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Abstract
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problem extends the original one by allowing for full-day scheduling of learners for multiple

hours, which enables the optimization of learner demand satisfaction over an entire day. In

addition, this model introduces a new restriction, which allows for the incorporation of a

decrease in learner-module efficiency when studying one particular module more than once

in a school day. To solve this problem, an adaptive large neighborhood search metaheuristic

is used. The proposed model and heuristic are applied to the scheduling of learner-centered

schools, which focus on personalized learning, but face challenges in short-term scheduling

due to dynamic learner preferences. The results are very promising. Across different exper-

iment settings, the heuristic can solve the problem 8.50% from optimality on average. This
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approach for personalized learning schools, which can help improve short-term scheduling
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creating a more advanced algorithm or by applying stronger hardware.

Supervisor: J.H. Zhu

Second assessor: Prof. Dr. D. Huisman

Date final version: 2nd July 2023

The views stated in this thesis are those of the author and not necessarily those of the supervisor, second assessor,

Erasmus School of Economics or Erasmus University Rotterdam.



Contents

1 Introduction 2

2 Problem definition 4

3 Model 6

4 Metaheuristic description 7

4.1 Initial solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Destroy operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2.1 Random activity removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.2 Smallest activity removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.3 Random learner removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.2.4 Worst regret learner removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.3 Repair operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.1 Break-out activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.3.2 Greedy learner insert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4 Acceptance criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5 Local search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.6 Updating and operator selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Reproduction of HLAPP results 12

5.1 HLAPP experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.2 Tuning for HLAPP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 HLAPP results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

6 DLAPP experiments 15

6.1 Experimental design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6.2 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 Metaheuristic performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Conclusion 20

8 Limitations and future research 21

References 22

Appendices 22

A Proofs 22

A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

A.2 Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

B Code description 24

C Experiment parameters 27

D Exclude operators outputs 27

E Full instance set outputs 30

1



1 Introduction

Traditionally, in the Netherlands, the most standard system for secondary education consists of

constructing a regular, weekly timetable that assigns learners to classrooms, so that they can

learn the module planned for that hour from their assigned teacher. However, over the past

years, education systems that are more learner-, rather than class-oriented have been uprising

(McCarthy, Liu & Schauer, 2020). Take for exampleMontessori education. Montessori education

is an educational approach developed by Maria Montessori that emphasizes self-directed learning,

independence, and respect for the child’s individuality. This approach entails creating a well-

equipped setting with interactive resources and cultivating a nurturing ambiance that enables

children to independently explore, acquire knowledge at their preferred pace, and enhance their

cognitive, social, and emotional abilities (Foundation, 2022; Hiles, 2018). This method has

proven a degree of effectiveness over the past century (Marshall, 2017; Faryadi, 2017), giving

rise to the question of what other education types carry potential.

A more novel approach to education is the newly introduced Kunskapsskolan, which was

first introduced in Sweden in 2000 and opened its first school in The Netherlands in 2014

(Kunskapsskolan, 2023). This school system focuses on facilitating personalized learning (PL)

(Eiken, 2011). In PL, the content a student learns in a given hour is more aligned with their

individual needs. The learner has more autonomy concerning what module they will learn,

since the school will try to adhere to the needs of the individual, rather than assigning a more

generalized schedule to a group of learners, like a class. The novel Kunskapsskolan is already

being implemented by more than a hundred schools around the world and is even regarded

as an important instrument in facilitating the transformation of education by the European

Commission (Commission & Centre, 2019).

However, the more personalized scheduling style employed by Kunskapsskolan does pose

challenges in terms of school timetabling. The dynamic, short-term-focused learner preferences

applied by this school type are poorly adhered to by classical scheduling methods. This is why

this schooling type calls for appropriate short-term scheduling methods.

This paper introduces the daily learning activity planning problem (DLAPP), extending the

hourly learning activity planning problem (HLAPP) of PL schools introduced by Wouda, Aslan

and Vis (2023), and analyses its effectiveness. This novel model supplements a longer calendar

by allowing one to make a full new schedule for a (remainder of a) school day consisting of

a predetermined number of hours. In contrast to the HLAPP, this refined model allows for

scheduling a sequence of hours. The advantage of this feature is that one can optimize learner

satisfaction throughout the day or, in the event of a disruption, adjust the schedule for the

remaining time period based on current learner demands for activities. This adds value in cases

where a classroom or teacher suddenly might become unavailable, and a new schedule must

rapidly be constructed. In case it is known that a teacher will not be present on a certain day,

another added benefit of this scheduling method is that a learner will instantly know what their

calendar will be for the entire day, which allows for better course preparation. To acquire feasible

solving times, the metaheuristic proposed for the HLAPP, which can near-optimally solve the

problem rapidly by using a complex algorithm that incorporates randomness, is adapted to

properly solve the extended problem.
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To adequately account for some real-life properties of a school day, new restrictions are

applied. The model accounts for the feature concerning decreasing learner efficiency when having

to study one particular module for multiple hours in a day. This is caused by learners having

decreased focus when facing a monotonous schedule and by the fact that learners might not

be able to prepare for the next session on the same subject properly when no time is given for

that (Brown & Saks, 1987). By incorporating this feature into the model, it is ensured that

when learner preferences are given as a constant throughout the entire day, the learners will not

simply be assigned to their single most preferred topic throughout the entire day. Instead, they

will learn different topics, facilitating a productive, varied study schedule.

Since this problem, just like the HLAPP, might require very swift solving times in case a

teacher suddenly becomes unavailable for the day, a heuristic is needed. This paper introduces

an adaptive large neighborhood search (ALNS) metaheuristic similar to the one proposed by

Wouda et al. (2023).

This renewed heuristic iteratively destroys and repairs parts of an initial set of assignments

that forms a feasible solution. In every iteration, a single hour is selected from which the assign-

ments may be adjusted. It can destroy and repair the solution by destroying and creating new

activities, or by removing, reinserting, or reallocating singular learners. Some of the operations,

especially the ones that reassign learners to activities or create new ones, keep into account the

level of overall utility gained if that change were to be made. This allows for increased objective

gain in every iteration.

To compute what moves can create the largest increase in utility, the current number of

times each learner takes each module throughout all hours has to be tracked at all times. These

quantities namely are required to obtain the current utilities the learners gain from each module

throughout the day, taking into account the imposed penalty terms if learners were to face

a monotonous schedule. In addition to the current utilities of each learner, the hypothetical

utilities, if the quantities were to either decrease or increase, are also tracked. These values are

required when computing overall gain or loss made if a certain change in the schedule were to

be made.

The main question this research targets to answer is: How potent is the DLAPP for school

timetabling, and how well does the adapted metaheuristic perform when solving this problem?

Both run-times and gaps to optimality are decisive in the analysis of the performance.

This research uncovers that the reduced number of iterations that can be applied by the

metaheuristic, in combination with the enlarged model complexity cause the heuristic to have

an average gap of 8.50% when compared to the optimal solution. The model however stills

shows promising literary value. Since the DLAPP framework has been laid, stronger hardware

and a more advanced heuristic solution framework might prove to deliver lower optimality gaps

when required to solve within a few minutes. More parameter settings can also be explored to

further analyze the performance of the heuristic.

The contents of this paper will be structured as follows. Section 2 will introduce the para-

meters and variables used in the model. Section 3 introduces the formulation of the DLAPP and

Section 4 will explain the workings of the ALNS metaheuristic used in this research. In Section

5, the HLAPP and the performance of its original metaheuristic are analyzed. Then, in Section
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6, the experiments used to evaluate the performance of the metaheuristic applied to the DLAPP

will be discussed, as well as the tuning procedure and the results. Section 7 discusses the caveats

that can be taken from the results of this paper and lastly, in Section 8, the shortcomings of

this paper and possibilities for further research will be addressed.

2 Problem definition

To solve the problem, the goal is to create a set of activities for every hour h ∈ H, which learners

can be assigned to. These activities each consist of a group of learners, a teacher, a classroom,

and the module that is taught in it. The available set of resources that will be distributed across

these activities is a set of learners l ∈ L who have demand across a set of modules m ∈ M .

The modules should be taught by a set of teachers t ∈ T across a set of classrooms c ∈ C. To

assign these resources over the set of hours, the most up-to-date learner demands for modules

(Dlm ∈ R≥0) will be used. To denote a learner’s l ineligibility for module m (across all hours),

we set Dlm = 0. The target is to assign each learner l to modules m for each hour h such that

the learners are met most in their needs across the day. A learner-module assignment for a

certain hour is denoted with the decision variable ylmh ∈ {0, 1}.
In contrast to the HLAPP, the ’utility’ a learner gains across the day does not simply consist

of the preference he or she has for a module, multiplied by the number of times the module is

taken. Since it is assumed that learner efficiency decreases when taking certain modules more

than once a day, a selected penalty can be enforced. In the case that |H| > 1, when learner

l takes module m more than one time in that schedule, a monotonicity penalty measure Λ

(0 ≤ Λ ≤ 1
|H|−1) is applied to that learner-module combination. Λ represents the percentage

points of utility lost for every number above one concerning the number of times the learner

takes the module that day. The percentage of utility left that learner l gains from module m is

denoted by plm ∈ R. Note that this level of productivity plm does not need delimitation, since

the nature of the model will always try to give this variable a value that is as high as possible,

and will be delimited with a maximum for every learner module combination. The minimum

value of Λ is set at 0 since a negative value would imply increased productivity in a monotonous

schedule. This case is excluded from this research. In the case that |H| = 1, the value set for Λ

is arbitrary, since monotonicity penalties will never be enforced.

