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Abstract

In this research, different machine learning models are compared with each other.

This research specifically considers the (egalitarian) LASSO and Ridge, partially

egalitarian LASSO, and the octagonal shrinkage and clustering algorithm for re-

gression (OSCAR). The goal is to find the model that forms the forecast combina-

tion with the highest forecast accuracy for predicting the GDP growth rate of the

Eurozone. This is relevant to look into because the European Central Bank (ECB)

chooses its monetary policy based on these forecasts. To find the best model, data

from the European Central Bank is used to form the forecast combination. The

real GDP growth is the dependent variable for which forecasts are made. By means

of the root mean squared error and the mean absolute error, we conclude that

the peLASSO is the best-performing machine learning model for making forecast

combinations to predict the real GDP growth of the Eurozone.
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1 Introduction

Forecast combinations have proven to be successful in economic environments. By combin-

ing forecasts, one could increase the robustness and accuracy. Having multiple forecasts

could decrease the effect of outliers (forecasts that predict way too high or low). Ad-

ditionally, forecast combinations could help in reducing various errors and uncertainties

of an individual model, which results in better predictions that are less susceptible to

the idiosyncrasies of a model. Thus, the risk of experiencing negative effects caused by

errors in one individual model is mitigated when combining multiple forecasts. For major

decision-makers like the European Central Bank (ECB), it is of great importance to have

good forecasts of for example the gross domestic product (GDP), inflation, and unem-

ployment rate. The goal of the ECB is to keep prices stable in the Eurozone, so they have

to make decisions on what monetary policy to maintain and as these decisions depend on

forecasts, accurate forecasts are essential.

Despite all the benefits, there remain unresolved issues in the world of forecast com-

binations. The first issue is that it is difficult to choose the set of forecasters that should

be combined. Secondly, even after selecting the forecasters, a method for combining

the selected forecasters needs to be chosen, which is a challenging task. The partially-

egalitarian least absolute shrinkage and selection operator (peLASSO) method devised

by Diebold and Shin (2019) considers both issues. In addition, the peLASSO applies

necessary shrinkage to the forecasters.

Selecting variables is found to be difficult as mentioned before, especially in situations

in which there are a large number of predictors that are highly correlated with each other.

Bondell and Reich (2008) tried to solve this problem with their machine learning method,

the octagonal shrinkage and clustering algorithm for regression (OSCAR). OSCAR does

not only select variables but also groups them into predictive clusters, whereas the stand-

ard LASSO does not do this. As survey forecasts are highly correlated, the OSCAR model

will be used in this paper.

For the first part of our research, the research of Diebold and Shin (2019) is replicated.

In the second part, which is the extension, we try to answer the following research question:

’How effective is the machine learning method OSCAR compared to the peLASSO for

combining survey forecasts of the European GDP?’. The main goal of this research is to

find the best possible way to combine forecasts. This is achieved by means of comparing

different models that have proven to have good performance. To answer the research

question, the OSCAR and peLASSO models are built and tuned to get the best forecast

combinations. Afterwards, the models are compared using performance measures root

mean squared error (RMSE) and mean absolute error (MAE), and to check whether one

model outperforms the other, the test by Diebold and Mariano (2002) is used. The data

on which we build the models come from the European Central Bank’s quarterly Survey
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of Professional Forecasters (ECB SPF). The GDP growth rate is the variable for which we

try to make predictions with the best forecast accuracy, namely, the predictions with the

lowest RMSE and MAE. Moreover, to pre-process the data, the programming language

Python is used. Lastly, R and Matlab are used to build and compare the models.

By reading this paper, you will get to know whether OSCAR gives better results than

the peLASSO and methods like the simple average, by means of the RMSE and MAE.

In this research, we find that the OSCAR performs similarly to standard LASSO/Ridge

and simple average, but it fails to beat the peLASSO.

The paper is structured as follows: First, some literature is introduced in Section

2. Furthermore, in Section 3, we will introduce the dataset used in this research and

provide interesting statistics of the data. Section 4 is dedicated to the models used and

the performance measures/tests. Moreover, in Section 5 the results of the replication as

well as the extension part will be presented. Lastly, a conclusion is made, the answer

to the research question is presented and suggestions for further research are provided in

Section 6.

