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Abstract

As companies increasingly invest in online advertising, understanding the impact of differ-

ent online media channels on conversion probability has become crucial. This paper addresses

the attribution problem in online advertising by introducing new modeling techniques for

prediction and post-hoc interpretation while preserving the order of consumer paths. Pre-

dictive models, including the benchmark Markov Chain (MC), traditional Random Forest

(RF), and the Moving Random Forest (MRF) that accounts for time dependency, are dis-

cussed. Results demonstrate that RF outperforms MC and MRF in terms of prediction

accuracy, achieving an AUC value of 0.6. Furthermore, various attribution metrics are ex-

plored. Besides the common heuristic methods, Incremental Value Attribution (IVA) and

Shapley Value (SV) are computed using simulated Markov graphs. Subsequently, the Sym-

metric Shapley Value (SSV) and the Asymmetric Shapley Value (ASV) are employed to

enhance the post-hoc interpretability of the RF. A comparative analysis of SSV and ASV

reveals the preference for ASV, as it not only takes into account the causal structure of the

data, but also produces only positive outcomes, making it more aligned with the desirable

marketing perspective. The study highlights computational complexities associated with the

Shapley Value in attribution modeling. However, combining RF with ASV offers a feasible

approach that considers the sequential nature of the data and delivers interpretable res-

ults. These findings contribute to understanding attribution in online advertising, providing

marketers with reliable measures for decision-making.
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1 Introduction

1.1 Research Problem

HotWire sold the first banner ads to various advertisers in 1994, which marked the beginning

of online advertising (Evans, 2008). Since then, the online advertising industry is continuously

growing and evolving as new platforms and technologies are developed. Examples of new techno-

logical advances are innovative algorithms that companies can use to present ads to users, based

on browsing history and cookies. Other developments are search engine snippets that companies

apply to ensure the alignment of keywords and phrases with users’ search queries(Thomaidou

& Vazirgiannis, 2011). The amount of money circulating in this emerging online advertising

world is huge. Statista stated that in 2021 the spending in online advertising worldwide was

522.5 billion US dollars (Department, 2023). Hence, it’s important for advertisers to understand

how to allocate their advertising budget, such that these decisions can maximize their return on

investment (ROI). The ROI strongly depends on the number of ad-interactions that lead to a

conversion. A conversion can be defined as the event in which a customer purchases the product

that has been advertised (Singal, Besbes, Desir, Goyal & Iyengar, 2019). The decision on conver-

sion can be influenced by various advertisements on different media channels. Quantifying the

impact of ads on channels is referred to as advertisement attribution. More formally, advertising

attribution can be identified as a method to assign conversion value to a media channel as a

result of an interaction with an online user (Dalessandro, Perlich, Stitelman & Provost, 2012).

The topic of attribution is widely debated within the advertising industry, with currently

numerous proposed attribution models in the literature, including rule-based models and al-

gorithmic models. However, determining the most effective approach to measure the contribu-

tion of each media channel remains a topic of ongoing discussion. The Shapley Value (SV), a

metric from cooperative game theory that has been used in the online advertising industry, is

one promising metric for attribution. The SV ensures fair distribution of value across channels.

This is especially important in scenarios involving the collaborative impact on achieving con-

version outcomes, by acknowledging the interconnected nature of channels (Dalessandro et al.,

2012). Singal et al. (2019) propose an innovative approach to attribution in online advertising by

introducing an axiomatic framework called the Counterfactual Adjusted Shapley Value (CASV).

This metric accounts for counterfactual actions and aligns with the unique-uniform attribution

scheme. Singal et al. (2019) claim it is important to incorporate the counterfactual value in

attribution modeling, as it provides a more accurate understanding of their individual contribu-

tions to conversion outcomes. The authors state that attribution involves measuring the extra

benefit of showing an advertisement compared to what would have happened if no advertisement

was shown. This comparison, known as the counterfactual scenario, helps to understand the

impact of ads on conversion. Theoretical comparative analyses demonstrate the superiority of

this novel attribution scheme over commonly used methods such as uniform weights, or last

touch attribution. While the CASV seems desirable, its practical implementation is challenging

for most datasets. Computing the SV requires exploring all possible combinations of variables in

the dataset, and to additionally observe the counterfactual action for each data point is unreal-

istic. It becomes even more difficult when the specific order of the consumer path to conversion
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needs to be considered, which is the requirement for an unbiased estimator. A consumer path

can be illustrated as the stages of a consumer’s search and purchase journey. The different

stages represent interactions with advertisements across various media channels. Hence, as the

number of channels increases, this approach becomes unfeasible. Singal et al. (2019) attempted

to address these challenges by employing a Markov model to imitate the consumer path, and

using the SV to compute channel attribution within this framework. However, this solution does

not fully resolve the problem as the Markov model itself becomes the limiting factor, introducing

its own performance limitations in the number of channels which are computationally feasible.

As the SV is not dependent on the Markovian assumption, it is interesting to investigate how

to characterize the SV under non-Markovian models.

In contrast to Markov models, which face limitations due to computational feasibility when

employing a high dimensional covariate space, machine learning (ML) techniques excel in their

ability to process an extensive number of variables and data. A notable model that can be

utilized in combination with the SV as another predictive model is the Random Forest (RF)

algorithm developed by Breiman (2001). It has achieved remarkable success as a versatile

method for classification and regression tasks (Biau & Scornet, 2016). As such, RF seems a

desirable approach in the context of assigning attribution value to media channels. However, it

is crucial to consider a model’s ability to incorporate ’secret information,’ specifically, the order

of channels within the consumer path. The interaction between channels holds valuable insights

that should not be disregarded, as it significantly contributes to the predictive power of the

model. In other words, the sequence of advertising interactions can influence a user’s decision

to convert.

In their research Goehry, Yan, Goude, Massart and Poggi (2021) propose an innovative ma-

chine learning technique used for the construction of RF, called block bootstrapping, to maintain

the time-dependent structure of the data. An approach that has not been considered yet in the

context for attribution modelling. Another approach to address the sequence issue is to leverage

an interpretability model, such as the desirable SV, to tackle this task. Further research can be

conducted by combining the predictive RF model with the SV for interpretability while accom-

modating the sequential structure of the advertising data. This leads to the following research

question:

What is the optimal approach for incorporating the Shapley Value as an interpretability meas-

ure in Random Forests for attribution in online avdertising, considering the inclusion of the

sequential order of channels in the consumer path, and how does this approach compare to ap-

plying the Shapley Value to a Markov Chain in terms of prediction performance, and attribution

value?

1.2 Motivation

The increasing interest in advertising attribution has led to the rise of various different attribu-

tion methods. However, it remains uncertain what is the most effective approach to measure the

attribution of each channel. Common approaches rely on heuristic models. Examples are Last

Touch Attribution (LTA) and Uniform Weight Attribution (UWA). LTA is an unfair approach
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since it does not distribute value to channels building product awareness. UWA might solve this

problem, however, remains very general and is not data-driven (Abhishek, Fader & Hosanagar,

2012). Also, both methods ignore the potential value of users who have not interacted with the

media channel, known as the counterfactual value (Singal et al., 2019).

Other more advanced data-driven models are Incremental Value Heuristics (IVH), and SV.

IVH outperforms LTA and UWA in the sense that it will somewhat account for the counterfac-

tual, however, it assigns more value than the actual advertising network generates, as proven

by Singal et al. (2019). Shapley Value is a model based on cooperative game theory that Nisar

and Yeung (2015) employ in their non-parametric approach to attribution. SV is a desirable

approach as it possesses several beneficial properties: linearity, null-player, symmetry, and effi-

ciency, which will be discussed in detail in Section 4.3 (Singal et al., 2019). However, as briefly

mentioned earlier, there is a notable pitfall associated with this metric, as the computation

involves dealing with computational complexity due to the need to explore all possible combina-

tions of players (channels). This leads to infeasible computation times. In their study Singal et

al. (2019) seek to circumvent the computational intractability by using the Markov model, which

models the consumer path, and subsequently combine this with the SV. However, by doing this

they shift the intractability problem of the SV to the Markov model, and now the predictive

model becomes the bottleneck. As the number of states or variables in Markov models increases,

the complexity of the models also increases, even though they do not require searching through

all possible combinations in the data like the SV. Hence, also with this set up, the number of

channels has to be reduced, or aggregated, in order to manage computation. In attribution mod-

elling, not much is known about how to characterize the SV with another predictive model, like

the RF. This limitation causes a knowledge gap that needs to be filled, to give marketers more

reliable and precise attribution measures, that can be applied in various contexts. The research

is structured as follows. First, the conventional Markov model will be employed, incorporating

various attribution metrics, including the Shapley Value (SV). This setup serves as the baseline

for comparison in this study. Second, two predictive models will be implemented and compared:

the traditional Random Forest and a Random Forest utilizing a block bootstrap technique to

account for data ordering. Finally, an Asymmetric Shapley Value (ASV) will be constructed

to interpret the results of a standard Random Forest model, providing a causal framework that

preserves the sequential nature of the data. The ASV will then be compared to the usual SV.

1.3 Relevance

The topic of conversion attribution is widely debated within the advertising industry. Being able

to correctly attribute value to specific channels is of great importance for various stakeholders,

assisting to improve the effectiveness and efficiency of advertising campaigns. The advertising

eco-system contains several players, including marketers, vendors, search engines, publishers,

and consumers (Dalessandro et al., 2012).

First of all, marketers need accurate information about advertising effectiveness, in order to

make correct and accountable decisions on their budget allocation. They only have a limited

amount of money to spent, hence it’s important to understand what marketing campaigns will

maximize their ROI. Geyik, Saxena and Dasdan (2014) analyse budget allocation in online
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advertising and ROI performance. However, they utilize last touch and multi touch models, and

do not consider the analysis of other attribution metrics.