Lemmas 1 and 2 state the delimitations on Λ, which are proven in Appendix A.

Lemma 1. Let Λ be the monotonicity penalty measure applied to the utility learner l gains from module

m in a day with |H| > 1 hours in it. If a learner l should gain positive utility from module m by taking

it any number of times that day, Λ ≤ 1
|H|−1 .

Lemma 2. Let Λ be the monotonicity penalty measure applied to the utility learner l gains from module

m in a day with |H| > 1 hours in it. If a learner l should always gain more utility by partaking in module

m one more time that day, Λ ≤ 1
2|H|−1 .

The first, least tight restriction from Lemma 1 should be seen as essential, since gaining

negative utility from partaking in activities is unrealistic, and also not applied in the HLAPP.

Violating the tighter restriction from Lemma 2 delivers a more realistic scenario, but is still not

recommended. If learner l already partakes in module m a large number of times in a day, the
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Table 1: Definitions of the input and decision variables used.

Notation Definition

l ∈ L Set of learners.

c ∈ C Set of classrooms.

t ∈ T Set of teachers.

m ∈ M Set of modules, including ms, representing the self-study module.

h ∈ H Set of hours that will take place during (the remainder of) the school day.

Λ ∈
{
[0, 1

|H|−1
] if |H| > 1

R if |H| = 1
Monotonicity penalty applied for every number of times a module is taken more than one
time in a day.

D ∈ R[L|×|M|
≥0 The demand matrix. A value Dlm gives the demand of learner l ∈ L for module m ∈ M .

Demand is 0 when the learner is not eligible for the module.

QT ∈ {0, 1}|T |×|M| Teacher qualification matrix. QT
tm = 1 if teacher t ∈ T can teach module m ∈ M , 0 otherwise.

QC ∈ {0, 1}|C|×|M| Classroom qualification matrix. QC
cm = 1 if classroom c ∈ C can host an activity for module

m ∈ M , 0 otherwise.

ω ∈ [0, 1] Self-study penalty applied to the mS module for learner l to balance instruction and self-
study activities.

δ− ∈ Z≥0 Minimum activity size for all modules.

δ+ ∈ Z≥0 Maximum instruction activity size for module m.

Nc ∈ N The capacity of classroom c ∈ C.

xmcth ∈ {0, 1} Decision that is 1 if an activity with module m ∈ M is scheduled in classroom c ∈ C, taught
by teacher t ∈ T , 0 otherwise.

ylmh ∈ {0, 1} Decision that is 1 if learner l ∈ L is assigned to module m ∈ M , 0 otherwise.

plm ∈ R Variable indicating productivity which decreases as a learner l ∈ L is assigned to module
m ∈ M more often.

added benefit of partaking in an activity where module m is taught might deliver close to 0

marginal utility, but it can be seen as a far fetch to claim it reduces summed up utility gained

from the module over the entire day.

To denote the allocation of a module m being taught in classroom c given by a teacher t in

hour h, the decision variable xmcth ∈ {0, 1} is applied. When this decision variable is equal to

1, we call this an activity. In the same fashion as Wouda et al.(2023), two types of activities are

available. First off, a regular activity in which a module is being taught by a qualified teacher,

making it so that the entire class works on the same module, with their personal demand Dlm

times their level of productivity plm denoting the benefit they receive from it. In the PL style that

Kunskapsskolan schools apply, however, self-study activities are also available. These modules

can be given by any teacher, who will function as a supervisor. This activity will be denoted

by mS ∈ M . During the session, learners will have a free choice concerning which module they

will be studying. Since self-study sessions are not supplemented by intensive education from

qualified teachers, a penalty ω (0 ≤ ω ≤ 1)is applied to each learner. This penalty denotes the

fraction of utility a learner l gains from learning their module of choice during the self-study

session. Since demands are clearly defined, it is assumed that learner will be learning their most

preferred module. This leads to a demand level for mS given by DlmS
= ωmaxm∈M\mS

Dlm for

the self-study module. Note that plm is also applied to the self-study module.

When allocating activities across the decision variables xmcth, it should be accounted for

that a certain teacher t might not be qualified to teach module m. To denote whether a teacher

t is qualified for module m, a binary qualification matrix QT
tm ∈ {0, 1} is put into place. Note

that the fact that all teachers are available to supervise a self-study activity is denoted by

QT
tmS

= 1 ∀t ∈ T . In the same fashion, a classroom c might not be suitable for teaching a
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certain module m. This is tracked by the binary qualification matrix QC
cm ∈ {0, 1}.

Since a classroom c has a maximum capacity for learners, a capacity Nc ∈ N is assigned to

the set of classrooms c ∈ C. Additionally, the DLAPP imposes restrictions concerning learner

quantities for the modules themselves. Since very small activities might lead to unnecessary use

of classrooms or inefficient teacher use, a minimum activity size δ− ∈ N is imposed. The research

by Wouda et al.(2023) also imposes a maximum activity size δ+ ∈ N in a similar fashion. This

measure limits the maximum number of learners that can be in an instruction activity, meaning

it is not applied to self-study activities. This will be applied to the extended model as well.

An overview of the definitions used in the model can be seen in Table 1.

3 Model

The DLAPP is constructed as follows. The target is to optimize the objective

max
x,y,p

∑
l∈L

∑
m∈M

Dlmplm
∑
h∈H

ylmh (1)

subject to

∑
l∈L

ylmh ≤
∑
c∈C

min
(
δ+, Nc

)∑
t∈T

xmcth ∀m ∈ M\ {mS} , ∀h ∈ H (2)

∑
l∈L

ylmSh ≤
∑
c∈C

Nc

∑
t∈T

xmScth, ∀h ∈ H (3)

∑
l∈L

ylmh ≥ δ−
∑
c∈C

∑
t∈T

xmcth ∀m ∈ M, ∀h ∈ H (4)

∑
m∈M

ylmh = 1 ∀l ∈ L,∀h ∈ H (5)

∑
m∈M

∑
c∈C

xmcth ≤ 1 ∀t ∈ T, ∀h ∈ H (6)

∑
m∈M

∑
t∈T

xmcth ≤ 1 ∀c ∈ C,∀h ∈ H (7)

∑
c∈C

xmcth ≤ QT
tm ∀t ∈ T, ∀m ∈ M, ∀h ∈ H (8)

∑
t∈T

xmcth ≤ QC
cm ∀c ∈ C,∀m ∈ M, ∀h ∈ H (9)

ylmh ≤ 1Dlm>0 ∀l ∈ L,∀m ∈ M,∀h ∈ H (10)

plm ≤ 1 + (1−
∑
h∈H

ylmh)Λ ∀l ∈ L,∀m ∈ M, (11)

xmcth ∈ {0, 1} ∀m ∈ M,∀c ∈ C,∀t ∈ T, ∀h ∈ H (12)

ylmh ∈ {0, 1} ∀l ∈ L,∀m ∈ M, ∀h ∈ H (13)

plm ∈ R ∀l ∈ L,∀m ∈ M (14)
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Constraints 2 ensure that there are no more learners assigned to a certain module for a partic-

ular hour than the assigned number of corresponding class/module combinations can handle.

Constraints 3 ensure the same thing but for the self-study module. Constraints 4 ensure that

there are enough learners so that all corresponding class/module combinations can fulfill the

minimum learner requirements. Constraints 5 guarantee that all learners are assigned to some

module every single hour. Constraints 6 prevent teachers from being assigned to more than one

module in a single hour. Constraints 7 do the same thing but for classrooms instead. Con-

straints 8 ensure that teachers can only give modules that they are qualified to give for every

hour. Constraints 9 do the same thing for classrooms. Constraints 10 make sure that learners

with 0 demand for a module can never partake in an activity where that module is taught. This

is done using an indicator function that is only equal to one if demand is not 0. Constraints

11 enforce the penalty measure for monotonous study schedules. Lastly, Constraints 12 and 13

restrict the decision variables to be binary and Constraint 14 indicates that productivity based

on monotonicity can be any real value.

The definition of the model is very similar to the one of the HLAPP. The differences are that

in the model for the HLAPP, plm and Constraints 11 do not exist. In addition to that, xmcth

and ylmh are reduced to xmct and ylm, and all of the remaining constraints do not have to be

applied for every h ∈ H, but just for the other sets of recourses remaining, if any.

The goal of a constraint from the set of Constraints 11 is to impose a penalty term that will

be incurred for module m learned by learner l on that day. This value is equal to 1 if a learner

takes a module 1 time that day, and decreases by Λ for every additional time that module is

taken that day. Note that plm is allowed to rise up to 1+Λ if learner l takes module m zero hours

that day. This ’increased productivity’ however is never applied to the objective function, since

ylmh will always be 0 whenever this is the case. The result of solving the model is an optimal

solution for the decision variables xmcth, ylmh, and plm. Note that plm does not contribute to the

actual construction of the assignments, since it solely functions as a penalizing variable when

solving the model.

Since similarly to the HLAPP, xmcth grows three-dimensionally as school size increases, this

problem is also NP-hard. Note that the size of set H does not grow simultaneously as school

size increases. The number of hours |H| included in the model can range from one up to any

number of hours desired. This quantity will probably rarely be higher than ten, since schools

do not regularly have more available timeslots for activities than that amount. The problem

however rapidly grows even further when the number of hours is increased. Since the number

of restrictions grows approximately linear in the number of hours added on top of the regular

one-hour scheduling problem, and interdependence becomes more and more complex through

Constraints 11 as hours increase, it becomes very computationally demanding even for small

schools when trying to plan for more than a couple of hours. This is why the DLAPP calls for

a well-performing heuristic.

