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financial asset is crucial for risk management, as these provide information about poten-

tial losses and can enable efficient capital allocation. This research extends Taylor (2020)’s

influential work on combining individual Value-at-Risk and Expected Shortfall forecasts to

improve forecast accuracy by considering additional methods, applied to a diversified port-

folio. Joint scoring functions for the VaR and ES are applied, as the ES is not elicitable

independently from the VaR. The CAViaR model with Asymmetric Slope and Extreme

Value Theory is found to be the most accurate individual method. The empirical analy-

sis shows that combining methods, which incorporate information from different individual

methods, produce more accurate and more robust forecasts at the 1% and 5% probability

levels, demonstrating the benefits of forecast combinations for the VaR and ES. In particular,

the winsorized mean emerges as the superior method, based on all evaluation criteria.
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1 Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES) are essential risk measures widely employed

by financial institutions, regulators, and market participants to evaluate the risks associated

with their investments. These measures have gained significant importance, particularly since

the market turbulence of the 1990s due to the 1992 Exchange Rate Mechanism (ERM) crisis,

and the 1994 global bond market crash (Acerbi and Tasche, 2002), as they quantify potential

losses that can arise from such extreme market events (Alexander, 2009). The VaR indicates

the maximum loss that can be expected over a given time horizon at a specific confidence level,

and is generally more interpretable than ES. However, Alexander (2009) explains that the ES

measures the average loss beyond the VaR threshold, which makes it more informative in terms

of capturing tail risk, and has led to a rising popularity of the ES in recent years. Given the

central importance of the VaR and ES in risk management, the ability to accurately forecast

these measures is crucial, not only for effective decision-making, but also for optimal capital

allocation. A promising approach is the combination of individual forecasts. This provides a

practical procedure to incorporate different insights gained from various models, generally re-

sulting in a more accurate, combined forecast (Timmermann, 2006). This is especially important

in forecasting the VaR and ES, as the unpredictability inherent in financial markets makes it

improbable for any single technique to persistently outperform others (Zikovic and Filer, 2012).

Accordingly, our research seeks to answer the following central research question:

How can combined Value-at-Risk and Expected Shortfall forecasts enhance the downside risk

forecasts of a diversified portfolio?

This paper serves partially as a robustness check for the influential paper of Taylor (2020), who

was the first to apply the concept of forecast combinations to Expected Shortfall forecasting.

His analysis provides an extensive framework that can be used for continuing this line of work.

We contribute to the literature in a variety of ways. First, our research investigates whether

the findings presented by Taylor (2020) can be extrapolated to a wider variety of asset classes.

More series and recent data are considered, and the analysis is applied to a diversified portfolio.

Additionally, our study explores the ways in which combining methods can benefit from a larger

set of competitive models. To this extent, the Generalized Autoregressive Scoring (GAS) model

and the Cornish Fisher Expansion (CFE) of Cornish and Fisher (1938) are added to the set

of indiviudal methods of Taylor (2020). Furthermore, to adequately examine the potential

benefits of forecast combination methods, additional combining techniques are implemented.

These are the median, the mode (with Gaussian kernel estimation), the winsorized mean, and

the trimmed mean. Each of these techniques is relatively straightforward to implement, but

provides an interesting trade-off between more freedom (like the mean), and more robustness (like

the median or mode). While these combination techniques are well-known in the econometric

literature, only few studies seem to have applied these techniques to Value-at-Risk and Expected

Shortfall forecasting, making our analysis quite novel in the field of downside risk forecasting.

The main findings of this paper can be summarized as follows. The CAViAR-AS-EVT

model produces the most accurate forecasts out of any considered individual method. However,

indisputably, the combining methods produce more reliable and forecasts than all individual

1



methods, with a preference being visible for the winsorized mean forecast combination. This

demonstrates that using forecast combinations of the Value-at-Risk and Expected Shortfall can

considerably enhance the accuracy of downside risk forecasts for a portfolio that is diversified

across multiple asset classes.

Given the importance of accurate VaR and ES forecasts, these downside risk measures have

been the subject of extensive research. Our research aligns closely with the following literature.

First, a fundamental obstacle in backtesting ES forecasts is that the measure is not elicitable,

meaning that the optimal ES forecast is not the unique minimizer of any loss function. This

issue is addressed by Fissler and Ziegel (2016), who propose a range of joint scoring functions

for VaR and ES, rendering the two measures jointly elicitable. These scoring functions enable

the joint evaluation of different VaR and ES forecasts.

Second, various models are proposed and considered for forecasting the VaR and ES. A

common benchmark is the simple historical simulation, which is generally considered to be un-

competitive (Chen et al., 2012). The Generalized AutoRegressive Conditional Heteroscedasticity

(GARCH) model introduced by Bollerslev (1986), along with its variants, are amongst the most

popular models in this context (Gao and Song, 2008). GARCH models assume a fixed condi-

tional distribution, which can lead to inaccurate forecasts if the shape of the actual distribution

varies over time. This assumption is relaxed by the Conditional Autoregressive Value-at-Risk

(CAViaR) model of Engle and Manganelli (2004), which models the conditional quantiles di-

rectly. Another well-known model is the Generalized Autoregressive Scoring (GAS) model,

proposed by Creal et al. (2013). Its dynamic parameter updating procedure gives this model the

ability to react quickly to changes in volatility, as opposed to for example the GARCH model.

Furthermore, its structure enables information from the entire distribution to be incorporated,

instead of only considering the second-order moments. Additionally, the Cornish-Fisher Expan-

sion (CFE) of Cornish and Fisher (1938) provides direct equations for estimating the VaR and

ES, incorporating higher order moments like Skewness and Kurtosis that are frequently over-

looked in standard parametric methods. This technique is gaining more popularity since the

works of Maillard (2018) and Amédée-Manesme et al. (2019), as it allows for a more nuanced

representation of the distribution of returns, such that one can obtain a more comprehensive

view of potential extreme losses.

However, due to the inherent complexity of financial markets, it is often found to be unlikely

that any individual model consistently outperforms other models (Zikovic and Filer, 2012).

This has led to the technique of forecast combinations, dating back to the seminal work of

Bates and Granger (1969), becoming more popular. The literature suggests that combining

different models can lead to more accurate predictions, with much of the idiosyncratic noise of

the individual forecasts being substantially reduced (Timmermann, 2006). In particular, the

literature motivates combining forecasts from a diverse set of models that are competitive and

use different information or incorporate the same information in different ways, as combining

those forecasts can provide a more comprehensive understanding of the underlying patterns

in the data (Batchelor and Dua, 1995). Over time, a variety of combination techniques have

received attention. The simple average is one of the most commonly used forecast combination

techniques. It receives theoretical support by the works of Claeskens et al. (2016), and while
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it is a straightforward technique, it still manages to outperform even sophisticated combination

methods that are theoretically optimal under certain conditions, a finding that is often referred

to as the ‘Forecast Combination Puzzle’ (Smith and Wallis, 2009). In addition to the mean, an

increased consideration has been directed towards alternative simple combination techniques,

like the median and mode (Kourentzes et al., 2014), as well as winsorized and trimmed means

(Jose and Winkler, 2008), as these alternatives are less affected by aberrant observations in

the set of forecasts (Wang et al., 2022). As Sinova et al. (2012) mention, by construction, the

median less affected by extreme values than the mean, making it a more robust measure of

central tendency. Kourentzes et al. (2014) find the median to be superior to the mean, while

the more robust mode1 outperforms both the mean and median forecasts. The mode is robust

to asymmetric distributions (Silverman, 1986), and entirely insensitive to outliers (Tay and

Wallis, 2000), unlike the median. According to Kourentzes et al. (2014), the mode requires

the smallest number of individual forecasters to produce reliable forecasts, a finding which is

especially useful when the number of individual models considered is restricted by computational

limits. However, the literature does not seem to hold a decisive preference for any of these

combination techniques. The winsorized and trimmed means are simple averages that limit the

effect of larger forecasts on the mean. They are motivated by Genre et al. (2013) and Jose and

Winkler (2008), whose findings imply that these combination techniques are beneficial when

there is considerable fluctuation among the individual forecasts.

The literature for combining forecasts for the VaR and ES is still limited, presumably be-

cause the ES is not elicitable. The research of Taylor (2020) is one of the first comprehensive

studies in this context. He uses the joint scoring functions proposed by Fissler and Ziegel (2016)

to estimate combining weights for the VaR and ES, and finds a superiority of the combinations

over any individual method. Trućıos and Taylor (2022) consider the mean, median, minimum,

and maximum combination techniques for VaR and ES, but do not find these combinations to

consistently outperform their individual models. To our best knowledge, the remaining combi-

nation techniques mentioned are not yet extensively researched in the context of VaR and ES,

such that our research could provide novel insights.

The remainder of this paper is structured as follows. Section 2 introduces the data used

for our empirical analysis, and displays some characteristics of this data. Section 3 formally

introduces the two risk measures, and presents the techniques used to construct, combine, and

evaluate forecasts of these measures. The main findings are discussed in Section 4. Finally,

Section 5 concludes and provides suggestions for future research.

2 Data

In this research, methods are considered to construct and combine forecasts of one-day-ahead

Value-at-Risk and Expected Shortfall of daily log returns of financial assets. This research

extends the data of Taylor (2020), by considering more recent data, and by using a diverse range

of assets. By considering a diverse range of asset classes, we ensure generalizability and more

robustness across different financial markets. This not only improves the external validity of our

1For continuous data, usually kernel density estimation is applied, such that the data need not be discretized.
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analysis, but also aligns our research with the practical needs of investors and risk managers,

ensuring both academic and practical value. By incorporating these different asset classes,

each with its own unique risk-return dynamics, our findings can provide valuable insights into

forecasting the downside risks of both individual assets, as well as diversified portfolios. This is

particularly helpful for the mean-investors, whose risk management strategies rely on diversifying

their portfolio (Marling and Emanuelsson, 2012).

This research uses data from the equity market, fixed-income market, commodity market

and foreign exchange market. Respectively, the indices considered for these classes are the

S&P 500 and FTSE 100 stock indices, the iShares Core U.S. Aggregate Bond ETF (AGG), the

S&P Goldman Sachs Commodity Index (GSCI), and EURUSD BGN Curncy (the exchange rate

between the Euro (EUR) and the United States Dollar (USD)). Data on these series is available

on Bloomberg. Information is collected on daily closing prices and closing exchange rates for

a total of 6000 observations per series, all ending2 on April 30, 2023, thereby extending the

dataset used by Taylor (2020), whose research considered data up to 2017. Crypto currencies

are not considered in this research, due to the small number of trading days since their release3,

but this could be considered in further research.

Additionally, in order to answer the research question more adequately, a diversified portfolio

is constructed, where the investor invests 60% of his wealth into the equity market, 30% into

the bond market, 5% into commodities and 5% in the Foreign Exchange Market. This kind of

portfolio can often be found in pension funds, and tries to balance risk and return characteristics:

while stocks are known to deliver opportunities for growth, the relatively large fraction of bonds

adds stability (reduce risk), with additional diversification from the commodities, and exposure

to global trends in the economy as a result of the foreign exchange market. Returns for this

portfolio are calculated using the procedure described in Section A.2 in the Appendix.

