for the features in explaining the

clusters. For example, explaining a cluster of the housing dataset could entail all observations

with CRIM ≤ 10 and RM > 3, of which CRIM ≤ 10 and RM > 3 are thus part of the

set of rules N . The size of this set strongly depends on the degree of specificity chosen. For
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continuous features, for instance, all distinct values or percentile thresholds can be taken as pos-

sible candidate splits. Considering all the distinct values leads to redundancy since some values

are very close to each other and thus yield the same measure of accuracy and distinctiveness

(Carrizosa et al., 2023). Using deciles as percentile thresholds not only reduces the number of

rules to be considered but also allows for simple interpretation since all observations explained

are a multitude of 10%.

For a single continuous or ordinal feature, the form of the rules is features ≤ threshold and

features > threshold in which the threshold corresponds to the different deciles. If two deciles

correspond to the same threshold value, one of them is disregarded to circumvent duplicates. For

a categorical feature, the group of rules equals features = c1, features = c2, ..., features = ch

in which c1, c2, ..., ch equal all distinct categories. In the case of a binary feature, this thus

reduces to features = 0 and features = 1. Taking the group of rules for all different groups

together forms the set of rules.

4.6 MIP start

To mitigate the effect of the time complexity, a MIP start is added. In essence, a MIP start

enables the provision of a starting solution to the solver, like a hint, and therefore tries to speed

up the process (IBM, 2022). The MIP start might be a feasible solution to the model as well

as an infeasible or even incomplete one. If the provided MIP start is feasible, the input solution

serves as an incumbent solution and as a bound for the branch-and-bound algorithm since it

eliminates a part of the search space with less-optimal objective values (openletter.mousetail.nl,

2019). If the provided MIP start is infeasible, the solver tries to repair it into a feasible one. If

the provided MIP start is incomplete, the solver tries to fill in the missing values in a way it

results in a feasible solution.

In this case, the initial solution provided for each run concerns values for the cluster assignments

xki and rules selected zksn. The k-means algorithm, in which k equals to the corresponding

number of clusters the dataset has to be divided into, provides the initial cluster assignments,

which are then used in InterP with θ = θ2
θ1

to obtain the corresponding initial explanations.

To be able to replicate the results, a seed is set, which also allows the provision of the same

MIP start to the MILPs with different distance measures. The MILPs with different distance

measures thus obtain the same initial solution.
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5 Data

To evaluate the three different distance measures, four datasets of Carrizosa et al. (2023) are

used since they allow for the use of the squared Euclidean distance that is able to handle

continuous features only (Lee, 2022). These four datasets entail the wine, glass, housing and

abalone datasets. The binary feature of the housing dataset and the categorical feature of the

abalone dataset are dummy encoded when the squared Euclidean distance is used as the distance

metric. The abalone dataset is obtained by drawing a random subset of 835 observations, without

replacement, from the original dataset having more than 4000 observations (Carrizosa et al.,

2023),

Hereafter, to delve into the shortcomings of the squared Euclidean distance metric, the con-

traceptive and titanic datasets are introduced. All six datasets are originally from the UCI

Repository (Dua & Graff, 2017) and their characteristics are displayed in Table 2. Although

the datasets are originally meant for Supervised Classification, meaning the observations are

already labeled to a cluster, CinterP ignores this information and thus tries to assign the obser-

vations and interpret the clusters. The description of the datasets with their features, feature

description and feature type can be found in Tables A1-A6. Although there are multiple differ-

ences between the datasets, the most interesting one is the differences in feature types. Since

a distance measure should accommodate the feature types (Petchey & Gaston, 2007) and since

the Euclidean distance metric is suitable for continuous features only (Lee, 2022), it is expected

that the difference in performance becomes more apparent in the datasets having more features

than only the continuous one. It does, however, not imply no differences are expected in the

wine and glass dataset. One of the objectives is namely to minimize the intra-homogeneity,

which is achieved by minimizing the distance between the observations within the same cluster,

but the distances are measured differently across the three different distance measures.

Table 2: Description of the datasets

Name of dataset #observations (I) #features (F) Feature types #Classes
wine 178 13 Continuous 3
glass 214 9 Continuous 6
housing 506 13 Continuous, dummy 2
abalone 835 8 Categorical, continuous 2
contraceptive 1473 9 Continuous, dummy, ordinal 3
titanic 712 7 Categorical, continuous, dummy, ordinal 2
Note. Features are displayed to their most specific type, i.e. binary or ordinal is more specific than categorical.

Since the Euclidean distance metric is unable to handle missing values, and to keep other effects

between the different models (varying in their distance measure) at a minimum, observations

containing missing values are deleted. This results in a deletion of 20.2% of the observations

for the titanic dataset. The other datasets did not contain any missing values. It is important

15



to note that the deletion of observations with missing values mitigates the ability of the Gower

distance to account for them, and thus a benefit of the (extended) unweighted Gower distance

over the squared Euclidean distance as a distance measure.

6 Results

This section presents the results of InterP and CinterP. First, some assumptions are made, after

which the construction of the rules and the compatibility set is elaborated upon. Hereafter, to

verify the implementations of InterP and CinterP, their results are compared to the results of

Carrizosa et al. (2023). Afterward, the different distance measures are compared.

6.1 Pre-processing

The MILPs are solved in Java using CPLEX (Cplex, 2009) on a PC Intel(R) Core(TM) i5-8265U

with 8.00 GB of RAM. Additionally, a time limit of ten minutes is imposed for a good trade-off

between intra-homogeneity, accuracy and distinctiveness (Carrizosa et al., 2023). The number

of rules per cluster is limited to two, i.e. λ = 2, to keep interpretability limited to a single,

and thus simple, AND-contraction. Each feature is considered as its own group, implying S

= F , such that each combination of features can be used to characterize the clusters, with a

maximum of λ = 2. The values considered for θ1 and θ2 are combinations of the values 0.5, 1

and 2 such that the accuracy and distinctiveness differ in their relative importance. The values

considered for θ are 0.25, 0.5, 1, 2 and 4, which is similar to the fraction θ = θ2
θ1

that is used for

the MIP start. Lastly, normalization is based on the Z-score normalization as this is proposed

as a powerful method of normalization for clustering (Mohamad & Usman, 2013).

6.2 Construction of the set of rules and the compatibility set

Before anything can be said about which observations should be allocated to which clusters and

which rules should be chosen to explain the clusters, the set of rules must be constructed to know

which observations are explained by which rule. This latter information is eventually captured

in the compatibility set. The reason these constructions are elaborated upon is that the size of

the set of rules differs from that of Carrizosa et al. (2023). The titanic dataset is taken as an

example since this dataset has the most variety in the type of features. Considering the most

specific feature types, the dataset covers the continuous features AGE, NSIB, NPAT and FARE,

the dummy feature SEX, the categorical feature EMB, and the ordinal feature CLASS. Each

feature corresponds to its own group of rules.
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6.2.1 Construction of the set of rules

In essence, the set of rules is the same for the squared Euclidean and unweighted Gower dis-

tance metric, since both do not distinguish between a categorical and a more specific ordinal

feature. In other words, an ordinal feature is treated like the other categorical features. The

group of rules considered for categorical features is equal to the distinct categories. The SEX,

EMB and CLASS features respectively take the following values {0, 1}, {0, 1, 2}, {1, 2, 3}, res-

ulting in the group of rules as displayed in Table 3. For continuous features, the rules con-

sider features ≤ threshold and features > threshold in which the threshold corresponds to

the (nine) deciles. Duplicate decile values are disregarded as this leads to redundancy. The

decile values for the AGE are (14.0, 19.0, 22.0, 25.0, 28.0, 31.0, 36.0, 41.0, 50.0), for NSIB are

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0), for NPAT are {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0}, and

for FARE are (7.75, 7.8958, 9.0, 12.875, 15.7417, 26.0, 29.0, 46.9, 79.2). All together, this thus res-

ults in the set of rules as displayed in Table 3.