4 Metaheuristic description

To solve the problem in a feasible time span, allowing schools to quickly renew their schedule for

the rest of the day, an adaptive large neighborhood search (ALNS) metaheuristic is proposed.
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The ALNS procedure was originally introduced by Ropke and Pisinger(2006). To generally

describe the ALNS algorithm, Algorithm 1 is given. In this section, a description is provided

concerning the workings of this heuristic.

Algorithm 1: Adaptive large neighborhood search.
Input : Initial feasible solution s.

Output: Best observed solution s∗.

s∗ := s, ρD := (1, . . . , 1), ρR := (1, . . . , 1);

repeat

Randomly select hour h ∈ H;

Select destroy and repair methods dop ∈ OD, rop ∈ OR using ρD and ρR;

sc := rop (dop(s));

if sc is accepted then

s := sc;

end

if sc has a better objective value than s∗ then

s∗ = Local-Search (sc);

s := s∗;

end

Update ρD and ρR;

until maximum number of iterations is exceeded ;

return s∗

As can be seen in the algorithm, the process is started by creating an initial, feasible solution,

in which every learner is assigned to a module for every hour. Since the algorithm will go through

many iterations, the initial solution does not need to be very good. The algorithm then loops

for a set number of iterations. In every iteration, firstly, a single hour h ∈ H is selected which

will be worked on. In the rest of the iteration, it is only allowed to adjust assignments in that

hour. After selecting the hour, a destroy and repair operator are selected out of set OD and OR

respectively. These operators transform the current solution s into a new candidate solution sc.

After evaluating this outcome, the operator selection mechanism is adjusted.

In this section, there will be an explanation of how the ALNS procedure computes the

initial solution. Then, the set of destroy and repair operators will be discussed. Afterward,

the acceptance criterion, which determines whether the candidate solution will be used, will be

explained. The local search mechanism that is applied when a new solution is adapted will then

be explained. Lastly, the part of the metaheuristic that updates the weights used for selecting

the destroy and repair operators will be discussed. Note that this last algorithm is what makes

the entirety of the process adaptive.

4.1 Initial solution

To construct the initial solution, all learners are assigned to the self-study activity in every

single hour. This solution will be inefficient for the DLAPP, especially when high values of

Λ are applied. The solution is constructed by selecting a random classroom c and a random

teacher t that can accommodate a self-study module and then allocating Nc learners into the

module. This process is repeated until all learners are assigned.

4.2 Destroy operators

A set of four destroy operators is used for removing learners from the current solution through-

out the iterations. They each remove a proportion of all learners d > 0 from their current
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assignments. Each operator starts by randomly selecting the hour h which will be worked on.

4.2.1 Random activity removal

This operator removes random activities in the selected hour h until at least d learners have

been removed. All learners that were in the removed activity are marked as unassigned, just

like the classroom and teacher corresponding to it.

4.2.2 Smallest activity removal

This operator functions in nearly an identical way as random activity removal, however, it instead

specifically removes the smallest activities. This makes it so that classrooms and teachers which

are likely to be used inefficiently are freed up.

4.2.3 Random learner removal

This operator removes random learners from their activities in the selected hour h until at least

d learners have been removed. A learner is only removed from their activity if that activity

remains feasible, namely, when δ− is respected.

4.2.4 Worst regret learner removal

This operator is the first one to work differently from the operators used in Wouda et al.(2023).

The idea behind this operator is that it removes learners who have the best possibility of im-

proving their utility by being unassigned from the module they are currently assigned to in the

hour which is being adjusted. The ’regret’, which denotes this possibility of improvement, is

calculated for each learner l ∈ L. The regret of a learner is denoted as:

rlm = max
m′∈M

{Ulm′} − Ulmcurr , (15)

where

Ulm =
∑
m∈M

Dlmplm
∑
h∈H

ylmh. (16)

In Equations 15 and 16, Ulm denotes the total utility learner l gains across the entire problem,

if they are in module m in the hour currently being worked on. This equates to Ulmcurr if learner

l is currently assigned to module mcurr ∈ M . On the other hand, Ulm′ denotes the potential

total utility that learner l can have across the problem if its module in the hour being worked

on were to switch to module m′. Note that the value of the objective function is equal to the

sum of all utilities in a solution, which equates to
∑

l∈L Ulm.

If rlm is high for learner l, this is considered worse. This is why the regrets are stored in

decreasing order, whilst remembering the corresponding learner. d learners are then selected by

using a skewed distribution, which favors selecting learners with large regrets over learners with

small ones. The distribution is decreasing triangular for the first d values, and flat thereafter.

This means it is uniform for all learners with index {d+ 1, ..., |L|}. The chance that a learner l
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with its cost at index {1, ..., |L|} is then selected has probability

Pr(select l) =


d−j+1∑d

i=1 i+|L|−j
if j ≤ d,

1∑d
i=1 i+|L|−j

otherwise,
(17)

of being selected. All of the selected learners are then removed from their current activities in

the hour being worked on.

4.3 Repair operators

The repair operators make sure that all learners that are currently marked as unassigned are

again assigned to an activity in the hour which is currently being worked on. Note that both

of the two repair operators use overall utility Ulm from Equation 16 to determine assignments.

This means they both account for other hours by incorporating possible changes in productivity

if monotonicity were to alter because of an assignment.

4.3.1 Break-out activity

This operator attempts to create activities using the currently unassigned learners. Firstly, a

set of modules is created, each having a set of corresponding unassigned learners, which have

demand for the module. For each learner, the utility Ulm they would have by being assigned to

this module has to be higher than UlmS
, which is the utility they would have if they were to be

assigned to the self-study module. This set of modules is then ordered by the level of overall

utility
∑

l∈L Ulm that can be gained by creating an activity for it and assigning its learners to it.

Then, if a qualified classroom and teacher are available, the activity with the highest possible

utility gain is created. In the setting of Dutch education, first-degree teachers exist who can each

teach some set of modules. Additionally, second-degree teachers can only teach a subset of these

modules, which are called second-degree modules. Instead of using a first-degree teacher for a

second-degree module, the operator endeavors to select second-degree teachers specifically for

those modules in this setting. In the same manner, when it comes to classrooms, the operator

selects the smallest one that can accommodate the group of learners. If such a selection is not

feasible, the operator opts for the largest available classroom instead.

Upon scheduling a new activity, the operator additionally attempts to assign self-study

learners to the new activity provided if it offers a better alternative to their current self-study

assignment. After creating a new activity, this process is repeated. If no new activities can be

scheduled and some learners are still unassigned, the operator resorts to applying greedy learner

insert to accommodate the remaining learners.

4.3.2 Greedy learner insert

This operator takes a random learner out of the set of unassigned ones and first opts to assign

this learner to an existing feasible instruction activity within the hour being worked on. The

operator attempts the insertion of a learner into an activity that causes the highest possible gain

in Ulm for that learner. An insertion can only take place if the activity currently has less than

10



min{δ+, Nc} learners assigned to it, and the learner that is to be assigned to it has a non-zero

demand for it.

In the absence of any viable instruction activities, the learner is allocated to an existing

self-study activity. If that is not possible, a new self-study activity is established. In exceptional

circumstances where even this proves unattainable, the instruction activity that contributes the

least to the objective value is transformed into a self-study activity, and the learner is assigned

accordingly. This process continues iteratively until all unassigned learners have been allocated

to an activity.

4.4 Acceptance criterion

Whenever a candidate solution sc is found, whether or not it is accepted is determined by

a simulated annealing procedure. The reason for this is Santini, Ropke and Hvattum(2018)

attaining excellent results using this procedure. The workings of the process entail that whenever

a new solutionsc is better than the current solution s, it is always accepted. Otherwise, whether

or not it is accepted is determined by probability. This probability is dependent on the objectives

of the solutions and is defined as

Pr (accept sc) = exp

{
f (sc)− f(s)

T

}
, (18)

where T depicts the temperature in the current iteration, and f(·) depicts the objective value

function. The temperature T is initialized to the starting temperature at the beginning of the

metaheuristic procedure. In each iteration, it is reduced by multiplying it with a cooling rate

parameter γ ∈ (0, 1) until eventually a final temperature is reached.

4.5 Local search

Once a new best solution is discovered, a reinsert learner operator is utilized to enhance the

solution even more. Initially, this operator identifies all potential relocation moves that can

improve the current solution based on the activities already scheduled within the hour being

worked on in the iteration. These moves are then executed in descending order of objective gain,

with the best moves prioritized. In case a move becomes infeasible due to a previous learner’s

action, it is skipped. The operator is then applied once more to the improved solution, and this

process continues until no additional improvements can be made. Note that this operator also

takes into account other hours since it applies the overall utility measure Ulm when determining

objective gain.

4.6 Updating and operator selection

In every iteration, after an hour has been randomly selected, a roulette wheel mechanism will be

applied to determine which of the available destroy and repair operators will be applied for that

iteration. This mechanism works as described in (Ropke & Pisinger, 2006). When assuming

there are k ∈ N operators, with each one having a weight zi ≥ 0, i ∈ {1, ..., k}, the probability
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of selecting operator j is given by

Pr(select j) =
zj∑k
i=1 zi

(19)

We keep track of two sets of weights: one for the destroy operators (ρD) and one for the

repair operators (ρR). Initially, all of the weights are set to 1.

To adjust the weights of the destroy and repair operators, we evaluate their performance

based on three possible outcomes: (i) discovering a new best solution, (ii) improving the current

solution without affecting the global best solution, and (iii) accepting the solution as new without

improving its objective. Each outcome is associated with a factor ωi, where i ranges from 1 to

3. When a specific operator j produces a certain outcome i, the weights are updated by taking

a weighted average of the original weight and the observed outcome. This update is represented

by the equation zj := θzj + (1− θ)ωi. Here, θ is a decay parameter within the range of 0 to 1,

controlling the speed at which the metaheuristic reacts to changes in operator effectiveness.

