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1 Introduction

Explaining and predicting returns is a fundamental challenge in financial research. Factor models

are integral in this process as they serve as test assets for asset pricing models and building blocks

for new risk factors. Test assets must span the underlying Stochastic Discount Factor (SDF) to

qualify as valid tests for asset pricing models. Spanning the SDF is equivalent to spanning the

Mean-Variance Efficient (MVE) frontier, which implies no other asset can be used to improve

performance, and the model accurately prices all assets. Barillas and Shanken (2017) show this

means the SDF spanning portfolio achieves the maximum Sharpe ratio, so asset-pricing models

are typically evaluated based on this metric. However, transaction costs are generally excluded

from the calculation of Sharpe ratios, which often results in misleading outcomes that favour

strategies involving high-cost factors.

Detzel et al. (2023) demonstrate that the performance evaluation of traditional factor models,

such as the q-factor model by Hou, Xue and Zhang (2015) and the six-factor model by Barillas

and Shanken (2018), can be misleading due to the omission of transaction costs in Sharpe ratio

calculations. While these more complex models significantly outperform simpler models like

the five-factor model of Fama and French (2015) regarding the gross Sharpe ratio, they are

significantly outperformed by the same models when transaction costs are considered. This

study shows this also applies to portfolios based on Asset-Pricing Trees (AP-Trees) introduced

by Bryzgalova et al. (2020).

Asset-Pricing Trees offer a promising approach to explaining the cross-section of returns in

high-dimensional scenarios. Prior efforts to capture variations in returns have relied on factor

models incorporating a limited number of characteristic-based factors, such as the value-and-

size portfolios proposed by Fama and French (1993). However, these models can suffer from the

curse of dimensionality as outlined by Cochrane (2011), and it seems they require expansion as

new cross-sectional predictors emerge (Kozak, Nagel & Santosh, 2020). AP-Trees address this

challenge by utilizing decision trees to group similar stocks based on characteristics, thereby

creating optimal portfolio splits to span the Stochastic Discount Factor.

AP-Trees capture various characteristics and their interactions while avoiding the excessive

repackaging of original stocks common in traditional sorting methods. AP-Trees have shown

superior out-of-sample Sharpe ratios relative to the traditional methods mentioned above and

more recent machine learning-based portfolios. However, the inclusion of transaction costs in

evaluating AP-Tree portfolios leads to a substantial decrease in their out-of-sample performance.

Consistent with the findings of Detzel et al. (2023), the inclusion of transaction costs partic-

ularly impacts the performance of cross-sections that include factors with a fast signal, such

as momentum. Additionally, the performance ranking among the different portfolios changes

when transaction costs are factored in, as gross performance measures favor models employing

high-cost factors.

Another common evaluation measure for factor models is their ability to price assets. A

successful model is characterized by minor pricing error or alpha, implying that the factors nearly

span the Mean-Variance Efficient frontier. However, transaction costs are typically overlooked

in the calculation of pricing errors, meaning they only reveal gross alpha. The Arbitrage Pricing

Theory, the theoretical basis of linear factor models, posits that investment opportunities that
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generate abnormal returns entice arbitrage capital until they diminish (Ross, 1976). However,

these opportunities must be exploitable net of costs to be attractive to arbitrageurs. This means

that the existence of gross alpha does not necessarily indicate an investment opportunity; only

by accounting for transaction costs can the existence of a true anomaly be determined.

Though transaction costs can have a detrimental effect on the returns of many factor models,

researchers have developed numerous ways to mitigate their adverse effects. An effective cost

mitigation technique reduces turnover significantly while maintaining most of the exposure to

the underlying signal used to select assets. For instance, Brandt et al. (2009) introduce the

No-Trade Region strategy, which limits trading to an optimal boundary value when the distance

to the target portfolio surpasses a specified threshold boundary; otherwise, it prohibits trading

entirely. Additionally, DeMiguel and Olivares-Nadal (2018) propose an approach that minimizes

transaction costs by treating them as a regularization term to be calibrated with cross-validation.

This paper integrates cost mitigation techniques into the AP-Tree portfolio estimation pro-

cess. Inspired by DeMiguel and Olivares-Nadal (2018), it modifies the cross-validation of shrink-

age parameters to select those that maximize the Sharpe ratio after accounting for transaction

costs. This modification yields Achievable AP-Trees (AAP-Trees), which significantly outper-

form standard AP-Trees in terms of out-of-sample net-of-costs Sharpe ratio in most cases while

preserving the linearity of the portfolio estimation process. Furthermore, the study applies the

No-Trade Region strategy from Brandt et al. (2009) to portfolios derived from cross-validation

with transaction costs. The resulting Bounded Achievable AP-Trees (BAAP-Trees) incorporate

both transaction costs in the estimation process and a No-Trade Region to reduce turnover.

These portfolios outperform standard AP-Trees in almost all examined cases and outdo AAP-

Trees in over half of the analyzed instances.

When AP-Tree portfolios are calibrated based on net Sharpe ratios, the shrinkage parameters

are generally much higher, substantially reducing the portfolio’s total position. While this leads

to a minor decrease in gross Sharpe ratios, it decreases turnover by as much as two-thirds. This

supports the assertion of DeMiguel and Olivares-Nadal (2018) that including transaction costs

into the cross-validation stage of MVE portfolio estimation strikes an optimal balance between

rebalancing the portfolio to capture the information in recent historical return data and averting

the large costs and impact of estimation error associated with excessive trading. The findings

also suggest that using an objective function that overlooks transaction costs in the calibration

process underestimates the optimal shrinkage degree.

This paper demonstrates that including transaction costs in the cross-validation of factor

models can improve their ability to span the Achievable SDF to a significant degree by limiting

the turnover required to maintain them. It provides an in-depth analysis of how cost mitigation

techniques boost performance, which can be used to assess the potential of other factor models

to span the Achievable SDF. Test assets must be evaluated based on whether they expand the

achievable investment opportunity set, so investors can use them to evaluate real strategies that

face implementation costs and as building blocks for constructing tradable risk factors. Including

transaction costs is equally critical for academics looking for anomalies, as they are typically

meaningless if arbitrageurs cannot remove them profitably.

The paper proceeds as follows. Section 2 provides an overview of related literature. Section
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3 describes the data used in the empirical analysis. Section 4 discusses the methodologies used

to find the Achievable SDF, construct AP-Trees and the proposed AAP-Trees and BAAP-Trees,

and the transaction cost model. Sections 5 and 6 present the empirical results of the research,

respectively, focusing on the performance discrepancies of the factor models before and after

accounting for transaction costs, and diving into the reasons behind the differences. Finally,

Section 7 contains conclusions based on the findings and discusses the study’s limitations and

the potential for future research.

2 Closely Related Literature

On a fundamental level, the paper contributes to the body of literature that employs decision

trees to address the “multidimensional challenge” in asset pricing as formulated by (Cochrane,

2011). Moritz and Zimmermann (2016) and Gu, Kelly and Xiu (2020) tackle this problem by

utilizing decision trees to estimate conditional moments of stock returns within the framework of

a prediction problem. Bryzgalova et al. (2020) introduce Asset-Pricing Trees that form portfolios

of stocks that share certain firm-specific characteristics. Cong, Feng, He and He (2023) further

develop the concept of Asset-Pricing Trees by optimizing the splits in the tree using a bottom-up

pruning procedure. This approach selects the characteristics with the largest contribution to

the global Sharpe ratio of the tree portfolio. This paper analyzes the implications of transaction

costs on the performance of the Asset-Pricing Tree portfolios of Bryzgalova et al. (2020).

2.1 Factor Model Comparison with Transaction Costs

The paper also relates to the growing literature that assesses the implications of transaction

costs and implementation frictions for asset pricing models. Detzel et al. (2023) show that

comparing factor models based on their gross Sharpe ratio can lead to misleading results. They

examine the impact of transaction costs on portfolios based on traditional factor models, such

as the five-factor model of Fama and French (2015), and find that many popular factor models

achieve impressive Sharpe ratios before considering transaction costs but do not come close

to spanning the achievable mean-variance efficient frontier. The authors highlight that factor

portfolios based on some of the characteristics in AP-Tree cross-sections factors with the highest

gross individual returns often require substantial trading activity.

Detzel et al. (2023) further find that including transaction costs in the estimation process

of MVE portfolios increases portfolio allocation towards low turnover factors such as value and

decreases the allocation towards high turnover factors such as momentum. This study tests if

this result holds if transaction costs are included in the calibration stage of estimating MVE

portfolios. Worth noting is that Detzel et al. (2023) use individual net-of-costs factor returns as

inputs for their portfolio optimization. In contrast, this research considers the combined weight

of a stock across all basis assets that comprise the portfolio before calculating the trading costs

in each period, allowing for the possibility that trading signals from different factors cancel each

other out. This aligns with Fisher, Shah and Titman (2015), who find a significant reduction

in trading when combining the faster-moving momentum signal and the slower-moving value

because they often recommend opposing trades.
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In addition, this study ties into the research of DeMiguel, Martin-Utrera, Nogales and Uppal

(2020). They demonstrate that factoring in transaction costs can increase the number of jointly

significant stock-specific characteristics in an investor’s optimal portfolio because purchases of

stocks driven by one characteristic often counterbalance sales driven by another. Given that

AP-Tree portfolios are formed by sorting stocks based on only three characteristics, this could

amplify the negative impact of transaction costs on AP-Tree portfolio performance, thereby

increasing the potential benefits of strategies to mitigate these costs.