Second, to prove the worth and efficiency of their advertising solutions, online advertising

platforms and technology providers can use attribution modeling. With accurate attribution,

they can demonstrate how their communication channels have a positive impact on conversions

and illustrate how their advertising tools have a positive impact on the success of campaigns.

For example, in the study of Singal et al. (2019) they show that e-mail activity increases the

probability for a user to move from an ’aware’ state to an ’interest’ state by 5 times. Such in-

formation is useful for advertisement agencies to show their clients how effective their campaigns

are, attracting more clients and defending their charges.

Thirdly, publishers and media channels also have an interest in attribution allocation. They

need to understand the contribution of their channels in the conversion process to demonstrate

their value to advertisers, negotiate fair pricing for ad inventory, and optimize their content and

ad placements to maximize conversions. Attribution methods help advertisers understand which

publishers contribute the most to their success. By using these methods, advertisers can make

better decisions and boost their profits (Berman, 2018).

Lastly, consumers themselves can benefit from accurate attribution. Brajnik and Gabrielli

(2010) claim that advertisements can serve as additional channels to fulfill informational or

emotional needs, but they can also create challenges and complexities for users. By analyzing

user behavior and attribution data, advertisers can personalize and improve the user experi-

ence, presenting more relevant and targeted advertisements. This enhances the overall online

experience for users and reduces the likelihood of irrelevant or intrusive advertising.

In summary, accurate attribution in online advertising is important for advertisers, advert-

ising platforms, publishers, and consumers alike. It enables informed decision-making, increasing

revenues, optimization of advertising strategies, fair pricing, and enhanced user experiences.

The literature on the methods used to model consumer paths, and on the different attribution

metrics is reviewed in the next section. Section 3 describes the characteristics, and the necessary

pre-processing steps of the dataset. Subsequently, Section 4 covers all methods used in this study.

The results are presented in 5, followed by a discussion and conclusion in Section 6.

2 Literature

The literature review provides an overview of the research done on advertising attribution mod-

elling. We will first focus on the Markov model, followed by the analysis of a traditional Random

Forest, and a RF in the context of sequence-dependent data. Thereafter, several several attri-

bution metrics are analysed, and in specific the desirable Shapley Value.

2.1 Markov Model

Markov models offer a valuable framework for presenting the sequential nature of the consumer

path in advertising attribution, allowing for the analysis of how different channels interact and

influence conversion outcomes. A lot of research has been done one this topic, utilizing different

approaches. This brings us to the following research question:
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How do several different Markov models perform in modeling the consumer path to conversion

in online advertising attribution?

A Markov model is a mathematical model that helps us understand how a sequence of events

or observations is influenced by previous events. In the context of advertising, it can be used to

simulate and analyze the progression of a consumer path, taking into account the dependencies

and transitions between different states or channels. Abhishek et al. (2012) were the first to

introduce a Hidden Markov Model (HMM) to create the consumer path. The states were

defined as the unobserved levels of interest during the decision process of a user. The authors

demonstrated that the decision on the moment to expose a user an advertisement, makes a lot

of difference in conversion rate. The idea of defining the states in a Markov model as unobserved

levels of interests, contrasts to the approach of this research, where states are defined as the

interaction with different media channels. The ”media-channel” approach is easier to implement,

as it’s hard to collect ’level-of-interest’ data. Hence, a more useful approach for all parties who

want to optimize their online advertising performance. Anderl, Becker, Von Wangenheim and

Schumann (2016) choose a higher order Markov model, combined with the ”Removal Effect”

metric, which will be described later in this Section, to tackle the attribution problem. Compared

to standard Markov models, higher-order models, not solely consider dependency on the current

state but also on a specified number of past states. The authors conclude higher order Markov

models perform better than standard Markov Models in modelling consumer paths. However,

the authors fail to address the complexity a higher order brings to the table. The higher the order

of the Markov model, the more parameters need to be estimated. This increases the complexity,

and makes it computationally intractable. As such, their employed data set consists of short

user journeys, a lot of which are only a one time interaction. This restricts their attribution

model’s capacity to be used with customer journeys that are more complicated.

The study by Kakalejč́ık, Bucko, Resende and Ferencova (2018) builds upon the research on

Markov models. They compare the results of their Markov model, in terms of credit assigned to

various channels, to that of models based on heuristics. They further enhance prior research by

investigating the optimal order for their Markov model, determining that an order of 4 yields

the most effective analysis of consumer paths. However, it is worth noting that the results of

Kakalejč́ık et al. (2018) may have certain limitations. One limitation is the exclusion of consumer

paths that do not end up in a conversion. In contrast, this present research encompasses non-

conversion paths, recognizing their significance in increasing the predictive accuracy of the model.

This is particularly relevant considering the substantial number of consumer paths that do

not result in immediate purchases but may still contribute to future conversions as potential

buyers. By incorporating these non-conversion paths into the analysis, a more comprehensive

understanding of the consumer path is achieved.

Finally, Singal et al. (2019) elaborate on the existing Markovian models in literature to illus-

trate the consumer path. Where Abhishek et al. (2012), Anderl et al. (2016) and Kakalejč́ık et

al. (2018) could be seen as unique examples of the model, they outline their Markov approach in

more general terms. Rather than solely using past interactions to map the consumer path , they

compose a combined state action space. They define their state space as the user moving from

being unaware about the product, to possibly buying the product, including some intermediate
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states. Their action space includes doing nothing, sending an email, showing ad display, etc. It’s

notable that the definitions of state and action spaces is different for all aforementioned papers

and can be altered to suit the needs of the advertisers, the related context, or objective of the

research. However, for the abstract definition of Singal et al. (2019), it’s hard to collect appro-

priate data for their state-action framework, which indicates a limitation in the implementation

of their method. Furthermore, (Singal et al., 2019) distinguish themselves by combining the

Shapley Value with the Markovian network, as a way to add interpretability to the predictive

Markov model. As discussed in Section 1.3, this set-up sounds desirable, however, doesn’t solve

the computation issue, especially when too many channels are considered.

2.2 Machine Learning Models

Given the substantial amount of literature on Markov models for attribution in online advert-

ising, it is evident that their ability to capture the consumer paths, which contain valuable in-

formation, has sparked significant interest. However, due to their limitation on covariate space,

it is equally important to explore the potential of machine learning models in incorporating

sequential dependence within the data. Hence, the next sub-question is as follows:

How do Machine Learning models perform in the context of online advertising attribution?

Machine learning models have emerged as transformative non-parametric statistical models,

enabling powerful data driven analysis and decision making across various sectors. The applic-

ation of machine learning methods in the context of online advertising has been introduced by

Arava, Dong, Yan, Pani et al. (2018). In their study, the authors propose the utilization of a

Deep Neural Network (DNN) to assess the influence of advertising channels in online marketing.

This approach aims to tackle challenges related to channel interaction, user characteristics, and

time dependency. What sets their model apart from other attribution models is the incorpor-

ation of user data, including demographics, which helps reduce estimation bias. Additionally,

to enhance the interpretability of the effects from various media channels, they introduce an

attention mechanism. The mechanism relies on giving different levels of importance to different

interactions with media channels at different times. While this gives insights to the importance

of different ad-interactions, it doesn’t offer an accurate and quantitative measure of assigning

channel attribution. It’s more suitable for enhancing the prediction performance than providing

quantitative contributions per channel. The Shapley Value is, therefore, superior as an interpret-

ation method. Du, Zhong, Nair, Cui and Shou (2019), on the other hand, do use the SV as an

interpretation method to assign credit to channels. Their approach contains two steps, very sim-

ilar to the framework of this research. First, fit a DNN model to construct the consumer path to

conversion. Second, use this model to assign the incremental value of the conversion to a specific

channel, by means of the SV. Compared to Markov models that require lower-dimensional states,

this approach is particularly desirable as it utilizes the capabilities of a DNN to effectively handle

the high dimensionality associated with over 200 different ad types. Furthermore, they are able

to preserve the sequential dependence in the data. However, the their novel approach also has

some limitations when applied in a practical setting. DNN can be computationally demanding

and need a lot of data for training, which could be problematic in situations where there are
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few observations, like real-world marketing scenarios. Furthermore, deep learning models use

specific techniques such as Back Propagation, which are computationally very demanding (Cao,

Wang, Ming & Gao, 2018).

Hence, it’s interesting to investigate other machine learning methods. Random Forests (RF)

are a type of machine learning algorithm used for making predictions, which is in this case

conversion or non-conversion. They were initially developed by Breiman (2001) and nowadays

used in many different settings. RF combine decision trees to improve forecast accuracy and

address overfitting. It outperforms general decision trees by reducing variance and is a prom-

inent method in the ML spectrum. However, in the advertising attribution industry not much

research regarding the RF has been published as it’s not sophisticated enough to incorporate

the sequential nature of the data. Lechner and Okasa (2019) propose a novel approach for this

problem and develop an Ordered Random Forest Model (ORFM). The model is based on the

conventional RF and thus inherits the advantage of the ability to deal with a high-dimensional

covariate space. However, this study considers the outcome variables Y to be ordered. In the

scope of this research we don’t deal with ordered outcome variables, but with sequential cov-

ariates. In other words, the interactions with the media channels that impact the outcome, are

sequentially dependent. Hence, the set up of Lechner and Okasa (2019) is not desirable in the

advertising industry. Davis and Nielsen (2020) theoretically analyse RF in the context of time

series. They built regression trees for nonlinear autoregressive data and support their findings by

several simulation studies. However, the article specifically focuses on nonlinear autoregressive

processes of order p, which are not suitable for modeling consumer paths.