Since it is not possible to differentiate the impact of the destroy and repair operators within

a single iteration, both sets of weights are adjusted by the same factor.

For an overview of the code used in this research, see Appendix B.

5 Reproduction of HLAPP results

To analyze the performance of the HLAPP, the same 144 experiments that were run in (Wouda

et al., 2023) were used. Firstly, Section 5.1 will be dedicated to the experimental design that

was applied to the DLAPP. In Section 5.2, the tuning process will be explained. In Section 5.3,

the outcomes of these experiments will be discussed.

5.1 HLAPP experimental design

The parameters used for the analysis can be seen in Table 2.

Table 2: HLAPP experiment parameters and their levels

Parameter Levels
Self-study penalty parameter (w) 50%, 75%
Demand spread (σ) 0, 1, 2, 3
School size (# learners) 800, 1200, 1600
Teacher qualification distribution (1; 0; 0), (0.5; 0.5; 0), (0.4; 0.4; 0.2)
Instruction classrooms and capacities Regular number of classrooms of 32 capacity,

double the number of classrooms of 16 capacity.
Minimum activity size (δ−) 5
Maximum instruction activity size (δ+) 30

The experiments provided by Wouda et al.(2023) entail the solving of 100 instances of 144

different experiment types using different parameters. The HLAPP solved by them is identical

to the DLAPP when ran for an hour quantity equal to one. When solving the DLAPP for one

hour, it is recommended to use the framework of the HLAPP, since it provides less computational

strain. The experimental instances provided by Wouda et al.(2023) have defined classrooms,

course modules, and teachers which are there to represent a six-year secondary educational
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program. This corresponds to regular Dutch education for twelve to eighteen-year-olds. The

first parameter which is varied is school size. The schools simulated provide education for 800

up to 1600 learners. The number of teachers is equal to one-tenth of the number of learners,

the number of regular classrooms one-twentieth, and the number of large classrooms which can

provide self-study for 80 learners come in quantities of three, four, and six respectively. The

regular classes are assumed to be able to fit 32 learners. It is always assumed that 12 courses

are given in the high school, each one containing 48 modules. The option that classrooms can

be split, leading to double the number of rooms that can each only house 16 learners is also

explored. The minimum activity size is always equal to 5, the maximum is 30, and various

teacher qualification distributions are explored.

The distribution of qualifications among teachers in the set T can be described using a triplet

of values (p, q, 1−p− q). Here, p represents the fraction of first-degree teachers, q is the fraction

of second-degree teachers, and 1 − p − q is the fraction of third-degree teachers. These values

must satisfy the conditions p + q ≤ 1, indicating that the combined fractions of first-degree

and second-degree teachers cannot exceed the total number of teachers, and p, q ≥ 0, indicating

that the fractions cannot be negative. First-degree teachers can teach all modules, second-degree

teachers can only teach the first 24 modules of a course, and third-degree teachers can only teach

self-study activities. The penalty which determines the efficiency learners get from learning their

most preferred module during a self-study activity is set at either 50% or 75%.

The last parameter which is varied is the demand spread, this parameter indicates whether

or not, and at what level, learners can participate in activities in which modules are taught

outside of their nominal study schedule. To determine the eligible modules for a learner in a

specific year (denoted as yl, where yl can be any value between 0 and 5), midpoint calculation is

utilized. Assuming the learner follows the standard learning path of completing 8 modules per

year, the midpoint µl is calculated as 8yl + 4. To account for variations in learner eligibilities,

σ introduces randomness into the process. This is done by generating a random value from a

distribution represented as N (µl, σ), where µl is the calculated midpoint and σ represents the

degree of randomness. The obtained random value is then rounded to the nearest integer within

the range of 1 to 48. This value represents a module a learner can partake in.

All coding was performed in Python 3.9 with Gurobi 10.0.1. The ALNS algorithm was

also programmed and solved in Python 3.9 using the ALNS version 4.1.0 package, which is

open-source. This is why in this research, the same software was used. The experiments were

solved on six Intel i7-9750H 2.6GHz CPU cores with 16GB of ram memory. Unfortunately,

memory capacity was significantly smaller than when the problem was originally solved. Since

ram capacity was at half of the level of the computer used by Wouda et al.(2023), it was not

even possible in this research to solve to optimality for even the smallest school sizes. Due to its

purpose of delivering less computational strain on its user, the heuristic fortunately was able to

run successfully. However, running all 14.400 cases would still take a very long amount of time,

which is why the analysis was conducted using only the first 3 instances of every experiment.

This leads to the total number of instances ran being equal to 432. The outcomes of these

heuristic solutions were compared to the ILP solutions provided by Wouda et al.(2023). ILP

solutions are by definition solved to optimality, which leaves no room for difference in outcome
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across runs, except for the instances that were stopped at a time limit that might be imposed.

5.2 Tuning for HLAPP

The tuning of parameters for the metaheuristic was not conducted, since the parameters found

by Wouda et al.(2023) could be applied. They computed them as ω = (21.8, 13.6, 3.8), θ = 0.8,

and d = 15%. Furthermore, they applied a starting temperature based on the initial solution,

in the same manner as Ropke and Pisinger(2006). Entailing a value such that initially, if a

candidate solution were to be five percent worse than the initial solution, it has a chance of 0.5

of being accepted. The cooling rate was set such that it cools to 1 over the 25.000 iterations.

Since for the HLAPP experiments performed by Wouda et al.(2023), the heuristic turned out

to give better results when excluding the greedy insert operator, it was also excluded for the

generation of heuristic solutions in the HLAPP experiments of this research. The dataset can

be seen in this research file depository as described in Appendix B.

5.3 HLAPP results

Since 4 exact results from the ILP did not have a reported value due to run-time limits imposed

by (Wouda et al., 2023)(2023), they and their corresponding heuristic solution were excluded in

the analysis, leaving 428 remaining observations.

0 2 4 6 8
0

50

100

Optimality gaps (%)

F
re
q
u
en
cy

Figure 1: Optimality gap frequencies.
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Figure 2: Heuristic run-time frequencies.

When observing the timespans required by the ALNS metaheuristic for solving the HLAPP,

the average run-time per instance is about 172 seconds. No instance takes longer than 363

seconds to run, and the fastest one only took 74 seconds. For the exact solutions of the ILP,

the average run-time was about 35 minutes. The longest instance took about 12 hours to solve

and the fastest run only took 15 seconds. Note that these computation times however are the

results of running the algorithm on a different computer than the one used for this research.

The performance of the heuristic is evaluated using the optimality gap. This measure is equal

to f(s∗)−f(s)
f(s) , with f(s∗) being the optimal solution and f(s) the solution of the metaheuristic.

Low optimality gaps indicate that the heuristic delivers objective values close to the optimal one,

meaning it performs well. The average optimality gap for the 428 instances evaluated is equal to

1.61%. This corresponds to the value of 1.6% reported by Wouda et al.(2023). The frequencies

of the optimality gaps and run-times of the 428 heuristic solutions are shown in Figures 1 and
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2 respectively.

6 DLAPP experiments

To obtain a dataset that can be used to evaluate the proposed metaheuristic, unfortunately, no

database exists to be applied as a benchmark for PL in Dutch secondary education. This is

why a data generation process similar to the one used for the HLAPP is applied. This section

follows an identical structure as that of Section 5.

6.1 Experimental design

For the experiments conducted to analyze the performance of the ALNS metaheuristic for the

DLAPP, a new dataset was generated. The parameters can be observed in Table 3.

Table 3: DLAPP experiment parameters and their levels

Parameter Levels
Self-study penalty parameter (w) 50%
Number of hours (|H|) 2, 3
Monotonicity penalty (Λ) 0%, 5%, 20%
Demand spread (σ) 0, 0.2
School size (# learners) 200
Teacher qualification distribution (1; 0; 0), (0.5; 0.5; 0), (0.4; 0.4; 0.2)
Instruction classrooms and capacities Regular number of classrooms of 32 capacity.
Minimum activity size (δ−) 1
Maximum instruction activity size (δ+) 30

As can be seen in the table, two new parameters that were added and varied to analyze

heuristic performance are |H| and Λ. Note that all of the possible combinations between Λ and

|H| adhere to the tight restriction from Lemma 2. The total number of possible combinations

between the parameters is equal to 36. Note that in contrast to the experiments of the HLAPP,

school size was not varied since computational limitations require it to remain small. Learners

and modules have quantities in the same proportions to learners as in the HLAPP, and only one

large self-study classroom which can house 80 students has been created. The option of splitting

classrooms was also not explored in this research, since it increases experiment quantities, and

is not a well-implemented option in Dutch secondary education. Due to the very similar nature

of the DLAPP ALNS metaheuristic to the algorithm for the HLAPP, it is unlikely that a split

in classrooms leads to a significant change in the optimality gap or run-time, which is the main

focus of the initial analysis of the DLAPP. Differing self-study penalties were also not explored

due to computational limitations. For future research though, it may prove interesting to analyze

the exact scheduling performance differences and policy implementations when varying school

sizes, self-study penalties, or when allowing classrooms to be split.