This study is also relevant to the body of research on how the modelling of transaction costs

can affect the measures used to evaluate model performance. Li, DeMiguel and Martin-Utrera

(2020) examine the impact of large trades’ price effects on model comparison. They highlight

the difficulties in using the maximum squared Sharpe ratio as a tool for model comparison in a

market where trading activities influence prices. This measure can differ among investors with

different capital levels, even within the same model. Incorporating the price impact of trades

can aid in specifying the most appropriate benchmark model for an individual investor. While

this study employs a simple linear transaction costs model, the proposed framework allows for

more sophisticated transaction cost modelling.

2.2 Cost Mitigation

This paper expands the literature on portfolio cost mitigation strategies based on factor models.

Novy-Marx and Velikov (2019) compare three basic cost mitigation strategies: reducing rebalan-

cing frequency, limiting the pool of stocks to those with low transaction costs, and the ’banding’

approach. Their results show that the first two strategies effectively cut turnover, but this comes

at the cost of severely degraded gross performance. On the other hand, the ’banding’ strategy

successfully limits turnover while retaining exposure to the portfolio’s underlying trading sig-

nal. Banding introduces hysteresis into the trading process by setting stricter requirements to

actively trade into a position than to trade out of it. Detzel et al. (2023) find this strategy is

very effective at improving the performance of portfolios based on factor models in the presence

of trading costs. While it is possible to introduce hysteresis into AP-Tree portfolios by imple-

menting a stricter selling criterion, such as requiring a stock to move out of both the leaf node

in the AP-Tree portfolio and its parent node, this would be quite impractical. Therefore, this

study opts for different cost mitigation strategies.

Lobo, Fazel and Boyd (2007) consider including transaction costs directly into the MVE

portfolio problem. Though promising in numerical experiments, this renders the estimation

process nonlinear and much more challenging to solve. DeMiguel and Olivares-Nadal (2018) use

a proxy for transaction costs, treating costs as a regularization term to be calibrated, which

keeps the estimation of MVE portfolios linear. The resulting portfolios balance exposure to the

underlying asset selection signal with the need to avoid excessive trading, which can lead to

large transaction costs and significant estimation error. This research further investigates how

transaction costs can be integrated into estimating Mean-Variance Efficient (MVE) portfolios

while preserving the problem’s linearity.

The paper also investigates the efficacy of the No-Trade Region introduced by Brandt et al.

(2009), who argue that rebalancing a portfolio when it is close to its optimal target portfolio
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only yields second-order gains but a first-order cost from trading. Based on this, they confirm

the assertion of Davis and Norman (1990) that a No-Trade Zone exists in which it is optimal not

to rebalance the portfolio. Rebalancing should only be undertaken when the difference between

the current and target portfolio is sufficiently large, and even then, it should only be done up to

a certain boundary. Brandt et al. (2009) find that their policy reduces turnover by a substantial

margin, leaves gross returns largely intact, and significantly increases the certainty equivalent

due to its smoothing features. The strategy makes weights less volatile through time, creating

more robust portfolios out of sample.

The paper additionally analyzes how cost mitigation strategies impact the degree of shrinkage

in MVE portfolios. Due to the high-dimensional nature of the MVE estimation process, it is

susceptible to overfitting. Ledoit and Wolf (2003) demonstrate that applying shrinkage to the

covariance matrix tends to draw the most extreme coefficients towards more central values,

effectively reducing estimation error where it is most crucial. DeMiguel, Garlappi, Nogales and

Uppal (2009) suggest that adding constraints on both the L1 and L2 norm of portfolio weights

enhances the performance of minimum-variance portfolios. Building on this insight, Kozak et

al. (2020) estimate MVE portfolios subject to an L2 penalty constraint to span the SDF.

2.3 Hyperparameter Tuning

Finally, this paper relates to the literature strand investigating hyperparameter tuning. The

challenge with tuning often lies in the ambiguous relationship between the performance of ma-

chine learning methods and their parameters. Bryzgalova et al. (2020) use grid search to tune the

shrinkage parameters in their estimation process. However, this method suffers from the curse

of dimensionality, causing a rapid increase in the number of grid searches when more hyperpara-

meters are incorporated into the model. As the research of Cong et al. (2023) shows, improving

AP-Tree portfolios might involve the addition of tunable parameters such as the portfolio split

criterion, so the development of this field must find a method that can face this challenge.

Bergstra and Bengio (2012) argue that random search is a more efficient and less compu-

tationally expensive method for tuning parameters. This method capitalizes on the fact that

only a few hyperparameters tend to have substantial impacts, while grid search often wastes

time exploring various specifications of less consequential parameters. However, random search

is unreliable for some complex models, and Wu et al. (2019) show that Bayesian optimization

can enhance tuning efficiency. Therefore, the hyperparameters in this research are tuned with

Bayesian optimization to manage the increased complexity of portfolio estimation in the presence

of transaction costs.

3 Data

This paper uses the same dataset as Bryzgalova et al. (2020) to facilitate a meaningful com-

parison between their results and those obtained in this research. The authors chose a list of

highly relevant firm-specific characteristics, and adding many variables to this selection would

contribute little. Furthermore, the computational feasibility of constructing AP-Trees becomes

challenging as the number of characteristics increases, making it impractical to incorporate many
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new predictors.

The dataset comprises CRSP/Compustat data from January 1964 to December 2016 for

monthly returns on individual stocks and one-month Treasury bill rates. The firm-specific

characteristics to build sorting variables for decision trees, based on accounting and market data,

are obtained from the Kenneth French Data Library. Appendix Table 4 taken from Bryzgalova

et al. (2020) describes the characteristics. Table 10 in the Appendix gives an overview of the

development of the number of stock observations, the average and median monthly numbers of

stock observations are respectively 5825 and 6617.

Individual AP-Trees do not require all stocks to have observations for all characteristics.

Instead, they rely only on each tree’s subset of characteristics used as sorting variables. For

example, an AP-Tree constructed using a cross-section of size, value, and momentum only

requires observations of the proxies for these factors: market capitalization, asset book value,

and returns over the last twelve months. This looser requirement on the data significantly

decreases the need for imputation and sample reduction.

Following the approach of Bryzgalova et al. (2020), this paper will use the first 20 years of

the entire sample for training the models, the subsequent 10 years for cross-validation, and the

final 23 years for testing.

Figure 1: The Figure displays the timeline of the research. Portfolio weights are estimated
with the training sample from January 1964 to December 1983, hyperparameters are tuned in
the validation sample that runs from January 1984 to December 1993, and the models are tested
based on their performance in the testing sample, January 1994 to December 2016.

4 Methodology

4.1 Achievable Stochastic Discount Factor

The Stochastic Discount Factor (SDF) serves as a link between an asset’s price and its expected

return. It should identify the relationship between risk and return in an uncertain economic

environment. A valid SDF at time t, Mt, is a function of individual stock returns and their

exposure to a set of characteristics Ct−1. This yields the following formulation from Bryzgalova

et al. (2020):

Mt = 1−
Nt∑
i=1

bt−1,iRt,i with bt−1,i = f(Ct−1,i),

where Ct−1 is an Nt × K matrix of K characteristics observed for Nt stocks in period t and

f(·) is a general function. Since the relation between returns and their exposure to risk factors
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f(Ct−1,i) is unknown, reduced-form asset pricing models approximate it with a set of basis

functions fj(·) that link the returns of managed portfolios to their exposure to the risk factors,

such that f(Ct−1,i) ≈
∑J

j=1 fj(Ct−1,i)wj . This approximation allows for a representation of the

SDF in terms of a set of managed portfolios that serve as basis assets and the returns these

assets produce. The SDF can then be written as follows:

Mt = 1−
J∑

j=1

wjR
managed
t,j with Rmanaged

t,j =

Nt∑
i=1

fj(Ct−1,i)Rt,i,

where J is the number of basis assets, and Rmanaged
t are returns of managed portfolios with

weights corresponding to the basis functions fj(·). The SDF spanning criterion requires that

no other asset can improve a portfolio’s performance, which implies that the weight wj of each

managed portfolio j should be optimized such that the portfolio reaches the maximum Sharpe

ratio.

To ensure that a model expands the achievable investment opportunity set Bryzgalova et

al. (2020) use the out-of-sample Sharpe ratio as the SDF spanning criterion rather than its in-

sample counterpart. However, the authors ignore transaction costs in their calculation of out-of-

sample performance, meaning that the criterion does not truly reflect the achievable investment

opportunity set. Therefore, the formulation of the Achievable SDF should be changed to reflect

the cost of maintaining the spanning portfolio:

Mt = 1−
J∑

j=1

wjR
managed
t,j −

Nt∑
i=1

|
J∑

j=1

wj(w
j
t,i − wj

t−1,i)|Λ(Ct,i, ηt,i) (1)

where wj
t,i denotes the weight of stock i in basis portfolio j at time t, and Λ is the transaction

costs matrix that is a function of characteristics Ct,i of firm i at time t and other factors ηt,i, such

as the size of the trade. Managed portfolios that target different risk factors might recommend

trades that cancel each other out. This makes the cost of maintaining the SDF spanning portfolio

a function of the interactions between the risk factors f(Ct,i).