Table 3: The set of rules for the squared Euclidean and unweighted Gower distance metric for
the titanic dataset

Feature Group of rules Number of rules
SEX SEX = 0, SEX = 1 2
EMB EMB = 0, EMB = 1, EMB = 2 3
CLASS CLASS = 1, CLASS = 2, CLASS = 3 3
AGE AGE ≤ 14.0, AGE > 14.0, AGE ≤ 19.0, AGE > 19.0, ..., AGE ≤ 50.0, AGE > 50.0 18
NSIB NSIB ≤ 0, NSIB > 0, NSIB ≤ 1, NSIB > 1 4
NPA T NPAT ≤ 0, NPAT > 0, NPAT ≤ 1, NPAT > 1, NPAT ≤ 2, NPAT > 2 6
FARE FARE ≤ 7.75, FARE > 7.75, ..., FARE ≤ 79.2, FARE > 79.2 18

6.2.2 Extended unweighted Gower

The difference between the squared Euclidean and unweighted Gower distance measure on the

one hand and the extended unweighted Gower on the other hand is, concerning the set of rules,

the recognition of ordinal features. Therefore, for the extended unweighted Gower distance, the

group of rules concerned with the ordinal feature CLASS changes into CLASS ≤ 1, CLASS >

1, CLASS ≤ 2, CLASS > 2, CLASS ≤ 3, CLASS > 3, increasing the size of the set of rules

by three. Although there are no observations satisfying CLASS > 3, this rule should become

redundant as none of the observations is true to it. An overview of the total number of rules per

dataset and distance measure is provided in Table 4. The relatively large difference in the size

of the set of rules of the abalone dataset compared to the results of Carrizosa et al. (2023) can

be explained by the differences in the subset taken, although the size of the subset is equal. In

this case, the continuous features of the abalone dataset had twelve duplicate values together,

implying 24 rules were disregarded because of redundancy.
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Table 4: Overview of the number of rules per dataset and per distance measure

Dataset squared Euclidean or unweighted Gower distance extended unweighted Gower distance
wine 234 (235) 234
glass 138 (139) 138
housing 190 (187) 190
abalone 105 (130) 105
contraceptive 52 62
titanic 54 57

Note. The values between brackets represent the results found by Carrizosa et al. (2023).

6.2.3 Construction of the compatibility set

After the set of rules is constructed, it can be derived for all observations by which rules they

are explained. Considering two observations of the titanic dataset, which are shown in Table 5,

the value of bisn can be derived per observation and per feature. Taking the squared Euclidean

distance into consideration as the distance metric, the associated set of rules for the titanic

dataset can be found in Table 3.

Table 5: Two observations from the titanic dataset

CLASS SEX AGE NSIB NPAT FARE EMB
3 0 22 1 0 7.25 2
1 1 38 1 0 71.2833 0

Considering the ordinal feature CLASS, the first observation is only explained by CLASS = 3,

implying b1(CLASS)1 = 0, b1(CLASS)2 = 0 and b1(CLASS)3 = 1. Likewise, its value for SEX is

solely explained by SEX = 0 such that b1(SEX)1 = 1 and b1(SEX)2 = 0. The continuous feature

AGE with value 22 is explained by AGE > y for y = 14.0, 19.0 and by AGE ≤ x for x = 22.0,

25.0, 28.0, 31.0, 36.0, 41.0, 50.0. The remainder of the rules for AGE does not explain the first

observation. This thus results in the respective values b1(AGE)n of 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1,

0, 1, 0, 1, 0, 1, 0 for n = 1, ..., 18 respectively. A similar reasoning applies to the continuous

features NSIB, NPAT and FARE. The categorical feature EMB conforms to the processes of

CLASS and SEX. In a similar fashion, the values for the second observation can be derived.

The values of the parameter bisn for the two observations displayed in Table 5 can be found in

Table 6.

It is important to note that the explanations for the ordinal CLASS feature change for the

extended unweighted Gower distance measure. Then, for the first observation, b1(CLASS)1 = 0,

b1(CLASS)2 = 1, b1(CLASS)3 = 0, b1(CLASS)4 = 1, b1(CLASS)5 = 1 and b1(CLASS)6 = 0, conforming

to the rules CLASS ≤ 1, CLASS > 1, CLASS ≤ 2, CLASS > 2, CLASS ≤ 3, CLASS > 3.
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Table 6: Explanations of the first two observations of the titanic dataset

Observation Feature 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Observation 1

CLASS 0 0 1
SEX 1 0
AGE 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0
NSIB 0 1 1 0
NPAT 1 0 1 0 1 0
FARE 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
EMB 0 0 1

Observation 2

CLASS 1 0 0
SEX 0 1
AGE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0
NSIB 0 1 1 0
NPAT 1 0 1 0 1 0
FARE 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0
EMB 1 0 0

Note. The value of one (zero) represents that that observation is (not) explained by rule n of feature s. If there is no
value, that rule does not exist.

6.3 InterP

The results of InterP, with a maximum of two joined explanations per cluster, for θ = 1 are

displayed in Table 7 and for θ = 4, θ = 2, θ = 0.5 and θ = 0.25 in Tables A7-A10. Looking at

Table 7, the first cluster of the wine dataset, for example, conforms to the explanation ALCOH

> 12.77 AND FLAV > 2.14, which yields a true positive rate of 100% and a false positive rate

of 3%. Giving equal weight to the accuracy and distinctiveness, the true positive rate ranges

from 6% to 100% and the false positive rate ranges from 0% to 28% across all clusters. A low

true positive rate is the consequence of the trade-off between accuracy and distinctiveness since

there exist rules that yield a higher true positive rate for that cluster (in an extreme case, for

example, taking the rule being smaller than or equal to the ninth decile value) but then the

false positive rate increases as least as much as this solution does not conform to the optimal

one (within the time limit).

On an extreme end, θ = 4 corresponds to the case that minimal weight is given to explanations

within the cluster that satisfy the cluster’s explanation (i.e., θ1 = 0.5) and maximal weight to

explanations outside the cluster that satisfy the cluster’s explanation (i.e., θ2 = 2). On the other

side of the spectrum, θ = 0.25 corresponds to the case that θ1 = 2 and θ2 = 0.5. This pattern is

also visible in the results. As the value of θ increases (decreases), the value of the true positive

rate for the clusters overall decreases (increases), but also at the gain (cost) of a lower (higher)

false positive rate since more (less) weight is attached to them. The relatively small differences

in the true positive rates and false positive rates compared to the results of Carrizosa et al.

(2023) are likely the cause of differences in the set of rules, but it is not possible to be conclusive

about this without insights into the rules they used. The sizes of the set of rules did however

differ between this paper and their paper, which supports the argument.
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Table 7: InterP clusters and cluster explanations for the various datasets with θ = 1 and
explanations of a maximum length of 2

Dataset Cluster Performance Explanations
TPR FPR

wine
1 1.00 (1.00) 0.03 (0.03) ALCOH > 12.77 AND FLAV > 2.14
2 0.86 (0.83) 0.02 (0.01) ALCOH ≤ 12.77 AND FLAV > 0.84
3 0.94 (0.98) 0.01 (0.02) FLAV ≤ 1.32 AND COLINT > 3.4

glass

1 0.76 (0.76) 0.17 (0.17) RI > 1.51735 AND Mg > 3.39
2 0.54 (0.54) 0.12 (0.12) Mg > 2.81 AND Ca > 8.12
3 0.06 (0.06) 0.00 (0.00) Na > 14.03 AND Fe > 0.14
4 0.54 (0.23) 0.01 (0.00) Al > 1.36 AND Ca > 10.56
5 1.00 (0.67) 0.02 (0.01) K ≤ 0.0 AND Ba ≤ 0.0
6 0.79 (0.79) 0.00 (0.00) Na > 14.03 AND Ba > 0.0

housing
1 0.76 (0.70) 0.05 (0.06) RM > 6.086 AND LSTAT ≤ 11.38
2 0.82 (0.81) 0.15 (0.23) INDUS > 4.39 AND LSTAT > 9.53

abalone
1 0.73 (0.71) 0.05 (0.18) WEIGHT ≤ 0.13 AND SHEWEIG ≤ 0.14
2 0.94 (0.76) 0.24 (0.23) WHWEIG > 0.45 AND SHEWEIG > 0.14

contraceptive
1 0.28 0.28 WAGE > 37.0 AND WEDUC ≤ 3.0
2 0.08 0.07 WEDUC > 3.0 AND CHILD > 3.0
3 0.32 0.13 WAGE ≤ 32.0 AND CHILD > 2.0

titanic
1 0.81 0.25 AGE > 14.0
2 0.66 0.13 SEX = 1.0 AND NPAT ≤ 2

Note. The values between brackets represent the results found by Carrizosa et al. (2023).