As shown in Wouda et al.(2023), higher demand spread values σ cause the ILP to take much

longer to solve. This effect is even stronger when solving the DLAPP since the higher complexity

of the problem causes stronger exponential growth of computation time in parameters such as

school size or σ. This causes the solving of the ILP formulated in Section 3 to take well over ten

hours for an instance with a σ equal to 1 and an hour quantity of 3 during the experimentation
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phase. This very high run-time that does not allow for analysis over many instances due to

time limitations occurs even though the school size has already been drastically reduced to

200 learners to make the ILP faster to solve. However, a non-zero σ value is very interesting to

analyze since it allows learners to participate in modules outside of their nominal study schedule.

This is why a very small non-zero value of σ, namely 0.2, was also experimented with.

During the experimentation phase, a problem concerning the minimum activity size arose.

A last resort of the greedy insert operator when no bigger classroom can be chosen for an

existing activity, no activity can be split, and there is no self-study activity available, is to

create a new self-study activity by taking a number of unassigned learners equal to the minimum

activity size and inserting them into this new activity. This however causes an error when

there are not sufficient learners to create this activity while abiding by the minimum activity

size. This problem never occurred for the HLAPP, however, it is a problem when applying the

earlier-mentioned minimum activity size of 5 learners to the DLAPP. This was likely caused

by the reduced school size. If the number of learners is smaller, there are also fewer learners

being unassigned in every iteration of the heuristic. This decreases the chance that there are

enough unassigned learners to create a new self-study activity when needed whilst abiding by

the minimum activity size.

Because of this issue, the minimum activity size has been decreased to one for the experiments

in this research. Applying the exact parameters mentioned in Table 2 however might prevent

this issue even for the DLAPP, meaning that applying δ− > 1 might be possible without errors

for this case. For all of the 36 possible experiments that could be made using these parameters, 3

instances were created, leading to a total of 108 instances ran. Not that all teacher and classroom

qualifications were generated in the same manner as by Wouda et al.(2023). An overview of the

experiments and their parameter settings can be seen in Table 5 (Appendix C).

6.2 Tuning

The tunable parameters were taken at an identical level as in Section 5.2 because of the similar

nature of the HLAPP and DLAPP. Where Wouda et al.(2023) managed to run their HLAPP

ALNS procedure using 25000 iterations, with all instances being solved within ten minutes, the

DLAPP proves to deliver significantly higher computation times. The cause of this is probable

to be the fact that the DLAPP constantly has to update the current, the positive hypothetical,

and the negative hypothetical utility a learner gets from a model by taking it in the current,

current +1, or current −1 quantity. This is required to be able to quickly compute possible

changes in utility levels. Because of this increased computational strain and the desire to be

able to rapidly obtain a solution, the number of iterations has been reduced to 500. However,

since the exclusion of some operators appeared to lead to average optimality gaps not that far

from each other, and since these operators have changed, analysis is conducted to determine

whether the exclusion of an operator leads to better performance.

To analyze this, of the 3 instances generated for each of the 36 experiments only the first

one was initially used. These 36 single instances were solved to optimality using the ILP, and

then they were solved for 8 possible configurations of the metaheuristic. One incorporates the

full set of operators from Section 4, then there are 6 configurations which each exclude one of
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the destroy or repair operators. The last one excludes the local search algorithm.

Some statistics on the optimality gaps for the 8 configurations are shown in Figure 3 and

Table 4.

0% 20% 40% 60% 80% 100%

Reinsert Learner

Greedy Insert
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Random Activities

Full

Figure 3: Box-and-whisker plots of optim-
ality gaps when excluding certain operat-
ors.

Table 4: Average gaps and run-times when
excluding certain operators.

Operator Average Average

Gap run-time

(%) (Seconds)

Full 9.80 134.6

Random activities 14.52 113.96

Random learners 9.69 142.1

Regret learners 9.56 141.7

Smallest activities 9.61 142.69

Break out 50.91 43.9

Greedy insert 12.58 168.7

Reinsert learner 9.51 140.82

As can be seen in the figure and the table, excluding a repair operator causes a clear change

in heuristic performance. Removing either greedy insert or break out causes a notable increase

in the average optimality gap. Especially the break out operator turns out to be vital for the

heuristic. For the reinsert learner algorithm and any of the destroy operators, not a large change

in optimality gap can be observed.

Since the sample size of 36 instances is quite low, the other differences in the average gap do

not seem to be significant enough to exclude any operator for the rest of the research. The best

operator that could be removed would be reinsert learner, which has an average optimality gap

that is 0.29 percentage points smaller than the one of the full set of operators.

The gap does not appear to be reduced by a significant proportion when excluding any oper-

ators. This is supported by a simple t-test with the null hypothesis that the average difference in

optimality gaps when either not excluding, or excluding reinsert learner is 0, and the alternative

hypothesis is that the difference is larger than 0. This delivers a p-value of 0.23, meaning we do

not reject the null hypothesis for any significance value at or below 10%. Based on this finding

and the desire to explore the performance of the heuristic with all mutated operators included,

the rest of the results for this initial analysis were generated with the full set of operators ap-

plied. Tables 7 and 8 (Appendix D) provide an overview of all heuristic outputs for the operator

exclusion options. Additionally, Table 6 in the same appendix displays the differences in gaps

used for the t-test.

6.3 Metaheuristic performance

The metaheuristic is compared to the exact solution of the ILP proposed in Section 3 using the

experiments generated as explained in Section 6.1. The heuristic can solve all of the instances

quickly, with a maximum run-time of 198 seconds. The average run-time across all instances is

135 seconds, and the minimum run-time is equal to 81 seconds. An overview of the run-times

of the heuristic can be seen in Figure 4a.
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The run-times of the ILP vary widely. The fastest experiments, which consist of the smallest

number of hours |H| = 2 and a Λ level of 0 are solved very rapidly, in around 15 seconds. This

is considerably faster than the heuristic. However, as |H| and Λ increase, the solving time grows

explosively. The instance that took the longest to run was an experiment consisting of 3 hours,

a σ of 0.2, and a Λ level of 20%. This instance took 8805 seconds. The solving time of the ILP

will explosively grow further as the number of hours or the value of σ increases even further,

indicating the high value of a well-performing heuristic. An overview of the run-times for the

exact solutions is given in Figure 4b. In this graph, it can be observed that a very large part of

observations is in the smallest run-time category, which ranges from 0 to 500 seconds. Only a

small part of observations fall into the high-run-time categories. However, note that the seven

run-times above 2000 seconds make up for about 48.6% of the sum of all run-times for the ILP.
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(a) Run-time frequencies of heuristic.
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(b) Run-time frequencies of ILP.

Figure 4: Comparison of run-time frequency distributions for DLAPP instances.

For the DLAPP, the optimality gaps are computed identically as for the HLAPP, using a gap

equal tof(s∗)−f(s)
f(s) , with f(s∗) being the optimal solution and f(s) the solution of the adjusted

metaheuristic. The average gap in the results is about 9.88%. The maximum is 16.22% and

the lowest observed gap value is 4.90%. The distribution of the optimality gaps can be seen in

Figure 5a. An overview of the objectives, run-times, and optimality gaps of all 108 instances

can be found in Tables 9 and 10 in Appendix E.
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(b) Only instances with Λ > 0.

Figure 5: Optimality gap frequencies of DLAPP using 500 iterations.

Since the Λ = 0 case can be more efficiently solved by the HLAPP ALNS metaheuristic
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because of the aforementioned reasons, it is only fair to also exclusively analyze the performance

in cases where applying the renewed metaheuristic is essential, namely when Λ > 0. When

only looking at the 72 experiments in which this is the case, the mean optimality gap is 0.5

percentage points larger, having an average value of 10.39%. The minimum value of the gaps in

these instances is 5.54%, and the highest gap instance appears to be in this set and remains at

16.22%. This highest gap instance occurs in experiment 3, which has a Λ value of 20% and an

hour quantity of 2. The other highest gap instances also appear to fall into this category.

To explore the improvement of heuristic performance when iteration quantities are raised,

all 36 experiments were also run at an iteration quantity of 2000. Running the ALNS algorithm

at this setting leads to an improvement in the average optimality gap. The optimality gap

shrunk by 1.38 percentage points to 8.50%. The largest gap, which is equal to 16.10%, occurs

in instance 9, which similarly to experiment 3 has a Λ of 20% and a |H| of 2. The smallest gap

is equal to 3.88%. This smallest gap occurs in experiment 29, which has a Λ of 5% and an hour

quantity of 3.

When excluding the zero-monotonicity penalty case, the increase in iterations led to an

average optimality gap of 9.20%. The minimum and maximum gaps are unchanged since they

both come from Λ > 0 experiments. An overview of run-times and optimality gap frequencies

for the 2000 iteration solutions are shown in Figures 6a and 6b respectively.

The full outputs concerning objective values, run-times, and optimality gaps of all these 108

instances can be found in Tables 9 and 10 in Appendix E.
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(b) Optimality gap frequencies.

Figure 6: 2000 iteration heuristic results (all 108 instances).

For all experiments that were tested, the increased iteration quantity showed a promising

decrease in average optimality gap, though average run-time was increased to 418 seconds. This

illustrates the potential the metaheuristic has if it were allowed to execute even more iterations.

This, however, should be executed by stronger hardware, since short-term timetabling cannot

allow for run-times to become significantly longer than ten minutes.

Even after increasing the number of iterations to 2000, pushing the limits of what is time-

technically feasible, the heuristic performance still appears to be significantly worse than that

of the ALNS metaheuristic for the HLAPP, which only had a gap of 1.61%.