The Achievable SDF spanning requirement is equivalent to achieving the maximum net-of-

costs Sharpe ratio:

SRnet(w) = max
w

w⊤µnet√
(w⊤Σnetw)

,

where µnet and Σnet denote the mean and variance of net excess returns of all stocks.

4.2 Constructing Basis Assets with AP-Trees

AP-Trees give managed portfolio that can serve as basis assets to create an SDF spanning

portfolio. The first step in constructing an AP-Tree involves the creation of a conditional

tree. The initial leaf of the tree represents the market portfolio. This leaf is then split based

on a stock characteristic, such as value or size, to create the next two leaves. These three

leaves together form an AP-Tree of depth one. If characteristics were independent, these splits

would yield identical managed portfolios as classical double or triple sorts. However, given

the interdependence of characteristics, AP-Trees more accurately reflect the joint relationship
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between firm-specific characteristics. The splitting process continues until the tree reaches the

intended depth.

After the completion of the splitting process, the pruning process estimates optimal basis

asset combinations from the trees. Firstly, the position of the portfolios in the tree determines

their weight 1√
2di

, where di denotes the depth d of node i. In this way, a basis asset’s weight is

proportional to the number of stocks it contains to reflect that its idiosyncratic noise is diversified

at rate 1
Ni

, where Ni denotes the stocks in the basis asset. The data is divided into three samples

for training, validation, and testing. Then the estimation process proceeds as follows:

1. Solve the MVE portfolio problem as a function of given shrinkage parameters λ0, λ1, and

λ2 to find portfolio weights w

min
w

1

2
w⊤Σ̂w + λ1||w||1 +

1

2
λ2||w||22 (2)

subject to w⊤1 = 1

w⊤µ ≥ λ0,

where 1 denotes a vector of ones, ||w||22 =
∑J

i=1w
2
i and ||w||1 =

∑J
i=1 |wi|, and J is the

number of basis assets. Parameters µ̂ and Σ̂ are the sample estimates of the mean and

variance of gross portfolio returns, the target mean λ0 determines the shrinkage of returns

to the mean, the lasso parameter λ1 sets the number of non-zero weights to the target

number of basis assets, K, and the ridge penalty λ2 determines the shrinkage towards the

sample covariance matrix.

2. Select shrinkage parameters and the corresponding basis asset weights that optimize the

gross Sharpe ratio in the validation sample using a cross-validation process that checks

each MVE portfolio corresponding to a combination of tuning parameters.

SRgross(w⋆) = max
w

w⊤µ̂√
(w⊤Σw)

, (3)

3. Test the estimated portfolio’s out-of-sample performance by assessing the testing sample’s

gross Sharpe ratio.

The pruning process selects portfolio weights that maximize the total Sharpe ratio of the

portfolio within the validation sample. Portfolio weights are selected based on their contribution

to global performance, integrating global information in the pruning process. This sets the AP-

Tree pruning criteria apart from traditional decision-tree and machine learning-based portfolio

selection criteria. Leaf nodes are combined into higher-level nodes and omitted if the parent

node spans the SDF as effectively as its leaf nodes.

The same ten firm-specific characteristics outlined by Bryzgalova et al. (2020) comprise the

cross-sections. These combinations include the size factor and a permutation of two out of the

ten factors, generating 36 cross-sections. Given the computational intensity associated with the

transaction cost analysis, trees of depth three are used. Portfolios created by three splits on
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the same characteristic are excluded from consideration to prevent portfolios from incorporating

basis assets that have too extreme factor characteristics.

4.3 Transaction Costs

The transaction costs model is based on the framework of DeMiguel et al. (2020). The authors

treat transaction costs as proportional costs that decrease over time and with firm size. This

is a reasonably realistic assumption, simplifying the computation of trading costs significantly

compared to estimating individual stock trading costs at each specific date. This research

excludes the time variation in transaction costs for two reasons. Firstly, the time-varying factor

in the model of DeMiguel et al. (2020) is constant post-2002, thus providing limited insight

within the testing sample. More importantly, training the model on time-varying costs in the

validation sample, which are barely present in the testing sample, may not result in optimal

shrinkage parameter identification. To reflect that costs decrease with firm size, a proportional

transaction-cost parameter ct,i is used for the i-th stock at time t.

ct,i = 0.006− 0.0025met,i, (4)

where met,i represents the market capitalization of firm i at time t, indicating its relative size.

The market capitalization of the firms is cross-sectionally normalized such that the smallest firm

is assigned a value of zero and the largest firm a value of one. This normalization is performed

for each period t, given the substantial temporal variations in median market capitalization

(see Figure 11 in the Appendix for an overview of average market capitalization over the entire

sample).

The transaction costs model is proportional to the amount traded, and buying and selling

prices are considered equal. Thus, the total transaction costs of portfolio i is the sum of the

cross-products of the weight change and the trading cost parameter for each stock in each period

as in Equation 1.

TC(w) =

Nt∑
i=1

|
J∑

j=1

wj(w
j
t,i − wj

t−1,i)|ct,i, (5)

where Nt is the total number of stocks in the cross-section at time t, J is the number of basis

assets, and T denotes the final period in the sample. Weights at time zero are set to zero, and

the portfolio is not liquidated at time T .

4.4 No-Trade Region

The ’No-Trade Region’ proposed by Brandt et al. (2009) works as follows. In each period t, target

portfolio weights wt
t,i for each stock i are estimated by solving the MVE portfolio problem. The

”hold” portfolio weights are then calculated to accurately reflect the composition of the portfolio

after the returns in period t as wh
t,i = wt−1,i

1+Rt,i

1+Rp,t
, where Rt,i is the return of stock i in period

t, and Rp,t is the portfolio return in period t. The ”hold” parameter κ is defined such that the
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following conditions hold:

wt,i = wh
t,i, if

1

Nt

Nt∑
i=1

(wt
t,i − wh

t,i)
2 ≤ κ2 (6)

wt,i = αtw
h
t,i + (1− αt)w

t
t,i, if

1

Nt

Nt∑
i=1

(wt
t,i − wh

t,i)
2 > κ2 (7)

αt =
κ
√
Nt

(
∑Nt

i=1(w
t
t,i − wh

t,i)
2)1/2

(8)

Equation 6 and Equation 7 impose no-trade restrictions. If the mean squared turnover

exceeds κ2, a linear combination of the ”hold” portfolio weights wh
t,i and the target portfolio

weights wh
t,i is formed. The portfolio remains unchanged if the mean squared turnover does not

exceed κ2. Parameter αt determines the trading magnitude, which depends positively on κ and

negatively on the size of the mean squared turnover. Therefore, increasing κ decreases turnover

because trading is inhibited more often, and the portfolio stays closer to the hold weights when

trading does occur.

4.5 AP-Trees with Cost Mitigation

This section describes the method of estimating AP-Trees using both the net-of-costs Sharpe

ratio as a calibration criterion and a No-Trade Region. The method without a No-Trade Region

is retrieved by setting the boundary parameter kappa equal to zero. The procedure outlined

in Section 4.2 is used to construct basis assets. Trees calibrated with transaction costs and a

No-Trade Region are referred to as Bounded Achievable AP-Trees (BAAP-Trees), while those

calibrated without a No-Trade Region are referred to as Achievable AP-Trees (AAP-Trees).

Estimating cost mitigation Trees is considerably more computationally demanding than

standard AP-Trees because it necessitates the calculation of portfolio weights, transaction costs,

and returns for each stock. In contrast, standard AP-Trees only require portfolio-level weights

and returns. Adding the boundary parameter κ, which requires calibration, further exacerbates

the computational complexity. Bayesian optimization solves the problem because it is efficient

in high-dimensional situations with objective functions lacking an explicit expression. The net

Sharpe ratio in the validation sample is the objective function here.

The optimization process is initialized by choosing λk1 such that the tree portfolio consists

of K basis assets and populating the training dataset with an initial grid of S sets of tuning

parameters θ = (λ0, λ2, κ), and their corresponding objective values, D1:S = {θi, yi}Si=1. This

research uses 10 initial points and 30 iterations to calibrate the parameters to balance compu-

tational difficulty and a sufficiently extensive search. The improvements in the net validation

Sharpe ratio between the first ten and last ten iterations are often minimal, suggesting that

extending the search would unlikely yield significantly different results. The search space is

defined as follows: λ0 ∈ [0, 0.9], λ2 ∈ [1 × 10−8, 3.16 × 10−4], and κ ∈ [0.5 × 10−5, 1.5 × 10−5].

The process then proceeds as outlined below:

1. Select tuning parameters θ⋆ = (λ⋆0, λ
⋆
2, κ

⋆) and weights w⋆ with Bayesian optimization:

1.1. For r = 1, 2, . . . , I, where I is the number of iterations that the optimization scheme

runs.
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1.2. Find θr by optimizing the acquisition function u over function f . I use the Upper

Confidence Bound (UCB) acquisition function with the exploration variable set to

the default value 2.