2 Literature Review

Over the years, the literature about forecast combinations has grown significantly. This

is due to the success of forecast combinations, as combining forecasts could improve

forecast accuracy by a large amount. Moreover, the literature shows that simple methods

for combining forecasts work relatively well compared to more complex methods. For

example, Smith and Wallis (2009) showed with their analysis that if the weights of the

forecast combinations are close or even equal to equality, a simple average is on average

more accurate, in terms of the root mean squared error (RMSE), than weights that are

estimated. Furthermore, for biased forecasts, it holds that the larger the number of

forecasters in a combination, the more efficient the simple average gets. Despite the great

success of simple averages, it does have a few issues. The problem with simple averages is

that individual forecasters who do not perform well, are also taken into the combination,

which could result in forecast combinations with high RMSE and MAE. Therefore, some

kind of selection is needed to remove these forecasters.

Penalized regressions have proven to be a successful method for selecting variables.

The least absolute shrinkage and selection operator (LASSO) introduced by Tibshirani

(1996) puts a bound on the L1-norm of the coefficients. The constraint on the L1-norm

leads to shrinkage and variable selection. As a consequence, some of the coefficients

are being set equal to zero. In this case, some forecasts are neglected in the forecast

combination. Although LASSO does the selection, which is desired, it does not shrink

the coefficients into the right direction, which is the simple average of the coefficients.

Diebold and Shin (2019) introduced a new variant of LASSO, egalitarian LASSO
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(eLASSO). This method shrinks the coefficients towards equality. Note that this also has

a disadvantage, as it selects the coefficients to be equal to each other, which is not desired.

So even though one problem is solved, another problem arises. Therefore Diebold and

Shin (2019) proposed the peLASSO, which can select to zero and shrink the remaining

coefficients to equality. The peLASSO consists of two penalties, one is the standard

LASSO penalty, and the other penalty ensures selection and shrinkage towards equality,

which is the eLASSO penalty. In brief, the peLASSO first selects coefficients that should

be zero and afterwards, it shrinks the remaining coefficients towards the simple average.

The penalties and the formulation of (p)eLASSO will be further explained in Section 4.

To test how the newly introduced model would perform, Diebold and Shin (2019)

performed the model and compared it with the simple average, (e)LASSO, and (e)Ridge.

The models were performed on the GDP forecast data from the European Central Bank’s

Survey of Professional Forecasters. Using the 1-year-ahead out-of-sample forecasts and

a 20-quarter moving window to estimate the coefficients, Diebold and Shin (2019) con-

cludes that peLASSO is accurate (relatively low RMSE) for out-of-sample forecasting as

this method performed better than the other methods in forecasting the GDP growth of

the Eurozone. Moreover, Diebold and Shin (2019) found that most of the time only a

few forecasts needed to be combined and the selected forecasts should be regularized via

shrinkage. Furthermore, the shrinkage direction should be towards equality (the simple

average) and the shrinkage itself should be strong (selected coefficients should be aver-

aged).

Another problem of the LASSO is that if there is a group of highly correlated vari-

ables (multicollinearity), it is challenging for LASSO to estimate the regression coefficients

accurately. Small changes in the data could cause LASSO to change the estimated coeffi-

cients significantly. Thus, making the coefficients obtained by LASSO less reliable. This

leads to problems with interpretation as some highly correlated predictors are not in-

cluded in the model. The coefficient estimates could have an increased bias, which makes

it more difficult to identify the true relationships between the regressors and the depend-

ent variables. The OSCAR model proposed by Bondell and Reich (2008) handles this

problem by adding an extra constraint to the regression.

Bondell and Reich (2008) built the OSCAR model based on soil data to find the

relation between the composition of soil and forest diversity. While the LASSO only

sets a bound on the L1-norm of the coefficients, OSCAR also puts a bound on the L∞-

norm of the coefficients. Supervised clustering is thus directly implemented into the

estimation process via a penalization method. Consequently, OSCAR not only performs

variable selection and shrinkage toward zero, but it at the same time performs supervised

clustering on the relevant variables. With supervised clustering, variables are selected

and shrunk towards equal coefficients. Results of the OSCAR model, performed on soil

data in Bondell and Reich (2008) showed that OSCAR performs better than LASSO in an
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environment with highly correlated predictors. As forecasts of the GDP from the survey

are likely highly correlated, we choose to use OSCAR in this research Note that OSCAR

shrinks coefficients towards equality, but this does not necessarily mean that the weights

of the coefficients are equal to simple averages. The peLASSO method on the other hand

does shrink the coefficients toward simple averages, which could have an impact on the

forecast accuracy. OSCAR is not the only penalized regression method that focuses on

grouped predictors. Tibshirani, Saunders, Rosset, Zhu and Knight (2005) introduced a

method called fused LASSO, however, due to the computational speed of fused LASSO,

it is not feasible to include this method in our research. Furthermore, Zou and Yuan

(2008) proposed the F∞-norm support vector machine, however, this method needs the

group size and the number of groups as input beforehand, while the OSCAR chooses them

automatically.