6.4 CinterP

The results of CinterP, with a maximum of two joined explanations per cluster, for θ1 = 0.5 and

θ2 = 0.5 and for the squared Euclidean distance (SED), unweighted Gower distance (UG) and

extended unweighted Gower distance (EUG) are presented in Table 8. Since θ1 = θ2, accuracy

and distinctiveness have equal importance. The housing dataset, for example, can be explained

by RAD ≤ 8.0 AND TAX ≤ 666.0 for the first cluster and TAX > 437.0 AND PTRATIO

≤ 20.2 for the second cluster, yielding a total distance between the observations of 1.5 · 106,

twice a true positive rate of 100% and twice a false positive rate of 0%. The results for the

various datasets of the combinations (0.5,1), (0.5,2), (1,0.5) and (2,0.5) for (θ1,θ2) are displayed

in Tables A11-A14.
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Table 8: CinterP clusters and cluster explanations for the various datasets with θ1 = 0.5 and
θ2 = 0.5 and explanations of a maximum length of 2

Dataset Distance Cluster Performance Explanations
Intra-homogeneity TPR FPR

wine

SED
1

1.2 · 105 (5.0 · 103)
1.00 (1.00) 0.00 (0.00) ALCOH ≤ 12.77 AND PHENF > 0.26

2 1.00 (1.00) 0.00 (0.00) PHENF ≤ 0.26
3 1.00 (1.00) 0.00 (0.00) ALCOH > 12.77 AND PHENF > 0.26

UG
1

1.8 · 104
1.00 0.00 HUE > 1.24

2 1.00 0.00 FLAV ≤ 1.32 AND HUE ≤ 1.24
3 1.00 0.00 FLAV > 1.32 AND HUE ≤ 1.24

EUG
1

4.2 · 104
1.00 0.00 PROL > 1265.0

2 1.00 0.00 ODODW ≤ 2.52
3 1.00 0.00 PROL ≤ 1265.0 AND ODODW > 2.52

glass

SED

1

4.5 · 104 (7.8 · 102)

0.07 (0.77) 0.00 (0.03) Al ≤ 0.87 AND K > 0.19
2 0.95 (1.00) 0.03 (0.00) RI > 1.51869 AND Mg > 2.81
3 0.89 (0.95) 0.11 (0.08) RI > 1.52211 AND Mg ≤ 0.0
4 0.58 (1.00) 0.25 (0.01) RI ≤ 1.52211 AND Ca > 10.56
5 0.78 (0.96) 0.14 (0.01) Si ≤ 72.12 AND Ca > 8.6
6 0.88 (0.44) 0.04 (0.00) Na > 14.03 AND Si > 72.79

UG

1

5.6 · 103

0.14 0.00 Al ≤ 0.87 AND K > 0.19
2 0.93 0.03 RI > 1.51869 AND Mg > 2.81
3 0.89 0.11 RI > 1.52211 AND Mg ≤ 0.0
4 0.54 0.23 RI ≤ 1.52211 AND Ca > 10.56
5 0.74 0.13 Si ≤ 72.12 AND Ca > 8.6
6 0.85 0.04 Na > 14.03 AND Si > 72.79

EUG

1

3.3 · 104

0.14 0.00 Al ≤ 0.87 AND K > 0.19
2 0.93 0.03 RI > 1.51869 AND Mg > 2.81
3 0.89 0.11 RI > 1.52211 AND Mg ≤ 0.0
4 0.54 0.23 RI ≤ 1.52211 AND Ca > 10.56
5 0.74 0.13 Si ≤ 72.12 AND Ca > 8.6
6 0.85 0.04 Na > 14.03 AND Si > 72.79

housing

SED
1

1.5 · 106 (6.0 · 104) 1.00 (1.00) 0.00 (0.04) RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 (1.00) 0.00 (0.00) TAX > 437.0 AND PTRATIO ≤ 20.2

UG
1

1.6 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 TAX > 437.0 AND PTRATIO ≤ 20.2

EUG
1

4.0 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 TAX > 437.0 AND PTRATIO ≤ 20.2

abalone

SED
1

3.1 · 106 (2.2 · 105) 1.00 (0.82) 0.00 (0.16) SEX = 2.0 AND SHEWEIG ≤ 0.12
2 1.00 (1.00) 0.17 (0.00) DIAM> 0.255

UG
1

5.9 · 105 1.00 0.00 SEX = 2.0
2 1.00 0.17 DIAM> 0.255

EUG
1

7.4 · 105 1.00 0.00 SEX = 2.0
2 1.00 0.17 DIAM> 0.255

contraceptive

SED
1

1.7 · 107
0.66 0.27 WAGE ≤ 37.0 AND CHILD > 2.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

UG
1

1.3 · 106
0.66 0.27 WAGE ≤ 37.0 AND CHILD > 2.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

EUG
1

1.4 · 106
0.66 0.27 WAGE ≤ 37.0 AND CHILD > 2.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

titanic

SED
1

6.1 · 106 1.00 0.00 NPAT ≤ 2.0
2 1.00 0.00 NPAT > 2.0

UG
1

4.2 · 105 0.97 0.00 FARE ≤ 79.2
2 1.00 0.46 FARE > 79.2

EUG
1

8.7 · 105 1.00 0.00 All in
2 0.00 0.00 -

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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A notable difference between the results in this paper and the results of Carrizosa et al. (2023)

is the difference in intra-homogeneity. These differences are likely due to the difference in the

normalization technique applied between the two papers. Carrizosa et al. (2023) do namely not

state which normalization technique they use. For example, using min-max normalization rather

than Z-score normalization, the intra-homogeneity of the housing dataset for θ1 = 0.5 and θ2

= 0.5 drops to 8.1 · 104, considering SED, while keeping similar performance regarding the true

positive rates and false positive rates. For the wine dataset, the intra-homogeneity then drops to

7.8 ·102, while also having similar performance with regard to the TPRs and FPRs. For the glass

dataset, the intra-homogeneity then drops to 1.3 · 103 and the TPRs and FPRs become similar

to that of UG and EUG. Since the cluster allocations and the precise set of rules of Carrizosa et

al. (2023) are unknown, it cannot be said of part of the differences in the performance measures

is also due to different cluster allocations or differences in the set of rules. The TPRs and FPRs

are, however, similar which indicates that the cluster allocations cannot be totally different.

Another difference between this paper and the paper of Carrizosa et al. (2023) concerns the

definitions of αi and βki in the MILP of CinterP. Although the binary restrictions used in this

paper are technically the correct definitions, Carrizosa et al. (2023) use the interval domain [0,1],

as this speeds up the process of finding the optimal solution, especially considering there is a

time limit, since the constraints ensure these variables will eventually either take the value zero

or one. The results of Table 8 only change for the wine dataset if the time limit is reduced from

ten to five minutes, which mitigates the possibility of the differences in the definitions being the

main cause of the differences in results.

Despite the differences in the set of rules, the definitions of αi and βki and (most probably)

the normalization technique between the two papers, the implementation can be considered to

be successful since the true positive rate and false positive rate of the clusters are similar and

interpretability of the clusters is ensured. The differences in intra-homogeneity are most likely

due to different choices in normalization techniques, and thus the consequence of an assumption

that is made rather than a difference in the method used.