The dataset is split into an in-sample part of the first 4000 observations, and an out-of-

sample part of the final 2000 observations. The middle 2000 observations are used for in-sample

validation and combining weight estimation, as explained in Section 3, and the last 2000 days

of the samples are used for the comparative analysis of forecast accuracies of all considered

techniques.

3 Methodology

This Section presents the different techniques for constructing, combining, and evaluating fore-

casts of the two risk measures of interest, the Value-at-Risk and the Expected Shortfall, building

upon the foundational work of Taylor (2020). In particular, our analysis implements his forecast-

ing methods4, as well as the proposed scoring functions. His framework is extended in several

ways. First, two additional individual forecasting techniques are implemented, which are the

Cornish-Fisher Expansion (Section 3.2.5) and the Generalized Autoregressive Scoring (Section

3.2.6) model. Second, as the main focus of this research is combining forecasts, a wider variety of

(simple) combination techniques are added. In particular, the median, mode, winsorized mean

2The starting dates of the series are different, due to the variation of holiday periods in different countries.
3Bitcoin first created in January 2009.
4As intra-day ranges are not available for some series, the HAR-range method of Taylor (2020) is discarded.
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and trimmed mean are implemented. The larger set of individual methods should enhance the

performance of the combining methods (Batchelor and Dua, 1995). Finally, the backtesting tech-

niques considered by Taylor (2020) are extended by incorporating a test for zero autocorrelation

(AC) in the Expected Shortfall forecasts.

Throughout this research, the daily log-returns of an asset j are denoted as yj,t = log
(

Pj,t

Pj,t−1

)
,

with Pj,t the price of asset j at time (day) t, with j ∈ NJ , such that there are a total of J series5.

Log returns of the portfolio (j = 6) are obtained from its Simple Returns6. In order to reduce

the noise in the returns series, and to get a clearer indication of the patterns in these returns, an

AR(1) filter is applied. That is, instead of the returns, the empirical analysis uses the residuals

of an AutoRegressive (AR) model of order 1 for these returns. Hence, for the remainder of this

research, rj,t denotes the residual return of an AR(1) model for series j, or rj,t := yj,t − ŷj,t,

with ŷj,t the fitted return of the AR(1) model7.

3.1 Risk Measures: Value-at-Risk, Expected Shortfall

The Value-at-Risk (VaR) and Expected Shortfall (ES) are popular risk metrics, both aiming to

quantify the downside risk of a (portfolio of) investment(s). This research uses the formulation

with returns (rather than profits/losses), such that the Value-at-Risk is the minimum return over

a given time period with a prespecified probability. Only 1-day-ahead forecasts of the VaR and

ES are considered, but the techniques presented here can be extended to multihorizon settings.

Formally, with a specified probability 0 < α < 1, the 100 · α% Value-at-Risk over the next day

is the level of returns for which lower returns are expected with probability α. For series j, this

quantile, denoted V aRα
j,t+1, is the value of x which satisfies the following equation:

V aRα
j,t+1 = {x ∈ R : P (rj,t+1 ≤ x) = α}. (1)

While the VaR is informative about the potential loss, it fixates on the exact value of the quantile,

and is uninformative on the distribution of returns or losses beyond this value. Instead, the

Expected Shortfall measures the expected loss, given that the Value-at-Risk is violated. This

conditional aspect of the ES has led to the name Conditional Value-at-Risk (CVaR) being

synonymous with the ES. It provides more insights into the shape of the loss distribution in the

tail beyond the VaR quantile than the VaR itself. Formally, the Expected Shortfall corresponding

to the V aRα
j,t+1, denoted ESα

j,t+1, is given by the following conditional expectation:

ESα
j,t+1 = E

(
rj,t+1 | rj,t+1 ≤ V aRα

j,t+1

)
. (2)

3.2 Forecast Construction: Individual Methods

This Subsection proposes the individual techniques used to construct VaR and ES forecasts.

As mentioned, forecast combinations tend to benefit from a set of different competitive models,

especially those that use information differently (Batchelor and Dua, 1995). For this reason,

our analysis considers parametric, semi-parametric, and non-parametric individual methods, to

obtain a set of diverse methods that use the available time series information in different ways.

5In our empirical analysis, a total of J ≡ 6 series are considered, which are the ones mentioned in Section 2.
6For completeness, Section A.2 in the Appendix explains in detail how these log returns are calculated.
7Formally, ŷj,t := θ̂1yj,t, with θ̂1 the OLS estimate of the AR parmamter θ1 in the regression yj,t = θ1yj,t−1+ϵj,t
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A rolling window approach is used for parameter estimation and out-of-sample forecasting.

In particular, the parameters of the individual methods of Section 3.2 are estimated using a

2000-day window. They are re-estimated every 250 days, constituting about one trading year8.

This procedure produces out-of-sample forecasts for the final 4000 days of each time series. For

this period of 4000 days, the weights and percentiles to be used for the combined forecasts (as

explained in Section 3.3), are again estimated using a 2000-day rolling window, with the weights

being re-estimated every 250 days.

3.2.1 Historical Simulation

The first individual method is the historical simulation, using the 250 most recent observations9.

This non-parametric is often used as a benchmark, and is known to be inaccurate, largely due to

its assumption that all returns have the same distribution. This assumption is (in most cases)

inappropriate, due to the prominent presence of volatility clustering in most series of returns.

3.2.2 GJR-GARCH

The second individual technique is the GJR-GARCH(1,1) model, with a Student’s t-distribution10.

This model is fully parametric, and extends the popular GARCH(1,1) model by allowing for

asymmetric properties in the conditional variances. If σ2
j,t is the conditional variance of the

returns rj,t, the GJR-GARCH model for series j can be represented by the following equations;

rj,t = µj,t + ϵj,t, (3)

σ2
j,t = ωj +

(
αj + γj · I{ϵj,t−1<0}

)
ϵ2j,t−1 + βjσ

2
j,t−1, (4)

ϵj,t = σj,t · zj,t, (5)

where zj,t is assumed to follow a Student’s t-distribution, such that ϵj,t follows a scaled zero-mean

t-distribution. The indicator function I{ϵj,t−1<0} allows for asymmetric properties, as a positive

γj implies that negative shocks have a larger effect on the conditional volatility than equally-sized

positive shocks11, and vice versa. Parameters are estimated using Maximum Likelihood.

3.2.3 CAViaR-AS-EVT

The third model is referred to as the Asymmetric-Slope (AS) Conditional Autoregressive Value-

at-Risk (CAViaR) model, which, for a series j, can be expressed by the following equation:

Qj,t = βj,0 +
(
βj,1 · I{rj,t−1 > 0} + βj,2 · (1− I{rj,t−1 > 0})

)
· |rj,t−1|+ βj,3 ·Qj,t−1, (6)

where Qj,t denotes Value-at-Risk of series j at time t. Estimation of the parameters is achieved

by using a quantile regression minimization12, as explained by Engle and Manganelli (2004), and

8We alo experimented with refitting every 1,5,21 periods, but the resulting computational burden was too
large. Conversely, refitting every 1000 or 2000 periods resulted in noticeably decreased forecasting accuracy.

9Using the 100, 500, 1000, or 2000 most recent observations instead did not improve the forecast accuracy.
10A GARCH model with skew-t distribution, filtered historical simulation, and the Extreme Value Theory

(EVT) approach of McNeil and Frey (2000) were also considered, but these did not lead to more accurate forecsts.
11Enforcing γj := 0 in Equation (4) results in the standard GARCH(1,1) model.
12Before applying this regression, parameter vectors are sampled from a uniform distribution with bounds set

by some experimentation, and the previously optimized vector is also included as a candidate. The final parameter
vector is the one with the lowest score following a quasi-Newton algorithm with the three best vectors, based on
the quantile score from Section 3.4.
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introduced by Koenker and Bassett Jr (1978). The Asymmetric Slope (AS) allows for different

effects of positive and negative returns. After estimating the parameters of Equation (6), the

same procedure from Engle and Manganelli (2004) is implemented. That is, the exceedances

are standardized by the corresponding estimated quantiles, and Peaks-over-Threshold Extreme

Value Theory (EVT) is applied to these standardized exceedances. Finally, the Value-at-Risk

and Expected Shortfall can be forecasted using the fitted Extreme Value distribution13.

3.2.4 CARE-AS

While using quantiles is often the first choice for modeling tail risk, it is well known that expec-

tiles are more robust to fat-tailed distributions and potential aberrant observations, resulting

in a more robust framework for analyzing the tail properties of a distribution (Chen, 2018).

Furthermore, according to Newey and Powell (1987), expectiles can capture the distribution in

the tails more adequately than quantiles, as they are more sensitive to its tail behavior. These

expectiles, denoted µj,t for asset j, minimize the weighted sum of asymmetrically scaled squared

residuals (Asymmetric Least Squares), as explained by Newey and Powell (1987). A popular

model using the expectiles is the Asymmetric Slope (AS) Conditional AutoRegressive Expectile

(CARE), proposed by Taylor (2008), and is implemented in our research as well. This model

can be expressed as follows;

µj,t = βj,0 +
(
βj,1 · I{rj,t−1>0} + βj,2 · (1− I{rj,t−1>0})

)
· |rj,t−1|+ βj,3 · µj,t−1. (7)

The parameters are estimated using a similar technique to that of the CAViaR model, but with

the expectile score instead of the quantile score14. The τ expectile approximates the α quantile,

and the ES can be expressed as a function of the expectile. The τ parameter is estimated using

the optimization procedure of Taylor (2008)15, which repeatedly re-estimates CARE-AS models.

3.2.5 Cornish-Fisher Expansion

Another method implemented in the empirical analysis is the Cornish-Fisher Expansion (CFE),

as introduced by Cornish and Fisher (1938). Essentially, the CFE transforms a standard normal

random variable into a non-normal random variable, by means of expanding the quantiles of a

standard normal distribution into a series in terms of the standardized moments. This method

accounts for the skewness and kurtosis, in contrast to standard parametric methods, which often

overlook these higher-order moments. This is particularly important in the context of financial

returns, which often exhibit significant skewness (asymmetry) and kurtosis (fat tails) as displayed

by one of the stylized facts of daily asset returns, implying the assumption of normality may

lead to the underestimation of potential risk (Sheikh and Qiao, 2010). Notwithstanding, the

estimation of higher-order moments can be sensitive to aberrant observations, such that having

a large enough sample size is crucial. The standardized Cornish-Fisher quantile, denoted zαCF ,

13This research uses The Generalized Pareto Distribution, as explained by Taylor and Yu (2016).
14The expectile score is defined as S(µj,t, rj,t) := |τ − I{rj,t ≤ µj,t}| · (rj,t − µj,t)

2

15In particular, this optimization procedure involves iteratively re-estimating CARE models, decreasing τ by
0.0001 until the ratio of in-sample exceedances surpassing the fitted expectile is closer to α than a pre-specified
tolerance. Initial τ values of 0.0018 and 0.0167 are used for the 1% and 5% probability levels, respectively.
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and CVAR, denoted yαCF , for a probability level α are constructed as follows:

zαCF,t+1 = zα +
(
z2α − 1

) Sc,t

6
+
(
5zα − 2z3α

) S2
c,t

36
+
(
z3α − 3zα

) Kc,t

24
, (8)

yαCF,t+1 = yα

(
1 + zα · Sc,t

6
+
(
1− 2z2α

) S2
c,t

36
+
(
z2α − 1

) Kc,t

24

)
, (9)

where Sc,t and Kc,t denote the Skewness and Kurtosis parameters, respectively, and zα and yα

being the VaR and ES values for a Gaussian distribution respectively16. The index t enables time-

varying forecasts, where a moving window of 2000 observations is again employed to calculate

the sample Skewness and Kurtosis, and this window is moved forward one day at a time, to

allow for time-varying VaR and ES forecast17.