θr = argmax
θ
u(θ | D1:r−1)

1.3. Estimate the MVE portfolio as in Equation 2 with (λ0, λ1, λ2) = (λ0r, λ
k
1, λ2r) to

find the target weight wt
t,i(θr) for stock i in period t for all i and t in the validation

sample.

1.4. Apply the No-Trade Region as in Section 4.4 with κ = κr to find weights wt,i(θr).

1.5. Sample the objective function by calculating the net-of-costs Sharpe ratio θr

yr = SRnet(θr) =
w(θr)

⊤µ̂√
(w(θr)⊤Σ̂(θr))

, (9)

where µ̂ and Σ̂ are the sample estimates of the mean and variance of net returns

Rnet
i,t =

∑Nt
i=1(wt,i(θr)Rr,t − ct,i|wt,i(θr)− wt,i−1(θr)|) for t = 1, . . . , T .

1.6. If SRnet(θr) > SRnet(θ⋆), then θ⋆ = θr, y
⋆ = yr, and w

⋆ = w(θr).

1.7. Augment the data D1:r = D1:r−1 ∪ {(θr, yr)} and update the posterior of function f

2. Test the estimated portfolio’s out-of-sample performance by assessing the testing sample’s

net Sharpe ratio.

Maximizing the net Sharpe ratio is equivalent to optimizing the gross Sharpe ratio with

a transaction costs or turnover penalty. Since there is a strong positive relation between the

absolute sum of weights and turnover, optimizing the net Sharpe ratio essentially entails op-

timizing the gross Sharpe ratio with a penalty on the L1-norm. This resembles introducing

a L1-norm/short-sale constraint in the MVE estimation process in Equation 2. As shown by

DeMiguel et al. (2009), robustifying portfolio optimization by implementing such constraints is

likely to reduce turnover and mitigate the effect of estimation error.

It is important to note that imposing an L1-norm constraint in the estimation process directly

limits portfolio weights. At the same time, penalizing high trading volume impacts the weights

by changing the amount of mean and variance shrinkage. Theoretically, the latter method offers

more flexibility as it allows for interactions between firm-specific characteristics. For instance,

Fisher et al. (2015) find that the momentum and value factor often advise opposing trades.

These interactions do not affect the L1-norm of the portfolio but decrease trading costs.

Though this research employs a linear transaction cost model, the estimation framework for

BAAP-Trees is adaptable and can be adjusted to penalize other portfolio weight characteristics.

For example, transaction costs can be modelled convexly to reflect large trades’ price-moving

and liquidity effects. Such a penalty would resemble the restriction of the L2-norm of portfolio

weights, as larger individual weights would generate larger, costlier trades. The versatility of

AP-Trees also allows the estimation process outlined in step 1.3. to be adapted to accommod-

ate various economic constraints. These constraints can include limiting the number of test

assets, managing the degree of interactions among characteristics, or setting restrictions on the

minimum number of portfolio shares and constraints related to market capitalization or liquidity.
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4.6 Transaction Cost Drivers

Several portfolio features influence transaction costs. This research considers several metrics

that influence transaction costs uncover the mechanics driving the transaction cost reductions

achieved by cost mitigation methods.

All else equal being equal, trading is proportional to the total position of the portfolio, i.e.,

the sum of long and short weights. Thus, reducing the sum of absolute basis asset weights in an

AP-Tree portfolio should lessen the need for rebalancing. The total position Pr for portfolio r

is calculated as follows:

Pr =
∑
j∈L

wjr +
∑
j∈S

|wjr|,

where wr denotes the weight of basis asset j in portfolio r, L is the set of long weights and S is

the set of short weights

Reducing exposure to high-turnover factors also decreases transaction costs because tracking

their signal requires much higher turnover relative to other factors. Detzel et al. (2023) show that

portfolios tracking the small-minus-big size factor with a long/short strategy require almost twice

as much trading as those tracking the high-minus-low value factor, while momentum portfolios

require over 14 times as much trading. Long/short portfolios trade the extreme quantiles of

a characteristic. Therefore, I assume a portfolio has high exposure to a factor when it has a

large position in the extreme quantiles of the characteristic that proxies it. The average factor

exposure Frj of portfolio r to factor j is calculated as follows:

Frj =
1

T

T∑
t=1

Nt∑
i=1

|wt,ift,ir|/Pr,

where wt,i is the weight of stock i in portfolio r in period t, and ft,ir is the characteristic value

for factor r of stock i in period t, with the characteristic cross-sectionally normalised to [−1, 1].

The average factor exposure is divided by the total position Pr to isolate the effect of factor

exposure on turnover.

As demonstrated by Novy-Marx and Velikov (2019), ’netting’, i.e., combining characteristics

with opposing signals, can frequently lower transaction costs because stock trades necessary for

rebalancing different characteristics often negate each other. If there is no netting, the sum of

long and short positions in portfolio stocks equals the total position in basis assets. However, if

there is considerable variation in the signals of the basis assets in a portfolio, the former can be

much smaller. The average netting effect NEit for portfolio r is calculated as:

NEr =
1

T

T∑
t=1

Nt∑
i=1

|wt,i|/Pr

4.7 Evaluation Metrics

The portfolio net-of-costs Sharpe ratio is the primary performance measure in this research

as it represents the Achievable Stochastic Discount Factor spanning condition. To ensure the

practical use of the portfolios, it is crucial that the results are attainable to investors, so the

13



research only considers out-of-sample results. The ratio is compared to the Sharpe ratio ignoring

transaction costs to gauge the latter’s validity as an evaluation metric for a model’s SDF spanning

capabilities. The asymptotic HAC procedure of Ledoit and Wolf (2008) tests if the differences

in SRnet between methods are significant. The test is implemented with the PeerPerformance

package in R, Appendix C contains a more detailed procedure description.

I also report the net and gross pricing errors (α) of AP-Tree portfolios with respect to some

of the most popular factor models:

• FF3: Fama-French three-factor model, which incorporates market, size, and value factors.

• FF5: Extends the Fama-French model to include five factors, adding investment and

profitability factors to the initial three.

• FF6: Extends the FF5 model to include six factors, adding momentum to the five original

factors.

The Kenneth French Data Library provides gross returns for all long/short factors incorpor-

ated in these models. However, it does not supply data on the individual stocks comprising the

portfolios that constitute these factors - a requirement to compute transaction costs incurred

in portfolio maintenance. Further, the study extends the analysis to long/short portfolios of

all 10 characteristics to examine the return and transaction costs of portfolios based on indi-

vidual characteristics. These two measures require the construction of factor portfolios using

the characteristic data from Bryzgalova et al. (2020).

Excluding the SMB factor, the factors are derived from six value-weighted portfolios. These

portfolios result from independent sorts of stocks into two size groups and three groups based on

the primary sorting characteristic. The median market capitalization of all stocks during rebal-

ancing determines the size breakpoints, while all other characteristic breakpoints are established

at the 30th and 70th percentiles of all stocks.

In all the models, gross factor portfolio returns equal the equal-weighted average of portfolio

returns. Subtracting the average return of portfolios with low values of the primary sorting

characteristic from those with high values yields the gross return fgrosst,k for factor f at time t.

SMB factor returns are calculated by subtracting the average returns of portfolios with large size

from those with small size, for sorts based on size and book-to-market for the FF3 model, and

size and book-to-market, operating profitability, and investment for the FF5 and FF6 models.

All Fama-French models incorporate a market factor, represented by the excess return of the

CRSP value-weighted index over the one-month Treasury bill return.

Similar to Novy-Marx and Velikov (2016), the net returns fnett,k for factor f at time t are

calculated by subtracting the transaction costs associated with maintaining the factor portfolio

from the gross portfolio returns: fnett,k = fgrosst,k − TC(fgrosst,k ).
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5 Empirical AP-Tree Performance with Transaction Costs

This section assesses the impact of transaction costs on the performance of AP-Tree portfolios.

Figure 2 displays the out-of-sample Sharpe ratios, both net and gross, for AP-Trees, pruned to

10 portfolios, in ascending order. The analysis concerns all cross-sections, considering all the

possible three-way permutations created from firm-specific traits.

The figure demonstrates that the AP-Tree portfolios’ monthly gross Sharpe ratios are much

less impressive accounting for transaction costs than ignoring them. This result aligns with the

results that Detzel et al. (2023) find for other factor models. Without transaction costs, 31 out

of 36 AP-Tree portfolios outperform the ’naive’ 1/N portfolio of DeMiguel, Garlappi and Uppal

(2007) by as much as 36 percentage points. However, when transaction costs are incorporated,

only 9 portfolios improve on the Sharpe ratio of the 1/N portfolio, while 15 out of 36 cross-

sections display negative mean returns. This implies that the AP-Tree portfolios’ Achievable

SDF spanning capacity is less convincing than the performance without transaction costs would

suggest.

Another key finding is the considerable shift in the performance rankings when considering

implementation costs. The Sharpe ratios for cross-sections containing factors with a fast signal,

such as Short- or Long-Term Reversal and Idiosyncratic Volatility, show stark declines. In

contrast, including transaction costs is less detrimental to the performance of cross-sections that

contain factors with a slower signal, such as value (LME) and size (BEME). As a result, the

AP-Tree portfolios based on fast signal factors drop significantly in the performance rankings

when including transaction costs, while those based on slower signal factors rise. Table 1 presents

a detailed overview of the performance of each cross-section.