In their work, Goehry et al. (2021) propose a novel technique called block-bootstrapping,

which builds upon the standard bootstrap method to preserve the sequential nature of user

data. The standard bootstrap involves randomly selecting observations with replacement from

a single sample, but it fails to account for data dependencies. Block-bootstrapping addresses

this limitation by sub-sampling time series during the tree construction phase. This approach

mitigates the loss of prediction accuracy caused by breaking the data structure. 3 different

block-bootstrapping methods are discussed, non-overlapping, which involves constructing non-

overlapping blocks, the moving block bootstrap which chooses blocks of successive observations

at random, and the circular block bootstrap which corrects the moving block bootstrap for

potential bias. Based on empirical results, Goehry et al. (2021) conclude that both the moving

and circular perform better compared to the standard random forest. They found that both

methods improve the RMSE up to 11% compared to the traditional RF. The non-overlapping

version, however, requires a large number of observations to yield reliable outcomes. A clear

limitation of their work is that they have only analysed their results in one specific field of

application, namely the load forecasting of a building, i.e. predicting the energy consumption

of a building. It’s therefore of interest to apply their method in a different context with a

dependent data structure, for example the prediction of conversion in attribution modelling.

2.3 Attribution methods

The prediction models discussed above can be used to construct the consumer path. Con-

sequently, attribution metrics are used to interpret these models and thus, to analyse the im-
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pact one specific media channel has on the conversion outcome. This information is of great

importance in the marketing industry. Therefore the next sub-question is:

How are the different attribution metrics defined and how do they compare to each other?

2.3.1 Heuristic Attribution Metrics

To put value to the attribution of online advertisement channels to a conversion, different models

have been developed over the years. The different models can be divided into two groups: rule-

based metrics and data-driven algorithmic metrics. In this section the several models that fall

under these groups will be discussed.

The first rule-based attribution metric is the Last Touch Attribution (LTA) metric. For

this method the advertiser gives all the value of conversion to the channel that has last been

’touched’ (or interacted with) on the consumer path to conversion. LTA seems as an unfair

metric since it doesn’t give any credit to channels that might have contributed to the awareness

of the user (Singal et al., 2019). The uniform weight metric might be a solution for this. The

uniform weight metric gives equal weights to all channels used in the consumer path. This model

is easy to implement, however, there is no obvious justification for linear attribution. Singal et

al. (2019) describe that a clear limitation of both methods is that they don’t account for the

counterfactual value. This means that you only observe the data with a positive conversion

value attached to them, hence you throw away a lot of valuable data. Furthermore, Archak,

Mirrokni and Muthukrishnan (2010) stated that heuristic methods do not adequately consider

interdependence among channels. Hence, algorithmic based attribution metrics were explored.

2.3.2 Algorithmic Attribution Models

Algorithmic models are data-driven rather than being based on fixed and predetermined rules.

Abhishek et al. (2012) develop Hidden Markov graphs to construct the consumer path. Sub-

sequently, they employ these graphs to compute a metric which is based on the incremental

increase in the probability of a customer making a purchase because they saw the ad. This

algorithmic approach is called Incremental Value Attribution (IVA), or Removal Effect. The

incremental value is estimated by removing a specific ad from the consumer path, followed by

comparing the eventual conversion levels. The IVA was initially put forth as an attribution met-

ric in Markov graphs by (Archak et al., 2010) and was modified by Anderl et al. (2016) in their

higher-order Markov graphs. Instead of using Markov graphs to describe the consumer path,

Arava et al. (2018) employ neural networks to model this behavior, followed by computing the

Removal effects. As discussed earlier, their model is called the Deep Neural Net With Attention

multi-touch attribution model. Both models are used to predict the incremental value of an

add action, however, there is no certainty for IVA being a good attribution scheme (Singal et

al., 2019). They might be more granular than rule-based methods, however, require more data

and expertise to implement. In their article Singal et al. (2019) demonstrate that IVA can lead

to incorrect attribution. The authors show that even though IVA accounts for counterfactual

scenarios, the method is not budget feasible. This is because the metric distributes more value

to a specific channel than the entire system actually creates.
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Singal et al. (2019) state the the widely recognized Shapley Value provides a solution to

the aforementioned limitation of IVA. Dalessandro et al. (2012) suggested that using SV as

an approximation for the problem of estimating causality in attribution. SV is a post-hoc

interpretability method based on game theory. It explains the prediction of the conversion

of a consumer, by giving each player their credit in a cooperative game. In an advertisement

attribution setting the attribution value refers to the outcome of the game, where the interaction

with different media channels are viewed as the players of the game. According to the analysis of

Berman (2018), Shapley Values can be regarded as a more fair attribution metric compared to

LTA. Furthermore, SV has several beneficial properties, such as efficiency, linearity, symmetry

and null player, which will be described in Section 4.3 (Singal et al., 2019). However, this

interpretation method has two major drawbacks. First of all, estimating SV is computationally

exhaustive as you have to search for all the possible combinations in the set of variables. In

their paper, Singal et al. (2019) aim to overcome this problem by first modelling the consumer

path with the use of a Markov chain. However, this simply shifts the problem to the Markov

model, which now becomes the bottleneck. Second, it doesn’t account for the counterfactual

value. Dalessandro et al. (2012) define the counterfactual value in an advertising framework as

the effect of an ad on the consumer conversion rate. In other words, what is the quantification

of the impact of showing an ad on a user’s conversion behavior by comparing their conversion

outcomes with and without exposure to the ad. Singal et al. (2019) tackle these problems and

contribute to the existing literature with a new measure for advertisement attribution: the

Counterfactual Adjusted Shapley Value (CASV). Theoretically, this metric seems to overcome

all the above mentioned limitations. However, as discussed in Section 1.3, it’s very hard to

detect the counterfactual value in a dataset, and hence not a tractable method to implement.

3 Data

3.1 Data Analysis

The dataset utilized for this research is the ”Attribution Data” available on Github, which was

uploaded by Mahima Kaushiva (2020). The dataset used in this study comprises 586,737 obser-

vations, each containing six variables: cookieID, time stamp, interaction, conversion, conversion

value, and channel. This data is typically obtained through cookie tracking, where websites store

user information in text files within the browser for analysis purposes. The cookieID variable

captures this information, while the time stamp variable records the exact time of a touch-point

by a specific cookieID. The interaction variable indicates whether the observation corresponds

to an impression or an actual conversion. The conversion variable is binary, with a value of

1 indicating a conversion and 0 indicating only an impression of the media channel. The con-

version value is a numerical representation of the impact of a specific conversion on a business.

However, for this dataset, the specific impact referred to by the ”conversion value” is unclear,

and therefore it is not used for analysis. Lastly, the channel variable encompasses five distinct

media channels: Facebook, Paid Search, Online Video, Instagram, and Online Display.

Figure 1 illustrates a histogram depicting the distribution of interactions across different

channels. Notably, Facebook exhibits the highest number of interactions, accounting for approx-
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Figure 1: Histogram of the interactions per channel in percentage

imately 30.0% of the entire dataset. Paid Search follows closely with 25.8% of the interactions.

These two channels demonstrate a wider range of interaction values compared to the less active

channels. Online Display has the lowest interaction percentage at 12.1%, while Instagram is

slightly higher at 12.8%. Online Video performs moderately, representing 19.3% of the total

number of observations in terms of interactions.

In Table 1, the statistics for each channel are presented to provide an overview of their per-

formance. These statistics include the total number of interactions, interaction rate (percentage

of total interactions per channel), total number of conversions, and conversion rate per channel.

The total number of conversions represents the interactions that resulted in a conversion for each

channel, while the conversion rate indicates the percentage of interactions of a specific channel,

that led to a conversion.Remarkably, the percentage of interactions that lead to a conversion is

consistently around 3% across all five channels. This observation suggests that it’s of interest to

focus on channels with a high number of total interactions, such as Facebook and Paid Search,

in terms of maximizing conversion outcomes.

Table 1: Descriptive statistics of the Attribution Data per channel

Media Channel Total Interactions Interaction Rate Total Conversions Conversion Rate

Facebook 175741 30.0 5301 3.02
Instagram 75201 12.8 2244 2.98
Online Display 71053 12.1 2139 3.01
Online Video 113302 19.3 3408 3.01
Paid Search 151440 25.8 4547 3.00

3.2 Data Transformation

In order to use the data set for this research, we modify the data using the coding language

R. First, the data transformation of the Markov Model will be discussed, followed by the data

12



transformation of the Random Forest.

To implement a Markov Model, consumer paths for all users in the dataset need to be

constructed. The different users are recognized by the cookieID, which serves as a unique user

ID, and can subsequently be ordered by time stamp. An example of a consumer path could be

(Facebook > PaidSearch > Instagram > Conversion), however, paths could also lead to non-

conversion. The modified dataset contains 11,374 unique path instances, which lead to 17,639

conversions in total. One should keep in mind that each specific path instance could possibly

lead several users to conversion. Each instance consist of a sequence of channels, a ”path”,

and is accompanied by three variables: total conversions, total null, and total conversion value.

The first two attributes represent the number of users that either made a conversion or did

not, respectively. The last attribute denotes the total value of conversions made by consumers

following that particular path. However, as mentioned earlier, total conversion value was not

used for the analysis of this research.

To facilitate the implementation of the RF model, several other data preprocessing steps are

undertaken. Firstly, five new categorical variables are created to serve as explanatory variables

in the model, representing the five media channels. Following this, the number of interactions

of each media channel is recorded for each unique cookieID. Finally, a column is created to

aggregate and track the total interactions per channel. The instances which only have 1 total

interaction, or more than 15 interactions, are deleted. The reason behind this is that the time

required to calculate Shapley Values when a lot of variables are involved (long consumer paths),

can lead to a significant practical drawback of the approach. This problem can be mitigated

by decreasing the path length. Filtering the data like this does not disregard large amounts of

data, as presented in Figure 2. Moreover, paths of length of 1 are removed. Findings by Anderl

et al. (2016), Abhishek et al. (2012), and Berman (2018) suggest that one-touch-paths are not

suitable to determine the attribution of channels, or derive carry- and spillover effects between

channels.