6.5 Distance measures

Since distances between observations are measured differently for SED, UG and EUG, observa-

tions can be allocated differently respective to the distance measure under consideration. For

example, although the selection of rules for the glass dataset in Table 8 is exactly the same for

SED, UG and EUG, the performance measures alter, indicating different cluster allocations (as

otherwise the true positive rate and false positive rate have to be the same across SED, UG
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and EUG, despite having a different intra-homogeneity). Since distances between observations

are measured differently for the different distance measures, the results for the various datasets

across SED, UG and EUG can only be compared based on their TPR and FPR.

For the datasets containing continuous features only, meaning the wine and glass datasets, the

performance across the distance measures and combinations of θ1 and θ2 are mostly similar. In

some cases, however, UG and EUG perform better than SED in allocating the observations to

clusters and finding rules for the corresponding clusters, like for the wine dataset with θ1 = 1

and θ2 = 0.5 in Table A13. Performing better (worse) means, for all clusters, the TPR is at

least as high while the FPR did not increase or the FPR is at most as high while the TPR did

not decrease. For the different distance measures concerning the glass dataset with θ1 = 0.5 and

θ2 = 0.5, see Table 8, some clusters yield a better TPR and FPR but other clusters have worse

TPR and FPR at the same time. However, for any combination of θ1 and θ2, SED never performs

better than UG or EUG. The only difference between SED on the one hand and UG and EUG

on the other hand, having continuous features only, is the scaling of these continuous features.

SED namely uses Z-score normalization whereas UG and EUG use range-normalization with

the Manhattan distance.

For the housing and abalone datasets that contain continuous features and a single categorical

feature, no differences regarding the true and false positive rates are found for any of the θ1

and θ2 combinations. Moreover, six out of ten times, SED, UG and EUG provided the exact

same cluster explanations, whereas the other four times the explanations of SED were longer

than those of UG and EUG, namely SEX = 2.0 AND SHEWEIG ≤ 0.12 for the first cluster

of the abalone dataset using SED compared with SEX = 2.0 for the first cluster using UG

and EUG, indicating a benefit of UG and EUG over SED regarding interpretability. In this

case, the difference in measuring the distance between categorical features across SED on the

one hand and UG and EUG on the other hand might be flattered since there are many more

continuous features than categorical features in both datasets. If, for instance, only the first

four features of the housing dataset would be considered, meaning three continuous and one

categorical feature instead of twelve continuous and one categorical feature, EUG performs

better than SED and UG. Not only does EUG obtain better TPRs and FRPs (100% and 0%

for both clusters compared to 76% and 0% for the first cluster and 100% and 5% for the second

cluster using SED and UG) but it also provides shorter cluster explanations. This result is

in line with the statement of D’Orazio (2021) regarding the unbalanced contribution becoming

more apparent when the relative number of categorical features increases. The relatively more

categorical features a dataset has, the more the benefit of EUG should become evident.
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Regarding the contraceptive dataset having two continuous, three dummy and four ordinal

features, EUG never performs worse than the SED or UG. Having equal true and false positive

weights or more weight towards the true positive rate, all three distance measures yield the

same TPR, FPR and cluster explanations. When more weight is put towards the false positive

rate, EUG either performs better or provides a shorter explanation while having similar TPRs

and FPRs. For θ1 = 0.5 and θ2 = 1, SED performs worse than UG and EUG. The titanic

dataset contains four continuous features, one dummy feature, one categorical feature and one

ordinal feature. Rather surprisingly, SED performs the best for any combination of θ1 and θ2

since it either separates the observations into clusters whereas EUG cannot or has higher true

positive rates or lower false positive rates compared to UG. However, if a different seed for the

MIP start is chosen, SED, UG and EUG all yield true positive rates of 97% and 100%, false

positive rates of 0% and respectively 46% and the same cluster explanations. This result thus

shows the importance of a good initial solution. Hereby is to say that the k-means algorithm

is based on the Euclidean distance metric as well. Additionally, since the Euclidean distance

metric is unable to handle missing values, observations containing missing values were deleted

from the titanic dataset. This, however, mitigates the ability of the Gower distance to account

for missing values. If these observations were not deleted, and using the original seed, EUG

is able to divide the titanic dataset into two clusters. In general, values could also be missing

for a reason, so simply deleting observations containing missing values could result in biased

estimates and therefore reduces the statistical power of the analysis, which also implies a benefit

of the (extended) unweighted Gower distance over the squared Euclidean distance.

In conclusion, with advanced initialization, the extended unweighted Gower distance provides

the most promising results for allocating observations to clusters and finding cluster explana-

tions. Either it has a similar performance to the squared Euclidean distance and unweighted

Gower distance or it outperforms (one of the) two or it has a similar performance but shorter

explanations. Moreover, the extended unweighted Gower distance can handle missing data.

7 Conclusion

Although the importance of interpretable clustering is well-understood (Doshi-Velez & Kim,

2017), most clustering algorithms focus more on performance than interpretability (Bertsimas

et al., 2021). Therefore, Carrizosa et al. (2023) introduced a new approach of explaining clusters

in which the explanations are based on the observation’s characteristics, combined with the AND

operator. Two different MILPs are considered, one for finding explanations when clusters are

already given, referred to as InterP, and one for simultaneously finding clusters and their explan-
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ations, referred to as CinterP. The performance measures considered are the sum of distances

between observations within the same cluster (i.e., intra-homogeneity), the rate of observations

within the cluster satisfying the cluster’s explanation (i.e., accuracy) and the rate of observa-

tions outside the cluster satisfying the cluster’s explanation (i.e., distinctiveness). Since the

approach of Carrizosa et al. (2023) considers the squared Euclidean distance, CinterP is limited

to a distance measure suitable for continuous features only (Lee, 2022), whereas most datasets

consist of multiple feature types. This paper, therefore, considers two forms of the more widely

applicable Gower distance (Gower, 1971), namely the unweighted Gower distance and the ex-

tended unweighted Gower distance. The extended unweighted Gower distance also accounts for

ordinal features (Podani, 1999) and tackles the unequal contribution of features the unweighted

Gower distance faces (D’Orazio, 2021).

Based on six datasets that differ in their feature types, the squared Euclidean distance, the

unweighted Gower distance and the extended unweighted Gower distance are compared. This

comparison is based on the accuracy and distinctiveness of the clusters as well as the cluster

explanations. If yielding unequal results, the use of the extended unweighted Gower distance

results in better cluster allocations or shorter cluster explanations compared to the squared Eu-

clidean distance and the unweighted Gower distance, implying the extended unweighted Gower

distance is the preferred distance measure for the MILP formulation of CinterP.

To end, this research can be improved in several ways. Firstly, it would be interesting to look

into the initial solution for the MIP start. For example, compared to the k-means algorithm,

the Gaussian Mixture model does not need circular-shaped data to work well and DBSCAN can

handle datasets with varying densities and cluster sizes or identify clusters with arbitrary shapes

(McGregor, 2020). Secondly, since the unweighted Gower distance assigns equal weight to all

features, clusters can be dominated by one type of feature type (Hendrickson, 2014). Assigning

different weights may reduce this problem. Thirdly, the extended unweighted Gower distance can

be further extended with other types of features, like circular and proportion features (Pavoine,

Vallet, Dufour, Gachet & Daniel, 2009) or the partial distances can be measured differently

(Šulc, Matějka, Procházka & Řezanková, 2017). Lastly, restricting features to explain a single

cluster only or modeling fairness constraints are other tracks of research worth considering.
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Šulc, Z., Matějka, M., Procházka, J. & Řezanková, H. (2017). Evaluation of the gower coefficient

modifications in hierarchical clustering. Advances in Methodology and Statistics, 14 (1),

37–48.

Toragay, O. (2019). What are the benefits of linearization? Retrieved from https://or

.stackexchange.com/questions/2892/what-are-the-benefits-of-linearization

Tran, L., Fan, L. & Shahabi, C. (2021). Clustering mixed-type data with correlation-preserving

28



embedding. In Database systems for advanced applications: 26th international conference,

dasfaa 2021, taipei, taiwan, april 11–14, 2021, proceedings, part ii 26 (pp. 342–358).

van Fraassen, F., Hensen, C., de Wind, M. & van Exel, F. (2023). Home sweet home: Predicting

housing prices with machine learning.