Figure 2: Net and Gross Sharpe ratio of the SDF Spanned by AP-Trees

The figure displays net and gross monthly out-of-sample Sharpe ratios of the MVE (mean-variance ef-
ficient) portfolios spanned by AP-Trees pruned to 10 basis assets. The cross-sections are sorted by the
achieved gross SR in ascending order. The dotted horizontal line is the net Sharpe ratio of the market
portfolio (0.139), represented by the excess return of the ’naive’ 1/N portfolio of DeMiguel et al. (2007)
over the one-month Treasury bill return.
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Table 1: Summary Statistics of the Robust SDF Spanned by AP-Trees

Excess Returns (t-stats)

Characteristic Sharpe ratio Gross Net

ID 1 2 3 Gross Net ∆ FF3 FF5 FF6 FF3 FF5 FF6

27 Size SRev LRev 0.07 -0.38 1 0.9 0.99 2.17 -6.48 -6.27 -5.74

21 Size Prof Turnover 0.1 -0.17 7 2.17 1.39 0.32 -3.15 -4.19 -5.28

33 Size LRev Turnover 0.1 -0.2 3 0.22 0.55 0.6 -6.9 -6.31 -6.23

30 Size SRev Turnover 0.11 -0.4 -3 1.76 1.69 2.72 -6.57 -6.46 -5.96

22 Size Inv SRev 0.15 -0.23 -1 2.36 2.1 3.37 -3.94 -3.98 -3.32

28 Size SRev Acc 0.15 -0.23 -1 2.56 2.48 3.79 -3.77 -3.68 -3

31 Size LRev Acc 0.17 -0.04 5 1.55 1.3 2.12 -2.95 -3.35 -2.84

4 Size Value SRev 0.17 -0.19 -1 2.59 2.42 3.57 -3.51 -3.5 -2.86

17 Size Prof SRev 0.18 -0.26 -6 3.21 2.85 4.16 -4.36 -4.73 -4.12

35 Size Acc Turnover 0.2 -0.06 1 1.74 1.87 3.15 -3.72 -3.59 -2.93

12 Size Mom LRev 0.23 0.1 8 4.71 4.53 3.72 2.32 2.22 0.21

15 Size Mom Turnover 0.24 0.11 10 5.21 4.65 3.98 2.91 2.54 0.95

5 Size Value LRev 0.24 0.06 5 1.95 1.27 0.69 -2.51 -3.11 -3.66

29 Size SRev IVol 0.25 -0.17 -6 4.59 4.22 5.31 -2.7 -2.85 -2.21

36 Size IVol Turnover 0.26 -0.01 0 7.33 6.75 5.98 0.49 0.01 -0.67

18 Size Prof LRev 0.26 -0.02 -3 3.05 1.79 2.29 -2.28 -3.73 -3.41

11 Size Mom SRev 0.26 -0.13 -7 5.25 5.05 4.15 -1.53 -1.57 -2.42

32 Size LRev IVol 0.26 -0.01 -4 5.9 4.99 4.25 0.1 -0.54 -1.16

13 Size Mom Acc 0.28 0.12 4 5.4 5.16 4.33 2.65 2.53 1.02

23 Size Inv LRev 0.29 0.13 6 3.68 3.03 3.76 0.47 -0.24 0.25

14 Size Mom IVol 0.3 0.11 0 7.42 6.54 6.44 3.47 2.89 1.65

8 Size Value Turnover 0.3 0.14 5 4.32 3.72 2.83 0.17 -0.25 -1.06

9 Size Mom Prof 0.3 0.13 2 6.67 5.87 5.18 3.42 2.82 1.56

10 Size Mom Inv 0.32 0.18 6 5.94 5.29 4.88 3.49 3.04 1.97

2 Size Value Prof 0.33 0.19 6 5.1 4.15 4 2.23 1.47 1.34

1 Size Value Mom 0.33 0.16 2 5.16 4.99 4.14 2.29 2.25 0.49

20 Size Prof IVol 0.36 0.03 -11 8.9 8.18 7.53 0.81 0.06 -0.44

19 Size Prof Acc 0.37 0.17 1 5.44 4.95 5.96 1.81 1.22 1.87

6 Size Value Acc 0.37 0.21 4 4.63 3.7 3.99 1.73 0.84 1.04

7 Size Value IVol 0.39 0.12 -6 8.41 7.65 6.92 2.29 1.74 1.15

24 Size Inv Acc 0.4 0.26 3 5.99 5.27 5.47 3.21 2.33 2.46

34 Size Acc IVol 0.43 0.03 -15 7.68 7.1 6.86 -0.01 -0.54 -0.61

26 Size Inv Turnover 0.46 0.21 -1 7.24 7.16 6.62 2.18 1.21 0.8

25 Size Inv IVol 0.48 0.1 -14 9.6 8.77 8.22 1.64 0.93 0.58

16 Size Prof Inv 0.5 0.32 1 8.47 6.86 6.58 5.28 3.82 3.61

3 Size Value Inv 0.51 0.26 -1 8.54 7.78 7.16 3.75 3.11 2.62

The table summarizes 36 cross-sections of the SDF spanned by standard AP-Trees pruned to 10 basis
assets. The table reports out-of-sample net and gross Sharpe ratios, along with the difference in model
rank between these two methods (∆), and the excess returns (t-stats) relative to the Fama-French 3-, 5-,
and 6-factor models.
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5.1 Pricing Errors

Figure 3 demonstrates the effect that including transaction costs has on the pricing error of AP-

Tree portfolios relative to three popular factor models. Figure 3a confirms that the Fama-French

three-factor model fails to span most portfolios built from the cross-sections. AP-Tree portfolios

in all cross-sections have positive alpha, and the t-statistics indicate significant pricing errors for

all but six portfolios. Most pricing errors are highly significant, often exceeding 5 and, in some

instances, reaching 8. Figures 3b and 3c show a similar trend, with the FF5 and FF6 models

unable to price 28 and 34 cross-sections respectively.

Including transaction costs completely changes the pricing errors for AP-Tree portfolios.

The pricing error remains significantly positive for only 13, 10, and 3 out of 36 cross-sections

under the FF3, FF5, and FF6 models. The significant net pricing errors are less convincing

than their gross counterparts, with the t-stats never surpassing 5. Conversely, the pricing error

becomes significantly negative for 13, 13, and 14 out of 36 cross-sections under the FF3, FF5,

and FF6, respectively. The t-stats are convincingly negative for many cross-sections, with some

as low as -5. Therefore, while Bryzgalova et al. (2020) find that Fama-French factor models fail

to span AP-Tree portfolios, the results indicate that they span the portfolios when transaction

costs are included.

The patterns observed in the effects of including transaction costs on the pricing error are

consistent with the total Sharpe ratio results of the cross-sections in Figure 4. This pattern

persists across all three Fama-French factor models considered. Cross-sections with fast-moving

signals, like momentum, undergo the most significant decrease in their t-stats, while those with

slower signals, such as value, are less affected. However, even cross-sections ranking high in

terms of net Sharpe ratio, such as size, value, and profitability, fail to generate significant α

with respect to the FF5 and FF6 models. This finding reinforces the assertion that standard

AP-Tree portfolios do not span the Achievable SDF.
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(a) Net and gross alpha of the SDF spanned by AP-Trees w.r.t. FF3

(b) Net and gross alpha of the SDF spanned by AP-Trees w.r.t. FF5

(c) Net and gross alpha of the SDF spanned by AP-Trees w.r.t. FF6

Figure 3: Excess Returns of the SDF Spanned by AP-Trees

The figure displays net and gross t-statistics of the out-of-sample pricing errors of the SDF spanned
by standard AP-Trees pruned to 10 basis assets relative to the Fama-French three-factor (Panel (a)),
five-factor (Panel (b)), and six-factor model (Panel (c)). The portfolios are sorted by the achieved gross
SR in ascending order. The pricing errors are significant at the 5% confidence level if the t-statistics fall
outside of the confidence bounds at ±1.96.
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5.2 Characteristic Factor Portfolios

Table 2 provides summary statistics within the test sample for the Fama-French long-short

portfolios corresponding to the ten characteristics that compose the cross-sections alongside an

equally-weighted market portfolio. The table includes the monthly average returns for each

factor, gross and net transaction costs, accompanied by their respective t-statistics, and the

average monthly trading costs (Costs). The results indicate a sizeable reduction in the returns

of many factors when including transaction costs. Consistent with the findings of Detzel et al.

(2023), the factors that undergo the most significant changes are those that rebalance monthly.

Hence, these factors are relatively favoured over those rebalanced annually when transaction

costs are overlooked.