The first reason why this might be the case is that the number of iterations had to be

drastically reduced due to higher computational strain. The number of iterations applied, after
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increasing it to 2000, is still only 8% of the number of iterations used for the HLAPP. One could

argue that this fraction is even smaller in practice. The reason for this is that one iteration

only adjusts the solution for one hour. This means that the number of iterations per hour is

only equal to |H|
2000 , while the ALNS for the HLAPP can devote all of its 25.000 iterations to the

single hour it has to work on. A second reason for the DLAPP heuristic performing worse than

the one for the HLAPP is the more complex nature of the problem. In one iteration, an hour

is taken, and within that hour, the heuristic looks at the potential moves a learner can make,

whilst taking the current, positive hypothetical, and negative hypothetical utility into account

utilizing Equation 16. This causes the (group of) learners to, for that iteration, be reallocated

as well as possible given the current solution state. However, this ’greedy’ reallocation process

does not take into account any possible future moves within the solution. A new solution that

maximizes the increase in overall utility for the hour being worked on in the current iteration

might block a potential future allocation that intelligently plans activities, with the activities

compromising their own utility so that it can be gained in places with more potential. The

procedure does have features to lower the chance of getting stuck in local maxima, but the

model might still be overwhelmed by the increased complexity of the problem.

7 Conclusion

In conclusion, this research introduces the daily learning activity planning problem (DLAPP)

and proposes a tailored adaptive large neighborhood search (ALNS) metaheuristic as a practical

and efficient approach to solving this scheduling problem in educational institutions. It extends

the hourly learning activity planning problem (HLAPP) proposed by Wouda et al.(2023) for

personalized learning in Dutch education. The novel scheduling problem involves assigning

learners to activities, teachers, classrooms, and modules for every hour in a schoolday, taking

into account learner demands and reduced utility when facing a monotonous schoolday.

One of the key challenges in the scheduling problem is the increasing complexity of interde-

pendence as the number of hours to be scheduled increases. This complexity makes it extremely

computationally demanding for schools to optimally plan for more than a few hours. The ALNS

algorithm addresses this challenge by providing a systematic and effective method to quickly re-

new the schedule for the remaining hours, enabling schools to generate feasible schedules within

a reasonable time span.

The ALNS algorithm begins by constructing a simple, feasible initial solution. It then

proceeds through iterations, randomly selecting an hour to work with and applying destroy and

repair operators to transform the current solution into a new candidate solution. The candidate

solution is evaluated, and if it is accepted, a local search mechanism is employed to further refine

the solution. This iterative process continues until a maximum number of iterations is reached,

ultimately returning the best-found solution.

This paper delves into several important aspects of the ALNS algorithm. It discusses the

construction of the initial solution, which forms the foundation for subsequent improvements. It

explores various destroy operators that selectively remove learners from the solution, as well as

repair operators that assign unassigned learners to appropriate modules. This paper also covers

the acceptance criterion based on simulated annealing, which allows the algorithm to explore
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potentially suboptimal solutions to avoid getting trapped in local maxima. Additionally, the

updating and operator selection mechanism ensure adaptability and fine-tuning of the algorithm

based on the specific characteristics of the problem.

The experimental evaluations conducted show promising results, indicating the effectiveness

of the ALNS metaheuristic in generating decent-quality schedules to solve the DLAPP. The op-

timality gap the metaheuristic provides is 10.39% on average when compared to the computed

optimal solutions in cases where the HLAPP cannot be applied. Pushing the limits of compu-

tation time can even get the optimality gap as low as 8.50% when evaluating the entire set of

experiments. Experimentation has shown that optimality gaps have the potential to become

even lower when excluding certain operators from the ALNS algorithm.

Overall, the DLAPP forms a problem definition worthy of further research. The correspond-

ing ALNS metaheuristic presents a promising solution for educational institutions to efficiently

handle complex scheduling problems. By offering flexibility, adaptability, and the ability to

generate schedules for multiple hours, the ALNS algorithm empowers schools to meet their spe-

cific scheduling needs effectively. As technology advances and computational resources become

more powerful, the DLAPP and the metaheuristic tailored to solving it have the potential to be-

come indispensable in optimizing educational scheduling processes in a world where personalized

learning becomes more and more important.

8 Limitations and future research

Because of the large potential the DLAPP has in learner-centered scheduling, ample space is

left for future research. Firstly, computational capacity was strongly limited in this research.

The HLAPP which was extended could not even be optimally solved for schools with eight

hundred learners due to ram-memory limitations. This means the DLAPP has only been solved

and evaluated for very small schools with only 200 learners so far. Larger hour quantities were

also not analyzed for this reason. Lastly, more spread-out eligibilities for modules could not

be explored, since a larger spread rapidly increases computational time towards the optimal

solution. Stronger hardware will also be able to run the ALNS metaheuristic for more iterations

within the few minutes it is allowed to take.

Apart from the computational limitations, some technical ones are also present in this paper.

Firstly, no new hyperparameter tuning procedure was applied, and these values instead were

instead taken from the results of the HLAPP computed by Wouda et al.(2023). Expertly tuning

these parameters might prove for providing an improvement in metaheuristic results for the

DLAPP. Furthermore, though the ALNS procedure was properly adapted, the high complexity

of multiple-hour planning proves to limit when greedy-improvement algorithms are applied.

More complex algorithms might prove even more proficient in preventing embeddedness in local

maxima that prevent the localization of more potent ones.

Lastly, future research could expand the problem definition and adjust the solution approach

to further lower the distance the model has to real life. Self-study penalties could be varied per

learner, and the feature that learners could choose to study different subjects in different self-

study activities to decrease monotonicity could also be explored. Further analysis could also

form a basis for policy advice that can be provided to schools.
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Appendices

A Proofs

A.1 Proof of Lemma 1

Lemma 1. Let Λ be the monotonicity penalty measure applied to the utility learner l gains from

module m in a day with |H| > 1 hours in it. If a learner l should gain positive utility from

module m by taking it any number of times that day, Λ ≤ 1
|H|−1 .
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Proof. Consider a schedule with |H| > 1 in which a learner l and module m exist with a level

of productivity

plm = 1 + (1−
∑
h∈H

ylmh)Λ.

If all hours are spent on module m by learner l,∑
h∈H

ylmh = |H| =⇒ plm1= 1 + (1− |H|)Λ.

Since Dlm ≥ 0 and ylmh = 1, the utility learner l gains from module m

ulm = Dlmplm1

∑
h∈H

ylmh

would become negative if plm1 < 0, therefore,

plm1 ≥ 0 =⇒ Λ ≤ 1

|H| − 1
.

Any case where |H| would be replaced with a lower quantity of hours would lead to a less tight

restriction on Λ, ending the proof.

A.2 Proof of Lemma 2

Lemma 2. Let Λ be the monotonicity penalty measure applied to the utility learner l gains from

module m in a day with |H| > 1 hours in it. If a learner l should always gain more utility by

partaking in module m one more time that day, Λ ≤ 1
2|H|−1 .

Proof. Consider a schedule with |H| > 1 in which a learner l and module m exist with a level

of productivity

plm = 1 + (1−
∑
h∈H

ylmh)Λ

and level of utility learner l gains from solely module m

ulm = Dlmplm
∑
h∈H

ylmh.

If all hours are spent on module m by learner l,∑
h∈H

ylmh = |H| =⇒ plm1= 1 + (1− |H|)Λ.

If the learner were to spend one less hour on the module,∑
h∈H

ylmh = |H| − 1 =⇒ plm2= 1 + (2− |H|)Λ.
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Then, if total utility should be higher when the number of times the module is taken increases,

Dlmplm1|H| ≥ Dlmplm2(|H| − 1) =⇒ Λ ≤ 1

2|H| − 1
.

Any case where |H| would be replaced with a lower quantity of hours would lead to a less tight

restriction on Λ, ending the proof.

Note that in these proofs, ulm is not the same as Ulm from Equation 16. The latter represents

the sum of utility gained from all modules, whereas the prior only indicates the utility gained

from the particular module m. This means that
∑

m∈M ulm = Ulm

B Code description

The code used to compute the outcomes of the DLAPP consists of an extension of the Python

3.9 code provided by Wouda et al.(2023). The HLAPP code was not adjusted in any way that

changes functionality. The HLAPP, as well as the DLAPP map that were added contain a set

of experiments with generated data, outputs, a cache containing analyzed results, and a src

(source) map with the code that was used.

The original source map of the HLAPP that was extended on contains the following maps

and scripts:

• Classes. This map contains objects which can be used

– Activity.py. One activity in the solution and its properties.

– Classroom.py. A classroom from the problem and its properties.

– Learner.py. A learner with an ID and a year.

– Module.py. One of the 577 modules that exist.

– Problem.py. Provides the problem, some cached properties for quick access, and some

operators.

– Result.py. Result object that can be formed from a (potential) solution.

– Solution.py. One possible solution. Contains activities, currently unassigned learners,

used classrooms, and used teachers.

– Teacher.py. A teacher and their degree.

• Destroy operators. This map contains the set op destroy operators. Operators work as

described by Wouda et al.(2023).

– random activities.py.

– random learners.py.

– regret learners.py.

– smallest activities.py.

• Functions. A map containing some baseline functions of the ALNS or ILP algorithm.
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– initial solution.py. Creates initial solution with only self-study activities

– learners to remove.py. Determines the number of learners that will be removed based

on the degree of destruction

– pairwise.py. A function that helps symmetry-breaking constraints for the ILP.

– problem.py. Gets or sets the problem

• Local Search. This map contains the reinsert learner algorithm.

– reinsert learner.py. Works as described by Wouda et al.(2023).

• Repair operators. A map containing the two repair operators. Operators work as described

by Wouda et al.(2023).

– break out.py.

– greedy insert.py.

• Rules. A map containing all of the functions from the model in Section 3.

• analyse.py. This script analyses the results of an experiment run.

• constants.py. This script defines hyperparameters for the ALNS heuristic.