Zhang, C., Gupta, A., Kauten, C., Deokar, A. V. & Qin, X. (2019). Detecting fake news for

reducing misinformation risks using analytics approaches. European Journal of Operational

Research, 279 (3), 1036-1052. doi: https://doi.org/10.1016/j.ejor.2019.06.022

29



8 Appendix

Table A1: Description of the wine dataset with 178 observations and 3 classes

Feature Description Feature type
ALCOH Alcohol Continuous
MALAC Malic acid Continuous
ASH Ash Continuous
ALCASH Alcalinity of ash Continuous
Mg Magnesium Continuous
PHEN Total phenols Continuous
FLAV Flavanoids Continuous
PHENF Nonflavanoid phenols Continuous
PROAN Proanthocyanins Continuous
COLINT Color intensity Continuous
HUE Hue Continuous
ODODW OD280/OD315 of diluted wines Continuous
PROL Proline Continuous

Type of wine (class 1, 2 or 3)

Table A2: Description of the glass dataset with 214 observations and 6 classes

Feature Description Feature type
Ri Refractive index Continuous
Na Sodium Continuous
Mg Magnesium Continuous
Al Aluminium Continuous
Si Silicon Continuous
K Potassium Continuous
Ca Calcium Continuous
Ba Barium Continuous
Fe Iron Continuous
Class Type of glass (class 1, 2, 3, 4, 5 or 6)

Table A3: Description of the housing dataset with 392 observations and 2 classes

Feature Description Feature type
CRIM per capita crime rate by town Continuous
ZONE proportion of residential land zoned for lots over 25,000 sq.ft. Continuous
INDUS proportion of non-retail business acres per town Continuous
CHAS Indicates whether the Charles River is nearby (1 if tract bounds river, 0 otherwise) Dummy
NOXID nitric oxides concentration (parts per 10 million) Continuous
ROOMS average number of rooms per dwelling Continuous
AGE proportion of owner-occupied units built prior to 1940 Continuous
DIST weighted distances to five Boston employment centres Continuous
RAD index of accessibility to radial highways Continuous
TAX full-value property-tax rate per $10,000 Continuous
PTRATIO pupil-teacher ratio by town Continuous
BPROP 1000(Bk&0.63)2 where Bk is the proportion of blacks by town Continuous
LSTAT % lower status of the population Continuous
Class Higher (class 0) or lower (class 1) than the median value of the owner-occupied

homes in $1000’s
Note. Features are displayed to their most specific type, i.e. a dummy is more specific than categorical.
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Table A4: Description of the abalone dataset with 4177 observations and 2 classes

Feature Description Feature type
SEX Sex (0 if male, 1 if female, 2 if infant) Categorical
LENGHT Length Continuous
DIAM Diameter Continuous
HEIGHT Height Continuous
WHWEIG Whole weight Continuous
SHUWEIG Shucked weight Continuous
VIWEIG Viscera weight Continuous
SHEWEIG Shell weight Continuous
Class Higher (class 2) or lower (class 1) than the median value of the number of the rings

Table A5: Description of the contraceptive dataset with 1473 observations and 3 classes

Feature Description Feature type
WAGE Wife’s age Continuous
WEDUC Wife’s education (1 if low, 2 if medium-low, 3 if medium-high, 4 if high) Ordinal
HEDUC Husband’s education (1 if low, 2 if medium-low, 3 if medium-high, 4 if high) Ordinal
CHILD Number of children ever born Continuous
RELIG Wife’s religion (1 if Islam, 0 otherwise Dummy
WORK Indicates whether the wife is working now (1 if working, 0 otherwise) Dummy
HOCC Husband’s occupation (1, 2, 3 or 4) Ordinal
STLIV Standard-of-living (1 if low, 2 if medium-low, 3 if medium-high, 4 if high) Ordinal
MEDEXP Media exposure (1 if not good, 0 if good) Dummy
Class No (class 1), long-term (class 2) or short-term (class 3) contraceptive use

Note. Features are displayed to their most specific type, i.e. a ordinal is more specific than categorical.

Table A6: Description of the titanic dataset with 712 observations and 2 classes

Feature Description Feature type
CLASS Passenger class (1 if first, 2 if second, 3 if third) Ordinal
SEX Sex (0 if male, 1 if female) Dummy
AGE Age Continuous
NSIB Number of siblings & spouses of the passenger aboard at the Titanic Continuous
NPAT Number of parents & children of the passenger aboard at the Titanic Continuous
FARE Ticket price paid in ponds Continuous
EMB Port of Embarkation (0 if Cherbourg, 1 if Queenstown, 2 if Southampton)) Categorical
Class Passenger did not survive (class 0) or did survive (class 1)
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Table A7: InterP clusters and cluster explanations for the various datasets with θ = 4 and
explanations of a maximum length of 2

Dataset Cluster Performance Explanations
TPR FPR

wine
1 0.97 (0.86) 0.02 (0.01) FLAV > 2.14 AND PROL > 740.0
2 0.85 (0.77) 0.01 (0.00) ALCOH ≤ 12.77 AND COLINT ≤ 4.7
3 0.88 (0.90) 0.00 (0.00) FLAV ≤ 1.32 AND COLINT > 4.1

glass

1 0.10 (0.14) 0.00 Ri > 1.52211 AND Mg > 3.54
2 0.13 (0.14) 0.00 (0.01) Mg > 3.76 AND Ca ≤ 8.48
3 0.06 (0.06) 0.00 (0.00) Na > 14.03 AND Fe > 0.22
4 0.23 (0.23) 0.00 (0.00) Ri ≤ 1.5167 AND Si ≤ 71.77
5 0.22 (0.22) 0.00 (0.00) K ≤ 0.0 AND Ca ≤ 7.97
6 0.79 (0.79) 0.00 (0.00) Na > 14.03 AND Ba > 0.0

housing
1 0.68 (0.64) 0.02 (0.01) ROOMS > 6.086 AND LSTAT ≤ 9.53
2 0.66 (0.45) 0.04 (0.05) TAX > 289.0 AND LSTAT > 13.33

abalone
1 0.49 (0.50) 0.02 (0.04) WHWEIG ≤ 0.2715 AND VIWEIG ≤ 0.06
2 0.70 (0.42) 0.05 (0.05) LENGTH > 0.525 AND SHEWEIG > 0.235

contraceptive
1 0.10 0.01 WAGE > 32.0 AND CHILD ≤ 1.0
2 0.00 0.00 WAGE > 45.0 AND WEDUC > 4.0
3 0.00 0.00 WAGE > 45.0 AND WEDUC > 4

titanic
1 0.54 0.12 SEX = 0.0 AND FARE ≤ 15.7417
2 0.28 0.01 CLASS = 1.0 AND SEX = 1.0

Note. The values between brackets represent the results found by Carrizosa et al. (2023).

Table A8: InterP clusters and cluster explanations for the various datasets with θ = 2 and
explanations of a maximum length of 2

Dataset Cluster Performance Explanations
TPR FPR

wine
1 0.97 (1.00) 0.02 (0.03) FLAV > 2.14 AND PROL > 740.0
2 0.85 (0.83) 0.01 (0.01) ALCOH ≤ 12.77 AND COLINT ≤ 4.7
3 0.94 (0.90) 0.01 (0.00) FLAV ≤ 1.32 AND COLINT > 3.4

glass

1 0.43 (0.43) 0.07 (0.07) Mg > 3.39 AND Ca > 8.6
2 0.33 (0.33) 0.04 (0.04) Mg > 3.48 AND Ca ≤ 8.12
3 0.06 (0.06) 0.00 (0.00) Na > 14.03 AND Fe > 0.14
4 0.23 (0.23) 0.00 (0.00) Ri ≤ 1.5167 AND Si ≤ 71.77
5 0.22 (0.22) 0.00 (0.00) K ≤ 0.0 AND Ca ≤ 7.97
6 0.79 (0.79) 0.00 (0.00) Na > 14.03 AND Ba > 0.0

housing
1 0.76 (0.70) 0.05 (0.04) ROOMS > 6.086 AND LSTAT ≤ 11.38
2 0.66 (0.70) 0.04 (0.14) TAX > 289.0 AND LSTAT > 13.33

abalone
1 0.72 (0.50) 0.05 (0.04) WEIGHT ≤ 0.13 AND SHEWEIG ≤ 0.12
2 0.85 (0.65) 0.15 (0.14) LENGTH > 0.485 AND WEIGHT > 0.115

contraceptive
1 0.17 0.02 WAGE > 27.0 AND CHILD ≤ 1.0
2 0.00 0.00 WEDUC > 4.0
3 0.01 0.00 WAGE ≤ 22.0 AND RELIG = 0.0

titanic
1 0.81 0.25 SEX = 0.0 AND AGE > 14.0
2 0.66 0.13 SEX = 1.0 AND NPAT ≤ 2

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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Table A9: InterP clusters and cluster explanations for the various datasets with θ = 0.5 and
explanations of a maximum length of 2