4 Methods

In this section, the used methods for this research are discussed. Starting with the Markov Chain

(MC), the Random Forest (RF) and the moving RF, which are used to predict the outcome of

a conversion path. Followed by an outline of the different attribution metrics, Last Touch

Attribution (LTA), Uniform Weight Attribution (UWA), Incremental Value Attribution (IVA),

and two different approaches to compute the Shapley Value (SV). Lastly, an evaluation method

to compare the predictive models is described.

Multiple interactions are involved in the consumer path to conversion. In the setting of this

paper, interactions are seen as an engagement (impression or conversion) that occurs when a

user comes across an advertisement displayed on a specific channel, including Facebook, Ins-

tagram, Paid Search, Online Video and Online Display. Three predictive models are employed

to utilize these channel interactions as features for predicting conversion. The heuristic metrics

discussed in Section 2.3.2 are non-probabilistic measures. Non-probabilistic metrics do not rely

on historical data used for predictive models to estimate the probability of conversion in order
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Figure 2: Histogram of consumer path sequence lengths

to attribute value to media channels. Hence, they are not dependent on any predictive model.

On the other hand, the algorithmic metrics, namely IVA and SV, are data-driven metrics that

utilize predictive models. Consistent with the findings of Singal et al. (2019), both SV and IVA

are computed based on a MC. This research contributes to the existing literature in two main

ways. Firstly, it involves the implementation of a traditional RF model and a modified version

called the moving RF, which will be compared to the predictive MC model. This comparison

allows for a comprehensive evaluation of the different modeling approaches. Secondly, the re-

search explores the application of SV attribution using the traditional RF model. In addition

to the standard SV, an asymmetric SV is also utilized to account for the time sequence present

in the consumer paths. Preserving the order of user paths is essential, as it is a fundamental

characteristic of the MC model. To address this, both the adjusted asymmetric SV and the

moving RF, which consider the sequential nature of the data, are tested.

4.1 Predictive Models

4.1.1 Markov Model

Described as the probability to transition from one state to another, the Markov Chain can be

characterized by three components. First, the set of states S = s1, ..., sn, sc, snc, which can be

characterized as the interaction with all 5 media channels C, and also includes the conversion

state c and the non-conversion state nc. Second, the transition matrix T , which indicates the

probability of moving from one state to another. ti,j presents the probability of moving from

state i to state j, where 0 < ti,j < 1, and
∑n

j=1 ti,j = 1 for all i. The final necessary component

is the arrival state, X0. Consumer paths can thus be constructed by multiplying the arrival

state X0 with the transition matrix T , resulting in the consumer path X0, X1, X2, ..., Xt−1, Xt

over time. In line with Singal et al. (2019) it’s assumed that each row of matrix T is absorbing,
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which means that each path either leads to conversion or non-conversion. Furthermore, because

a path does not begin with either conversion or non-conversion, sc and snc in X0 are equal to

zero. Different orders of Markov models indicate the number of prior observations that have had

an impact on the current state, and that impact the transition to the following state. For the

purpose of this research the objective is to replicate some of the results by Singal et al. (2019).

They propose a Markov model in which the transitions only depend on the current state, in

other words, a model of order 1. This leads to the following 1st order Markov model, where Xt

is a random variable at time t, sj , si ∈ S, and the probability of moving from state i to state j

can be denoted by:

ti,j = P (Xt = sj |Xt−1 = si) (1)

4.1.2 Random Forest

Random Forests (RF) are desirable machine learning models, popular due to their high prediction

accuracy, robust to outliers and noise, short computation time, and helpful internal estimates

of error, correlation, variable importance and strength (Breiman, 2001). The objective is to

create a number of rather small decision trees, and subsequently take the average over all trees

to use for the final prediction of instance x, where x represents the input values of the used

features. The advantage of RF is that the path dependent structure of usual decision trees

tends to overfit the data and leads to a very high variance. By taking the average of multiple

trees, the danger of overfitting the data is overcome. This paper follows the methods outlined

in Lechner and Okasa (2019). In addition to averaging over multiple trees, the Random Forest

algorithm utilizes the bootstrapping technique. This technique involves randomly sampling the

training data with replacement to create B bootstrap samples Bi(Xi, Yi) of size Ni, replicating

the sample distribution. For each of these samples, a decision tree T̂b is constructed by iteratively

splitting the leaves. However, instead of considering all variables for each split, only a subset of

the variables is randomly chosen. This process continues until a minimum leaf size or minimum

leaf variance is reached. Finally, the predictions of all the trees are averaged to obtain the final

result. Mathematically, this can be expressed as follows, where T̂b(x) represents a single decision

tree:

R̂F
B
(x) =

1

B

B∑
b=1

ˆTb(x) (2)

With,

T̂b(x) =
1

|{i : Xi ∈ Lb(x)}|
∑

i:Xi∈Lb(x)

Yi (3)

Where Lb(x) presents a leave for instance x, and Yi is a response variable.

4.1.3 Block Bootstrapping

A limitation of the application of Random Forests in the prediction of consumer paths, is their

inability to incorporate the sequence dependency of channels in the consumer paths. This leads
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to a significant loss of information loss, as the timing of channel exposure impacts the probability

of conversion. Goehry et al. (2021) propose a solution to this problem with an innovative machine

learning technique used for the construction of random forests, called Block Bootstrapping. The

concept involves replacing the conventional bootstrap with a dependent bootstrap, known as a

block bootstrap, to sample subsets of time series data during the construction of decision trees.

With the objective of creating user paths, the moving block bootstrap (MBB) technique will

be utilized, which chooses blocks of consecutive observations at random. Each block represents

an individual consumer path. In line with the methods discussed in Goehry et al. (2021), let

Bi,ln = ((Xi, Yi), . . . , (Xi+ln−1, Yi+ln−1)) denote a block of size ln starting with the observation

(Xi, Yi), where i ∈ (1, . . . , n− ln + 1). The procedure involves randomly selecting K indices

(Ij)1 ≤ k ≤ K uniformly from the set 1, . . . , n− ln + 1 and linking one block with each index.

This results in (BI1 , . . . , BIK ) as the bootstrap set, denoted asDn = (B1, . . . , Bk). Consequently,

the bootstrapped set is used for the construction of the trees of the RF in the conventional way.

The RF with the moving block bootstrap will be called the moving RF.

4.2 Attribution Metrics

4.2.1 Heuristic Attribution Metrics

In this section the methods used to compute the Last Touch Attribution (LTA) and the Uniform

Weights Attribution (UWA) will be discussed. Equation 4 and 5 describe the value πr generated

by channel r according to attribution metrics UWA and LTA, respectively.

πUWA
r =

1

n

∑
i∈M

ni,r

|R|
(4)

Here, n denotes the total number of paths. ni,r represents the number of times channel r

occurs in path i ∈ M , where M is the set of paths that lead to conversion. Lastly, |R| denotes
the number of channels in path i, which are not necessarily unique.

πLTA
r =

ϕr

n
(5)

In equation 5, ϕr is equal to 1 if channel r is the last channel in the converted path i ∈ M .

Equation 4 and 5 are in line with the notations of Singal et al. (2019).

4.2.2 Incremental Value Attribution

The Incremental Value Attribution metric or Removal Effect, is an attribution metric commonly

employed in conjunction with Markov Chains, as demonstrated by Anderl et al. (2016). Accord-

ing to their methodology, the IVA is determined by the the shift in conversion probability when

a specific channel ri is eliminated from the i-th consumer path. This reflective analysis distin-

guishes the IVA compared to other methods as it takes into account counterfactual information.

Following the approach outlined by Anderl et al. (2016) the computation of the IVA a given

channel ri can be expressed as follows:

πIV A
ri = V isit(ri) ∗ Conversion(ri) (6)
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Where V isit(ri) is the probability of passing through channel ri on a random walk, and

Conversion(ri) is the probability of conversion from a give channel ri.

4.2.3 Shapley Value

As described in Section 2.3.2, according to Dalessandro et al. (2012), Shapley Values, a concept

rooted in cooperative game theory, are frequently employed to distribute the value created by

a coalition to its members. Specifically, in the context of this study, SV refers to the change

in attribution value related to a certain channel. The Markov model will be interpreted using

the conventional SV, which is mathematically notated in this subsection. The set of players

(channels), denoted as C in this research framework, reflects interactions with numerous channels

that work together to achieve a single goal: user conversion. The coalition is represented by H

and refers to a group of participants in C. The characteristic function v(k) maps a coalition

HsubseteqC to a numeric value, where the value reflects the conversion attained by customers

interacting with channels in H. The value assigned to an empty coalition, denoted as v(0), is

normalized to 0. For a given channel r, the Shapley Value can be mathematically expressed as

follows:

πSV
r =

∑
H⊆C\{r}

w|H| × {v(H ∪ {r})− v(H)} (7)

where

w|H| =
|H|!(|C| − |H| − 1)!

|C|!
(8)

SV have several advantageous characteristics, which make it a well considered attribution

method. This research follows the mathematical framework of Singal et al. (2019) to outline the

properties. The properties of the SV are listed below:

1. Symmetry : If v(H ∪ r) = v(H ∪ r′) then πr = πr′ .

2. Efficiency :
∑

r∈C πr = v(C).