As mentioned earlier, the peLASSO first selects and afterwards shrinks coefficients to

the simple average of the remaining variables. The OSCAR selects and shrinks coefficients

to equality, which does not necessarily mean that the weights are equal to the inverse of the

number of remaining variables. Diebold and Shin (2019) stated that the simple average

is sub-optimal, thus it could be possible that OSCAR does not even reach sub-optimality.

For this reason, we arrive at the following hypothesis: ’Compared to the peLASSO, the

OSCAR method is not effective for combining forecasts to predict the real GDP growth.’

3 Data

To make forecast combinations for predicting real GDP, we make use of the forecast data

coming from the ECBs SPF. The ECB SPF is a survey that gathers information on the

expected inflation, real GDP growth, and unemployment rate in the euro area. The goal

of ECB with this survey, is to provide a good assessment of the risk and uncertainty of

the economy. Forecasts are made at multiple time horizons, ranging from one month to

two years ahead. For this research, we will be focusing on the one-year-ahead forecasts

of the real GDP growth of the euro area. For example, from the survey of 1999Q1, the

GDP growth rate forecast for 1999Q3 is taken. Thus, we have that the ’one-year-ahead’

forecasts are actually only six to eight months ahead. The survey results of the GDP

growth from 1999Q1 until 2016Q2 are taken to make forecast combinations and to do

evaluations of our models. As for each quarter, there is a data file with the inflation,

GDP growth, and unemployment rate expectations, we had to make a program that

collects all the necessary information. The final data set only consists of the quarters,

forecasters, and the forecasts themselves.

As forecasters do not make a forecast of the real GDP growth rate each quarter,

there are forecasters with many missing observations. To get rid of these forecasters and

simplify the analysis, we filtered out the forecasters with five or more consecutive missing
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forecasts. Furthermore, we selected the 23 forecasts who had made a forecast of the

GDP growth most frequently between 1999Q1 and 2016Q2. Even after selecting the 23

forecasters with the most replies, there are still missing observations in the data set. To

solve this problem, we used an interpolation method proposed by Genre, Kenny, Meyler

and Timmermann (2013). This method involves the following panel regression for each

forecaster i , where i = 1, ..., 23:

fi,t − f̄t = βi(fi,t−1 − f̄t−1) + ϵi,t, (1)

where fi,t is the forecast of forecaster i for quarter t and f̄t =
∑23

i=1 fi,t is the simple

average of the forecasts for quarter t.

Equation 1 shows an AR(1) model, where the relative deviation of a forecast from the

simple average at quarter t is being regressed on the relative difference at quarter t − 1.

We fill the missing forecasts of forecaster i at quarter t with the simple average at quarter t

plus a fraction of the deviation from the average forecast at quarter t−1. The calculation

of the missing values is done recursively using a Python program. As some forecasters

have a missing value in the first few quarters, and therefore the panel regression cannot

be initialized, we replace these with the forecast average of the corresponding quarters.

Note that the missing values are calculated recursively. The summary statistics of the

real GDP growth rate can be found in Table 1. It shows that on average the year-on-

year GDP growth rate is 1.34%. The real GDP data comes from the Federal Reserve

Economic Data (FRED) database. After collecting the data, the real GDP growth rate

is calculated for 1999Q3-2016Q4. As there are no missing observations, there is no need

for an interpolation method.

Variables Obs. Mean Std. Dev. Min. Max.

GDP growth rate 70 1.34 1.98 -5.68 4.52

Table 1: Summary statistics of real GDP growth rate (dependent variable in the models).

Table 7 in the Appendix shows the summary statistics of the 23 forecasters of the

GDP growth rate. Each row corresponds to a forecaster i. The first column shows the

forecaster. The second column shows the total number of forecasts of a forecaster. The

third column shows the mean of the forecasts of each forecaster. The last two columns

show the range of each forecast, this is done by means of their minimum and maximum

values. Note that the summary statistics in this table were computed after running the

panel regression. Some interesting observations can be made from Table 7:

• Forecasters 2, 4, 15, 29, 36, and 38 make on average higher forecasts than the rest of

the forecasters, which could imply that these forecasters are relatively more optim-

istic. The forecasters could perform relatively better during economic expansions.
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Intuitively, we could say that these forecasters will be selected by the models when

the real GDP growth is increasing.

• Forecasters 7, 24, 26, 42, 52, 85, and 94 make on average lower forecasts than the

rest of the forecasters. This could mean that these forecasters are relatively more

pessimist. Therefore, these forecasters could have (relatively) better performance

during recessions. Intuitively, pessimistic forecasters have a higher chance to be

selected by the models when the real GDP growth rate is declining strongly.