However, the Skewness and Kurtosis parameters do not correspond to the observed (sample)

Skewness and Kurtosis. Maillard (2018) and Amédée-Manesme et al. (2019) explain that using

the sample Skewness and Kurtosis in Equations (8) and (9) results in significant mis-estimation

of the quantiles, and hence leads to poor forecasts. Maillard (2018) presents the Skewness and

Kurtosis parameters as non-explicit functions of the observed moments, while Amédée-Manesme

et al. (2019) applies Response Surface Methodology (RSM) to allow for a direct computation

of these parameters. The latter approach is implemented in this research, as it alleviates the

difficulty of working with non-explicit functions. The RSM involves estimating polynomial

models for the Skewness and Kurtosis parameters, with the explanatory variables being the

observed Skewness and Kurtosis, and transformations thereof. For completeness, an elaborate

explanation about this methodology, as well as concrete details about its implementation, is

given in Section A.3 in the Appendix. The standardized quantiles in Equations (8) and (9) are

then linearly transformed, to obtain the following VaR and ES forecasts:

V̂ aR
α

t+1 = µt + zαCF,t+1 · σt, ÊS
α

t+1 = µt + yαCF,t+1 · σt, (10)

where µt and σt denote the sample mean and standard deviation, respectively, and the index

for the assets (j) is dropped for notation convenience. The corrected Cornish-Fisher standard

deviation σCF of Amédée-Manesme et al. (2019) was also considered18, but this did not improve

the forecasting accuracy, and so we simply take the sample standard deviation. Alternatively,

as the volatility is known to be time-varying and partially predictable, one could implement

dynamic volatility models19, and use their volatility forecasts (σ̂2
t+1) as a substitute to the

sample variance σ2
t . While this technique could prove to be a valuable addition to the analysis,

it was not feasible for us to implement it, due to time constraints and the scope of our research.

3.2.6 GAS

As a final individual technique for forecasting VaR and ES, the Generalized Autoregressive

Scoring (GAS) model is considered, as proposed by Creal et al. (2013). GAS models allow

16These are calculated using the theoretical results of Khokhlov (2016). For completeness, the Gaussian VaR

and ES are given by zα = Φ−1(α), and yα = − 1
α

1√
2π

exp
{
− z2α

2

}
, respectively.

17Forecasts were also constructed using windows of 250, 500, and 1000 observations. However, these did not lead
to improved accuracy, so the 2000-observation window is used, aligning this technique with the other methods.

18Amédée-Manesme et al. (2019) follow Maillard (2018) by using σCF := σt√
1+ 1

96
K2

c,t+
25

1296
S2
c,t−

1
36

Kc,t·S2
c,t

.

19Potential candidates are Exponentially Weighted Moving Average (EWMA) models, GARCH models (of
Section 3.2.2), or GAS models (of Section 3.2.6).
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for time-varying parameters, and assume they evolve according to the score of the conditional

distribution. Their structure allows for the incorporation of information from the entire distribu-

tion, instead of exclusively considering the second-order moments. Where the GARCH models

of Section 3.2.2 use squared returns in the volatility updating Equation (4), the GAS model

uses the score of the conditional distribution, as σ2
j,t+1 = ωj + βjσ

2
j,t + δsj,t. Here, the function

sj,t := Sj,t(σ
2
j,t) · ∇j,t(rj,t, σ

2
t ) uses a positive scaling function Sj,t for the score ∇j,t, with the

score being the gradient of the log-likelihood function of the conditional distribution, that is:

∇j,t(rj,t, σ
2
t ) :=

(
∂ ln

(
f(rj,t|σ2

t )
)

∂σ2
t

)
. (11)

Here, f(·) is the probability density function (pdf) of the assumed distribution for the distur-

bances. In order to account for the variance of the scoring function ∇j,t, the scaling function

Sj,t is commonly set to be a power ρ ∈ {0, 12 , 1} of the inverse Fisher information matrix20 of σ2
t ,

as Sj,t(σ
2
t ) := Ij,t(σ

2
j,t)

−ρ. The value ρ := 1 corresponds to Identity Scaling, and a value of ρ = 1

(ρ = 1
2) uses scaling by premultiplying the scoring function by the inverse of the (square root of)

the Fisher Information matrix, and the inverse of the Fisher information matrix, respectively.

Estimation of the parameters of the model is repeated every 250 days, using maximum

likelihood with two distributions: a student’s t distribution and a skew-t distribution, both

being beneficial in providing robustness against extreme observations, as mentioned by Bell and

Huang (2006) and Azzalini and Genton (2008). These GAS models with time-varying scale

produce one-step-ahead density forecasts of the returns rj,t, meaning the Value-at-Risk and

Expected Shortfall forecasts at a probability level α can be computed numerically, as follows;

V̂ aR
α

j,t+1 = F̂−1
t+1(α), ÊS

α

j,t+1 =
1

α

∫ V̂ aR
α

j,t+1

−∞
x · ft+1(x)dx. (12)

Here, F̂−1(α) is the α-quantile of the estimated conditional distribution of returns rj,t+1, com-

puted by inverting the predicted cumulative density function (CDF) numerically, and the Ex-

pected Shortfall forecasts are computed by using Numerical Adaptive Integration of the fore-

casted density (Narasimhan et al., 2023), as used by Ardia et al. (2018). The specifications of

the density functions ft+1(·) and Ft+1(·) depend on the chosen distribution.

Our analysis considers GAS models with skew-t distribution and identity scaling, as well

as the variants with student’s t distribution and the three different scaling types. In-sample

validation is used to select the best variant, which is the one that minimizes a scoring function21

of Section 3.4. Validation using the FZG score22 shows a preference for the GAS model with

student’s t-distribution and identity scaling is preferred and hence this variant is used in the

empirical analysis. This makes the GAS model align closely with the GARCH model (of Section

3.2.2) that uses the same distribution, such that potential changes in forecast accuracy can be

attributed to the more adequate updating of the volatility in the GAS model.

20For the univariate case, the Fisher Information matrix for σ2
j,t is defined as Ij,t := E

[(
∇j,t(rj,t, σ

2
t )
)2 |It−1

]
,

where It−1 is the Information Set at time t− 1.
21Alternatively, one could compare the likelihoods. However, given our focus on the scoring functions of Section

3.4, it seems more appropriate to use these scores for the in-sample validation.
22The rankings are similar for the other scoring functions of Table 1, albeit slightly less decisive.
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3.3 Forecast Combinations

This Subsection discusses several simple forecast combination techniques, like the simple aver-

age, median, mode, winsorized and trimmed means, as well as more sophisticated avaeraging

techniques that involve estimation of combining weights. A distinction is made between two sets

of individual methods. First, the set of all individual forecasters of Section 3.2 is considered,

denoted by M0, containing M := |M0| forecasts23. However, as mentioned, the historical sim-

ulation method is often found to be uncompetitive. Therefore, the set of all individual methods

excluding historical simulation is also considered, which is denoted by MH := M0 \ {HS}.

3.3.1 Simple Combination Techniques

As a first approach to combining forecasts, the simple average is implemented, which is one of

the most commonly used combination techniques. Although it provides equal weights to each

method, thereby assuming that all the individual forecasts are equally accurate, its empirical

support greatly motivates its inclusion in our empirical analysis. While the mean is often found

to produce competitive forecasts, it is not robust to large observations in the set of forecasts.

Hence, the more robust median and mode are also implemented. If the number of individual

forecasts, |M|, is odd, the median is the middle value of the sorted forecasts, otherwise it is the

average of the two middle values. The median could prove useful if there are potential outliers

in the set of forecasters, or if the forecasters are skewed.

The mode is defined as the most frequent value in the set of data, and is completely insensitive

to outliers (Tay and Wallis, 2000). As the individual forecasts are continuous, the mode is

calculated using Kernel Density Estimation (KDE) of Parzen (1962) and Rosenblatt (1956).

KDE estimates the probability density function of a random variable, which in our case is

the set of individual forecasts. Following Tay and Wallis (2000), the kernel is chosen to be

the Gaussian kernel, and the rule of thumb proposed by Terrell and Scott (1992) is used for

the bandwidth. The mode ensemble forecast is then calculated as the value that corresponds

to the maximum estimated density (Kourentzes et al., 2014). For completeness, an elaborate

explanation of the Gaussian KDE is given in Section A.4.

The winsorized mean can be another suitable choice when extreme values are present in

the individual forecasts. This technique reduces the impact of potential outliers in the set of

forecasters by replacing the most extreme values by observations at a certain percentile, called

the winsorizing percentile. An equal-weighted average is then computed over the resulting set

of values. By construction, the winsorized mean can be interpreted as a balance between the

previously proposed mean and median, in the sense that, like the median, it reduces its sensitivity

to potential outliers, while allowing for the resulting forecasts to be sensitive to changes in the

data, like the mean. The winsorizing percentile is determined using in-sample validation based

on the FZG score of Section 3.4, where the percentile is fixed across probability levels, but can

be different across series24. This percentile is optimized once25, using the full validation sample.

23Our empirical research considers the M ≡ 6 individual forecasters of Section 3.2.
24Experimenting with equal percentiles across the series, as well as different percentiles across probability levels,

did not improve forecast accuracy, and consequently not considered in the empirical analysis.
25Re-estimating the optimal percentile every 250 periods, similarly as the combining methods in Sections 3.3.2

and 3.3.3, did not lead to more accurate forecasts, and is thus not considered, reducing computation times.
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Finally, the last simple combination technique considered26 is the trimmed mean. This

technique is similar to the winsorized mean, in that it adjusts the most extreme values at some

percentile, called the trimming percentile. However, these values are simply discarded, instead

of being replaced by less extreme values. The trimming percentiles are calculated similarly as

the winsorizing percentiles. The distinction between winsorizing and trimming, and the choice

thereof, is subtle but important. A preference for either one should be determined mostly by

the nature/type of the extreme values present. If these larger values are believed to be errors,

the trimmed mean may be more applicable, while the winsorized mean could be preferred if

these values, while extreme, are still assumed to provide information Jose and Winkler (2008).

By winsorizing the most extreme values, part of the information within these values is still

maintained, while trimming these observations eliminates their information entirely.

3.3.2 Minimum Score Combining

The first sophisticated combination technique involves the estimation of two different sets of

weights to combine the VaR and ES forecasts, which seems appropriate given a method may

produce VaR and ES forecasts that are of different quality. Taylor (2020) combines forecasts

of the difference between the Value-at-Risk and Expected Shortfall, resulting in a method he

referred to as minimum score combining. Letting Qc
j,t and ESc

j,t denote the combined VaR and

ES forecasts respectively, this method can be presented by the following equations;

Q̂c
j,t =

|M|∑
i=1

q
(i)
j · Q̂(i)

j,t , q
(i)
j ∈

{
R : min

{
q
(i)
j

}
≥ 0,

|M|∑
i=1

q
(i)
j = 1

}
, (13)

ÊS
c

j,t = Q̂c
j,t +

|M|∑
i=1

e
(i)
j ·

(
ÊS

(i)

j,t − Q̂
(i)
j,t

)
, e

(i)
j ∈

{
R : min

{
e
(i)
j

}
≥ 0,

|M|∑
i=1

e
(i)
j = 1

}
. (14)

Here, Q̂
(i)
j,t and ÊS

(i)

j,t respectively denote the VaR and ES forecast of a single model27 i ∈
M for series j, and q

(i)
j and e

(i)
j are the convex weights for the i-th individual VaR and ES

forecasts, respectively28.These weights ensure the combined ES forecasts exceed the combined

VaR forecasts. The weights are estimated simultaneously, being the arguments that minimize

the value of the AL scoring function29, introduced in Section 3.4.