Dataset Cluster Performance Explanations
TPR FPR

wine
1 1.00 (1.00) 0.03 (0.03) ALCOH > 12.77 AND FLAV > 2.14
2 0.86 (0.89) 0.02 (0.07) ALCOH ≤ 12.77 AND FLAV > 0.84
3 1.00 (1.00) 0.03 (0.03) FLAV ≤ 1.75 AND COLINT > 3.4

glass

1 0.84 0.23 Ri > 1.51735 AND Mg > 2.81
2 0.62 0.20 Mg > 2.81 AND Ca ≤ 8.48
3 0.12 0.01 Na > 13.44 AND Fe > 0.22
4 0.92 0.05 Na ≤ 13.44 AND Mg ≤ 2.81
5 1.0 0.02 K ≤ 0.0 AND Ba ≤ 0.0
6 0.90 0.02 Na > 13.3 AND Al 1.76

housing
1 0.86 (0.78) 0.15 (0.19) ROOMS > 5.95 AND LSTAT ≤ 13.33
2 0.99 (0.99) 0.42 (0.44) LSTAT ≤ 7.74

abalone
1 0.93 (0.88) 0.24 (0.41) LENGTH ≤ 0.525 AND WEIGHT ≤ 0.16
2 0.94 (0.86) 0.24 (0.34) WHWEIG >0.45 AND SHEWEIG > 0.14

contraceptive
1 0.72 0.52 WEDUC ≤ 3 AND WEDUC > 3
2 0.43 0.14 CHILD > 2.0
3 0.68 0.40 WAGE ≤ 41.0 AND CHILD > 1.0

titanic
1 0.85 0.32 SEX = 0.0
2 0.68 0.15 SEX = 1.0

Note. The values between brackets represent the results found by Carrizosa et al. (2023).

Table A10: InterP clusters and cluster explanations for the various datasets with θ = 0.25 and
explanations of a maximum length of 2

Dataset Cluster Performance Explanations
TPR FPR

wine
1 1.00 (1.00) 0.03 (0.03) ALCOH > 12.77 AND FLAV > 2.14
2 0.94 (0.94) 0.19 (0.17) COLINT ≤ 4.7 AND PROL ≤ 1050.0
3 1.00 (1.00) 0.03 (0.03) FLAV ≤ 1.75 AND COLINT > 3.4

glass

1 0.94 0.37 Al ≤ 1.49 AND Ca ≤ 10.56
2 0.95 0.68 Na ≤ 14.03 AND Ba ≤ 0.64
3 0.35 0.05 Ri ≤ 1.51735 AND Al ≤ 1.36
4 0.92 0.05 Na ≤ 13.44 AND Mg ≤ 2.81
5 1.0 0.02 K ≤ 0.0 AND Ba ≤ 0.0
6 0.90 0.02 Ba > 0.0 AND Fe ≤ 0.14

housing
1 0.94 (0.98) 0.36 (0.80) PTRATIO ≤ 20.9 AND LSTAT ≤ 15.69
2 0.99 (0.99) 0.42 (0.44) LSTAT > 7.74

abalone
1 0.93 (1.00) 0.24 (0.74) LENGTH ≤ 0.525 AND WEIGHT ≤ 0.16
2 0.98 (0.97) 0.47 (0.63) DIAM > 0.295 AND SHEWEIG > 0.0925

contraceptive
1 1.00 1.00 WEDUC ≤ 4
2 0.74 0.42 WEDUC > 2 AND CHILD > 1.0
3 0.93 0.76 WAGE ≤ 37.0

titanic
1 0.96 0.81 FARE ≤ 79.2
2 0.91 0.72 FARE > 7.8958

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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Table A11: CinterP clusters and cluster explanations for the various datasets with θ1 = 0.5 and
θ2 = 1 and explanations of a maximum length of 2

Dataset Distance Cluster Performance Explanations
Intra-homogeneity TPR FPR

wine

SED
1

1.5 · 105 (5.2 · 103)
0.63 (1.00) 0.00 (0.00) PROL > 1265.0

2 1.00 (1.00) 0.05 (0.00) PROL ≤ 740.0
3 0.22 (1.00) 0.00 (0.00) MALAC > 2.68 AND PROL > 740.0

UG
1

1.7 · 104
1.00 0.00 HUE > 1.24

2 1.00 0.00 PHEN ≤ 2.53 AND HUE ≤ 1.24
3 1.00 0.00 PHEN > 2.53 AND HUE ≤ 1.24

EUG
1

4.5 · 104
1.00 0.00 PROL > 1265.0

2 1.00 0.00 COLINT ≤ 4.1 AND HUE ≤ 1.24
3 1.00 0.00 COLINT > 4.1 AND PROL ≤ 1265.0

glass

SED

1

5.2 · 104 (9.2 · 102)

0.14 (0.53) 0.00 (0.02) Al > 1.23 AND K > 0.19
2 0.93 (1.00) 0.03 (0.00) Ri ≤ 1.51869 AND Mg > 2.81
3 0.88 (1.00) 0.11 (0.04) Ri > 1.52211 AND Mg ≤ 0.0
4 0.23 (1.00) 0.00 (0.01) Na > 14.03 AND Ca > 10.56
5 0.74 (0.91) 0.13 (0.00) Si ≤ 72.12 AND Ca > 8.6
6 0.81 (0.44) 0.00 (0.00) K ≤ 0.08 AND Ba > 0.0

UG

1

5.6 · 103

0.14 0.00 Al > 1.23 AND K > 0.19
2 0.93 0.03 Ri ≤ 1.51869 AND Mg > 2.81
3 0.88 0.11 Ri > 1.52211 AND Mg ≤ 0.0
4 0.23 0.00 Na > 14.03 AND Ca > 10.56
5 0.74 0.13 Si ≤ 72.12 AND Ca > 8.6
6 0.81 0.00 K ≤ 0.08 AND Ba > 0.0

EUG

1

3.3 · 104

0.14 0.00 Al > 1.23 AND K > 0.19
2 0.93 0.03 Ri ≤ 1.51869 AND Mg > 2.81
3 0.88 0.11 Ri > 1.52211 AND Mg ≤ 0.0
4 0.23 0.00 Na > 14.03 AND Ca > 10.56
5 0.74 0.13 Si ≤ 72.12 AND Ca > 8.6
6 0.81 0.00 K ≤ 0.08 AND Ba > 0.0

housing

SED
1

1.5 · 106 (6.0 · 104) 1.00 (0.91) 0.00 (0.00) RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 (1.00) 0.00 (0.00) CRIM > 0.09849 AND TAX > 666.0