• Forecasters 7, 26, and 94 make relatively more volatile forecasts, as the standard

deviation and the difference between their maximum and minimum are relatively

high.

Moreover, comparing Table 1 and 7, we can observe that the standard deviation of

all forecasters is low compared to the Real GDP. This could mean that the GDP growth

rates are more volatile than the GDP predictions of the forecasters. Lastly, the difference

between the minimum and maximum values is lower for all forecasters than that of the

real GDP. This could imply that during recessions or a booming economy, the forecasters

do not predict accurately. In conclusion, even with forecast combinations, predictions of

the real GDP will not be accurate during volatile periods.

Figure 1 shows a graph of the forecasters (average) together with the real GDP growth

rate.

Figure 1: Graph of the forecasts of every forecaster (and the mean), and the real GDP
growth. The values on the horizontal axis are the quarters, 1 corresponds to quarter
1999Q3 and 70 corresponds to quarter 2016Q4.
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The following can be observed from the graph. The forecasters (and average) are

all lagging, namely, forecasters adjust their forecasts upwards/downwards after the real

GDP growth has moved upwards/downwards. For example, looking at observations 34

until 41, we can see that the forecasters predict a lower GDP growth only after the real

GDP growth has been declining.

4 Methodology

The aim of this research is to find the best-penalized regression model for combining

forecasts. Several machine learning models are estimated and one-year ahead forecasts

are done over a moving window. The models are (e)Ridge, (e)LASSO, peLASSO, and

OSCAR. The survey runs from 1999Q1-2016Q2, but our sample period is from 1999Q3

until 2016Q4, since we have one-year ahead forecasts. The models from both the replica-

tion part, as well as the extension part of our research, are introduced in this section. For

the replication part of this research, we compare simple average, (e)Ridge, (e)LASSO, and

peLASSO with each other. The extension consists of a comparison between peLASSO

and OSCAR.

4.1 Moving window

The forecast combinations are made using a moving window of 20 quarters. For the first

twenty observations, we will not be using the full 20-quarters estimation window, since it

would mean that 15 observations in our evaluation sample would be lost in the coefficient

estimation process. The evaluation period starts from period t = 6. For the periods

t = 6 until t = 20, the coefficients will be estimated using all available data from time 1.

Thus, five forecasts are burned in the estimation process. For t > 20, the full 20-period

estimation window is used. So for each forecast combination, the coefficients need to be

re-estimated and the one step ahead forecast combinations need to be collected. At last,

a robustness check is done to look into the importance of the moving window size.

4.2 Notation

First, denote the following notation:

• yt: The dependent variable (real GDP growth rate) at quarter t = 1, ..., T .

• fit: The prediction of forecaster i at quarter t = 1, ..., T .

• βi: The weight of the prediction of forecaster i in the forecast combination.

• K and k: The total number of forecasts and remaining forecasts after selection,

respectively.
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4.3 Penalized regressions

Consider the penalized regression with parameter λ:

min
β

{
T∑
t=1

(yt −
K∑
i=1

fitβi)
2 + λ

K∑
t=1

|βi|q + λ

}
. (2)

The optimal β is denoted as follows:

β̂ = argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)
2 + λ

K∑
t=1

|βi|q
}
, (3)

where λ is the parameter to set the strength of the penalty.

4.3.1 Ridge regression

To get shrinkage, one can set the parameter q equal to 2, which results in the Ridge

regression (Hoerl & Kennard, 2000). The Ridge regression can shrink the coefficients

towards zero, but it cannot set it equal to zero:

β̂Ridge = argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)
2 + λ

K∑
t=1

β2
i

}
. (4)

The Ridge regression is solved using the glmnet package in R. Note that in this regres-

sion, we do not have an intercept as we are working with forecast combinations. Moreover,

the alpha parameter in glmnet is set equal to 0 (to get the Ridge regression).

4.3.2 LASSO regression

For q = 1, the penalized regression can do both selection and shrinkage, which is known

as the LASSO regression by Tibshirani (1996).

β̂LASSO = argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)
2 + λ

K∑
t=1

|βi|

}
. (5)

The R package glmnet is used to perform the LASSO regression with the same settings

as the Ridge regression, except for alpha being 1 (to get the LASSO).

4.3.3 eRidge and eLASSO regression

Diebold and Shin (2019) also introduced eRidge and eLASSO (which will be later used

in the two-step procedure in peLASSO), which can be achieved by replacing the βi in the
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second term of both regressions with βi − 1
K
:

β̂ = argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)
2 + λ

K∑
t=1

|βi −
1

K
|q
}
, (6)

with q=1 for eLASSO and q=2 for eRidge.