3.3.3 Relative Score Combining

A final way to combine forecasts is a technique which Taylor (2020) referred to as relative score

combining. In contrast to the different combining weights for the VaR and ES forecasts in the

minimum score combining, now the same set of weights is used, denoted ω
(i)
j for asset j using

model i. This technique uses weights inversely proportional to the relevant measure of accuracy.

Our research applies the same approach as Shan and Yang (2009), but uses the Scoring functions

26The minimum and maximum ensemble forecasts were also implemented, but these lead to poor forecasts (as
perhaps expected), and are hence omitted.

27The set M either refers to M0 or to MH , depending on whether historical simulation is to be included.
28Enforcing q

(i)
j := e

(i)
j resulted in similar findings. Therefore, these results are omitted, in order to save space.

29Using any of these functions resulted in similar findings. Hence, only the results using AL score is reported.
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from Section 3.4 instead of the quantile score. This method is expressed as follows;

Q̂c
j,t =

|M|∑
i=1

ω
(i)
j ·Q(i)

j,t , (15)

ÊS
c

j,t = Q̂c
j,t +

|M|∑
i=1

ω
(i)
j · ÊS

(i)

j,t , (16)

ω
(i)
j :=

exp

(
−λj

∑t−1
d=1 S

(
Q̂

(i)
j,d, ÊS

(i)

j,d, rj,d

))
∑|M|

k=1 exp

(
−λj

∑t−1
d=1 S

(
Q̂

(k)
j,d , ÊS

(k)

j,d , rj,d

)) , λj > 0 (17)

where S(·) is the chosen scoring function from Section 3.4. The tuning parameter λj can be

interpreted as the degree to which the weights ω
(i)
j depend on the given scoring function S(·),

and are chosen/optimized by minimizing the in-sample values of this chosen scoring function.

3.4 Forecast Evaluation: Scoring Functions

This Subsection introduces the set of considered scoring functions, which are loss functions

used to assess the quality/accuracy of forecasts of stochastic parameters. Evaluating VaR and

ES forecasts is not straightforward: not only are the actual VaR and ES not observed, but

the Expected Shortfall is not elicitable, meaning the actual correct forecast of the Expected

Shortfall does not uniquely minimize any (expected) loss function. Especially this latter point

complicates the forecast evaluation process, a process which is essential in order to determine a

method’s utility in accurately forecasting the VaR and ES. However, Fissler and Ziegel (2016)

show that the Value-at-Risk and Expected Shortfall are elicitable jointly, and propose a set of

joint VaR and ES loss functions for which these measures are indeed jointly elicitable. In this

research, these joint loss functions are used, with the focus being on combining VaR and ES

forecasts from the individual models/methods of Section 3.2.

3.4.1 Scoring Function for the VaR: the Quantile Score

First, the Value-at-Risk is considered separately, as this measure is elicitable, meaning there

exists at least one loss function for which the correct VaR forecast is the unique minimizer of

this expected scoring function. In this case, this scoring function is called strictly consistent

for the VaR, for which Gneiting and Raftery (2007) provide a variety of forms. One of these is

the widely used quantile score, which is used as the loss function for quantile regressions. This

strictly consistent function has the following form (Gneiting, 2011);

S
(
Q̂

(i)
j,t , rj,t

)
=
(
α− I{

rj,t≤Q̂
(i)
j,t

}) · (rj,t − Q̂
(i)
j,t

)
, (18)

where Q̂
(i)
j,t is the Value-at-Risk forecast of method i at a probability level of α, and I{rj,t<Q̂

(i)
j,t}

is an indicator function taking on the value 1 when the VaR is violated/exceeded.
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3.4.2 Joint Scoring Functions for the VaR and ES

As mentioned, Fissler and Ziegel (2016) show that the VaR and ES are jointly elicitable, and

propose consistent scoring functions with the following general form;

S(Qj,t, ESj,t, rj,t) = −
(
α− I{rj,t≤Qj,t}

)
·G1(Qj,t)− I{rj,t≤Qj,t} ·G1(rj,t) (19)

+G2(ESj,t) ·
(
ESj,t −Qj,t + I{rj,t≤Qj,t} ·

Qj,t − rj,t
α

)
− ζ2(ESt) + a(rj,t),

where G1(·), G2(·), ζ2(·) and a(·) are functions to be specified, satisfying (at least) the con-

straints d
dxG1(x) ≥ 0, d

dxζ2(x) ≡ G2(x) ≥ 0, and ζ2(·) convex. The scoring function in Equation

(19) is strictly consistent if ζ2(·) is strictly increasing
(

d
dxζ2(x) > 0

)
and strictly concave. The

exact specifications of the functions G1(x), G2(x), ζ2(x) and a(rj) for these scoring functions

are shown in Table 1. The AL, NZ and FZG scores are used to estimate the weights30 for the

minimum score
(
q
(i)
j , e

(i)
j

)
and relative score

(
ω
(i)
j

)
combining methods.

First, Taylor (2019) proposes a scoring function being the negative of the log-likelihood

function of an Asymmetric Laplace density with time varying parameters, which he refers to

as the AL score. This function is supported by the works of Patton et al. (2019). Second,

the research of Nolde and Ziegel (2017), which involves comparative backtests for several risk

measures, proposes another scoring function, which is referred to in this paper as the NZ score.

Third, the scoring function proposed by Fissler et al. (2015) is considered. Taylor (2020) adjusts

this score to better distinguish between the different forecasts by setting a(·) := ln(2) in Equation

(19) instead of a(·) = 0. This adjusted scoring function is implemented in this research as well,

and is referred to as the FZG score. Finally, the fourth score considered is proposed by Acerbi

and Szekely (2014), and is referred to as the AS score. This score uses G1(x) = −1
2Wx2, for a

parameter W ∈ R, and is strictly consistent if this W satisfies WQj,t < ESj,t Fissler and Ziegel

(2016). The smallest integer that guarantees this condition is satisfied for every pair of VaR and

ES forecasts is W ∗ ≡ 4, such that this value is used for all AS scores in this research.

Table 1: Specifications of the functions used in the joint scoring function for the VaR and ES
in Equation (19). These correspond to four different scores; the AL, NZ, FZG and AS scores.
Also included in the Table are the literature from which these functions originated.

G1(x) G2(x) ζ2(x) a(rj) Literature

AL 0 − 1
x − ln(−x) 1− ln(1− α) Taylor (2019)

NZ 0 1
2 (−x)−

1
2 −(−x)

1
2 0 Nolde and Ziegel (2017)

FZG x exp(x)
1+exp(x) ln(1 + exp(x)) ln(2) Fissler et al. (2015)

AS − 1
2Wx2 αx 1

2αx
2 0 Acerbi and Szekely (2014)

3.5 Backtesting VaR and ES Forecasts

The accuracy of the Value-at-Risk and Expected Shortfall forecasts of all proposed methods is

evaluated by means of calibration tests (Nolde and Ziegel, 2017), the scoring functions from

Section 3.4, and the Model Confidence Set procedure of Hansen et al. (2011).

30The AS score is not used for estimation, as it cannot be guaranteed that this function is strictly consistent
for all VaR and ES forecasts, given our chosen value of W .
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3.5.1 Backtesting using Calibration Tests

The calibration tests are implemented in both their unconditional and conditional variants. The

unconditional calibration test examines whether the fraction of observations that violate the

VaR is equal to the nominal coverage probability, or E
(
I{rj,t<Q̂

(i)
j,t}

)
= α. Defining the variable

H(i)
j,t := α− I{

rj,t<Q̂
(i)
j,t

}, this is equivalent to testing E
(
H(i)

j,t

)
= 0, which is achieved by means of

binomial test31. The conditional calibration test examines whether the conditional expectation

of the H(i)
j,t variable is 0, or E

(
H(i)

j,t |Ij,t
)
= 0, with Ij,t the information set at time t for series

j. Conditional calibration is tested by implementing the Dynamic Quantile (DQ) test of Engle

and Manganelli (2004) with four lags.

Then, the ES forecasts are evaluated using tests for zero mean and zero autocorrelation

(AC). First, the procedure of McNeil and Frey (2000) tests whether, in periods where actual

returns exceed the VaR, the ES forecasts are in expectation equal to these observed returns.

The differences between these returns and ES forecasts are standardized by dividing by the

corresponding VaR estimates, and are then tested for a zero unconditional expectation. More-

over, the dependent circular block bootstrap procedure of Jalal and Rockinger (2008) is also

used to test for zero mean, as this eliminates the need for assumptions about the distribution

of these standardized discrepancies. Finally, the ES forecasts are evaluated using a test for zero

autocorrelation (AC), using the procedure of McNeil and Frey (2000).

3.5.2 Backtesting using Scoring Functions

The accuracy of the different VaR and ES forecasts can also be evaluated based on the scoring

functions of Section 3.4. To this end, the values of each of the scoring functions for the different

methods are expressed relative to the historical simulation benchmark, and the resulting values

are referred to as skill scores in the remainder of this research. First, to evaluate VaR forecasts,

the quantile skill score is a transformation of the quantile score of Equation (18), denoted

QS(i,j) := S
(
Q̂

(i)
j,t , rj,t

)
for a method i, and is defined as QSS

(i)
j,t := 100 ·

(
1− QS(i,j)

QS(HS,j)

)
, for

all methods i ∈ M0 \ {HS} excluding historical simulation32. As lower values of the quantile

score are optimal, the construction of the corresponding skill score implies that higher skill

score values are preferred. To obtain a more accurate and robust representation of a method’s

forecast accuracy, the performance of each method across is summarized across the different

series. To this extent, the geometric mean of the ratios is computed across the different series,

as GM
(i)
t := J

√∏J
j=1Rj,t(i,HS), where the ratio is defined as Rj,t(i,HS) :=

QS(i,j)

QSHS,j
. The same

transformation as before is then applied to these geometric means to obtain the Geometric Mean

Quantile Skill Score of a method i ∈ M0 \ {HS}, as GMQSS
(i)
t := 100 ·

(
1−GM

(i)
t

)
.

Then, as the scoring functions shown in Table 1 allow for the ES forecasts to be jointly evalu-

ated with the VaR forecasts, skill scores are computed for these functions as well, using an anal-

ogous approach to that of the quantile skill score. For example, if S(i,j) := S(Q̂
(i)
j,t , ÊS

(i)

j,t , rj,t)

denotes the AL score in Equation 19, then the AL Skill Score is computed as ALSS
(i)
j,t :=

100 ·
(

S(i,j)

S(HS,j)
− 1
)
for a method i ∈ M0 \ {HS} simulation. Then, the geometric mean of the

31Potential errors in estimation are not incorporated, but this could be done (Escanciano and Olmo, 2010)
32By construction, the skill scores for the historical simulation method are zero.
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ratio of AL scores is calculated, subtracted by 1 and multiplied by 100, which results in the Geo-

metric Mean AL skill scores33 for each method i ∈ M0 \{HS}. Skill scores are also constructed

for the NZ, FZG and AS scores. As the NZ and AS scores take positive values, their skill scores

can be computed similarly to the quantile skill score, while the FZG score is negatively valued,

and its skill score is computed like the AL skill score.

