
Erasmus University Rotterdam

Erasmus School of Economics

Bachelor Thesis Operations Research

A max-min ant system heuristic to solve the hourly learning

activity planning problem in personalised learning

Anouk Luijben (540239)

Supervisor: Danny (Jia Hui) Zhu

Second assessor: prof. dr. D. Huisman.

Date final version: 2nd July 2023

The views stated in this thesis are those of the author and not necessarily those of the

supervisor, second assessor, Erasmus School of Economics or Erasmus University Rotterdam.

Contents

1 Introduction 2

2 Literature review 3

3 The Hourly Learning Activity Planning Problem 4

3.1 Problem statement . 4

3.2 Variable and parameter notation . 5

4 The integer linear programming model 5

5 Adaptive Large Neighborhood Search metaheuristic 6

6 Max-Min Ant System metaheuristic 9

6.1 Solution construction . 10

6.2 Pheromone updating . 12

6.3 Pheromone initialization and bounds . 13

7 Experiments 14

7.1 Experimental design . 14

7.2 Tuning . 15

7.3 Comparison experimental results . 16

7.3.1 Performance comparison . 17

7.3.2 Parameter sensitivity analysis . 17

8 Conclusion 20

A Code description 23

A.1 Max-Min Ant System . 23

A.2 Adaptive Large Neighborhood Search . 23

B Experiments 25

C Heuristics performance 27

1

Abstract

An increased popularity in personalised learning methods for students has prompted the

development of learner-based timetabling methods. However, achieving an exact solution for

the Hourly Learning Activity Planning problem, which involves the generating of personalised

learning schedules, requires impractical computation times. In this research, the Max-Min

Ant System is proposed as a heuristic to solve the problem. The Adaptive Large Neighborhood

Search heuristic is used as benchmark to evaluate its performance. We conclude that the

Max-Min Ant System outperforms this heuristic with an average optimality gap of 1.7%

against 2.2%, although its computation times are slightly longer. In particular, for schools

with high learners demand spread or those that have split their classrooms, the Max-Min

Ant System emerges as the optimal heuristic.

1 Introduction

Personalised learning (PL) is an educational approach that focuses on students’ needs and

progress. It is the opposite of the conventional approach of course scheduling, which is based on

students all following the same curriculum. PL takes into account differences between individual

learners, based on the notion that learning curves, the rate of students’ progress, vary from

student to student (Kalyuga et al., 2003). Technological advancements in data science and

machine learning the last decades have led to numerous timetabling methods and therefore in an

increase in the popularity of PL (Shemshack and Spector, 2020). The classic scheduling method,

that generates long-term schedules per school class, appears to be a poor fit for PL, hence a

short-term and learner-based method provides a solution. The European Political Strategy

Center of the European Commission emphasises the importance of PL and mentions it as one of

the trends in transforming education (European Commission and European Political Strategy

Centre, 2019). According to the commission, it is unlikely that the one-size-fits-all learning keeps

working in this modern-day economy that is built around human capital. Instead, individualised

learning paths take into account that students approach problems in their own way and acquire

knowledge and skills at their own pace.

The corresponding problem, which aims to create a set of activities every hour while satisfying

as much demand as possible, is the Hourly Learning Activity Planning Problem (HLAPP). With

the generated set of activities a schedule can be made that is personalised for every student.

Those schedules can be useful when long-term (e.g. a week) learner demands are known and

an initial schedule per student is already created. When rescheduling is needed, due to changed

learner demands or availability of teachers and classrooms, the method can update the initial

plan.

Wouda et al. (2023) concluded that solving the HLAPP as an integer linear programming

model to optimality involved impractical computation times. Therefore, they introduced an

efficient adaptive large neighborhood search (ALNS) metaheuristic to solve the problem. The

heuristic starts with creating a solution and subsequently destroys and repairs it using several

techniques. This process is repeated and guides the method to a high-quality solution. According

to Wouda et al. (2023), ALNS ensures that the rescheduling is done within a few minutes with

an average optimality gap of 1.6%.

2

In this paper, we introduce the Max-Min Ant System (MMAS) metaheuristic to solve

the HLAPP. This algorithm is an extension of the Ant Colony optimisation technique and

originally introduced by Stützle and Hoos (1996). Ant colony optimisation is based on ants

searching for food, while communicating with each other with the help of an invisible chemical

named pheromone. Every ant starts moving randomly, but after finding food it returns back

to the colony while leaving pheromone trails on its way. When encountering a trail, other

ants tend to follow it, although those trails eventually evaporate. The evaporation process

ensures the possibility for discovering new sources of food. Previous research shows promising

results, for example when applied to the traveling salesman problem (Jangra and Kait, 2017).