The problem can be solved easily after rewriting Equation 6 to:

β̂ = argmin
β

{
T∑
t=1

((yt − f̄t)−
K∑
i=1

δifit)
2 + λ

K∑
t=1

|δi|q
}
, (7)

where δi = βi − 1
K

and f̄t =
1
K

∑K
i=1 fit.

So to get the results of eRidge and eLASSO, we simply do standard Ridge and LASSO

with (yt−f̄t) being the dependent variable and f1t, .., fKt being the regressors. Once again,

the R package glmnet is used to build the regressions.

4.3.4 peLASSO regression

The peLASSO proposed by Diebold and Shin (2019) consists of two penalties that need to

be solved. The first one is the LASSO, which shrinks and selects coefficients to zero. The

second penalty shrinks the remaining variables to equality. As this optimization problem

is not continuous because of the k, this problem is solved in two steps.

β̂peLASSO = argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)
2 + λ1

K∑
t=1

|βi|q
}

+ λ2

K∑
t=1

|βi −
1

k
|, (8)

where k is the number of non-zero coefficients after selection.

The two-step procedure works as follows:

1. The LASSO is applied on the forecasts, which results in variables being set equal

to zero and shrunk towards zero

2. Using eRidge, eLASSO, or simple average the remaining non-zero coefficients are

selected or shrunk towards 1
k
, depending on which method is used.

4.3.5 OSCAR regression

The OSCAR regression model performs selection and supervised clustering on the selected

variables simultaneously. OSCAR is given by setting q equal to 1 and adding another

penalty term, which is the L∞-norm. This results in the following problem:

β̂OSCAR = argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)
2 + λ1

( K∑
j=1

|βj|+ λ2

∑
m<n

max{|βm|, |βn|}
)}

, (9)
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where λ1 ≥ 0 and λ2 > 0 the tuning parameters with λ1 the parameter to control the

relative weight of the two norms and λ2 to parameter to control the strength of the

constraint. The penalty consists of a combination of the L1−norm and the pairwise

L∞−norm.

Bondell and Reich (2008) solved this problem using the following formulation:

β̂OSCAR =argmin
β

{
T∑
t=1

(yt −
K∑
i=1

βifit)

}2

s.t. (1− c)(
K∑
j=1

|βj|) + c
∑
m<n

max{|βm|, |βn|}) ≤ pT0

(10)

where 0 ≤ c ≤ 1 and 0 < p < 1 are the tuning parameters with c the parameter to control

the relative weight of the two norms, and t the parameter to control the strength of both

norms. The T0 here is the value of the constraint at an initial solution, this is in our

case computed using the Ridge as recommended by Bondell and Reich (2008). OSCAR is

solved with the ’Statistics and Machine Learning Toolbox’ and ’Deep Learning Toolbox’

in MATLAB. The code from Bondell and Reich (2008) is used after adjusting it.

The optimization problem of OSCAR is motivated geometrically. Thus, the interpret-

ation of OSCAR will be further explained geometrically. The constraint region of the

OSCAR can be found in Figure 2. It shows the constraint region in the (β1, β2) plane.

The constraint region is shown for four different values of the parameter c, and the para-

meter p is kept constant. Data is generated to plot these constraint regions. The left

upper graph shows the constraint region for c = 0, this is equal to the LASSO regression.

The right lower graph shows the constraint region for c = 1, which implies that only the

L∞-norm is used. For the upper right and lower left graph, c is set equal to 0.3 and 0.6,

respectively. Looking at these graphs, we could conclude that the octagonal term in the

name OSCAR is now obvious. The constraint region in two dimensions has the shape of

an octagon.
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Figure 2: Plot of the constraint region of the (β1, β2) plane for OSCAR. The graphs are
made for four different values of c.

Figure 3 shows the constraint region and the optimal solution of the OSCAR. We

generate independent variables with high and low correlation. The optimal solution for

independent variables with low correlation is β1 = 0 and β2 = 1. For highly correlated

independent variables, we find that β1 = β2 is the optimal solution. From this, we can

conclude that the OSCAR indeed groups highly correlated predictors.

Figure 3: Constraint region of the (β1, β2) plane for the OSCAR regression for c = 0.6.
The OSCAR solution for high and low-correlated independent variables is marked with a
red dot.