3. Null Player : If H ⊆ C, v(H ∪ {r}) = v(H) then πr = 0.

4. Linearity : Consider two characteristic functions s(.) and v(.). For all channels r ∈ C, it

holds that πr(s+ v) = πr(s) + πr(v) and πr(bs) = bπr(s) for all b ∈ R.

The SV is the only metric that combines these four properties. Due to these inherent

properties, SV are commonly regarded as a fair attribution method. The detailed proofs of

these properties can be found in the work of Singal et al. (2019)

4.2.4 Shapley Additive Explanations for Average Attributions (SHAPAA)

Addressing the challenge of interpretability in complex Machine Learning models, Lundberg

and Lee (2017) developed the SHapley Additive exPlanations (SHAP) model. This framework,
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rooted in cooperative game theory and inspired by Shapley Values, provides a comprehensive

approach for understanding predictions in various predictive models, including those based on

decision trees. In this study, the SHAP model is employed to quantify the contribution of each

media channel to conversion events predicted by the traditional RF model. Expanding on this

work, Biecek and Burzykowski (2021) extended the methodology to handle the sequential nature

of datasets. Their objective was to address the challenge posed by ordered data by computing

the average attribution value of a feature across all possible orderings or a substantial number

of them, resulting in the SHAP for Average Attributions (SHAPAA) method. This technique

overcomes the limitations of traditional RF models (with standard bootstrap), which are unable

to capture the sequential information that can be captured by Markov Models. Therefore, given

the characteristics of our dataset, SHAPAA is a suitable approach for disregarding the impact

of the ordering of dierent channels within the user path, to interpret the traditional Random

Forest.

Biecek and Burzykowski (2021) propose to mathematically express the SHAPAA value for

a particular instance x∗ of predictive model f() as follows:

Θ(x∗, j) =
1

p!

∑
J

∆j|π(J,j)(x∗) (9)

In simple terms Θ(x∗, j) represents the average of the variable-importance measures over

all potential orderings of explanatory variables. The covariate ordering is represented by J,

which is a permutation of the set of indices (1, 2, ...p). π(J, j) represents all the indices which

are positioned before the variable with index j in the ordering. ∆j|π(J,j) denotes the deviation

in expected model prediction between the expected prediction when setting the covariates of

the indices of set j ∪ π(J, j) to (x∗) and the expected prediction when only the covariates

corresponding to the index j are set to (x∗). Fortunately, this SHAPAA approach inherits all

the desirable properties of the usual Shapley Value (Symmetry, Linearity, Efficiency, and Null

Player).

4.2.5 Asymmetric Shapley Values (ASV)

While Biecek and Burzykowski (2021) address the ordering within the data by averaging over

all possible orderings, Frye, Rowat and Feige (2020) propose a different approach to handle the

ordering issue. Instead of ignoring, as in traditional Shapley Values, or removing the sequential

structure of the data, as in the SHAPAAmethod, they introduce a more flexible framework called

the Asymmetric Shapley Value (ASV). This framework allows for incremental interpretations

in time-series models by considering the sequential nature of the data. In the context of this

research, the ASV is another interesting method to interpret the traditional RF model while

accounting for the order of the consumer paths. The consumer paths are constructed based on

time notations in the variable time. This causal information can be used to implement the ASV

framework.

The general idea of the ASV is to relax one of the four properties of the SV: Symmetry. Frye et

al. (2020) argue that imposing this condition of Symmetry in model interpretability, can obscure
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established sequential relationships present in the data. For this study it is important to preserve

the structural information in the data, where the interaction with one media channel may be

influenced by another. For instance, a user’s exposure to a Facebook ad may trigger a search for

the product online, resulting in a Paid Search interaction. Frye et al. (2020) demonstrate that

by disregarding the symmetry condition, the uniform distribution w(π), which is placed over the

orderings π in the traditional SV, is no longer valid. To develop a clearer understanding of the

distribution selection w(π) in the ASV, it is important to note that w(π) assigns non-zero weights

exclusively to permutations where time ti precedes tj . This creates a causal understanding of the

model. Specifically, the ASV estimates how variable xi, where xti is an observation in the data

at time t for channel i, influences the model’s output when variable xtj is unknown. Conversely,

the j-th ASV assumes that xi is already known and estimates the impact of xj .

This formulation of the ASV, proposed by Frye et al. (2020), can be expressed as follows:

w(π) =

1 if π(ti) < π(tj) for all ti < tj

0 otherwise
(10)

In this research, the assumption is that if an interaction with channel i occurs before an

interaction with channel j, this observation will be assigned a weight of 1. By considering the

sequential order of interactions, the ASV benefits from additional information that enhances

its attribution accuracy. Through their study, (Frye et al., 2020) discovered that Shapley Val-

ues distribute importance across the entire user path, while ASVs tend to concentrate feature

importance at the beginning of the user path. The package shapFLEX in R, can be used to

implement the ASV model and incorporate sequential constraints in the model algorithm.

4.3 Performance Evaluation

After implementing different models to construct the consumer path to conversion or non-

conversion, it is of interest to compare the model fit of the predictive models. Specifically, it is

evaluated which model is best in predicting whether a user converts to buying a product. The

AUC value under the ROC curve is a common metric for binary prediction problems .(Gonçalves,

Subtil, Oliveira & de Zea Bermudez, 2014). It reveals the degree to which the model can distin-

guish between the two groups, conversion and non-conversion. Based on the research conducted

by Huang and Ling (2005), it has been established that the AUC value is a more reliable meas-

ure than accuracy for comparing models. The superiority of AUC has been demonstrated both

theoretically and empirically. Therefore, AUC is considered a suitable evaluation metric for

this research. For the purpose of this research, the methodology proposed by Gonçalves et al.

(2014) is adopted to plot the the Receiver Operating Characteristic (ROC) curve. The ROC

curve requires two values: the True Positive Rate (TPR) on the y-axis and the False Positive

Rate (FPR) on the x-axis. TPR represents the model’s sensitivity or its ability to correctly

predict instances of the conversion class. A higher TPR indicates better model performance.

The calculation of TPR is as follows, where TP denotes True Positive and FN denotes False

Negative:
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TPR =
TP

TP + FN
(11)

The FPR represents the specificity of the model and describes how well the model predicts

the observations falling within non-conversion category. The lower the FPR the better the model

performs. The FPR can be computed the following, where FP presents False Positive and TN

presents True Negative:

FPR =
FP

TN + FP
(12)

The ROC curve is constructed by plotting FPR on the x-axis the TPR on the y-axis. A

diagonal line at a 45-degree angle represents the performance of a random classifier. The higher

the ROC curve is positioned above this diagonal line, the better the model performs in distin-

guishing between positive and negative cases. However, in this research, the ROC curve itself

is not presented as a result. Instead, the focus is on the area under the curve (AUC), which

provides valuable information for model evaluation. The AUC value represents the probability

that a randomly chosen positive observation will be correctly predicted as a positive case by the

model (Fawcett, 2006). AUC values range from 0 to 1, where a value of 1 indicates a model that

correctly predicts all outcomes with a probability of 1, and a value of 0 represents a model that

incorrectly predicts outcomes with a probability of 1. A random prediction has an AUC value

of 0.5, indicating no predictive power.

5 Results

In this section the results will be presented. First, the model fit of the predictive models will be

discussed, followed by the results of several attribution metrics.

5.1 Predictive Models

The results of the prediction models that were used to simulate the consumer path are covered

in this section. We discuss the model fit of the commonly used Markov model, which serves

as the benchmark model, and the fit of 2 different Random Forest models, the traditional RF

and the moving RF. The evaluation metric that will be used is the AUC value, as discussed in

Section 4.3.

The ChannelAttribution package in R was employed to estimate the transition probabilities

for the Markov Chain order 1, based on 11,374 path instances from the dataset. Subsequently,

the AUC value is computed with the application of this package. The RF model is implemented

using the Ranger package, and the moving RF is implemented by means of the Rangerts package.

The Rangerts package can be applied in the exact same way as the Ranger package, however,

this version is modified to implement the RF algorithm using the block bootstrapping technique.

Besides that, all used techniques and chosen parameters are similar.

Due to the highly unbalanced nature of the dataset, where only 3% of the observations lead to

conversion, training a decision tree or any other machine-learning model becomes challenging. A
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tree will simply predict all observations as a non-conversion event, since this leads to a desirable

prediction accuracy of 97%. To mitigate the adverse effects of this class imbalance, an aggregated

random undersampling technique is employed. The decision to utilize random undersampling

is supported by the research conducted by Mishra (2017), who compared various techniques

for addressing class imbalance in classification problems. Their study revealed that random

undersampling consistently outperformed other methods, including the oversampling technique

known as SMOTE. In this study, aggregated propensity score matching was also examined, but

it exhibited poorer performance than aggregated random undersampling, as illustrated by an

AUC value of 0.48. The objective of random undersampling is to create a representative sample

that reduces the dominance of the majority class (conversion = 0). A 1:1 ratio of the target

variable conversion is chosen for each sample. Instead of discarding data, the process is iterated

randomly ten times, and the resulting ten samples are aggregated to construct a new dataset.

This process ensures that the resulting dataset is balanced, with an equal ratio of instances

representing conversion and non-conversion classes. Subsequently, 80% of the data is used for

training purposes and 20% is used to test the predictive performance of the model on unseen

data. To find the number of trees that corresponds to a stable classifier, RF with different ntree

values (100, 500 and 1000) are built. As the out of bag (OOB) error rate is similar for a RF

with 500 and 1000 trees, a less complex model of ntree=500 is chosen. To find the optimal value

of the mtry parameter, which corresponds to the random subset of variables used to base the

splits on in a tree, 5 fold cross validation is performed. This resulted in a value of mtry=2.