3.5.3 Backtesting using Model Confidence Sets

The Model Confidence Set (MCS) procedure proposed by Hansen et al. (2011) serves as the

final evaluation technique in this research. This procedure aims to iteratively reduce the size

of the set of all methods to a smaller set having a predetermined probability of containing

the best forecasting method, as evaluated by a given loss function. In alignment with Hansen

et al. (2011), confidence levels of 75% and 90% are considered. An equivalence test is used

to test for significant differences in forecast accuracy within the set of methods, for which the

Diebold-Mariano test (Diebold and Mariano, 2002) is utilized. In each iteration, an elimination

rule determines which method, if any, should be removed from the current set. This research

adopts the Tmax,M statistic from Hansen et al. (2011) as the elimination rule, which is the

maximum value of the standardized means of loss function differences. The forecast accuracies

are measured using the scoring functions from Section 3.4. Given that VaR and ES forecasts

are constructed for multiple indices, the accuracy of each method is quantified by the number

of series for which each method is included in the MCS, such that higher numbers are more

desirable.

4 Results

This Section presents and discusses the main results of this research, which are results of the VaR

and ES forecast evaluation procedures explained in Section 3.5. The results of the skill scores

of Section 3.5.2 are discussed first. Then, the results involving the hypothesis are examined,

which are the Calibration tests of Section 3.5.1, and the Model Confidence Sets of Section 3.5.3.

Finally, a summary of the most important findings is provided.

4.1 Results of the Scoring Functions

Table 2 presents the results of the skill scores of the different scoring functions of Section 3.5.2 for

the forecasts at both probability levels. For completeness, Tables A.4 and A.5 in the Appendix

provide a series-by-series breakdown, using the quantile score and AL score, respectively.

As a first observation, the individual methods display quite polarizing results, in the sense

that there are noticeable differences in forecast accuracies across the different methods. For both

probability levels and across all scoring functions, the CAViaR-AS-EVT model consistently out-

performs all other individual methods, with the GJR-GARCH and GAS models also producing

reliable forecasts. However, the Cornish-Fisher Expansion and especially the CARE-AS model

33As the AL score is negative-valued, its skill score is constructed slightly differently from the quantile score.
Consequently, larger skill score values are again preferred, such all skill scores are easily comparable.
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Table 2: For each (combination of) asset(s), the evaluation of the VaR according to the quantile
skill score (in %) of Section 3.5.1, and the joint evaluation of the VaR and ES using the skill
scores (in %) of the four scoring functions of Table 1, as defined in Section 3.5.2.

1% probability level 5% probability level

Quantile AL NZ FZG AS Quantile AL NZ FZG AS
score score

Individual methods
Historical simulation 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
GJR-GARCH 19.3 8.2 11.3 0.6 31.9 9.6 3.9 6.2 0.2 15.2
Cornish-Fisher −11.0 −3.0 −5.2 −0.4 −19.8 −1.6 −0.8 −1.3 0.0 −2.9
CARE-AS −44.0 −72.1 −47.7 −1.3 −21.2 7.3 2.1 4.2 0.1 12.8
CAViaR-AS-EVT 21.0 8.5 12.3 0.6 33.9 9.9 4.0 6.4 0.2 15.7
GAS model 16.5 4.3 8.7 0.5 29.5 8.0 2.9 5.1 0.2 13.2

Combining all
Simple average 18.7 9.8 12.0 0.6 27.5 9.4 4.3 6.4 0.2 14.2
Median 17.9 8.7 11.1 0.5 27.0 9.8 4.2 6.5 0.2 15.5
Mode 15.5 6.7 9.2 0.4 24.7 9.5 3.9 6.2 0.2 15.2
Winsorizing 20.6 10.5 13.1 0.6 32.0 10.1 4.5 6.7 0.2 15.9
Trimming 18.3 9.2 11.6 0.5 27.3 9.5 4.3 6.4 0.2 14.7
Relative score 20.4 8.7 12.1 0.6 32.6 10.1 4.2 6.6 0.2 16.0
Minimum score 18.9 8.9 11.6 0.6 29.7 9.7 4.3 6.5 0.2 15.5

Combining all except historical simulation
Simple average 19.8 10.2 12.6 0.6 29.8 9.8 4.4 6.6 0.2 15.3
Median 18.6 8.0 11.0 0.5 30.1 9.8 4.0 6.3 0.2 15.7
Mode 18.2 6.8 10.3 0.5 30.5 9.7 3.9 6.2 0.2 15.6
Winsorizing 20.5 10.2 12.9 0.6 32.3 10.1 4.4 6.7 0.2 16.2
Trimming 18.6 8.1 11.1 0.5 30.0 9.9 4.2 6.5 0.2 15.8
Relative score 20.7 9.1 12.4 0.6 32.9 10.0 4.2 6.5 0.2 15.9
Minimum score 19.3 8.6 11.6 0.6 30.5 9.8 4.2 6.5 0.2 15.6

Notes: The values in this Table represent the average of each skill across all 6 assets (or combinations of assets
in case of the portfolio). The colored cells indicate the best method for each scoring function.

substantially underperform in 1% forecasts of the VaR and ES, being outperformed by the His-

torical Simulation benchmark. While the CARE-AS model produces decent (but uncompetitive)

forecasts at the 5% probability level, its decrease in performance at the lower probability level

of 1% implies an inadequacy in its ability to forecast more extreme events. Potentially, Extreme

Value Theory could be used to increase the forecasting utility of the CARE model, as it did

for the CAViaR model. The poor forecast of the CFE can be explained by the slow and inad-

equate updating of the volatility. The sample variance is used to transform the standardized

Cornish-Fisher statistics, even though the volatility is known to be time-varying and partially

predictable. Future research could investigate the use of combining the volatility updating of

the (GJR-)GARCH or GAS model, with the incorporation of the higher order moments as

accomplished by the CFE.

Second, considering the combining methods, the clear winner is the winsorized mean, for

both sets of methods, where a preference for any of the two sets is not apparent. Even if not

all individual methods are equally competitive, including a sufficient number of them seems to

improve, or at least not undermine, the accuracy of the resulting winsorized mean forecast. This

makes sense if each individual method contains useful information about the true underlying

data, as information from all the forecasts is still incorporated, but the effect of the more extreme

observations on the mean is reduced. Furthermore, the relative score combining and the simple

average, for both sets of methods, seem to produce accurate forecasts as well, proving to be

strong alternatives for the winsorized mean. Comparing the individual and combining methods,

it is noticeable that the winsorized mean (for both sets of methods) is the best choice, based
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on all scoring functions and both probability levels, The CAViaR-AS-EVT follows as a strong

competitor that requires only one model to be estimated, and the simple average and relative

score combining (for both sets) are reliable/robust alternatives.

Furthermore, the results are relatively stable across the proposed scoring functions, demon-

strating their competence and usefulness in backtesting Value-at-Risk and Expected Shortfall

forecasts. Then, with the exception of the CARE-AS model, the results are comparable across

the two probability levels. Future research could investigate the sensitivity of CARE-AS model

to changes in the probability level and the parameter estimation process, as updating the param-

eters more frequently might enhance the forecast accuracy. Finally, for completeness, Tables A.4

and A.5 in the Appendix respectively display the results of the quantile and AL scoring function

on a series-by-series basis. The results are consistent across the different series as well, which

suggests that our findings can be generalizable to different assets, and therefore to different

portfolio compositions as well. Finally, Figures A.2 and A.3 in the Appendix show the combin-

ing weights for the Minimum Score and Relative Score combining methods, respectively. These

weights reflect the contributions of the different individual methods, and are in line with the

results of Table 2. A more detailed discussion about these weights is provided in Section A.5 in

the Appendix.

4.2 Results of the Statistical Tests

This Subsection discusses the results of the Calibration tests of Section 3.5.1 and the Model

Confidence Sets of Section 3.5.3. Table 3 presents the results of the Calibration tests for the

1% and 5% VaR and ES, where the values indicate the number of series for which the (type of)

calibration of each method is rejected. Table 4 presents the results of the Model Confidence Sets

(MCS) at a 90% confidence level, showing for how many series each method was in the Model

Confidence Set. For completeness, the results of the MCS using a confidence level of 75% are

presented in Table A.6 in the Appendix, which shows comparable findings. In general, evaluating

the VaR and ES forecasts based on the calibration tests and MCS procedures results in very

similar findings to those of Section 4.1. Thus, this Subsection mainly examines the differences in

the results, and the additional insights that are gained from these statistical testing procedures.

First, and most importantly, the results of the Model Confidence Sets in Table 4 display

unmistakably the robustness and accuracy of the combined forecasts, with each type of forecast

combination being in the Model Confidence Set for all series. While the best individual methods,

the CAViaR and GARCH models, are able to keep up with combining methods as a whole, the

benefits of combining forecasts cannot be overlooked. The MCS at 75%, as shown in Table A.6,

supports these findings, and shows a slight superiority of most of the combining methods over

even the best individual methods. Furthermore, the MCS results provide more support for the

GAS model, showing it provides fairly reliable forecasts, especially at the 1% probability level.

Then, Table 3 shows that the combining methods have slightly better calibrated 5% forecasts

than 1% forecasts, perhaps implying that combinations are more useful in less extreme scenarios.

Finally, as the skill scores of Section 3.5.2 are computed as ratios to the score of the historical

simulation, no conclusions could be drawn from Table 2 about the performance of the historical

simulation. Considering the Model Confidence Sets of Table 4, the historical simulation forecasts
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seem to be quite reasonable, although Table 3 shows they are not correctly calibrated. The tests

for zero autocorrelation in the relative discrepancies of the ES show that only the historical

simulation and Cornish-Fisher Expansion are inadequate, in the sense that their ES forecasts

seem to have more autocorrelation that the ES forecasts of all other methods. The remainder of

the conclusions to be drawn from the calibration tests and Model Confidence Sets are similar to

the results of Section 4.1, and are left out in order to avoid uninformative repetition of findings.

Table 3: Results of the calibration tests of Section 3.5 for the VaR and ES forecasts at both
probability levels.