Table 2: Summary Statistics of Long/Short Portfolios Formed with the Characteristics in AP-
Tree Cross-Sections

Ignoring Costs Net of Costs

Factor Portfolio Characteristic Rebalancing Return t-stat Return t-stat Costs

Market LME Monthly 0.62 2.37 0.60 2.30 0.02

High-Minus-Low BEME Annual 0.39 2.22 0.34 1.93 0.05

Small-Minus-Big LME Annual 0.08 1.08 0.05 0.70 0.03

Momentum MOM Monthly 0.76 2.26 0.47 1.40 0.29

Operating Profitability OP Annual 0.34 1.88 0.29 1.60 0.05

Investment Investment Annual 0.43 3.78 0.35 3.03 0.08

Short-Term Reversal ST-Rev Monthly 0.21 0.77 -0.90 -3.35 1.10

Long-Term Reversal LT-Rev Monthly 0.26 1.55 -0.01 -0.05 0.27

Idiosyncratic Volatility IdioVol Monthly 0.36 0.90 -0.24 -0.59 0.60

Turnover LTurnover Monthly 0.11 0.38 -0.34 -1.14 0.45

Accrual Acc Monthly 0.11 1.53 -0.10 -1.36 0.20

This table presents average monthly excess returns and t-statistics, both gross and net of transaction
costs, along with transaction costs (Costs), for long-short portfolios constructed with each of the ten
characteristics in the cross-section, and an equally-weighted market factor. Market, Small-Minus-Big,
High-Minus-Low, Robust-Minus-Weak, and Conservative-Minus-Aggresive denote the Fama and French
(2015) market, size, value, profitability, and investment factors, respectively. Momentum denotes the
Fama and French (2018) momentum factor. Investment, Short-Term-Reversal, Long-Term Reversal,
Idiosyncratic Volatility, Turnover, and Accrual denote factors constructed with 2x3 portfolio sorts on the
characteristic and size described in the Kenneth French Data Library.

The trends noted here are consistent with those identified for AP-Tree portfolios; the cross-

sections most impacted by the integration of transaction costs contain factors whose long-short

portfolios incur the highest costs to sustain, such as ST-Rev, LT-Rev, and IdioVol. Moreover,

these same high-cost factor portfolios also generally have higher return variance, lowering the t-

stat in Table 2 and the Sharpe ratios of the cross-sections that contain them. The Accrual factor

is an exception to this rule. However, the Accrual long/short portfolio has the lowest variance of

all factors, explaining why AP-Tree cross-sections that contain this low-return, high-cost factor

tend to have quite a high Sharpe ratio. Consequently, the poor performance of AP-Trees after

accounting for implementation costs might be mitigated by choosing characteristics based on

their ability to yield significant net returns independent of the other characteristics. Of course,
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this measure is inconclusive as the interactions between characteristics significantly impact the

performance of AP-Tree portfolios and cannot be overlooked.

The results emphasize the distorted perspective that arises when omitting transaction costs

from evaluating a model’s ability to span the SDF. Many AP-Tree portfolios drastically fail to

span the achievable SDF, despite their performance appearing adequate when excluding trans-

action costs. Additionally, measures disregarding transaction costs fail to rank portfolios based

on their performance after transaction costs accurately. The following section addresses these

problems by incorporating transaction costs into the estimation process of AP-Tree portfolios.

6 Achievable AP-Trees

To investigate the impact of cost mitigation strategies on the performance of AP-Tree portfolios,

I turn to a particular feature combination: portfolios constructed based on size, value, and

momentum. This focus allows an in-depth analysis of how the number of portfolios in AP-Trees

affects the transaction costs they incur. It also lays bare the relationship between the magnitude

of optimal shrinkage parameters and the dimensionality of the portfolio optimization problem.

Moreover, it permits the assessment of how introducing transaction costs in the validation stage

affects the factor exposure of the tree portfolios.

Portfolios based on size, value, and momentum serve as a fair proxy for the entire cross-

section, given that their out-of-sample Sharpe ratios ignoring transaction costs are similar to

the mean of those of the other cross-sections. This cross-section also contains the value factor

with low turnover and the momentum factor with high turnover, as shown in Table 2. Hence,

it provides an ideal setting for gauging whether introducing transaction costs sways portfolio

allocation towards lower turnover factors. In addition, both Achievable AP-Tree (AAP-Tree)

and Bounded Achievable AP-Tree (BAAP-Tree) portfolios are calibrated using Bayesian optim-

ization to allow for a fair comparison between the two methods. Results for AAP portfolios

calibrated with grid search are similar, as shown in Figures 8 and 9 in the Appendix.

Figures 4a and 4b depict net and gross OS Sharpe ratios for standard AP-Tree portfolios,

AAP-Tree portfolios, and BAAP-Tree portfolios. The findings underline the discrepancy in the

performance of models contingent on the incorporation of transaction costs in the analysis, also

shown Figure 2 for standard AP-Trees. AP-Trees pruned to fewer basis assets demonstrate

superior performance, regardless of whether transaction costs are included. However, the per-

formance of portfolios pruned to a higher number of basis assets is much worse than it seems

when excluding costs. The net-of-cost Sharpe ratio of these portfolios tends to zero as the

number of basis assets they comprise increases.
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(a) Gross Sharpe ratio of the SDF Spanned by AP-Trees, AAP-Trees, and BAAP-Trees

(b) Net Sharpe ratio of the SDF Spanned by AP-Trees, AAP-Trees, and BAAP-Trees

(c) Net alpha of the SDF Spanned by AP-Trees, AAP-Trees and BAAP-Trees w.r.t. FF5

Figure 4: Performance of the SDF spanned by standard AP-Trees and AP-Trees with cost
mitigation

Panel (a) displays gross monthly out-of-sample Sharpe ratios of the MVE (mean-variance efficient) port-
folios spanned by AP-Trees, AAP-Trees (Achievable AP-Trees), and BAAP-Trees (Bounded Achievable
AP-Trees) pruned to between 5 and 50 basis assets. Panel (b) and (c) respectively display the net
monthly out-of-sample Sharpe ratios and t-statistics of the net pricing errors with respect to the FF5
(Fama-French 5) factor model for the same MVE portfolios. The pricing errors are significant at the 5%
confidence level if the t-statistics fall outside of the dotted horizontal lines at ±1.96
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Figure 4b also shows the efficacy of the analyzed cost mitigation strategies in improving the

net-of-costs Sharpe ratios of AP-Tree portfolios. While the performance of standard AP-Trees

plummets as the number of basis assets increases, both AAP-Tree and BAAP-Tree portfolios

exhibit more stable performance. However, there is still a substantial drop in performance when

the number of basis assets rises from five to ten. Table 3 provides additional insight, showing that

standard AP-Trees significantly outperform AAP portfolios only in five out of 45 instances, with

AAP portfolios performing significantly better in 37 instances. Applying a No-Trade Region

to AAP-Tree portfolios yields even better results, with BAAP portfolios never significantly

underperforming standard AP-Tree or AAP portfolios, and significantly outperforming them in

42 and 33 instances, respectively.

Figure 4c demonstrates the t-statistics of the net alpha, relative to the Fama-French Five-

Factor (FF5) model, for standard AP-Tree portfolios and their cost-mitigating counterparts.

The results confirm the efficiency of the mitigation methods. The net alpha of standard AP-

Tree portfolios deteriorates with the number of basis assets, and is insignificant for portfolios

containing 12 or more basis assets. However, this pattern does not apply to portfolios employing

cost mitigation techniques, which experience a comparatively smaller decrease in net alpha.

Though AAP-Tree portfolios only produce significant alpha in 11 out of 45 instances, BAAP-

Tree portfolios produce significant net alpha in 42 out of 45 configurations.

Table 3: Significance Testing for Differences in Sharpe ratio between Portfolios constructed
with Standard AP-Trees, AAP-Trees, and BAAP-Trees.

Better than Column Portfolio Standard AP-Tree AAP-Tree BAAP-Tree

Standard AP-Tree 0 5 0

AAP-Tree 37 0 0

BAAP-Tree 42 33 0
1The table presents how often the row model has a significantly higher Sharpe ratio than the column model

based on the significance testing procedure of Ledoit and Wolf (2008) with a HAC kernel. AP-Tree denotes

Asset-Pricing Tree, AAP-Tree denotes Achievable Asset-Pricing Tree, BAAP-Tree denotes Bounded Achievable

Asset-Pricing Tree.

6.1 Mechanisms Behind the Enhanced Performance

Figure 5 sheds light on the mechanisms by which cost-mitigation techniques enhance the per-

formance of standard AP-Trees. As displayed in Figure 5a, AAP- and BAAP-Tree portfolios

require significantly less turnover to maintain, especially as the number of basis assets increases.

From Figures 5a and 5b, it is clear that there is a strong positive relation between the absolute

sum of basis asset weights and the number of basis assets in a portfolio, matched by a distinct

increase in turnover when the sum of absolute basis asset weights increases. This relation is

particularly noticeable for standard AP-Tree portfolios, which experience a three-fold increase

in mean turnover when the pruning procedure extends from selecting just 5 portfolios to 25.