4.4 Model comparison

The following two forecast performance measures are used:

• RMSE =
√

1
T−R

∑T
t=R e2t+1|R

• MAE = 1
T−R

∑T
t=R |et+1|R|
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where R is the number of in-sample observations, e is defined as the actual GDP growth

minus the forecast combination and T is the total number of observations. The RMSE

is used as this was also seen in Diebold and Shin (2019). Furthermore, the MAE is used

because it takes into account that there could be potential outliers in forecasting. These

‘forecast outliers‘ could cause the RMSE to be high. The Diebold-Mariano test proposed

by Diebold and Mariano (2002) is used to test whether a model, on average, outperforms

another model significantly.

4.5 Parameter tuning

To choose the best parameter values, a set of parameters will be used and compared. The

out-of-sample root mean squared error (RMSE) tied to each parameter (combination)

is compared to make a choice. The parameter combination with the lowest RMSE is

then chosen. For (e)Ridge, (e)LASSO, and the three variants of peLASSO, the forecast

accuracy is then examined for many λs. A forecast is computed for 200 λs. Starting with

an equally-spaced grid on [−15, 15], which then gets exponentiated, resulting in a grid on

(0, 3269017].

As the OSCAR penalization problem is solved differently, the grid of the tuning para-

meters is different. The forecasts for 200 c’s and 200 p’s are computed. They are both in

an equally-spaced grid, which results in 40000 different tuning parameter combinations.

The grids of c and p are [0, 1] and (0, 1), respectively. As this caues the computing time

to be very high for building OSCAR, parallel processing is used.

5 Results

We first build the models introduced in Section 4. This section can be divided into two

sub-sections. In Section 5.1, the standard penalized regression models and the peLASSO

are compared with the simple average, which is the replication part of our research.

Thereafter, in Section 5.2, OSCAR is compared with peLASSO as an extension. Lastly,

a robustness check is done to examine whether a different moving window size could give

different results.

5.1 Comparison peLASSO with simple average - Replication

Table 2 shows the results of the replication part of our research. The first column shows

the models built for the replication part of our research. The second column shows the

RMSE value. The optimal parameters can be found in the third column. The fourth

column shows the average number of forecasts selected over all the estimation windows.

The one-sided Diebold and Mariano (2002)-statistic can be found in column five, this

statistic is computed as in Harvey, Leybourne and Newbold (1997).
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Method RMSE Optimal parameter # DM p-value

Ridge 1.51 1.97 23.00 0.08 0.47

LASSO 1.52 0.44 2.71 -0.13 0.55

eRidge 1.51 3269017 (maximum) 23.00 -2.15 0.98

eLASSO 1.51 3.60 23.00 1.00 0.16

peLASSO (Average) 1.41 0.21 3.40 1.63 0.05

peLASSO (eRidge) 1.38 (0.44, 3269017) 2.71 0.92 0.18

peLASSO (eLASSO) 1.38 (0.44, 3.6) 2.71 1.41 0.08

Forecaster RMSE Optimal parameter # DM p-value

Best 1.42 - 1.00 1.11 0.14

90% 1.46 - 1.00 0.83 0.21

Median 1.53 - 1.00 -0.44 0.67

10% 1.69 - 1.00 -2.84 1.00

Worst 1.74 - 1.00 -2.69 1.00

Simple average 1.51 - 23.00 - -

Table 2: Results of (e)Ridge, (e)LASSO and the three variants of peLASSO

Some interesting observations can be made from Table 2:

• eLASSO and eRidge have about the same RMSE. This result could be explained by

the strong shrinkage of both models towards the simple average 1
K
.

• The worst individual forecaster does not perform better than all of the forecasting

combination methods. In addition, the best individual forecaster performs similarly

to the best machine learning methods

• From the p-value of Ridge, LASSO, and eRidge, we can conclude that they perform

similarly to the simple average, even though Ridge and LASSO shrink coefficients

towards zero. eRidge shrinks all coefficients towards the simple average, which could

explain the high p-value.

• The optimal parameter of the eRidge and the eRidge in peLASSO are both the

maximum value of our exponentiated grid. Therefore, we could conclude that a

strong eRidge penalty gives the best predictions.

• The shrinkage of eRidge and eLASSO toward zero is strong, which is the reason

that it performs similarly to the simple average.

• The peLASSO methods have almost equal performance, this is due to the first step

of this method, because the LASSO is used there.
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• The peLASSO with eRidge and eLASSO have an RMSE that is close to ten percent

lower than the other methods, including the simple average.

• The peLASSO with eLASSO on average performs significantly better than the

simple average with a ten percent significance level.

5.2 Comparison between OSCAR and peLASSO - Extension

In this subsection, the peLASSO is compared against the OSCAR, and the RMSE values

are compared here. The three variants of peLASSO, and OSCAR are built. OSCAR is

built two times, one with both parameters being tuned, and another time for which c is

set equal to 1. Thus, for the second run of OSCAR, we only tune the parameter p.