In the traditional RF approach, each row in the dataset represents a unique cookieID and the

columns represent the interactions associated with that user. This means that each consumer

path is represented as a single row. However, when implementing the moving RF, the data

needs to be transformed in a slightly different way compared to what was discussed in Section

3. Instead of structuring the data per cookieID, the different time stamps for each cookieID are

preserved as separate rows. The dataset is arranged by cookieID and by time, resulting in a

consumer path being represented as a block of rows. After processing the dataset accordingly,

and yet again taking care of the class imbalance, the distributions of total interactions per cookie

can be found in Figure 3.

In contrsast to the tradition RF, the moving RF requires the block length to be specified.

Optimally, this block length should be determined based on the length of each consumer path.

However, the employed R package doesn’t allow to adjust the block length for each block, ac-

cording to the length of each path. Constructing the bootstrap and tree algorithm manually has

been attempted, however, different block lengths for each cookie led to intractable computation

times. Based on the result, illustrated in Figure 3, cookies related to a consumer path larger

than 1, and smaller than 10, are discarded. The maximum path-length is smaller compared to

the restriction discussed in Section 3.2. This results in less varied path lengths, which contrib-

utes to the accuracy of the moving RF model. Furthermore, visual inspection of Figure 3 shows

that by filtering accordingly, most data observations are preserved. Goehry et al. (2021) claim

that the best rule for selecting a block length parameter, would be to take the least periodicity

up to a multiplication factor of two or three. As the least periodicity of a consumer path is 2, a

block length of 6 is chosen. Finally, table 5.1 gives the AUC values for all three models.
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Figure 3: Histogram of consumer path sequence lengths after data preprocessing

Table 2: AUC values for the Markov Chain model, the Random Forest model, and the moving
Random Forest model

Model MC RF M-RF

AUC 0.52 0.60 0.52

As already discussed in Section 4.3, the higher the AUC value, the better the model is able

to predict the right outcome, where he AUC value of a random prediction is 0.5. Hence, as

presented in Table 5.1 the performance of the MC model (0.52) and the moving RF (0.52) is

only slightly better than a random classifier. An explanation for the low AUC value of he MC

model, which is 0.08 lower than the traditional RF, could be that the order (1) used for the

model, in line with the study of Singal et al. (2019), is too low. The higher the order of a MC,

the more information is used, which increases the predictive performance. However, the higher

the order of the Markov model, the more parameters the model needs to estimate. This increases

the complexity, and leads to overfitting of the model. The low AUC value of the moving RF was

to be expected concerning the length of the blocks chosen for the moving block bootstrap. The

moving RF classifier would more appropriate when clear seasonality is depicted in the dataset,

leading to a constant block length. As well as when the block length would alter based on

the the number of the total interactions per cookie. However, this leads to a very complicated

model which results in high computations times. Hence, due to time constraints this could not

be implemented.

It is observed that the traditional RF has an AUC value of 0.6. This is only somewhat im-

proved compared to a random prediction, and would be labeled as poor discrimination according

to the standards of Hosmer Jr, Lemeshow and Sturdivant (2013). The inadequate performance

of the RF model might be the result of the inability to consider the sequential nature of the
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data set. The order in which the interactions occur, have an effect on the event of conversion.

To illustrate, consider a scenario where a user interacts with a Paid Search advertisement after

already being acquainted with a product. In such cases, the impact of the advertisement is

likely to be more significant compared to when the ad is presented at the initial stages of the

consumer path. Additionally, it is worth noting that the relatively lower AUC value obtained

may be attributed to the generation of synthetic data during the random undersampling pro-

cedure. Nevertheless, considering that the outcomes of these models do not have life-altering

implications and as long as the performance exceeds that of a random classifier, a value of 0.6

can still provide utility. Moreover, the traditional RF model outperforms the MC model, which

serves as the benchmark, and thus appears to be the most suitable approach for modeling the

consumer path towards conversion.

5.2 Attribution Measures

This section presents the results of various attribution metrics used in the analysis. In the Sec-

tion Replication, the findings of four different attribution metrics are discussed: Uniform Weight

Attribution (UWA), Last Touch Attribution (LTA), Incremental Value Attribution (IVA), and

Shapley Value (SV). The IVA and SV metrics are computed using Markov Chains. The Chan-

nelAttribution package is utilized to calculate the transition probabilities. These transition

probabilities are then used to conduct a simulation study of 100,000 iterations to create path

instances. These path instances can be used for the SV and IVA computation. Subsequently,

the Section Extension presents the outcomes of applying the conventional Symmetric Shapley

Values (SSV) and Asymmetric Shapley Values (ASV) to a traditional RF model. A comparison

is made between these results and the Shapley Values obtained from the benchmark MC model.

5.2.1 Replication

Table 3: Attribution per channel by different attribution metrics in percentages

Media Channel UWA LTA SV-MC IVA-MC

Facebook 29.6 30.0 26.4 27.9
Instagram 12.8 12.7 16.7 20.6
Online Display 12.0 12.0 12.9 12.7
Online Video 19.0 19.7 17.5 15.9
Paid Search 26.5 25.6 26.6 22.9

Table 5.2.1 provides an overview of the attribution results obtained from the four attribution

metrics for each channel. To facilitate comparison, all results have been normalized by dividing

them by the total attribution value, and percentages have been computed. Notably, Facebook is

considered as the most prominent channel across all attribution metrics. This observation is un-

surprising considering the high prevalence of Facebook interactions in the dataset, as illustrated

in Figure 1, and the highest number of total conversions per channel, as presented in Table 1.

It is interesting to note that SV allocates the least (26.4%) attribution to Facebook, followed by
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IVA (27.9%). This is expected since SV takes into account the fact that certain paths contain

channels that appear more than once, by only considering unique channels (Singal et al., 2019).

Furthermore, Online Display receives the least attribution across all four metrics. This finding

aligns with the relatively low number of interactions associated with the Online Display chan-

nel. Remarkably, SV attributes the highest value (12.9%) to Online Display, closely followed

by IVA (12.7%). These results demonstrate the ability of SV and IVA to allocate value to a

channel, even in cases where an interaction does not directly lead to a conversion. Both metrics

acknowledge the value of contributing to the awareness of a product. In contrast, LTA only

assigns credit when the interaction represents the final touchpoint leading to a conversion, what

Facebook differentiates.

In order to visualize the attribution of each channel under several attribution metrics, Figure

4 is presented. The first thing to note is that LTA and UWA show almost identical results and

follow the exact same pattern as the total number of interactions, displayed in Figure 1. This

emphasizes the inadequacy of these metrics to provide insights on how effective an ad-campaign

is, apart from the number of users it reaches. In general, all metrics follow a roughly similar

pattern as the distribution of total interactions. This observation could also be attributed to the

AUC results regarding the model fit, which revealed that the predictive accuracy of the models

was only slightly better than that of a random predictor. It could suggest that the media

channels had limited influence on the likelihood of conversion, implying that the effectiveness of

the channels may have been relatively low. Consequently, it can be assumed that the marketing

channels did not exert a significant impact on the conversion process, and therefore, none of the

channels show attribution scores that significantly exceed their occurrence rates.

The computation of SV and UWA is very comparable, only SV corrects for the fact that

some channels appear multiple times in one path. Compared to UWA, SV assigns significantly

more value to Instagram (3.9%), and less credit to Facebook (3.2%). The SV computes the

marginal contribution of each channel to evaluate its contribution to conversion. Hence, this

indicates the impact of both Instagram on the probability of conversion is high, and the impact

of Facebook is low, relative to their occurrence rate. IVA is the most conflicting measure when

comparing it to the total number of interactions (Figure 1), even more than the SV results.

One evident outlier is the value (20.6%) IVA assigns to Instagram, and the value (22.9 %) it

allocates to Paid Search. Singal et al. (2019) find that IVA gives higher credit to channels that

have a higher appearance rate, due to the fact that it’s scaled by action intensity. This is exactly

opposite to the results presented in this research. However, Singal et al. (2019) also claim IVA

is an unjustifiable method as it generates more value than the system can distribute. Hence,

this may be the reason for the conflicting results compared to other metrics.

5.2.2 Extension

Table 5.2.2 provides the Shapley Value outcomes obtained from the traditional Random Forest

model. However, the results for the SHAPAA method, which eliminates the ordering of the

paths by averaging over the all the possible orders of the SV, are not included in the Table. The

computation time required for this method, exceeded several days, even when only using a small

number of test observations. The Shapley value is essentially the average marginal contribution
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Figure 4: Histogram of attribution across 5 channels in percentages: a comparison of 4 attribu-
tion metrics

of a variable when all feasible combinations are taken into account. This already results in a lot

of computations. When the order also has an impact on the outcome, this estimation procedure

becomes even more tedious. Besides estimating all possible feature combinations, averaging

over all possible orderings of these combinations is added to the analysis. For a considerably

large dataset, this execution becomes extremely time consuming, and unrealistic. Consequently,

due to time constraints and the unavailability of a GPU processor, the implementation of the

SHAPAA method was not feasible. Moreover, it can be concluded that the SHAPAA method

poses significant computational challenges, and is thus not a suitable method for the attribution

framework. Despite its ability to address the path sequence issues, it does not outperform the

effectiveness of the Markov Chain combined with the Shapley Value. Even though the RF is

able to handle a high dimensional covariate space, the SHAPAA used to provide interpretation

to this black box, becomes the bottle neck.

As the traditional RF model outperformed the moving RF and the MC, it will be utilized for

further research. Subsequently, the Asymmetric Shapley Values (ASV), as described in Section

4.3, and also the conventional Shapley Value, which will be denoted as the Symmetric Shapley

Value (SSV), are computed based on the traditional RF. The ASV and SSV are displayed in

Table 5.2.2. As proposed by Molnar (2022) Shapley Values based on tree based models, can be

viewed as ’forces’. Each variable acts as a force to either increase or decrease the prediction.