1% Probability Level 5% Probability Level

VaR VaR ES ES ES VaR VaR ES ES ES
hit % DQ mean∗ mean∗∗ AC hit % DQ mean∗ mean∗∗ AC

Individual methods
Historical simulation 5 6 4 4 1 1 6 4 2 2
GJR-GARCH 5 2 3 3 0 3 2 6 5 0
Cornish-Fisher 4 6 5 4 1 2 6 6 1 4
CARE-AS 6 6 6 6 0 6 6 6 5 0
CAViaR-AS-EVT 2 3 0 0 0 2 1 0 2 0
GAS model 5 5 6 5 0 3 3 6 5 0

Combining all
Simple Average 1 4 5 4 1 1 3 2 1 1
Median 5 3 3 3 0 3 1 2 3 0
Mode 5 3 3 3 0 3 1 2 3 0
Winsorizing 0 1 0 0 0 1 2 0 0 0
Trimming 4 3 2 4 0 2 1 1 1 0
Relative score 2 2 3 2 0 2 0 4 4 0
Minimum score 3 3 4 4 0 2 1 0 0 0

Combining all except historical simulation
Simple Average 1 3 6 5 0 1 0 2 1 1
Median 5 3 4 4 0 5 0 6 5 0
Mode 5 3 4 4 1 5 1 6 5 0
Winsorizing 2 2 1 1 0 1 0 2 2 0
Trimming 5 4 4 4 0 4 0 5 4 0
Relative score 2 2 2 1 0 3 1 3 2 0
Minimum score 1 3 6 5 0 2 1 2 1 0

Notes: The values in this Table represent the number of series for which the given test was significant at the 5%
significance level. For any forecaster, lower values are preferred, as they imply fewer rejections of calibration.
(∗) This refers to test of McNeil and Frey (2000) for a zero mean in the relative discrepancies of the ES.
(∗∗) This test incorporates the dependent circular block bootstrap procedure of Jalal and Rockinger (2008).

4.3 Summary of Results

The results of this Section are now summarized. First, the CAViaR-AS-EVT is found to produce

the most accurate VaR and ES forecasts out of any individual method, with the GJR-GARCH

and GAS model being adequate alternatives. The similarities in the results of the GAS and

GARCH models are not too unexpected, as the the same distribution (student’s t) and scaling

(identity) is used, and the differences thus stem from the volatility updating, as in Equation

(4). The Cornish-Fisher Expansion and CARE-AS model both performed quite poorly. The

inadequacy of the CFE could perhaps partially be explained by its slow and imprecise updating of

the volatility, which uses a large window to repeatedly recalculate the sample standard deviation.

Perhaps using a GARCH type model (EWMA, GAS are possible variants) for this volatility, and
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Table 4: For each (combination of) asset(s), the Model Confidence Set (MCS) procedure of
Hansen et al. (2011) is applied to evaluate the VaR separately based on the quantile score, and
the VaR and ES jointly based on the four scoring functions in Table 1, being the AL, NZ, FZG
and AS, respectively. A confidence level of 90% is used.

1% probability level 5% probability level

Quantile AL NZ FZG AS Quantile AL NZ FZG AS
score score

Individual methods
Historical simulation 4 5 5 4 4 3 3 3 3 3
GJR-GARCH 6 6 6 6 6 6 6 6 6 6
Cornish-Fisher 1 2 1 1 1 1 1 1 1 1
CARE-AS 0 0 0 0 0 2 1 1 2 4
CAViaR-AS-EVT 6 6 6 6 6 6 6 6 6 6
GAS model 6 6 6 6 6 5 4 4 5 5

Combining all
Simple average 6 6 6 6 6 6 6 6 6 6
Median 6 6 6 6 6 6 6 6 6 6
Mode 6 6 6 6 6 6 6 6 6 6
Winsorizing 6 6 6 6 6 6 6 6 6 6
Trimming 6 6 6 6 6 6 6 6 6 6
Relative score 6 6 6 6 6 6 6 6 6 6
Minimum score 6 6 6 6 6 6 6 6 6 6

Combining all except historical simulation
Simple average 6 6 6 6 6 6 6 6 6 6
Median 6 6 6 6 6 6 6 6 6 6
Mode 6 6 6 6 6 6 6 6 6 6
Winsorizing 6 6 6 6 6 6 6 6 6 6
Trimming 6 6 6 6 6 6 6 6 6 6
Relative score 6 6 6 6 6 6 6 6 6 6
Minimum score 6 6 6 6 6 6 6 6 6 6

Notes: The quantile score is defined in Equation (18), and the four scoring functions are defined in Table
1, with brief descriptions given in 3.4. The values in this Table are the number of assets for which each
method was located in its Model Confidence Set (of level 90%), such that higher values are preferred.

plugging this estimated volatility into the CFE, could result in more accurate forecasts. This

remains to be researched. The CARE-AS model might simply require a much more frequent

update of parameters, as Taylor (2020) found promising using this model when re-estimating

parameters every period. However, due to computational constraints, this was not feasible in

our research. This is also possible reason for future research.

Regarding the large set of combination methods, the winsorized mean stood out as the clear

winner, in particular using the set of all individual methods. It is followed by the simple aver-

age and the relative score combining, although the difference between the different combination

methods is less clear-cut than for the individual methods. These combining methods display

superiority over the best individual methods, with all remaining forecast combination techniques

being at least competitive with the individual methods. This clearly shows the benefit of using

forecast combinations for accurately forecasting the Value-at-Risk and Expected Shortfall. Fi-

nally, the consistent results across the different proposed scoring functions imply an adequacy

of these scoring functions to accurately evaluate different forecasts.
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5 Conclusion

This research aims to explore how combined Value-at-Risk and Expected Shortfall forecasts

can improve the accuracy of downside risk forecasts for a diversified portfolio. Extending the

influential work of Taylor (2020), a variety of individual methods and forecast combination

techniques are applied to financial asset returns from different asset classes, as well as a diversified

portfolio. Evaluating the VaR and ES forecasts is not straightforward, as the actual VaR and ES

are not observed, and the ES is not elicitable independently from the VaR. Consequently, joint

scoring functions are employed that are strictly consistent for the VaR and ES jointly, providing

a robust framework for the evaluation of different downside risk forecasts.

Among the considered individual methods, the Asymmetric Slope CAViaR model with Ex-

treme Value Theory (CAViaR-AS-EVT) produces the most accurate forecasts. Nevertheless,

the forecast combination techniques unequivocally outperform the individual methods. Out of

all methods considered in this research, the winsorized mean, especially when all individual

methods are included, proves to be the most accurate. Remarkably, the majority of these com-

binations are on par with the most accurate individual method. This underscores the benefits

of combining individual Value-at-Risk and Expected Shortfall forecast to improve downside risk

forecasts. Moreover, our research adds another piece to the forecast combination puzzle by

demonstrating superior performance of the simple averaging techniques compared to the sophis-

ticated combination procedures such as the Relative and Minimum Score combining methods.

In conclusion, our empirical analysis demonstrates that combining individual Value-at-Risk

and Expected Shortfall forecasts can substantially improve the accuracy of the resulting downside

risk forecasts for a diversified portfolio. This accentuates the unique ability of combining methods

to incorporate the different insights gained from a set of individual forecasting methods.

Despite the valuable insights this research provides, there remain areas that can benefit

from future research. First, additional individual methods and different sets thereof could be

considered, as this could enable a clearer distinction between the various combining methods.

Second, additional combination techniques could be implemented, like Machine Learning (ML)

or Bayesian techniques. The use of ML techniques in creating Value-at-Risk and Expected

Shortfall forecasts is still relatively novel, and warrants further exploration. Including covariates

that are not directly related to past returns could potentially enhance forecast accuracy, by

allowing different information to be incorporated. Another interesting area is the multi-horizon

setting, where combining weights could either be estimated jointly over different horizons, or

separately for each horizon. In this case, the multi-horizon MCS (MH-MCS), based on tests

for Superior Predictive Ability (SPA), could be used to evaluate these forecasts. In line with

convention, considering different and larger datasets are a possibility, with intra-day data being

an interesting option. Finally, one could consider performing multivariate analysis, on portfolios

that are constructed by mean-variance optimization, for example using Factor Models. These

suggestions hopefully aid in extending and continuing this line of work.
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Narasimhan, M. B. (2023). Package ‘cubature’.

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing.

Econometrica: Journal of the Econometric Society, pages 819–847.

Nolde, N. and Ziegel, J. F. (2017). REJOINDER: “ELICITABILITY AND BACKTEST-

ING: PERSPECTIVES FOR BANKING REGULATION”. The annals of applied statistics,

11(4):1901–1911.

Parzen, E. (1962). On estimation of a probability density function and mode. The annals of

mathematical statistics, 33(3):1065–1076.

Patton, A. J., Ziegel, J. F., and Chen, R. (2019). Dynamic semiparametric models for expected

shortfall (and value-at-risk). Journal of econometrics, 211(2):388–413.

Rosenblatt, M. (1956). Remarks on some nonparametric estimates of a density function. The

annals of mathematical statistics, pages 832–837.

Shan, K. and Yang, Y. (2009). Combining regression quantile estimators. Statistica Sinica,

pages 1171–1191.

Sheikh, A. Z. and Qiao, H. (2010). Non-normality of market returns: A framework for asset

allocation decision making. The Journal of Alternative Investments, 12(3):8.

Silverman, B. W. (1981). Using kernel density estimates to investigate multimodality. Journal

of the Royal Statistical Society: Series B (Methodological), 43(1):97–99.

23



Silverman, B. W. (1986). Density estimation for statistics and data analysis, volume 26. CRC

press.
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A Appendix

A.1 Overview of abbreviations

For completeness, Table A.1 provides a non-exhaustive overview of commonly used abbreviations

in this research, along with their meanings.

Table A.1: A non-exhaustive list of the most frequently used abbreviations, and their meanings.

Abbreviation Meaning

VaR Value-at-Risk

ES Expected Shortfall

AR(1) AutoRegressive model of order 1

H.S. Historical Simulation

GARCH Generalized AutoRegressive Conditional Heteroscedasticity

GJR Glosten-Jagannathan-Runkle, refers to the asymmetric variant of the GARCH model

CFE Cornish-Fisher Expansion

CARE Conditional AutoRegressive Expectiles

AS Asymmetric Slope

CAViaR Conditional Autoregressive Value at Risk

EVT Extreme Value Theory

GAS Generalized Autoregressive Score

MCS Model Confidence Set

AL score Joint scoring function of Taylor (2019)

NZ score Joint scoring function of Nolde and Ziegel (2017)

FZG score Joint scoring function of Fissler et al. (2015)

AS score Joint scoring function of Acerbi and Szekely (2014)

DQ Dynamic Quantile test of Engle and Manganelli (2004)

AC Autocorrelation

ML Machine Learning

RSM Response Surface Methodology

KDE Kernel Density Estimation S&P 500

Standard & Poor’s 500 stock index

FTSE 100 Financial Times Stock Exchange 100 index

AGG iShares Core U.S. Aggregate Bond ETF

GSCI (Standard and Poor’s) Goldman Sachs Commodity Index

EURUSD BGN curncy Exchange rate of the Euro against the United States Dollar

A.2 Calculating Portfolio Returns

This Section explains how to retrieve the log returns of a portfolio, denoted yp,t, from the log-

returns of the individual assets, denoted yj,t, j = 1, ..., J . Assuming that the investor invests

a fraction wj,t into asset j at time t, such that these fractions form a convex set of weights,

i.e. minj=1,...,J{wj,t} ≥ 0,
∑J

j=1 = 1, ∀t. The simple return of an asset j, denoted Rj,t, is

defined as Rj,t :=
Pj,t−Pj,t−1

Pj,t−1
, with Pj,t the price of asset j at time t. This implies the relations

yj,t ≡ ln (1 +Rj,t) and Rj,t ≡ exp{yj,t} − 1 between the log returns and simple returns.