UG
1

1.6 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

EUG
1

4.0 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

abalone

SED
1

3.1 · 106 (2.2 · 105) 1.00 (0.82) 0.00 (0.16) SEX = 2.0 AND SHEWEIG ≤ 0.12
2 0.82 (1.00) 0.00 (0.00) LENGTH > 0.425

UG
1

5.9 · 105 1.00 0.00 SEX = 2.0
2 0.82 0.00 LENGTH > 0.425

EUG
1

7.4 · 105 1.00 0.00 SEX = 2.0
2 0.82 0.00 LENGTH > 0.425

contraceptive

SED
1

1.7 · 107
0.27 0.04 WAGE ≤ 37.0 AND CHILD > 4.0

2 0.86 0.00 WAGE ≤ 27.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

UG
1

1.3 · 106
0.45 0.10 WAGE ≤ 37.0 AND CHILD > 3.0

2 0.86 0.00 WAGE ≤ 27.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

EUG
1

1.4 · 106
0.45 0.10 WAGE ≤ 37.0 AND CHILD > 3.0

2 0.86 0.00 WAGE ≤ 27.0
3 1.00 0.11 WAGE > 37.0

titanic

SED
1

6.1 · 106 1.00 0.00 NPAT ≤ 2.0
2 1.00 0.00 NPAT > 2.0

UG
1

4.2 · 105 0.97 0.00 FARE ≤ 79.2
2 0.58 0.15 NPAT > 0.0 AND FARE > 79.2

EUG
1

8.7 · 105 1.00 0.00 CLASS ≤ 3.0
2 - - CLASS > 3.0 AND FARE ≤ 12.875

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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Table A12: CinterP clusters and cluster explanations for the various datasets with θ1 = 0.5 and
θ2 = 2 and explanations of a maximum length of 2

Dataset Distance Cluster Performance Explanations
Intra-homogeneity TPR FPR

wine

SED
1

1.8 · 105 (6.2 · 103)
1.00 (1.00) 0.00 (0.00) Mg > 95.0

2 1.00 (1.00) 0.00 (0.00) ALCASH ≤ 16.8 AND Mg ≤ 95.0
3 1.00 (1.00) 0.00 (0.00) ALCASH > 16.8 AND Mg ≤ 95.0

UG
1

1.7 · 104
1.00 0.00 HUE > 1.24

2 1.00 0.00 PHEN ≤ 2.53 AND HUE ≤ 1.24
3 1.00 0.00 PHEN > 2.53 AND HUE ≤ 1.24

EUG
1

5.0 · 104
1.00 0.00 FLAV > 0.84 AND PROL > 1265.0

2 1.00 0.00 ALCASH > 18.6 AND PROL ≤ 1265.0
3 1.00 0.00 ALCASH ≤ 18.6 AND PROL ≤ 1265.0

glass

SED

1

5.2 · 104 (8.6 · 102)

0.14 (0.24) 0.00 (0.00) Al > 1.23 AND K > 0.19
2 0.88 (1.00) 0.03 (0.00) Mg > 2.81 AND Ca ≤ 8.78
3 0.67 (1.00) 0.00 (0.04) Ri > 1.52211 AND Na ≤ 12.68
4 0.15 (0.90) 0.00 (0.00) Ri ≤ 1.51869 AND Ca > 9.57
5 0.26 (0.91) 0.00 (0.00) Mg > 3.76 AND Ca > 8.6
6 0.81 (0.40) 0.00 (0.00) K ≤ 0.08 AND Ba > 0.0

UG

1

5.6 · 103

0.14 0.00 Al > 1.23 AND K > 0.19
2 0.88 0.03 Mg > 2.81 AND Ca ≤ 8.78
3 0.67 0.00 Ri > 1.52211 AND Na ≤ 12.68
4 0.15 0.00 Ri ≤ 1.51869 AND Ca > 9.57
5 0.26 0.00 Mg > 3.76 AND Ca > 8.6
6 0.81 0.00 K ≤ 0.08 AND Ba > 0.0

EUG

1

3.3 · 104

0.14 0.00 Al > 1.23 AND K > 0.19
2 0.88 0.03 Mg > 2.81 AND Ca ≤ 8.78
3 0.67 0.00 Ri > 1.52211 AND Na ≤ 12.68
4 0.08 0.00 Ri ≤ 1.5167 AND Ca > 9.57
5 0.49 0.03 Ri > 1.52043 AND Mg > 3.48
6 0.85 0.04 Mg ≤ 0.0 AND Ba > 0.0

housing

SED
1

1.5 · 106 (6.0 · 104) 1.00 (0.91) 0.00 (0.00) RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 (1.00) 0.00 (0.00) CRIM > 0.09849 AND TAX > 666.0

UG
1

1.6 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

EUG
1

4.0 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

abalone

SED
1

3.1 · 106 (2.2 · 105) 1.00 (0.82) 0.00 (0.16) SEX = 2.0 AND SHEWEIG ≤ 0.12
2 0.82 (1.00) 0.00 (0.00) LENGTH > 0.425

UG
1

5.9 · 105 1.00 0.00 SEX = 2.0
2 0.82 0.00 LENGTH > 0.425

EUG
1

7.4 · 105 1.00 0.00 SEX = 2.0
2 0.82 0.00 LENGTH > 0.425

contraceptive

SED
1

1.7 · 107
0.16 0.01 WAGE ≤ 37.0 AND CHILD > 5.0

2 0.86 0.00 WAGE ≤ 27.0
3 0.72 0.00 WAGE > 41.0

UG
1

1.3 · 106
0.16 0.01 WAGE ≤ 37.0 AND CHILD > 5.0

2 0.86 0.00 WAGE ≤ 27.0
3 0.72 0.00 WAGE > 41.0

EUG
1

1.4 · 106
0.16 0.01 WAGE ≤ 37.0 AND CHILD > 5.0

2 0.86 0.00 WAGE ≤ 27.0
3 1.00 0.11 WAGE > 37.0

titanic

SED
1

6.1 · 106 1.00 0.00 NPAT ≤ 2.0
2 1.00 0.00 NPAT > 2.0

UG
1

4.2 · 105 0.97 0.00 FARE ≤ 79.2
2 0.35 0.04 NPAT > 1.0 AND FARE > 79.2

EUG
1

8.7 · 105 1.00 0.00 CLASS ≤ 3.0
2 - - CLASS > 3.0 AND FARE ≤ 12.875

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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Table A13: CinterP clusters and cluster explanations for the various datasets with θ1 = 1 and
θ2 = 0.5 and explanations of a maximum length of 2

Dataset Distance Cluster Performance Explanations
Intra-homogeneity TPR FPR

wine

SED
1

1.5 · 105 (5.0 · 103)
1.00 (1.00) 0.22 (0.00) MALAC ≤ 2.68 AND PROL > 1050.0

2 1.00 (1.00) 0.05 (0.00) PROL ≤ 740.0
3 0.84 (1.00) 0.31 (0.00) FLAV > 3.24 AND PROL > 740.0

UG
1

1.7 · 104
1.00 0.00 HUE > 1.24

2 1.00 0.00 PHEN ≤ 2.53 AND HUE ≤ 1.24
3 1.00 0.00 PHEN > 2.53 AND HUE ≤ 1.24

EUG
1

4.5 · 104
1.00 0.00 PROL > 1265.0

2 1.00 0.00 COLINT ≤ 4.1 AND PROL ≤ 1265.0
3 1.00 0.00 COLINT > 4.1 AND PROL ≤ 1265.0

glass

SED

1

3.8 · 105 (7.8 · 102)

0.93 (0.80) 0.01 (0.03) Fe ≤ 0.22
2 1.00 (1.00) 0.00 (0.00) Al ≤ 0.33 AND Ba > 0.64
3 - (1.00) - (0.15) Al ≤ 0.33 AND Ba > 0.64
4 - (1.00) - (0.01) Ca ≤ 72.39 AND Fe > 0.14
5 - (0.92) - (0.01) Al ≤ 0.33 AND Ba > 0.64
6 - (0.67) - (0.00) Al ≤ 0.33 AND Ba > 0.64

UG

1

5.6 · 103

1.00 1.00 Na ≤ 12.85 AND Ca > 9.02
2 0.97 0.08 Ri ≤ 1.52043 AND Mg > 2.81
3 0.88 0.11 Ri > 1.52211 AND Mg ≤ 0.0
4 0.85 0.69 Mg ≤ 0.33 AND Ba ≤ 0.0
5 0.92 0.36 Si ≤ 72.39 AND Ca > 8.6
6 0.92 0.12 Na > 13.7 AND Si > 72.79