• heuristic.py. Runs heuristic algorithm. Then prints and stores its results.

• ilp.py. Runs ILP algorithm. Then prints and stores its results.

• make experiments.py. Makes multiple instances for all experiments based on possible

parameter settings. (Not used for reproduction).

• tune.py. Tunes hyperparameters. (Not used or adjusted at any point in this research).

• validator.py. Validates outputs.

To make the computation of results more convenient, some ’heuristic loop.py’, ’ilp loop.py’,

and ’analyse loop.py’ classes have been added to the HLAPP and DLAPP map to iteratively run

the respective scripts, with the experiment, instance, and potentially excluded operator given as

argument. The loops explain in comments what they can be used for. a ’constants2.py’ script

has also been made to be able to run the 2000 iteration heuristic through ’heuristic loop3.py’

without needing to manually adjust the quantity.’heuristic loop 2’ performs the runs concerning

the exclusion of operators. Separate maps have been created for the outputs and analysis of

2000 iterations and exclude operator runs.

Since the outputs made by the analyze class for analysis are stored in different Excel files for

every experiment, a ’mergeCache.py’ script was made to put them all into one Excel file. These

’all results’ Excel files were used for data analysis by the author, and need not be observed to

extract the findings of this paper.

For the code used to obtain results for the DLAPP, the code of the HLAPP environment has

been adjusted in many ways. The most important changes have been described below. Firstly,

for the exact solution of ILP, the ’ilp.py’ script has been adjusted to implement the model from
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Section 3. Secondly, many parts of the code for the heuristic have been adjusted to implement

the solution approach from Section 4.

The only script which has been added for the heuristic is the Hour.py script within the

classes map which represents an hour object. For coding purposes, hours are numbered from 0

to |H| − 1.

The problem class now also stores all possible utilities for all learner module combinations

for every hour quantity possible, taking the monotonicity penalty Λ into account.

The solution class now also stores the number of times each learner takes each module at

all times, as well as the corresponding utility a learner currently gains from a module. The

key to the application of the ALNS framework on the DLAPP is that instead of using general

preferences Dlm and differences in them to compute what moves can best be made, learner

utilities Ulm should be used instead. At all times, when it needs to be computed what would

happen to the utility if a learner were to take a module one more or one fewer times in the

schedule, the hypothetical utility a learner would have in that case needs to be accessed. Instead

of newly computing this whenever needed using the current assignments (which causes large

computational strain), the solution object not only always keeps track of the current utility

each learner gains from each module, but also the hypothetical positive utility and hypothetical

negative utility. These values can quickly be accessed whenever needed by simply requesting

them using the learner id and module id. The learner-module quantities, the current utility, and

the two hypothetical utilities are changed any time a change in assignment occurs (if it affects

learner-module quantities).

The four destroy operators, the repair operator and the reinsert learner algorithms have

been adjusted so that they select a random hour to be worked on in every single iteration, and

can then only change the solution by working within that hour. The random learners, random

activities, and smallest activities operators have not been adjusted apart from this, since just

like in the HLAPP, they should unassign learners without taking the objective into account.

The regret learners, break-out, greedy-insert and reinsert learner algorithms however all take

into account the objective function when determining their mutations. This is why every single

case in which preferences were used was adequately adjusted to work with current and hypo-

thetical utilities instead. Every single method within each object class that is used when the

objective is taken into account has been adjusted to properly incorporate current and hypothet-

ical utilities. These changes are described in comments in these classes.

A short script called ’t test’ has also been added to perform the t-test from section 6.2.

Lastly, the ’validator.py’ has been adjusted to analyze the feasibility of a DLAPP solution.

The ’validator loop’ script loops this validator over different experiments and instances to eval-

uate all of them in one go. All restrictions from rules have been properly adjusted, and the rule

to check if the penalty measure is well-enforced has been added. executing the validator loop

has shown that all generated solutions are feasible.
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C Experiment parameters

Table 5: Parameter settings of all experiments in which instances have been generated

Exp. #Learners w σ Λ |H| Split? (p, q, 1− p− q)

1 200 50% 0 0% 2 No (1, 0, 0)
2 200 50% 0 5% 2 No (1, 0, 0)
3 200 50% 0 20% 2 No (1, 0, 0)
4 200 50% 0 0% 3 No (1, 0, 0)
5 200 50% 0 5% 3 No (1, 0, 0)
6 200 50% 0 20% 3 No (1, 0, 0)
7 200 50% 0 0% 2 No (0.5, 0.5, 0)
8 200 50% 0 5% 2 No (0.5, 0.5, 0)
9 200 50% 0 20% 2 No (0.5, 0.5, 0)

10 200 50% 0 0% 3 No (0.5, 0.5, 0)
11 200 50% 0 5% 3 No (0.5, 0.5, 0)
12 200 50% 0 20% 3 No (0.5, 0.5, 0)
13 200 50% 0 0% 2 No (0.4, 0.4, 0.2)
14 200 50% 0 5% 2 No (0.4, 0.4, 0.2)
15 200 50% 0 20% 2 No (0.4, 0.4, 0.2)
16 200 50% 0 0% 3 No (0.4, 0.4, 0.2)
17 200 50% 0 5% 3 No (0.4, 0.4, 0.2)
18 200 50% 0 20% 3 No (0.4, 0.4, 0.2)
19 200 50% 0.2 0% 2 No (1, 0, 0)
20 200 50% 0.2 5% 2 No (1, 0, 0)
21 200 50% 0.2 20% 2 No (1, 0, 0)
22 200 50% 0.2 0% 3 No (1, 0, 0)
23 200 50% 0.2 5% 3 No (1, 0, 0)
24 200 50% 0.2 20% 3 No (1, 0, 0)
25 200 50% 0.2 0% 2 No (0.5, 0.5, 0)
26 200 50% 0.2 5% 2 No (0.5, 0.5, 0)
27 200 50% 0.2 20% 2 No (0.5, 0.5, 0)
28 200 50% 0.2 0% 3 No (0.5, 0.5, 0)
29 200 50% 0.2 5% 3 No (0.5, 0.5, 0)
30 200 50% 0.2 20% 3 No (0.5, 0.5, 0)
31 200 50% 0.2 0% 2 No (0.4, 0.4, 0.2)
32 200 50% 0.2 5% 2 No (0.4, 0.4, 0.2)
33 200 50% 0.2 20% 2 No (0.4, 0.4, 0.2)
34 200 50% 0.2 0% 3 No (0.4, 0.4, 0.2)
35 200 50% 0.2 5% 3 No (0.4, 0.4, 0.2)
36 200 50% 0.2 20% 3 No (0.4, 0.4, 0.2)

D Exclude operators outputs

Table 6: Difference in optimality gaps from 36 single-instance experiments, calculated as: (op-
timality gap when excluding reinsert learner) - (optimality gap with all operators included).

Experiment 1 2 3 4 5 6 7 8 9 10 11 12
Diff in Opt. gap -2.73 1.09 4.82 -3.15 1.1 -2.82 3.12 1 -2.04 -0.27 1.3 0.41

Experiment 13 14 15 16 17 18 19 20 21 22 23 24
Diff in Opt. gap -2.78 0.57 0.66 0.39 -0.22 -2.04 -0.06 -0.92 1.77 -1.11 0.97 2.72

Experiment 25 26 27 28 29 30 31 32 33 34 35 36
Diff in Opt. gap 0.19 -1.66 1.96 0.07 -1.21 0.25 7.87 -0.57 2.36 2.73 -0.52 -2.86
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E Full instance set outputs

Table 9: All experiments and instances with full operator set compared to ILP results for both
500 iteration and 2000 iteration heuristic solutions (part 1).

ILP 500 iterations 2000 iterations
Exp. Inst. ILP Run- 600s ALNS Run- Opt. ALNS Run- Opt.