Method RMSE Optimal parameter # DM p-value

peLASSO (Average) 1.41 0.21 3.40 - -

peLASSO (eRidge) 1.38 (0.44, 3269017) 2.71 - -

peLASSO (eLASSO 1.38 (0.44, 3.6) 2.71 - -

OSCAR 1.52 (0, 0.2915) 3.55 -1.40 0.92

OSCAR (c =1) 1.53 0.66 13.09 -1.36 0.91

Table 3: Results of the three peLASSO methods and the two OSCAR methods (RMSE).

Table 3 shows the results of the peLASSO and the OSCAR. The first four columns

are the same as that of Table 2. The fifth column is the Diebold-Mariano statistic against

peLASSO (eLASSO), which is the best-performing one. The last column contains the

p-values of the Diebold-Mariano tests. A few important observations can be made from

this table:

• The RMSE of all three variants of the peLASSO is lower than that of the two of

OSCAR. The peLASSO models have an RMSE that is at least 7% lower than the

best-performing OSCAR model.

• The average number of variables selected by the standard OSCAR is higher than the

best-performing peLASSO method. This could imply that the peLASSO is more

strict with selecting variables.

• Leaving the L1-penalty (which is the penalty that the LASSO regression uses) out

of the OSCAR regression, results in similar performance as the standard OSCAR,

based on the RMSE.

• Optimal parameter c of the standard OSCAR is equal to 0, which means that

standard OSCAR removes the L∞-penalty completely from its constraint. The only

penalty left then, is the L1-penalty, which is just the LASSO.
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• We can conclude that the two OSCAR methods do not perform significantly better

than the peLASSO (eLASSO) model because the p-values are high.

• Comparing Table 2 with Table 3, we could see that the RMSE of the LASSO is

approximately equal to the OSCAR (c=1). This is because setting c equal to 1 in

OSCAR results in the LASSO. However, we would expect that the RMSEs are the

same, but it is not in this case. This could be the result of using different packages

from different programming languages, for LASSO we used a package in R and for

OSCAR a machine learning package in MATLAB was used.

Table 4 shows the results of the peLASSO and OSCAR with the values of the MAE. The

first columns show the models built. The second column shows the MAE values. The last

two columns show the DM-statistic and p-value, respectively, here OSCAR is compared

to the best peLASSO method, peLASSO (eLASSO).

Method MAE DM p-value

peLASSO (Average) 1.02 - -

peLASSO (eRidge) 1.04 - -

peLASSO (eLASSO) 0.97 - -

OSCAR 1.05 -0.98 0.84

OSCAR (c =1) 1.07 -1.12 0.87

Table 4: Results of the peLASSO and OSCAR (MAE).

From Table 4, the following conclusions can be made:

• The best performing peLASSO method has an MAE that is almost ten percent

lower than the OSCAR methods. However, the peLASSO with eRidge and simple

average have an MAE close to the OSCAR methods.

• From the DM-statistic and the p-value, we can conclude that the OSCAR does not

perform significantly better than the peLASSO. Which is the same result as when

we compared the RMSEs of both models.

From Table 3 and 4 we conclude that OSCAR does not make significantly better

predictions than peLASSO. The MAE and RMSE of the best peLASSO are lower than

that of OSCAR and the p-value is large (hypothesis of equal performance not rejected).

5.3 Robustness check

As a robustness check, we check whether the results still hold for different moving window

sizes. The peLASSO and OSCAR models are built using half and double the moving
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window size of the current one (20), 10 and 40 quarters respectively. The RMSE of the

models is then compared.

Table 5 shows the results of the peLASSO and the OSCAR with a moving window of

10 quarters. The first four columns are the same as that of Table 3. The fifth column is

the Diebold-Mariano statistic against peLASSO (average), which is the best-performing

one. The p-value corresponding to the DM statistic is shown in the last column.

Method RMSE Optimal parameter # DM p-value

peLASSO (Average) 1.46 0.32 2.48 - -

peLASSO (eRidge) 1.50 (0.00, 0.02) 19.06 - -

peLASSO (eLASSO) 1.51 (0.03, 3.60) 6.42 - -

OSCAR 1.59 (0.08, 0.63) 10.71 -1.09 0.86

OSCAR (c =1) 1.59 0.92 13.80 -1.05 0.85

Table 5: Results of the three peLASSO methods and the two OSCAR methods (RMSE)
with a moving window of 10 quarters.

Table 6 shows the results of the peLASSO and the OSCAR with a moving window of

40 quarters. The first four columns are the same as that of Table 3. The fifth column is

the Diebold-Mariano statistic against peLASSO (average), the best-performing peLASSO.