EUG

1

3.3 · 104

1.00 1.00 Na ≤ 12.85 AND Ca > 9.02
2 0.97 0.08 Ri ≤ 1.52043 AND Mg > 2.81
3 0.88 0.11 Ri > 1.52211 AND Mg ≤ 0.0
4 0.85 0.69 Mg ≤ 0.33 AND Ba ≤ 0.0
5 0.92 0.36 Si ≤ 72.39 AND Ca > 8.6
6 0.92 0.12 Na > 13.7 AND Si > 72.79

housing

SED
1

1.5 · 106 (6.0 · 104) 1.00 (1.00) 0.00 (0.04) RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 (1.00) 0.00 (0.00) CRIM > 0.09849 AND TAX > 666.0

UG
1

1.6 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

EUG
1

4.0 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

abalone

SED
1

3.1 · 106 (2.6 · 105) 1.00 (0.95) 0.00 (0.40) SEX = 2.0 AND SHEWEIG ≤ 0.12
2 1.00 (1.00) 0.17 (0.00) LENGTH > 0.425

UG
1

5.9 · 105 1.00 0.00 SEX = 2.0
2 1.00 0.17 LENGTH > 0.425

EUG
1

7.4 · 105 1.00 0.00 SEX = 2.0
2 1.00 0.17 LENGTH > 0.425

contraceptive

SED
1

1.7 · 107
1.00 0.85 WAGE > 27.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

UG
1

1.3 · 106
1.00 0.85 WAGE > 27.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

EUG
1

1.4 · 106
1.00 0.85 WAGE > 27.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

titanic

SED
1

6.1 · 106 1.00 0.00 NPAT ≤ 2.0
2 1.00 0.00 NPAT > 2.0

UG
1

4.2 · 105 0.97 0.00 FARE ≤ 79.2
2 1.00 0.46 FARE > 79.2

EUG
1

8.7 · 105 1.00 0.00 CLASS ≤ 3.0
2 - - CLASS > 3.0 AND FARE ≤ 12.875

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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Table A14: CinterP clusters and cluster explanations for the various datasets with θ1 = 2 and
θ2 = 0.5 and explanations of a maximum length of 2

Dataset Distance Cluster Performance Explanations
Intra-homogeneity TPR FPR

wine

SED
1

1.5 · 105 ((5.0 · 103))
1.00 (1.00) 0.22 (0.00) MALAC ≤ 2.68 AND PROL > 1050.0

2 1.00 (1.00) 0.05 (0.00) PROL ≤ 740.0
3 1.00 (1.00) 0.71 (0.00) Mg > 88.0 AND PROL > 675.0

UG
1

1.7 · 104
1.00 0.00 HUE > 1.24

2 1.00 0.00 PHEN ≤ 2.53 AND HUE ≤ 1.24
3 1.00 0.00 PHEN > 2.53 AND HUE ≤ 1.24

EUG
1

5.0 · 104
1.00 0.00 PROL > 1265.0

2 1.00 0.00 ALCASH > 18.6 AND PROL ≤ 1265.0
3 1.00 0.00 ALCASH ≤ 18.6 AND PROL ≤ 1265.0

glass

SED

1

5.2 · 104 (7.8 · 102)

1.00 (0.80) 1.00 (0.03) Na ≤ 12.85 AND Ca > 9.02
2 0.98 (1.00) 0.15 (0.00) Mg > 2.81 AND Ca ≤ 9.57
3 0.89 (1.00) 0.11 (0.16) Ri > 1.52211 AND Mg ≤ 0.0
4 0.85 (1.00) 0.69 (0.01) Mg ≤ 0.33 AND Ba ≤ 0.0
5 1.00 (0.96) 0.64 (0.02) Si ≤ 72.79 AND Ca > 8.6
6 1.00 (0.63) 0.31 (0.00) Na > 13.7 AND Si > 72.39

UG

1

5.6 · 103

1.00 1.00 Na ≤ 12.85 AND Ca > 9.02
2 0.98 0.15 Mg > 2.81 AND Ca ≤ 9.57
3 0.89 0.11 Ri > 1.52211 AND Mg ≤ 0.0
4 0.85 0.69 Mg ≤ 0.33 AND Ba ≤ 0.0
5 1.00 0.64 Si ≤ 72.79 AND Ca > 8.6
6 1.00 0.31 Na > 13.7 AND Si > 72.39

EUG

1

3.3 · 104

1.00 1.00 Na ≤ 12.85 AND Ca > 9.02
2 0.98 0.15 Mg > 2.81 AND Ca ≤ 9.57
3 0.89 0.11 Ri > 1.52211 AND Mg ≤ 0.0
4 0.85 0.69 Mg ≤ 0.33 AND Ba ≤ 0.0
5 1.00 0.64 Si ≤ 72.79 AND Ca > 8.6
6 1.00 0.31 Na > 13.7 AND Si > 72.39

housing

SED
1

1.5 · 106 (6.0 · 104) 1.00 (1.00) 0.00 (0.04) RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 (1.00) 0.00 (0.00) CRIM > 0.09849 AND TAX > 666.0

UG
1

1.6 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

EUG
1

4.0 · 105 1.00 0.00 RAD ≤ 8.0 AND TAX ≤ 666.0
2 1.00 0.00 CRIM > 0.09849 AND TAX > 666.0

abalone

SED
1

3.1 · 106 (2.6 · 105) 1.00 (0.98) 0.00 (0.65) SEX = 2.0
2 1.00 (1.00) 0.17 (0.00) LENGTH > 0.425

UG
1

5.9 · 105 1.00 0.00 SEX = 2.0
2 1.00 0.17 LENGTH > 0.425

EUG
1

7.4 · 105 1.00 0.00 SEX = 2.0
2 1.00 0.17 LENGTH > 0.425

contraceptive

SED
1

1.7 · 107
1.00 0.85 WAGE > 27.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

UG
1

1.3 · 106
1.00 0.85 WAGE > 27.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

EUG
1

1.4 · 106
1.00 0.85 WAGE > 27.0

2 1.00 0.07 WAGE ≤ 29.0 AND CHILD ≤ 6.0
3 1.00 0.11 WAGE > 37.0

titanic

SED
1

6.1 · 106 1.00 0.00 NPAT ≤ 2.0
2 1.00 0.00 NPAT > 2.0

UG
1

4.2 · 105 0.97 0.00 FARE ≤ 79.2
2 1.00 0.46 FARE > 79.2

EUG
1

8.7 · 105 1.00 0.00 CLASS ≤ 3.0
2 - - CLASS > 3.0 AND FARE ≤ 12.875

Note. The values between brackets represent the results found by Carrizosa et al. (2023).
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8.1 Code description

To obtain the results of this paper, four self-programmed Java classes are used that are also

provided next to this paper. In alphabetical order, these classes are BachelorThesis.java, In-

dexMinPQ.java, InterP.java and writeTXTtoCSV.java. The results of CinterP (i.e., Tables 8,

A11-A14) are obtained by running BachelorThesis.java with the desired (uncommented) data-

set, θ1 and θ2. This class contains the method readCSV to read the dataset in. Next, the set of

rules is obtained via constructSetOfRules, after which the compatibility set is formed with the

method explainedByRule. The distances between observations are calculated with either com-

puteDissimilaritiesEuclideanSquared, computeDissimilaritiesUnweightedGower or computeDis-

similaritiesExtendedUnweightedGower, dependent on the distance measure under consideration.

The method kMeans, together with the methods it calls, yields the k-means initialization for the

MIP start, after which solveInterP provides initial cluster explanations. BachelorThesis.java

extends IndexMinPQ.java that computes the q nearest neighbors for the extended unweighted

Gower distance. Similar to CinterP, the results of InterP (i.e., Tables 7, A7-A10) are obtained

by running InterP.java with the desired (uncommented) dataset, θ1 and θ2. This class does,

however, not require distances between observations to be calculated since cluster allocations

are already known. To obtain all datasets in CSV format, some that were obtained in TXT

format had to be formatted to CSV format. Herefore, writeTXTtoCSV.java is used.
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