Hence, a positive SV indicates that a feature influences the model to predict conversion=1, and

a negative value indicates that a feature influences the model to predict conversion=0. The SSV

and the ASV yield significantly different results. Specifically, the SSV assigns a negative value to

Instagram, suggesting a negative impact of interactions with Instagram advertisements on users’
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Table 4: Average Symmetric Shapley Value (SSV) feature effect, average Asymmetric Shapley
Value (ASV) feature effect, and the ASV in percentages across 5 media channels

Media Channel SSV ASV ASV %

Facebook 0.0131 0.135 22.5
Instagram -0.0161 0.0916 15.2
Online Display 0.0228 0.107 17.7
Online Video 0.0265 0.0695 11.5
Paid Search 0.00404 0.200 33.1

conversion decisions. This finding contradicts the results obtained from other attribution metrics

discussed previously. However, it is important to note that the negative value does not imply

inadequate performance of the SSV. According to the mathematical definition of Shapley Values,

they can be either positive or negative. On the other hand, the ASV consistently produces

positive values, indicating that the negative results of the SSV are a result of the symmetry.

While negative values are mathematically allowed for Shapley Values, they are generally not

desirable from a marketing perspective. Therefore, in the context of marketing, the ASV would

be a more suitable metric to consider. Moreover, the SSV values exhibit significant differences

when considering the overall number of interactions shown in Figure 1 and the attribution

patterns presented in Figure 5.2.1. These findings indicate that the use of the traditional RF,

despite its computational advantages over a Markov Chain, in combination with the SSV for

interpretability, is not consistent with previous results. It appears that this discrepancy might

stem from not adequately accounting for the sequential nature of consumer paths in both the

RF and the SSV.

The ASV and SSV feature effects are visualized in Figure 5. The ASV algorithm allows for

causal relations computing the Shapley Values, relaxing the Symmetry axiom of the Symmetric

SV framework. This way, the sequential time structure within consumer paths can be preserved.

Also, as proposed by Frye et al. (2020), a sparser explanation can be obtained. This means that

this framework can prioritize the most influential features, while assigning less importance to

less significant features. The histogram provides insights into the attribution assigned by the

ASV and the SSV metric to different marketing channels. It should be noted that even though

Figure 5 is not depicted in percentages, it can be inspected in the same manner as Figure 4.

If the ASV values were scaled by the total attribution value and calculated as percentages, an

exact similar Figure would have been displayed. However, since the SSV metric also includes

negative values, it is valuable to illustrate these in absolute values. As discussed earlier, the SSV

illustrates very different attribution patterns compared the number of interactions in Figure 1

and the attribution percentages in Figure 4. Observing the values of the ASV in Figure 5,

Paid Search is considered the most valuable channel, followed by Facebook. Upon examining

Figure 5, several observations can be made. Firstly, the attribution pattern of the ASV does not

completely align with the distribution of total interactions per channel, as shown in Figure 1.

Paid Search receives a significantly higher credit allocation (0.2) relative to its occurrence, while

Facebook receives less credit than expected. This suggests that the Paid Search advertisement
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has a substantial impact on increasing the conversion probability by 0.2, which holds significant

implications for marketers. Additionally, Instagram and Online Display are attributed slightly

more credit than anticipated based on their interaction frequencies. Where Online Display has

the lowest occurrence rate, it’s the third most valuable channel according to the ASV. This result

highlights the effectiveness of an ad-campaign based on Online Video, where the probability of

conversion is increased a lot relative to its occurrence rate. Surprisingly, Online Video, which

has an interaction rate of 19.3%, receives a notably low attribution value according to the ASV

method. These findings emphasize the opposite as the aforementioned results. An advertising

strategy using Online Video seems to be ineffective, and has a lower impact on conversion relative

to its occurrence rate. This demonstrates the importance of considering the ASV results and its

deviations from the expected attribution patterns when evaluating the effectiveness of marketing

channels.

The allocation of attribution by the ASV method aligns more closely with the results obtained

from applying the Shapley Value (SV) to the Markov Chain, which serves as a benchmark model.

Both approaches rank Paid Search as the most preferred channel, however, ASV more extensively

than SV. As briefly mentioned above, according to Frye et al. (2020) the ASV provides a more

sparse framework. This would indicate that Paid Search is a more influential feature than

considered by the SV. Furthermore, both methods assign notably more credit to Instagram,

as compared to the occurrence rate of the channel. As mentioned above, this emphasizes the

effectiveness of online advertising campaigns displayed on Instagram. Notably, where the SV

mitigates the feature importance of Facebook compared to other attribution metrics, this result

becomes even more visible through the ASV method. Where the SV allocates 26.4% of the total

value to Facebook, ASV only assigns 22.5% (Table 5.2.2). Moreover, there is a discrepancy in

the rankings of the least effective channels. While the SV method identified Online Display as

the least effective, the ASV method indicates that Online Video shows the worst performance.

Previous research by Frye et al. (2020) suggests that ASV tends to concentrate the importance

of features at the beginning of a sequence, whereas SV distributes value more evenly across the

entire sequence. This finding may explain why Paid Search and Online Display receive higher

attribution percentages according to the ASV method. It suggests that Online Display and Paid

Search are often found as an initial interaction in consumer paths that lead to conversion.

The attribution percentages allocated by the ASV method exhibit closer alignment with

the results obtained from applying the Shapley Value (SV) to the Markov Chain, which serves

as a benchmark model. Both approaches consistently rank Paid Search as the most preferred

channel, with the ASV method emphasizing its influence even more than the SV method. This

finding supports the notion proposed by Frye et al. (2020) that the ASV provides a more sparse

framework, indicating a higher level of importance for Paid Search than suggested by the SV.

Additionally, both methods assign significant credit to Instagram, exceeding its occurrence rate,

highlighting the effectiveness of advertising campaigns on this platform. Notably, the SV method

downplays the importance of Facebook compared to other attribution metrics, and this difference

becomes even more pronounced with the ASV method. Table 5.2.2 shows that while the SV

assigns 26.4% of the total value to Facebook, the ASV only assigns 22.5%. However, there is

a discrepancy in the rankings of the least effective channels. While the SV method identifies
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Figure 5: Histogram of the attribution value across 5 channels based on the Asymmetric Shapley
Value (ASV) metric and the Symmetric Shapley Value (SSV) metric

Online Display as the least effective, the ASV method indicates that Online Video performs the

worst. Previous research by Frye et al. (2020) suggests that the ASV tends to concentrate the

importance of features at the beginning of a sequence, whereas the SV distributes value more

evenly throughout the sequence. This finding may explain why Paid Search and Online Display

receive higher attribution percentages according to the ASV method. It suggests that Online

Display and Paid Search are often found as an initial interaction in consumer paths that lead

to conversion.

In summary, the ASV framework provides causal and sequential explanations for the effects

of features in advertising. Unlike the SSV, the ASV assigns only positive attribution values

to media channels. This positive-only attribution aligns better with marketing perspectives,

making the ASV a preferred method in the field. Furthermore, the ASV method assigns a

significantly higher percentage of influence to Paid Search, while Online Display and Instagram

also receive slightly higher credit compared to other attribution metrics. However, Online Video

performs poorly in terms of attribution according to the ASV. When comparing ASV with the

Shapley Value on the Markov Chain, Paid Search consistently emerges as the most preferred

channel. The influence of Facebook, on the other hand, is less pronounced in the ASV results,

diverging from patterns based solely on occurrence rates. The use of the ASV in conjunction with

RF is computationally feasible and advantageous for companies handling multiple advertising

channels. However, the variations between the ASV and the Shapley Values derived from Markov

Chains raise concerns regarding the accuracy of one or both of these methods.
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6 Conclusion and Discussion

This research attempted to find suitable methods to model the attribution of media channels in

the online advertising industry. The commonly used methods, as demonstrated in the reference

paper by Singal et al. (2019)), are inadequate for modeling channel attribution as the number

of channels increases. Hence, the need to investigate the possibilities of applying Machine

Learning techniques to model this framework arises. However, computational complexities arise

when applying the Shapley Value as a post-hoc-interpretability method in attribution modeling.

Consequently, this study investigated the following research question:

What is the most effective approach for incorporating the Shapley Value as an interpretability

measure in Random Forests for attribution in online advertising, considering the inclusion of

the sequential order of channels in the consumer path, and how does this approach compare to

applying the Shapley Value to a Markov Chain in terms of prediction performance and attribution

value?

In order to do this, two predictive models were employed and compared to the Markov

Model, which served as a benchmark model. These predictive models include the traditional

Random Forest and the moving Random Forest. The moving Random Forest uses an alternative

bootstrapping method, the moving block-bootstrap, to secure the sequential structure of the

consumer paths in the data. In order to compare the models the Area Under the Curve (AUC)

value was computed for each model, as this value can be estimated for both RF models, and

for the Markov Chain. The AUC values for the moving RF and the traditional RF were 0.52

and 0.60, respectively. Hence, the traditional Random Forest is found to have a better model fit

compared to the moving Random Forest. The moving RF is expected to perform much better

than the traditional RF, because it should represent the consumer path much better. However,

the low AUC score of the moving RF can be explained by the inadequacy of the model to

adjust the block-length based on the length of each consumer path. The traditional RF also

outperformed the Markov Chain in conversion prediction, which presented an AUC value of

0.52. The Markov Chain’s poor performance can be explained by the low order of the model.

As the order of the Markov model is one, the transition probabilities are estimated only using

information regarding the current state. This simplifies the already complex computation of the

model, which increases the feasibility of the model. However, this results in low performance due

to a lack of information. Even though the performance of the traditional RF is not outstanding,

it has a representative performance compared to the Markov Chain, the moving RF, and to a

random classifier.