Though AAP-Tree and BAAP-Tree portfolios also see a substantial increase in turnover when

the number of basis assets rises from 5 to 10, the trend plateaus when the number of basis assets

increases.
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(a) (b)

(c) (d)

Figure 5: Summary statistics of the SDF spanned by standard AP-Trees and AP-Trees with
cost mitigation

Panels (a) and (b) respectively display out-of-sample mean monthly turnover and the sum of absolute
basis asset weights of the MVE (mean-variance efficient) portfolios spanned by AP-Trees (blue), AAP-
Trees (Achievable AP-Trees; red), and BAAP-Trees (Bounded Achievable AP-Trees; green) pruned to
between 5 and 50 basis assets. Panels (c) and (d) display out-of-sample mean net returns in percentages
and the standard deviation of net returns for the same MVE portfolios. The sum of net portfolio weights
equals one for all MVE portfolios as they fulfil the full-investment criterion. The sum of absolute basis
asset weights is calculated as the sum of a portfolio’s long and short positions. It can be much higher
than one as no short-selling restrictions are imposed in the estimation process. A mean turnover of one
means that the portfolio on average requires selling and purchasing stocks with a combined equal to that
of the net position of the entire portfolio each month.

AAP-Tree portfolios boast lower turnover than standard AP-Tree portfolios due to their

reduced sum of absolute basis asset weights. Moreover, BAAP-Tree portfolios generally have a

higher sum of absolute basis asset weights than AAP-Tree portfolios but invariably exhibit lower

turnover, demonstrating the effectiveness of the No-Trade Region in curbing trading volume.

Figure 4a indicates that gross Sharpe ratios are only marginally lower for AAP- and BAAP-

Tree portfolios. This result suggests that the cost mitigation methods reduce turnover without

losing much exposure to the underlying signal. As a result, cost mitigation significantly boosts
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the mean returns of AP-Tree portfolios, as illustrated in Figure 5c. Figure 5d demonstrates that

cost mitigation techniques also slightly reduce the standard deviation of net returns, especially

as the number of basis assets increases. Nonetheless, it is apparent that improvements in the

Sharpe ratio owing to cost mitigation primarily derive from the sharp reduction in trading costs

without considerably affecting the gross returns.

These findings coincide with those of DeMiguel and Olivares-Nadal (2018), who posit that

including transaction costs in the estimation process of MVE portfolios strikes a good balance

between rebalancing the portfolio to gain exposure to the underlying signal of the portfolio and

avoiding the large transaction costs and impact of estimation error associated with excessive

trading. The fact that BAAP-Tree portfolios outperform AAP-Tree portfolios supports the

findings of Brandt et al. (2009) that applying the No-Trade Region to a strategy enhances its

robustness out-of-sample by reducing the volatility of the weights over time.

6.2 Parameter Calibration

Figure 6 presents the scale of shrinkage parameters that maximize the gross Sharpe ratio in the

validation sample (standard AP-Trees) and those that maximize the net Sharpe ratio (AAP- and

BAAP-Trees). Figure 6a reveals that the degree of mean shrinkage increases with the number

of basis assets in every strategy and is slightly higher for Standard AP-Trees than for the cost

mitigation counterparts. Greater shrinkage towards the mean indicates higher uncertainty in the

estimated expected returns. Since estimated expected returns are prone to severe measurement

errors, extremely high or low returns could be due to chance and, thus, if left unchanged, could

skew the SDF recovery. The addition of transaction costs does not significantly affect these

extreme returns; hence it is not surprising that the degree of mean shrinkage does not change

considerably when including transaction costs in parameter calibration.

Figure 6b demonstrates that variance shrinkage increases with the number of basis assets

in every strategy. However, it is notably higher for AAP- and BAAP-Tree portfolios. Ledoit

and Wolf (2003) show that applying shrinkage to the covariance matrix tends to pull the most

extreme coefficients towards more central values, which explains why cost mitigation drastically

reduces the sum of absolute basis asset weights, as shown in Figure 5b. A higher sum of absolute

basis asset weights increases turnover, decreasing the net Sharpe ratio but not affecting the gross

Sharpe ratio. Therefore, it is logical that incorporating transaction costs increases the optimal

variance shrinkage.

The enhanced performance of AAP- and BAAP-Tree portfolios mainly stems from reduced

trading costs resulting from increased variance shrinkage. So, cost mitigation primarily improves

performance by increasing variance shrinkage, implying that ignoring transaction costs in the

calibration stage leads to severely underestimated variance shrinkage. DeMiguel et al. (2009)

argue that similar portfolio turnover and variance reductions can be achieved by putting con-

straints on the first step of portfolio optimization - estimating optimal weights. This implies that

including cost mitigation in the cross-validation, stage works similarly to directly constraining

portfolio estimation.

Figures 6c and 6d depict the positive relation between the number of basis assets in BAAP-

Tree portfolios and the optimal size of the boundary parameter α and hold parameter κ. A
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larger κ inhibits trading more often, whereas a larger α results in smaller trades. These results,

when paired with Figure 5b, suggest that the No-Trade Region is most restrictive when the

sum of absolute weights is highest, which explains why BAAP-Tree portfolios have significantly

lower turnover than their AAP-Tree counterparts, even though the former has higher absolute

weights.

(a) (b)

(c) (d)

Figure 6: Shrinkage parameters of the SDF spanned by standard AP-Trees and AP-Trees with
cost mitigation

Panel (a) and (b) respectively display the size of the optimal mean (λ0) and variance shrinkage (λ2)
parameters found for the MVE (mean-variance efficient) portfolios spanned by AP-Trees (blue), AAP-
Trees (Achievable AP-Trees; red), and BAAP-Trees (Bounded Achievable AP-Trees; green) pruned to
between 5 and 50 basis assets. Panel (c) and (d) respectively display the size of the optimal boundary
(α) and hold (κ) parameters for the MVE portfolios spanned by BAAP-Trees.

6.3 Alternative Turnover Drivers

While there is a strong link between mean turnover and the absolute sum of weights, it is not

perfect, implying that the characteristics of the basis assets and their interactions also contribute

to turnover. Figure 7 displays some potential turnover drivers as outlined in Section 4.6.
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(a) (b)

(c) (d)

Figure 7: Turnover drivers of the SDF spanned by standard AP-Trees and AP-Trees with cost
mitigation

The figure displays turnover drivers of the MVE (mean-variance efficient) portfolios spanned by AP-
Trees (blue), AAP-Trees (Achievable AP-Trees; red), and BAAP-Trees (Bounded Achievable AP-Trees;
green) pruned to between 5 and 50 basis assets. Panel (a) displays the ”netting” effect, which involves
offsetting purchases based on one factor against sales based on another and is calculated as the mean
turnover divided by the sum of absolute basis asset weights. Panels (a), (b), and (c), respectively, display
the exposure of the same portfolios to the three factors that make up the cross-section: size, value,
and momentum. A portfolio’s factor exposure is defined as the degree to which it contains stocks in
the extreme quantiles of the distributions of the characteristics LME (size), BEME (value), and r12 2
(momentum).

Figures 7b, 7c, and 7d show the exposure of AP-Tree portfolios to the three characteristics

that constitute the cross-section: value, size, and momentum. The patterns in these figures are

consistent across all three AP-Tree portfolio types. Exposure to the low turnover size factor rises

with the number of basis assets, while exposure to the higher turnover value and momentum

factors decreases. The factor exposure is not extreme for any portfolio, never dropping below 0.43

or surpassing 0.65 for any of the portfolios. The mediocre exposure suggests that no portfolio

contains many stocks in the most extreme quantiles of a characteristic distribution. Therefore,
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while the variance in factor exposure explains some discrepancies between mean turnover and

the absolute sum of weights, it does not fully account for them.

Figure 7a displays the ’netting’ effect, which involves offsetting purchases based on one factor

against sales based on another. Netting substantially increases with the number of basis assets

in a portfolio, in line with the findings of DeMiguel et al. (2020) that combining characteristics

often reduces transaction costs. Figure 5b reveals that the netting effect also increases with a

portfolio’s sum of absolute weights, which further explains why the No-Trade Region strategy

curbs turnover so dramatically. BAAP-Tree portfolios benefit more from the netting effect due

to their higher sum of absolute basis asset weights.

In summary, the reductions in turnover brought about by the proposed cost mitigation tech-

niques are mainly due to the lower sum of absolute weights rather than portfolio allocation to

lower turnover factors or more efficient utilization of opposing factor signals. The cost mitiga-

tion methods do not alter the initial stage of the estimation process, which involves estimating

the MVE portfolio. As a result, the optimal portfolio weights identified in this stage are not

optimized to minimize transaction costs. Instead, the improved calibration of shrinkage para-

meters yields portfolios less likely to adopt the large positions typical of unconstrained MVE

portfolios. This leaves room for further reductions in turnover by skewing portfolio allocation

towards factors with lower turnover and opposing signals.

7 Conclusion

Incorporating transaction costs in evaluating AP-Tree portfolios dramatically reduces their out-

of-sample performance and alters the performance hierarchy among the cross-sections. Excluding

transaction costs biases performance metrics towards AP-Tree cross-sections containing factors

that rebalance more often, even though cross-sections with slower signal factors generally perform

better after costs. I propose using the net-of-costs Sharpe ratio as the objective function in the

cross-validation of shrinkage parameters, leading to the development of Achievable AP-Trees

(AAP-Trees). AP-Tree portfolios constructed with this method are much more effective at

spanning the achievable Stochastic Discount Factor than their standard AP-Tree counterparts.