The simple returns Rj,t have the desirable characteristic that they can be linearly aggregated

across assets (whereas log returns cannot), in the sense that the simple return of the portfolio is

the weighted average of the returns of the individual assets it consists of, with the weights being

the fractions of wealth invested into each asset. Mathematically, Rp,t ≡
∑J

j=1wj,t · Rj,t, where

Rp,t is the simple return of the portfolio, and wj,t is the weight of/fraction of wealth invested

into asset j at time t. Therefore, to acquire the log returns of a portfolio based on the log returns

25



of the individual assets j, one can perform the following procedure:

1. Calculate the simple returns of the individual assets j, being Rj,t, from their log returns,

as follows: Rj,t = eyj,t − 1, j = 1, ..., J .

2. For each period t, retrieve the Simple Return of the Portfolio, by calculating the weighted

average of simple returns on the different assets; Rp,t :=
∑J

j=1wj,t ·Rj,t, with the weights

wj,t being the fractions of wealth invested into the different assets.

3. For each time period t, convert the Simple Return of the Portfolio, Rp,t, into the log return

of the portfolio, denoted yp,t, as follows: yp,t = ln (1 +Rp,t).

4. Use the series {yp,t : t = 1, ..., T} (or, more specifically, the residuals of the AR(1) model

for yp,t) as part of the empirical analysis.

In our research, the series of log returns of the portfolio (yp,t) corresponds to the sixth series,

with a total of J = 6 series. The portfolio considered uses weights wt := [w1,t, w2,t, ..., w6,t]
′ ≡

[0.30, 0.30, 0.30, 0.05, 0.05]′, meaning 60% of wealth is invested into the equity market, 30% into

the fixed income market, 5% into commodities and 5% into the Foreign Exchange Market. These

weights are kept constant over time (i.e. wt ≡ w,∀t). The resulting series of 6000 log returns

for this portfolio are depicted in Figure A.1. This Figure clearly displays several stylized facts

of asset returns, like volatility clustering and intermittency (Cont, 2001). Furthermore, the

volatility is substantially larger during the periods around 2008 and 2020 is, corresponding to

the Great Recession and the start of the COVID-19 virus, respectively.

Figure A.1: The log returns for the portfolio of Section 2, ending on April 28th, 2023.

Notes: These log returns are constructed using the log returns of the five series from Section 2, using the

procedure explained in this Section. Formally, the series depicted corresponds to the set of 6000 returns

{yp,t : t = 1, ..., T} constructed using the procedure described earlier in this Section.
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A.3 Response Surface Methodology

This Section provides a more complete overview of the Response Surface Methodology (RSM),

which is used to estimate the Skewness and Kurtosis parameters for the Cornish-Fisher Expan-

sion of Section 3.2.5.

Response Surface Methodology refers to a selection of statistical techniques applied to mod-

els or problems where several variables influence a certain response variable of interest. A

mathematical model is constructed in order to explore the relation between the chosen response

variable and the set of predictor variables, with the approximated relation being straightforward

to estimate. A function is fitted to the data, and optimization techniques are applied to find the

optimal parameters, resulting in a model that is often less time-consuming than other modeling

techniques Amédée-Manesme et al. (2019). Therefore, the benefits of RSM are noticed most in

large-scale applications that involve time-consuming modeling tasks. Sequentially, a heuristic is

used to explore local subareas of the global area of validity.

In case of the Cornish-Fisher Expansion, this RSM is used to estimate the Skewness and

Kurtosis parameters that are used to construct the VaR and ES forecasts (as in Equations (8)

and (9)) as functions of the observed Skewness and Kurtosis. Hence, the Skewness and Kurtosis

parameters are the response variables), and (transformations of) the observed Skewness and

Kurtosis are the explanatory variables. We follow the approach of Amédée-Manesme et al.

(2019), which involves fitting first-order polynomials in the (transformations of) the observed

Skewness and Kurtosis, per local area. Ordinary Least Squares (OLS) is applied to estimate the

parameters, and Analysis Of Variance (ANOVA) is used to assess the significance of observed

differences in variation. Following experimentation, Amédée-Manesme et al. (2019) split the

domain into 5 subareas, based on the obseverd Skewness and Kurtosis. In each subset, the

following polynomial models for the response variables Sc and Kc are estimated:

E(Sc|S,K) = δ + γ1S
1/2 + γ2K

1/2 + γ3S + γ4K + γ5S
1/2K1/2 + γ6S

3/2 + γ7K
3/2

+ γ8S
1/2K + γ9SK

1/2 + γ10S
2 + γ11K

2 + γ12SK + γ13S
3/2K1/2

+ γ14S
3/2K1/2 + γ15SK

2 + γ16S
2K + γ17S

3/2K3/2 + γ18 ln(S) ln(K)

+ γ19 ln(S)K + γ20S ln(K) + γ21S
−1 + γ22K

−1. (20)

E(Kc|S,K) = α+ β1S
1/2 + β2K

1/2 + β3S + β4K + β5S
1/2K1/2 + β6S

3/2 + β7K
3/2

+ β8S
1/2K + β9SK

1/2 + β10S
2 + β11K

2 + β12SK + β13S
3/2K1/2

+ β14S
3/2K1/2 + β15SK

2 + β16S
2K + β17S

3/2K3/2 + β18 ln(S) ln(K)

+ β19 ln(S)K + β20S ln(K) + β21S
−1 + β22K

−1. (21)

Tables A.2 and A.3 are retrieved from Amédée-Manesme et al. (2019), and present the parameter

estimates of δ and γi (i ∈ N22) of Equation (20), and α and βi (i ∈ N22) of Equation (21),

respectively, for the 5 considered subcases. These cases are defined based on the values of the

observed Skewness and Kurtosis, and are also shown in the Tables. Finally, the Skewness and

Kurtosis parameters are estimated as Ŝc and K̂c, using the observed Skewness and Kurtosis and

the estimates of Tables A.2 and A.3.
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Table A.2: Response Surface estimator of the Skewness parameter according to the 5 subsets.

Case 1 Case 2 Case 3 Case 4 Case 5

0.5 ≤ S ≤ 2.2 0 < S ≤ 0.5 S ≥ 0.5 0.25 ≤ S < 0.5 0 < S < 0.25
5 ≤ K ≤ 40 5 ≤ K ≤ 40 K ≤ 5 K ≤ 5 K ≤ 5

Constant -1.816 -0.0189 2.111 0.172 0.00512

S1/2 6.812 0.161 - 0.132 -0.0240

K1/2 -0.577 0.0215 -3.498 -0.296 -0.00778
S -8.636 0.453 -2.870 - 1.277
K 0.508 0.00139 -0.123 -0.0415 0.00499

S1/2K1/2 - -0.0862 3.836 0.346 0.0386

S3/2 4.235 0.326 2.956 1.491 -0.114

K3/2 -0.00685 -0.00000851 -0.162 -0.0327 -0.000479

S1/2K -0.848 -0.00168 - - -0.0336

SK1/2 2.671 0.230 - - -0.483
S2 -0.0969 -0.0136 2.008 0.134 0.265
K2 -0.000304 0.00000232 0.0370 0.00278 -0.0000520

S3/2K1/2 -1.259 -0.129 -4.884 -1.330 -0.0857
SK 0.226 -0.000326 1.720 0.249 0.109

S1/2K3/2 0.0191 -0.000151 -0.153 0.0333 0.00708
SK2 0.0249 0.00662 0.239 0.205 -0.0332

S3/2K3/2 -0.00666 -0.000649 -0.0883 -0.0597 0.0161
ln(S) ln(K) -0.105 0.00396 -0.227 -0.0109 -0.000270
ln(S)K 0.0987 0.000457 -0.436 -0.0507 0.000262
S ln(K) -0.845 -0.221 0.700 0.114 0.0513
S−1 0.135 0.000228 -0.0739 -0.00419 0.000000429
K−1 -0.416 -0.0250 0.0414 0.00152 0.000110

Notes: The values in this Table are the parameter estimates of Equation (20), which is the
polynomial model for the Skewness parameter, Sc. This Table is retrieved from Amédée-
Manesme et al. (2019).

A.4 Kernel Density Estimation

This Section provides a more elaborate explanation about Kernel Density Estimation (KDE),

in particular with a Gaussian kernel, that is applied to construct the mode ensemble forecasts

of Section 3.3.1. The KDE is a non-parametric approach to estimate the probability density

function (PDF) of a given stochastic variable, in our case the forecasts of the individual methods

from Section 3.2. It is often applied in data science and Machine Learning, being used for

classification problems and regressions. KDE enables us to approximate the distributions of the

individual forecasts without making assumptions, by applying a kernel function to smooth the

data. With forecasts of an unknown density function f , the following kernel density estimator

can be used to approximate the shape of f :

f̂
(i)
t,h(x) =

1

|M| · h

|M|∑
i=1

K

(
x− ŷ

(i)
j,t

h

)
, (22)

where ŷ
(i)
j,t is the forecast of model i ∈ M, and K(·) is the kernel with bandwidth h. A popular

choice for this kernel is the Gaussian one (Kourentzes et al., 2014), which assumes the data

is normally distributed around each point. Although this assumption of normality may seem

unrealistic34, the Gaussian kernel has some attractive computational features, and the resulting

mode operator is still robust to deviations from normality (Tay and Wallis, 2000). For these

34In reality, the specification chosen for the kernel is often found to affect the outcomes only minimally (Jones
et al., 1995).
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Table A.3: Response Surface estimator of the Kurtosis parameter according to the 5 subsets.

Case 1 Case 2 Case 3 Case 4 Case 5

0.5 ≤ S ≤ 2.2 0 < S ≤ 0.5 S ≥ 0.5 0.25 ≤ S < 0.5 0 < S < 0.25
5 ≤ K ≤ 40 5 ≤ K ≤ 40 K ≤ 5 K ≤ 5 K ≤ 5

Constant −5.962 0.0832 1.749 −1.612 −0.304

S1/2 21.53 0.0451 – 1.894 0.743

K1/2 −1.548 0.732 −6.604 1.938 0.597
S −26.52 −0.601 3.425 – −1.662
K 1.820 0.124 1.313 0.273 0.676

S1/2K1/2 – 0.396 7.491 −1.018 −1.073

S3/2 11.08 1.261 −11.83 −4.220 0.226∗∗

K3/2 −0.0443 −0.0195 −0.858 −0.141 −0.299

S1/2K −2.564 −0.0704 – – 0.490

SK1/2 5.739 −0.528 – – 2.314
S2 0.342 −0.198 9.011 2.164 0.463
K2 0.00162 0.00181 0.141 0.0247 0.0432

S3/2K1/2 −3.773 −0.122 −3.346 2.786 −0.234
SK 0.880 0.0836 0.638 −0.454 −0.891

S1/2K3/2 0.0328 0.000231 0.110 0.0381 −0.0254
SK2 0.000901 0.0000956 −0.124 −0.0392 −0.00616
S2K 0.0717 0.0133 −0.642 −0.862 −0.272

S3/2K3/2 −0.0216 −0.00373 0.499 0.307 0.205
ln(S) ln(K) −0.721 −0.0305 −0.517 0.103 0.00942
ln(S)K 0.349 0.00290 −0.650 0.0341 −0.00642
S ln(K) 0.0928 0.240 0.834 −0.481 −0.164
S−1 0.366 −0.000296 0.136 0.0164 −0.0000209
K−1 −0.555 −0.444 0.0989 −0.00817 0.00151

Notes: The values in this Table are the parameter estimates of Equation (21), which is the
polynomial model for the Kurtosis parameter, Kc. This Table is retrieved from Amédée-
Manesme et al. (2019).

reasons, our research implements the Gaussian kernel as well. This kernel is defined as follows:

ϕh(x) =
1

h
√
2π

exp

{
− x2

2h2

}
. (23)

The bandwidth h is an important parameter in KDE, controlling the degree of smoothing in the

kernel. This parameter needs to chosen carefully, as Silverman (1981) shows that an incorrect

amount of smoothing results in an unrepresentative estimation of the density function. In

particular, a large value of h may excessively smooth the data, such that important features are

concealed, while using a value of h that is too small results in an estimate that is highly sensitive

to noise in the data. To account for this trade-off, the rule of thumb proposed by Terrell and

Scott (1992) is implemented. Finally, the mode ensemble forecast is set to be the mode of the

underlying distribution of our individual forecasts, which is the value that corresponds to the

maximum estimated density.