After the evaluation of predictive models, the attribution metrics were computed. The heur-

istic metrics Last Touch Attribution (LTA) and Uniform Weight Attribution (UWA), and the

algorithmic metrics Incremental Value Attribution (IVA) and Shapley Value (SV) were com-

puted for the Markov model. Among these metrics, it was consistently observed that Facebook

is considered the most influential media channel in terms of influencing conversions, except for

the SV metric. This result aligns with the high occurrence rate of Facebook, which was the

most frequently encountered channel in the data with a rate of 30%. Furthermore, this high-

lights the essential difference between the SV and the other metrics. The SV only accounts for
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the ”unique” contribution of channels, which results in a lower attribution assigned to Face-

book. Notably, the heuristic metrics produced similar results, that were also comparable to the

occurrence rates of the media channels. This suggests that these metrics do not account for

the varying contributions of the channels based on their individual properties. Interestingly,

both the IVA and SV metrics assigned less value to Facebook but attributed higher value to

Instagram. The algorithmic approaches, which consider the marginal contribution of each chan-

nel, emphasize the added value of Instagram and indicated the relatively ineffective influence of

Facebook on conversions. However, it is worth noting that the results deviated from the results

reported by Singal et al. (2019), who demonstrated that IVA assigns more value to channels with

higher occurrence rates compared to SV. As mentioned earlier this finding can be explained by

the fact that SV only considers the ”unique” channels within each consumer path. However,

in this study IVA assigns substantial value to Instagram, despite its low occurrence rate, and

relatively less value to Paid Search, which has a significantly higher occurrence rate. This ques-

tions the generalizability of the findings of Singal et al. (2019), and suggests the need for further

investigation of the justification of the IVA metric.

Finally, to interpret the preferred traditional RF model, two methods for computing the

Shapley Value were examined in this study. Since the traditional RF model cannot account

for the sequence of consumer paths, an adjusted version of the Shapley Value was employed

to incorporate the time dependency. Initially, the SHAPAA method was implemented, which

considers all possible channel combinations within each user path and averages out the ordering.

However, this method proved to be computationally intractable, with estimation times exceeding

several days for only a few observations. Hence, it’s concluded the method is not suitable to

model the attribution framework. Consequently, the Asymmetric Shapley Value (ASV) method

was applied to interpret the Random Forest. The ASV method relaxes the Symmetry axiom

of the conventional Shapley Value to maintain the causal structure in the data. The ASV

was compared to the results obtained using the conventional Symmetric Shapley Value (SSV)

applied to a Random Forest. The SSV yielded inconsistent results when compared to our

benchmark model. The metric even assigned a negative attribution value to Instagram. This

could question the choice to use the RF model in combination with SSV for modeling online

advertising attribution, and suggests that the SSV method may not be optimal from a marketing

perspective. The inconsistency compared to other attribution metrics could be explained by the

fact that the order of the consumer path is not considered by this framework, which leads

to a high loss of information. In contrast, the ASV method yielded more consistent results

for channel attribution. It ranked the Paid Search channel as the most valuable, followed by

Facebook, Online Display, Instagram, and Online Video, in that order. These rankings align with

the findings of the benchmark model, using Shapley Values to interpret Markov Chains, which

also preferred Paid Search followed by Facebook. However, the two frameworks also exhibited

some varying results. The ASV attributed higher value to Paid Search, and less credit to Online

Video. Frye et al. (2020) suggest that this variation can be explained by the fact that Paid Search

and Online Display are more frequently observed at the beginning of a consumer path compared

to other channels. They find that the ASV considers features at the beginning of the sequence

to be more important, while the SV distributes the value more evenly. However, it is worth
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noting that our data does not exhibit typical time-series properties such as seasonality, trends,

and cyclical fluctuations. This may limit the application of the model and lead to inaccurate

results of the ASV framework. Additionally, the computation of the SV for the Markov model

was based on 100,000 path simulations using Markov transition probabilities. This is different to

the synthetically adjusted data sample employed for estimating the ASV. Despite both samples

containing a substantial number of observations, which enhances generalizability, this variation

in methodology could potentially account for the divergent results between the two metrics.

Returning to the research question, the most effective approach to incorporate SVs as an

interpretability metric to Random Forests, is to use the Asymmetric Shapley Value in conjunc-

tion with the traditional RF. The ASV can determine feature importance for the traditional

RF algorithm, while preserving the sequence in the data. This approach offers the advantage

of accommodating a high-dimensional covariate space, unlike the combination of Markov Chain

and Shapley Values. Additionally, the ASV method preserves the order of paths by eliminating

the Symmetry property of the Shapley Value. As a result, it produces solely positive attribution

values, which cannot be guaranteed by Symmetric Shapley Values. Therefore, from a marketing

perspective, the ASV is a desirable and preferred metric. In terms of prediction performance,

RF outperforms the Markov Chain of order one by 0.08 (AUC). For higher-order Markov Chains,

this difference is expected to be smaller. However, the attribution values assigned to the five

media channels by the ASV metric differ from those of the SV benchmark model. This differ-

ence can be explained by the generation of synthetic data used to train the model. However,

it cannot be validated that the ASV framework accurately determines the attribution value for

online advertising channels.

There are various limitations to consider on this study. First of all, the choice of an attri-

bution framework heavily relies on the specific data and the objective of a companies’ analysis.

Since only the Random Forest and the Markov Model were investigated, this study does not

provide a comprehensive framework that applies to all contexts where different models may be

more suitable. Examples of other data-driven models available for attribution tasks are the

Neural Network (as discussed by Du et al. (2019)), and gradient boosting (proposed by Kadyrov

and Ignatov (2019)). Both ensemble learning models have the ability to handle a high covariate

space, including a high number of channels. Furthermore, Du et al. (2019) apply the SV method

that incorporates sequence-dependence of exposures to ads. Further research is needed to ex-

plore the potential of all possible predictive models and to determine the appropriate model for

specific contexts. And in specific, models that are able to remain the path dependent structure.

A second limitation of this study is that the framework has been tested solely on a single

dataset, resulting in company specific findings. This reduces the generalizability of research

and raises concerns about endogeneity. To address these concerns, future research could explore

multiple datasets and investigate pairwise correlations between variables to mitigate endogeneity

issues, as demonstrated in a study by Anderl et al. (2016). Additionally, the current dataset

included only 5 media channels, limiting the opportunity to test the feasibility of the framework

with a larger number of channels. This presents an interesting area for future research, as the

Random Forest is known for its capability to handle high-dimensional covariate spaces.

A third shortcoming of this study is the poor performance of the predictive models used for
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attribution, namely the Markov Chain, the Random Forest and the moving Random Forest. All

models exhibited low AUC values, only slightly better than those of a random predictor. This

poor performance could be attributed to either inadequate model fitting, as discussed earlier,

or the possibility that the ad campaigns presented on the media channels had minimal impact

on conversions. Consequently, the ability of a post-hoc interpretability method to accurately

allocate attribution to the different channels is limited. To address this limitation, future research

could utilize a dataset where the success of the ad campaigns has been verified.

Another limitation of this study is the lack of verification regarding the accuracy of the ASV

method. While the ASV framework appears to be suitable, it produces different results com-

pared to the benchmark model. This variance could be attributed to the use of a different sample

dataset, where the sample is synthetically generated for both predictive models. Furthermore,

previous research by Frye et al. (2020) suggests that the ASV provides a sparser framework

compared to the Symmetric SV. However, without further verification, it is challenging to con-

firm the accuracy of the ASV. Future research should focus on validating the ASV framework

as an interpretability method within the attribution framework. Additionally, exploring other

interpretability metrics, such as the Local Interpretable Model-agnostic Explanations (LIME)

method, can offer valuable insights, particularly for understanding channel attribution at the

individual observation level. This approach significantly reduces computation time as it focuses

on a single observation.

Lastly, the information pertaining to the dataset used in this study had certain limitations

that need to be acknowledged. Firstly, the construction of consumer paths relied on the use

of cookieIDs as identifiers. However, users may have multiple cookieIDs if they use various

phones and computers. Secondly, the dataset did not include data on offline advertisement

channels. Consequently, it remains unclear whether the ad campaign also had exposure on

offline channels, which could potentially have had an impact on conversion. The incompleteness

of the constructed consumer paths limits the accuracy of the attribution estimates. Furthermore,

although the dataset contained information about the conversion value for each conversion, this

information was not utilized in the analysis of the binary classification models. Considering that

insights regarding revenues and profits resulting from conversions are valuable for companies,

exploring attribution allocation based on revenue, rather than solely on the conversion event,

presents an interesting area for further research.

Finally, this study has made a significant contribution to the field of attribution in online

advertising. Its main objective was to identify a suitable and feasible model that offers compan-

ies a framework for determining advertising attribution. The insights gained from this research

can assist marketers and advertising companies in allocating their budgets effectively and with

accountability, ultimately leading to increased revenues. Based on the analysis of this specific

dataset, several recommendations can be made to companies, advertising platforms, and pub-

lishers. Firstly, based on three attribution metrics (UWA, LTA, and IVA) it is recommended

to prioritize Facebook, having the most impact on potential conversion. Additionally, heuristic

methods tend to underestimate the value of channels that contribute to product awareness (i.e.

future conversion), rather than direct conversion. The Shapley Value, on the other hand, recog-

nizes these channels and has indicated that an ad-campaign presented on the media channels
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Paid Search and Instagram marginally contribute to conversion relative to their occurrence rates.

Therefore, it is advised that besides Facebook, all stakeholders allocate a higher budget to these

two channels.
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