Implementing a No-Trade Region on AAP-Tree portfolio weights further optimizes the net-of-

costs Sharpe ratio. Notably, the improved performance is mainly due to larger shrinkage, which

limits turnover by pulling basis asset weights to more central values.

It is crucial to account for real-world constraints, such as transaction costs, to ensure the

practical usefulness of financial research. Practitioners often encounter returns significantly

below academic projections, attributable primarily to overlooked implementation costs. Hence,

assessing models based on their net-of-costs performance is critical, and anomalies should only be

recognized when excess returns persist after accounting for transaction costs. The methodology

presented in this paper facilitates the examination of the impact of transaction costs on a given

strategy, and the proposed cost mitigation techniques provide potential solutions to these costs.

The study does have limitations. The most significant is the simplistic nature of the linear

transaction costs model. By integrating real-world trading costs data and incorporating the

effects of price movements and liquidity, the representation of implementation costs would be

much more realistic. Furthermore, the analysis of AP-Tree portfolios needs to be completed. For
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a comprehensive understanding of AP-Tree performance, each cross-section should be analyzed

as rigorously as the combination of size, value, and momentum. Additionally, the comparative

analysis only considers AP-Tree portfolios. To fully gauge the achievable SDF spanning cap-

abilities of AAP- and BAAP-Tree portfolios, they should be compared to other leading factor

models such as triple sorts.

Given the similarities in their outcomes, a natural extension of this research would be to

compare cross-validation techniques with transaction costs to traditional robustifying methods

such as constraining portfolio norms. Including transaction costs in the calibration of shrinkage

parameters increases the stability of weights and reduces turnovers. However, it does not directly

steer portfolio allocation towards factors with less turnover, failing to utilize the ’netting’ effect

to its full potential. Integrating direct penalties on features that increase transaction costs

into portfolio estimation might prove effective in optimizing these features, further improving

net-of-cost performance.
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A List of Firm-Specific Characteristics

Table 4: Characteristic variables as listed in the Kenneth French Data Library

Acronym Name Definition Reference

AC Accrual Change in operating working capital per split-adjusted

share from the fiscal year end t-2 to t-1 divided by book

equity (defined in BEME) per share in t-1. Operating work-

ing capital per split-adjusted share is defined as current as-

sets (ACT) minus cash and short-term investments (CHE)

minus current liabilities (LCT) minus debt in current liab-

ilities (DLC) minus income taxes payable (TXP).

Sloan (1996)

BEME Book-to-Market ratio Book equity is shareholder equity (SH) plus deferred taxes

and investment tax credit (TXDITC), minus preferred stock

(PS). SH is shareholders equity (SEQ). If missing, SH is the

sum of common equity (CEQ) and preferred stock (PS). If

missing, SH is the difference between total assets (AT) and

total liabilities (LT). Depending on availability, I use the

redemption (item PSTKRV), liquidating (item PSTKL), or

per value (item PSTK) for PS. The market value of equity

(PRC*SHROUT) is as of December t-1.

Basu (1983),

Fama and

French (1992)

IdioVol Idiosyncratic volatility Standard deviation of the residuals from a regression of ex-

cess returns on the Fama and French three-factor model

Ang, Hodrick,

Xing, and

Zhang (2006)

Investment Investment Change in total assets (AT) from the fiscal year ending in

year t-2 to the fiscal year ending in t-1, divided by t-2 total

assets

Fama and

French (2015)

LME Size Total market capitalization at the end of the previous month

defined as price times shares outstanding

Banz (1981),

Fama and

French (1992)

LT Rev Long-term reversal Cumulative return from 60 months before the return pre-

diction to 13 months before

Bondt and

Thaler (1985)

Lturnover Turnover Previous month’s volume (VOL) over shares outstanding

(SHROUT)

Datar, Naik,

and Radcliffe

(1998)

OP Operating profitability Annual revenues (REVT) minus cost of goods sold (COGS),

interest expense (TIE), and selling, general, and adminis-

trative expenses (XSGA) divided by book equity (defined

in BEME)

Fama and

French (2015)

r12 2 Momentum To be included in a portfolio for month t (formed at the

end of month t-1), a stock must have a price for the end

of month t-13 and a good return for t-2. In addition, any

missing returns from t-12 to t-3 must be -99.0, CRSP’s code

for a missing price. Each included stock also must have ME

for the end of month t-1.

Jegadeesh

and Titman

(1993)

ST Rev Short-term reversal Prior month return Jegadeesh

(1990)
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B Comparison between Achievable AP-Trees Calibrated with

Grid Search and Bayesian Optimization

(a) Gross Sharpe ratio of the SDF Spanned by AAP-Trees

(b) Net Sharpe ratio of the SDF Spanned by AAP-Trees

Figure 8: Performance of the SDF spanned by AAP-Trees with Grid Search and Bayesian
Optimization

Panel (a) and (b) respectively display gross and net monthly out-of-sample Sharpe ratios of the MVE
(mean-variance efficient) portfolios spanned by Achievable AP-Trees (AAP-Trees) with Grid Search and
Bayesian Optimization pruned to between 5 and 50 basis assets.
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(a) Mean Shrinkage (b) Variance Shrinkage

Figure 9: Shrinkage parameters of the SDF spanned by AAP-Trees

Panel (a) and (b) respectively display the size of the optimal mean (λ0) and variance shrinkage (λ2)
parameters found for the MVE (mean-variance efficient) portfolios spanned by Achievable AP-Trees
(AAP-Trees) with Grid Search and Bayesian Optimization pruned to between 5 and 50 basis assets.

C Robust Sharpe ratio Testing

To do the pairwise testing for the significance of the Sharpe ratios, I use the R package Peerper-

formance. The package implements the method for comparing the significance of differences in

Sharpe ratios as described in Ledoit and Wolf (2008). A general HAC kernel is used to ensure

that the covariance matrix is consistent in the presence of heteroscedastic or autocorrelated

errors. Additionally, I choose not to use the bootstrap procedure and assume asymptotic nor-

mality as the bootstrap procedure does not work in R. Equation 11 shows the test. The standard

error is calculated using the Ledoit and Wolf (2008) method with an adjusted covariance matrix

using Ψ, including the HAC adjustment, Equation 12 shows the calculation.

∆ = Shi − Shj =
µi
σi

− µj
σj

(10)

p̂ = 2Φ

(
|∆̂|
s(∆̂)

)
(11)

s(∆̂) =

√
∇′f(v̂)ψ̂∇′f(v̂)

T
(12)
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D Number of Stock Observations over Time

Figure 10: Median number of stock observations from 1964-2016.

E Market Capitalization over Time

Figure 11: Median market capitalization of all stocks from 1964-2016. The vertical axis represents the
market cap in USD millions.

F Programming Code

This section gives an overview of the necessary steps to produce the results. I will provide the

steps in the same order as the results are presented:

1. Net and Gross Sharpe ratio of the SDF Spanned by AP-Trees (Figure 2)

1.1. Pelger Code creates the standard AP-Tree portfolios and computes their gross Sharpe

Ratio.
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1.2. Weights.R in CS Net Performance calculates the basis asset weights in each cross-

section.

1.3. CS Net Sharpe.R calculates the net Sharpe Ratios out of sample.

1.4. 1/N.R creates the ’naive’ 1/N portfolio.

2. Excess Returns of the SDF Spanned by AP-Trees (Figure 3)

2.1. FF factors.R creates Fama-French 3-, 5-, and 6-factor models and net and gross

returns.

2.2. CS Inference.R calculates net and gross alphas, and t-statistics for the Fama-French

3-, 5-, and 6-factor models.

3. Summary Statistics of Long/Short Portfolios formed with the Characteristics in AP- Tree

Cross-Sections (Table 2).

3.1. FF factors.R creates Fama-French long/short factor portfolios for all ten character-

istics and a value-weighted market factor portfolio.

4. Performance of the SDF spanned by standard AP-Trees and AP-Trees with cost mitigation

(Figure 4) and Summary statistics of the SDF spanned by standard AP-Trees and AP-

Trees with cost mitigation (Figure 5). and Shrinkage parameters of the SDF spanned by

standard AP-Trees and AP-Trees with cost mitigation (Figure 6).

4.1. Create AAP-Tree portfolios and standard AP-Tree portfolios with the AAP Tree

folder. AAP Pruning.R is the main file, lasso valid parfull notrans.R is an aux-

iliary file for standard AP-Trees, and lasso valid par full.R. is an auxiliary file for

AAP-Trees.

4.2. Create BAAP-Tree portfolios with the BAAP Tree folder. BAAP Pruning.R is the

main file, and lasso bayesian.R is an auxilliary file.

4.3. Calculate performance measures with LME BEME MOM Net Performance. The

file inference lme bem r12 2.R calculates net alpha, trans results filter.R calcu-

lates net Sharpe Ratios for AP-Trees and AAP-Trees, while trans results filter notrade.R

does the same for BAAP-Trees. trans results presenting.R performs tests from

Ledoit and Wolf (2008) and creates plots, and trans results filter factor.R calcu-

lates factor exposure.

5. Turnover drivers of the SDF spanned by standard AP-Trees and AP-Trees with cost mit-

igation (Figure 7).

5.1. Calculate factor exposure and netting effect with Factor Exp.R in the CS net Performance

folder.
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