Objective Time Gap(%) Objective Time Gap Objective Time Gap
1 1 1619.05 15.34 0 1489.6 113.41 8.69 1510.52 393.55 7.18
1 2 1632.47 15.24 0 1527.83 111.11 6.84 1498.98 402.82 8.91
1 3 1649.36 15.41 0 1469.68 109.15 12.22 1522.93 475.98 8.3
2 1 1561.14 142.1 0 1406.72 110.19 10.98 1437.09 519.66 8.63
2 2 1577.43 56.92 0 1431.91 121.4 10.16 1460.65 408.91 8
2 3 1544.43 53.57 0 1424.73 109.98 8.4 1413.12 442.84 9.29
3 1 1621.2 76.64 0 1411.39 133.12 14.86 1425.14 524.17 13.76
3 2 1586.82 56.65 0 1418.04 129.03 11.9 1413.36 397.6 12.27
3 3 1635.77 65.89 0 1407.44 115.32 16.22 1469.57 439.24 11.31
4 1 2589.86 26.77 0 2462.52 139.86 5.17 2409.31 412.91 7.49
4 2 2404.46 24.98 0 2197.52 141.9 9.41 2270.54 465.88 5.9
4 3 2410.02 24.4 0 2239.88 122.36 7.59 2263.34 406.45 6.48
5 1 2383.8 313.48 0.4 2240.02 157.95 6.42 2223.27 464.73 7.22
5 2 2411.42 380.56 0 2238.55 142.28 7.72 2284.36 442.14 5.56
5 3 2284.8 510.16 0 2155.32 156.73 6 2128.31 411.5 7.35
6 1 2314.79 1092.39 0.27 2116.26 168.7 9.38 2074.63 500.36 11.58
6 2 2274.79 879.17 0.17 2072.88 149.79 9.74 2042.49 556.62 11.37
6 3 2179.45 2811.54 0.51 1984.78 155.17 9.8 2002.41 458.67 8.84
7 1 1675.01 17.58 0 1504.97 121.47 11.3 1572.85 330.68 6.5
7 2 1639.61 14.42 0 1491.02 116.16 9.96 1516.04 337.87 8.15
7 3 1656.48 15.01 0 1501.51 116.43 10.32 1534.99 411.19 7.92
8 1 1483.65 64.47 0 1311.27 97.3 13.15 1365.63 425.44 8.64
8 2 1622.48 68.56 0 1512.59 120.88 7.26 1507.78 486.39 7.61
8 3 1632.45 63.87 0 1461 111.42 11.73 1525.92 476.7 6.98
9 1 1648.79 93.85 0 1455.66 127.33 13.27 1420.14 452.38 16.1
9 2 1633.11 31.31 0 1419.23 111.49 15.07 1461.44 445.43 11.75
9 3 1609.42 82.33 0 1433.88 114.72 12.24 1440.29 574.47 11.74
10 1 2494.7 28.04 0 2326.16 125.61 7.25 2397.75 562.27 4.04
10 2 2424.82 25.11 0 2224.15 113.8 9.02 2272.98 525.24 6.68
10 3 2584.23 27.23 0 2425.94 146.47 6.52 2432.25 550.93 6.25
11 1 2353.99 725.8 0.13 2145.31 122.35 9.73 2198.47 542.45 7.07
11 2 2355.35 289.35 0 2228.92 138.07 5.67 2199.31 546.64 7.1
11 3 2310.27 1144.79 0.2 2158.54 164.29 7.02 2150.9 540.91 7.41
12 1 2287.39 996.87 0.37 2074.94 161.69 10.24 2075.54 511.95 10.21
12 2 2217.73 451.83 0 1998.24 151.6 10.98 1995.74 528.8 11.12
12 3 2230.72 648.86 0.09 1979.3 138.86 12.7 2043.76 544.72 9.15
13 1 1549.63 17.81 0 1439.05 109.89 7.68 1424.12 420.02 8.81
13 2 1589.41 14.56 0 1431.29 105.24 11.04 1461.02 398.27 8.79
13 3 1664.83 19.53 0 1441.34 97.16 15.5 1552.94 340.08 7.21
14 1 1610.91 74.64 0 1462.31 128.73 10.16 1486.39 362.09 8.38
14 2 1580.99 63.53 0 1429.76 126.28 10.57 1430.08 377.29 10.55
14 3 1576 65.8 0 1415.09 115.49 11.37 1456.17 420.15 8.23
15 1 1528.36 98.51 0 1350.08 136.5 13.21 1357.14 394.98 12.62
15 2 1591.58 52.48 0 1450.75 122.15 9.7 1415.03 415.2 12.48
15 3 1650.07 62.8 0 1428.12 94.59 15.54 1486.83 419.88 10.98
16 1 2450.78 29.84 0 2225.95 112.23 10.1 2247.1 327.31 9.06
16 2 2340.79 27.73 0 2157.75 119.85 8.48 2214.92 452.37 5.68
16 3 2439 27 0 2250.13 120.19 8.39 2281.58 424.51 6.9
17 1 2336.91 456.59 0 2192.14 133.32 6.6 2208.96 458.01 5.79
17 2 2362.35 252.95 0 2175.19 140.23 8.6 2215.25 463.59 6.64
17 3 2259.85 882.77 0.21 2102.57 136.99 7.48 2104.51 515.62 7.38
18 1 2176.74 2818.07 0.47 1965.6 129.78 10.74 1985.31 445.54 9.64
18 2 2273.79 4479.96 0.52 2033.32 130.33 11.82 2083.44 535.47 9.14
18 3 2275.15 789.4 0.19 2017.58 154.56 12.76 2013.99 542.24 12.97
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Table 10: All experiments and instances with full operator set compared to ILP results for both
the 500 iteration and 2000 iteration heuristic solutions (part 2).

ILP 500 iterations 2000 iterations

Exp. Inst. ILP Run- 600s ALNS Run- Opt. ALNS Run- Opt.

Objective Time Gap(%) Objective Time Gap Objective Time Gap

19 1 1563.44 20.62 0 1435.8 98.94 8.89 1414.26 458.44 10.55

19 2 1607.35 17.78 0 1470.94 107.05 9.27 1494.18 416.79 7.57

19 3 1674.82 18.41 0 1535.48 112.94 9.07 1569.08 436.55 6.74

20 1 1601.72 103.36 0 1486.79 118.2 7.73 1484.44 508.26 7.9

20 2 1550.41 79.14 0 1411.45 81.16 9.84 1433.62 432.25 8.15

20 3 1675.98 92.06 0 1535.75 110.05 9.13 1587.98 366.49 5.54

21 1 1528.13 73.07 0 1353.9 122.66 12.87 1379.58 408.22 10.77

21 2 1540.38 91.89 0 1360.71 129.05 13.2 1400.11 411.51 10.02

21 3 1633.57 130.48 0 1453.53 112.98 12.38 1460.2 331.99 11.87

22 1 2603.85 25.89 0 2441.52 119.72 6.65 2457.9 342.42 5.94

22 2 2407.83 29.31 0 2295.44 128.36 4.89 2249.51 337.45 7.04

22 3 2637.72 32.94 0 2492.63 125.75 5.82 2521.56 357.46 4.61

23 1 2359.97 891.83 0.18 2182.84 130.65 8.11 2232.84 406.3 5.69

23 2 2447.07 704.64 0.07 2242.61 127.25 9.11 2321.25 359.29 5.42

23 3 2288.26 1297.2 0.28 2115.49 160.09 8.16 2122.32 356.75 7.82

24 1 2243.21 1878.62 0.27 1966.07 134.11 14.1 2044.96 368.91 9.69

24 2 2448.21 3799.5 0.53 2225.71 129.85 9.99 2212.77 427.36 10.64

24 3 2406.21 1489.12 0.2 2176.66 160.72 10.54 2183.39 434.97 10.21

25 1 1640.36 18.23 0 1540.18 104.77 6.5 1531.61 290.15 7.1

25 2 1766.77 16.48 0 1603.36 99.23 10.19 1614.37 331.38 9.44

25 3 1584.18 19.8 0 1424.47 96.09 11.21 1468.03 343.29 7.91

26 1 1591.13 65.7 0 1464.45 118.29 8.65 1446.48 359.07 10

26 2 1631.59 57.24 0 1472.84 121.53 10.77 1496.75 319.62 9.01

26 3 1676.56 64.9 0 1493.45 131.03 12.26 1570.76 329.9 6.74

27 1 1564.75 89.18 0 1396.07 142.36 12.08 1431.62 405.19 9.3

27 2 1599.62 94.41 0 1414.68 165.56 13.07 1474.41 359.94 8.49

27 3 1532.21 104.66 0 1375.31 141.2 11.4 1387.42 333.49 10.44

28 1 2411.16 29.22 0 2229.06 145.87 8.17 2321.12 339.77 3.88

28 2 2563.27 32.29 0 2405.6 170.39 6.55 2428.57 359.78 5.55

28 3 2501.78 33.2 0 2360.59 197.24 5.98 2385.85 387.55 4.86

29 1 2418.66 1231.04 0.21 2291.79 188.48 5.54 2328.43 471.92 3.88

29 2 2305.68 2349.46 0.38 2169.5 184.89 6.27 2130.5 407.43 8.22

29 3 2555.21 1288.06 0.24 2378.38 198.31 7.43 2384.77 399.09 7.15

30 1 2177.08 1449.11 0.36 1956.1 164.3 11.3 1987.6 415.94 9.53

30 2 2281.73 1011.18 0.24 2019.45 164.26 12.98 2050.19 407.39 11.29

30 3 2256.52 1443.78 0.28 2031.86 176.41 11.05 2053.7 487.72 9.88

31 1 1686.95 16.21 0 1454.44 140 15.99 1546.47 299.35 9.08

31 2 1575.24 25.59 0 1436.47 131.03 9.66 1454.76 311.47 8.28

31 3 1626.5 20.36 0 1489.15 135.61 9.22 1493.71 317.08 8.89

32 1 1625.89 27.83 0 1498.28 181.98 8.52 1506.25 332.83 7.94

32 2 1487.55 76.46 0 1351.92 170.31 10.03 1371.49 321.5 8.46

32 3 1633.51 93.59 0 1481.03 156.23 10.29 1510.49 325.89 8.14

33 1 1559.24 77.48 0 1358 127.36 14.82 1397.31 371.15 11.59

33 2 1545.51 68.05 0 1387.73 173.43 11.36 1435.38 466.39 7.67

33 3 1572.13 80.74 0 1422.01 144.29 10.55 1420.54 417.68 10.67

34 1 2525.83 26.79 0 2349.34 142.95 7.51 2412 359.34 4.72

34 2 2459.06 30.52 0 2267.67 171.16 8.44 2278.27 334.77 7.94

34 3 2572.24 29.67 0 2342.88 132.03 9.78 2443.91 368.27 5.25

35 1 2381.52 332.16 0 2251.78 178.03 5.76 2212.68 355.55 7.63

35 2 2403.9 937.16 0.13 2266.15 159.44 6.07 2262.07 400.99 6.27

35 3 2335.02 684.94 0.06 2202.16 141.44 6.03 2190.53 403.33 6.6

36 1 2250.5 1006.23 0.22 2032.58 156.45 10.72 2037.19 371.77 10.47

36 2 2220.96 2349.92 0.47 1982.87 148.32 12 1997.14 410.82 11.21

36 3 2416.09 8805.4 0.71 2113.88 145.77 14.29 2136.07 396.75 13.11
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