The last column shows the p-value corresponding to the DM statistic.

Method RMSE Optimal parameter # DM p-value

peLASSO (Average) 1.47 0.80 2.862 - -

peLASSO (eRidge) 1.47 (0.02, 0.59) 14.28 - -

peLASSO (eLASSO) 1.51 (0.00, 0.11) 22.71 - -

OSCAR 1.49 (1.00, 0.44) 14.85 -0.48 0.68

OSCAR (c =1) 1.49 0.44 14.85 -0.48 0.68

Table 6: Results of the three peLASSO methods and the two OSCAR methods (RMSE)
with a moving window of 40 quarters.

An interesting observation that could be made is that the RMSE of OSCAR gets closer

to the RMSE of the peLASSO, the larger the moving window gets. It could imply that the

larger the estimation sample is, the better OSCAR performs. However, further research

is needed to confirm this. Both Table 5 and 6 show that OSCAR does not significantly

outperform the peLASSO. Moreover, the RMSE of the best peLASSO models are for

both moving windows lower than that of OSCAR. In conclusion, this confirms our earlier

findings.
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6 Conclusion

In this paper, we looked at two different penalized regression models for combining fore-

casts of the year-on-year quarterly GDP growth rate. The two models are the octagonal

shrinkage and clustering algorithm for regression (OSCAR) and the peLASSO (partially-

egalitarian LASSO). We then compare the forecast combinations against the real GDP

growth by means of the mean squared error and the mean absolute error. The results

show that the peLASSO with eRidge and eLASSO has the lowest RMSE and that the

peLASSO with eLASSO performs significantly better than the OSCAR. A robustness

check confirmed for other sizes of the moving window, peLASSO still has a lower RMSE

than OSCAR.

In Section 1, we introduced the following research question: ’How effective is the ma-

chine learning method OSCAR compared to the peLASSO for combining survey forecasts

of the European GDP?’. The answer to this question is that the OSCAR is not effective

compared to the peLASSO. All three versions (simple average, eRidge, and eLASSO) of

the peLASSO performed better than OSCAR, by means of the RMSE and MAE. There-

fore, we do not reject our hypothesis: ’Compared to the peLASSO, the OSCAR method

is not effective for combining forecasts to predict the real GDP growth’. Furthermore,

the Diebold-Mariano test showed that the best peLASSO method performs significantly

better than the OSCAR. The OSCAR had almost equal RMSE compared to standard

Ridge, LASSO, eRidge, eLASSO, and simple average.

The results of this research could be used to make accurate forecast combinations

for predicting GDP growth. The models considered in this model could be used for

other macroeconomic variables like inflation and the unemployment rate. Moreover, these

models could be applied in more volatile environments like the stock market to combine

forecasts of analysts.

For further research, one could consider adding more traditional econometric models

to the comparison. For example, ordinary least squares with forward or backward feature

selection. Moreover, if there is no time constraint, one could consider the fused LASSO

or other time-consuming machine learning models that are more complex. Furthermore,

further research could examine the effects using an expanding window for forecast combin-

ations. Lastly, the machine learning models in this research could be used for forecasting

instead of combining forecasters. One could for example try to predict GDP growth using

other macroeconomic variables.
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7 Appendix

Forecaster i Obs. Mean Std. Dev. Min. Max.

1 70 1.50 1.00 -2.30 3.70

2 70 1.73 1.02 -2.50 3.38

4 70 1.63 1.08 -1.50 3.90

5 70 1.51 1.02 -2.50 3.30

7 70 1.36 1.30 -3.90 3.90

15 70 1.58 0.96 -2.60 3.00

16 70 1.45 1.07 -3.00 3.49

20 70 1.50 1.08 -2.80 3.60

24 70 1.44 1.03 -2.50 3.60

26 70 1.26 1.40 -4.80 3.70

29 70 1.58 0.84 -3.23 -0.30

31 70 1.55 0.85 -1.88 3.40

36 70 1.68 0.82 -1.36 3.00

37 70 1.48 1.09 -2.70 3.40

39 70 1.47 1.09 -2.00 3.60

42 70 1.43 1.03 -2.10 3.38

38 70 1.59 1.00 -1.20 3.70

52 70 1.41 1.13 -3.00 3.50

54 70 1.54 1.04 -1.86 3.80

85 70 1.45 0.97 -2.00 3.60

89 70 1.55 0.96 -1.67 3.70

94 70 1.33 1.26 -3.10 3.40

95 70 1.52 1.03 -2.30 3.40

Table 7: Summary statistics of the forecasts of the most interesting forecasters (predictors
in the models).

20