A.5 Minimum and Relative Score Combining Weights

This Section provides a deeper analysis of the Minimum Score and Relative Score combining

weights, which should reflect the performance of the individual methods, as shown in Table 2.

Figures A.2a and A.2b display the Minimum Score combining weights for the individual 5%

VaR and ES forecasts of the portfolio, respectively35. Indeed, the combining weights for the VaR

35The Figures for the other series and the 1% probability level provide similar results, and are omitted. The
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align well with the results from Table 2. In particular, the CAViaR and GARCH models receive

the largest weights, as expected from their accurate VaR forecasts. Interestingly, over time, the

weight of the CAViaR model increases while that of the GARCH model decreases, implying a

shift in the relative importance or forecast accuracy of these models. The weights for the GAS

and CARE models are substantially smaller than those of the GARCH and CAViaR, and the

weights for the historical simulation and the CFE are even smaller, often indistinguishable from

zero, signifying their insignificant contribution to the combined forecasts. Focusing on the

Figure A.2: For the Minimum Score Combining method of Section 3.3.2, the combining weights
for the 5% forecasts of all individual methods are displayed for the portfolio, during the out-of-
sample period. The VaR and ES forecasts are assigned two different sets of weights, shown in
Figures A.2a and A.2b, respectively.

(a) Combining weights for the VaR (b) Combining weights for the ES

Notes: The 5% VaR combining weights of Figure A.2a correspond to the weights q
(i)
j of Equation (13), and

the 5% ES combining weights of Figure A.2b correspond to the weights e
(i)
j of Equation (14), using the set

of all individual methods (denoted M0 in Section 3.3) for the portfolio.

combining weights for the 5% ES forecasts in Figure A.2b, similar patterns are observed, with a

notable difference for the GAS and CARE models, which receive much larger weights for their

ES forecasts compared to their VaR forecasts. This implies these models are potentially more

competent at accurately forecasting the Expected Shortfall over the Value-at-Risk. Moreover,

the combining weights for the ES display less variation compared to those for the VaR, as evident

from the smaller range in the ES weights. Thus, using equal weights (as done in the simple

averaging techniques from Section 3.3.1) for the ES appears to be more appropriate than doing

so for the VaR. The scattering of the combination weights for the VaR suggests that different

weights for the different methods should be used, as the methods’ contributions to the combined

forecasts are different. This finding is partially supported by Table 2, albeit not conclusively. In

particular, the quantile score for the VaR shows a slight inclination towards the sophisticated

combining techniques using different weights for the different methods (as explained in Sections

3.3.2 and 3.3.3), while a preference for the simple averaging techniques is observed based on

the joint scoring functions. Notwithstanding, the differences are not conclusive, and further

research is required to make decisive statements about potential differences between the VaR

and ES forecasts.

Figure A.3 shows the 5% Relative Score combining weights (of Section 3.3.3) for the portfolio,

analysis focuses on the portfolio, which is most appropriate for answering the central research question.
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Figure A.3: For the Relative Score Combining method of Section 3.3.3, the combining weights
for the 5% forecasts of all individual methods are displayed for the portfolio, during the out-of-
sample period.

Notes: These 5% combining weights correspond to the weights ω
(i)
j of Equation (17),

using the set of all individual methods (denoted M0 in Section 3.3) for the portfolio.

which are identical for the VaR and ES. These weights show similar patterns to those of the

Minimum Score combining technique. In particular, these weights seem slightly more in line

with the VaR weights of Figure A.2a, with the CAViaR and GARCH consistently being the two

models with the largest contribution to the combined forecast. This motivates the relevance of

the Relative Score combining method, as its estimation process is more straightforward than

the Minimum Score combining36,

36The Relative Score method requires the optimization of only one tuning parameter per series (λj of Equation
(17).

31



A.6 Additional Evaluation Results

Table A.4: 1% VaR evaluated using the quantile skill score (in %) and its geometric mean, as
defined in Section 3.5.1.

S&P FTSE AGG GSCI EURUSD Portfolio Geo. mean

Individual methods

Historical sim 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GJR-GARCH 28.4 16.7 10.9 13.5 9.7 33.3 19.3

Cornish-Fisher −27.1 −22.4 4.1 −2.4 −4.2 −17.3 −11.0

CARE-AS −29.9 −38.4 −55.0 −57.8 −45.6 −39.4 −44.0

CAViaR-AS-EVT 27.7 20.7 17.9 15.0 8.2 33.6 21.0

GAS model 25.1 10.9 12.1 10.5 9.1 28.8 16.5

Combining all

Simple average 28.4 20.2 11.7 13.5 7.6 28.0 18.7

Median 28.9 15.7 10.9 11.9 8.9 28.6 17.9

Mode 26.4 12.0 8.5 9.1 8.9 25.6 15.5

Winsorizing 31.9 19.8 15.0 13.0 8.6 32.4 20.6

Trimming 29.3 18.3 12.0 11.9 7.6 28.0 18.3

Relative score 29.7 19.1 13.8 14.4 8.5 33.5 20.4

Minimum score 29.4 17.2 12.4 12.9 8.4 30.6 18.9

Combining all except historical simulation

Simple average 29.4 20.4 12.4 15.0 8.5 30.6 19.8

Median 28.2 15.6 11.5 13.1 9.4 31.2 18.6

Mode 26.3 15.0 12.2 13.1 9.3 30.9 18.2

Winsorizing 30.0 19.8 12.6 15.9 9.6 32.6 20.5

Trimming 28.2 15.6 12.4 13.1 8.5 31.2 18.6

Relative score 29.0 19.2 15.3 16.0 8.2 33.8 20.7

Minimum score 28.5 19.7 15.1 13.8 6.4 29.8 19.3

Notes: The quantile score is defined in Equation (18), for which higher values are preferred. Bold values indicate

the best method(s) for each (combination of) asset(s).
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Table A.5: 1% VaR and ES evaluated using the AL skill score (in %) and its geometric mean,
as defined in Section 3.5.2.

S&P FTSE AGG GSCI EURUSD Portfolio Geo. mean

Individual methods

Historical sim 0.0 0.0 0.0 0.0 0.0 0.0 0.0

GJR-GARCH 10.6 9.8 3.7 6.6 4.6 14.2 8.2

Cornish-Fisher −8.9 −4.3 0.2 −1.0 −0.2 −3.6 −3.0

CARE-AS −86.3 −69.3 −40.4 −92.7 −28.2 −64.1 −72.1

CAViaR-AS-EVT 7.0 12.3 5.9 7.9 3.9 14.3 8.5

GAS model 5.2 1.8 2.9 0.6 4.1 11.7 4.3

Combining all

Simple average 16.2 14.2 4.1 7.2 3.9 13.7 9.8

Median 14.7 10.2 3.7 5.9 4.3 13.8 8.7

Mode 10.7 6.6 2.6 4.1 4.2 12.1 6.7

Winsorizing 17.6 13.9 5.2 7.9 4.1 15.1 10.5

Trimming 16.0 12.3 4.1 5.9 3.9 13.7 9.2

Relative score 10.0 11.7 5.0 7.0 4.2 14.8 8.7

Minimum score 14.4 10.6 4.2 6.7 4.0 14.0 8.9

Combining all except historical simulation

Simple average 15.8 14.5 4.4 7.9 4.2 15.0 10.2

Median 10.9 9.3 3.7 6.1 4.5 14.0 8.0

Mode 6.8 7.3 3.9 5.6 4.5 12.8 6.8

Winsorizing 15.5 13.2 4.2 9.5 4.5 15.0 10.2

Trimming 10.9 9.3 4.4 6.1 4.2 14.0 8.1

Relative score 9.7 12.1 5.4 8.5 4.3 14.9 9.1

Minimum score 10.0 12.4 5.2 7.0 3.6 13.4 8.6

Notes: The AL scoring function is defined in Table 1, and explained in Section 3.4. It is one possible specification

of the joint VaR and ES score of Equation (19). The AL skill score is defined in Section 3.5.2, for which higher

values are preferred. Bold values indicate the best method(s) for each (combination of) asset(s).
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Table A.6: For each (combination of) asset(s), the Model Confidence Set (MCS) procedure of
Hansen et al. (2011) is applied to evaluate the VaR separately based on the quantile score, and
the VaR and ES jointly based on the four scoring functions in Table 1, being the AL, NZ, FZG
and AS, respectively. A confidence level of 75% is used.

1% probability level 5% probability level

Quantile AL NZ FZG AS Quantile AL NZ FZG AS

score score

Individual methods

Historical simulation 1 2 2 1 2 1 1 1 1 2

GJR-GARCH 6 5 5 6 6 6 4 5 6 6

Cornish-Fisher 1 1 1 1 1 1 0 0 1 0

CARE-AS 0 0 0 0 0 2 0 1 2 2

CAViaR-AS-EVT 6 6 6 6 6 5 5 5 5 6

GAS model 5 4 5 5 5 4 4 4 4 5

Combining all

Simple average 6 6 6 6 6 6 6 6 6 6

Median 6 5 5 6 6 6 6 6 6 6

Mode 5 5 5 5 6 6 6 6 6 6

Winsorizing 6 6 6 6 6 6 6 6 6 6

Trimming 6 6 6 6 6 6 6 6 6 6

Relative score 6 6 6 6 6 6 6 6 6 6

Minimum score 6 5 5 6 6 6 6 6 6 6

Combining all except historical simulation

Simple average 6 6 6 6 6 6 6 6 6 6

Median 6 6 6 6 6 6 5 6 6 6

Mode 5 5 5 5 6 6 5 6 6 6

Winsorizing 6 6 6 6 6 6 6 6 6 6

Trimming 5 5 5 5 5 6 6 6 6 6

Relative score 6 6 6 6 6 6 6 6 6 6

Minimum score 6 6 6 6 6 6 6 6 6 6

Notes: The quantile score is defined in Equation (18), and the four scoring functions are defined in Table 1, with

brief descriptions given in 3.4. The values in this Table are the number of assets for which each method was

located in its Model Confidence Set (of level 75%), such that higher values are preferred.

A.7 Comments on the Programming Code

The majority of our methods, in particular the techniques used by Taylor (2020), are im-

plemented using the GAUSS software, as its constrained optimization libraries (CMLMT, COMT)

greatly facilitate the estimation procedures. The before mentioned extensions are mostly im-

plemented in R, benefitting from the use of the GAS package37 and the PerformanceAnalytics

package. For reproducibility purposes, the seed is set to 100 for all optimization and estimation

procedures requiring simulation.

37This package is developed by Ardia et al. (2016), and can be found using the following link: https://CRAN.R-
project.org/package=GAS.
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