Besides, Stützle and Hoos (2000) stated that the MMAS is currently among the best performing

algorithms for solving the traveling sales problem and the quadratic assignment problem.

In order to evaluate the relative performance of the MMAS, the ALNS heuristic and its results

are used as benchmark. The two heuristics are compared in general and parameter-specific on

a wide-ranging set of experiments using the relative gap with the optimal objective as measure.

The MMAS shows superior results in terms of optimality gaps, since the method exhibits an

average optimality gap of 1.7% while ALNS of 2.2%. Despite its slightly longer running times

compared to ALNS, the MMAS is perfectly suitable for quickly generating school schedules,

endorsed by an average computation time of 145 seconds. The MMAS outperforms ALNS in

particular for high learner demand spread and for schools that split their classrooms. The

performance of the MMAS is most affected by adapting learner demand spread, changing the

fulfilment of self-study or splitting the classrooms in a school. We conclude that the MMAS is a

more effective heuristic compared to ALNS for solving the HLAPP. Hence, MMAS emerges as

an effective heuristic to solve the HLAPP.

The outline of the paper is as follows. In Section 2, we give an overview of the existing

literature about school scheduling models and the proposed heuristics. Next, in Section 3,

the problem encountered in this research, the Hourly Learning Activity Planning problem,

is described and the corresponding notation is introduced. In Section 4, the integer linear

programming model is presented, which can be used to solve the problem to optimality. Thereafter,

in Section 5 and 6, the methodology for two different heuristics are presented, the Adaptive

Large Neighborhood Search and the Max-Min Ant Colony System, respectively. We introduce

the experimental design and present the obtained results in Section 7. Finally, in Section 8 the

conclusions and suggestions for future research are presented.

2 Literature review

Modeling school timetables is a frequently studied topic in the literature. However, most

studies investigate methods for the conventional way of scheduling (e.g. Birbas et al. (1997)

and Saviniec and Constantino (2017)), while only a few studies analyse personalised learning

based timetabling problems. Pillay (2013) highlights the growing use of heuristics in high school

timetabling. Thereby, numerous studies propose a heuristic as a solution to address this issue.

For instance, Santiago-Mozos et al. (2005) introduce a two-phase heuristic and test it on a real

problem at a Spanish university, demonstrating good results. Kristiansen et al. (2011) develop

an integer programming model and solve it with an Explicit Constraint Branching heuristic.

3

Kannan et al. (2012) use a graph-theoretic approach. The algorithm breaks the problem in

sub problems and solves them with heuristics. The mutual drawback of these studies is the

assumption of unchanging student demands over the semester or year. However, Wouda et al.

(2023) did include changing learner demands and obtained good results by using an Adaptive

Large Neighborhood Search (ALNS) as a metaheuristic.

In this paper, we investigate the performance of another heuristic named Max-Min Ant

System (MMAS) to create personalised learning schedules. This method is an extension of

the Ant Colony Optimisation heuristic, which was initially introduced by Dorigo et al. (1996)

and immediately obtained encouraging results for the traveling salesman problem. The heuristic

constructs several feasible solutions by iteratively selecting solution components. This component

selection process relies on probabilities, which are determined by pheromone levels. Good

solutions are rewarded by increasing the pheromone levels of their corresponding components,

thereby improving the chance of using the components in next iterations. When applied to

scheduling problems, such as the vehicle routing problem, ant colony optimisation also appeared

to be a successful method (Bell and McMullen, 2004). Stützle and Hoos (1996) are the inventors

of the MMAS, a heuristic that improves the ant colony optimisation by using only the best

solutions to spread pheromone and by setting limits to the pheromone levels which avoids

premature convergence of the search.

To the best of our knowledge, the MMAS is never used to solve the HLAPP. Applying the

MMAS on a scheduling problem is done by Crawford et al. (2014), who address the software

project scheduling problem. They obtained high quality solutions in terms of running time and

solution quality.

3 The Hourly Learning Activity Planning Problem

In this section, the Hourly Learning Activity Planning Problem (HLAPP) is described with its

corresponding variables and parameters, based on Wouda et al. (2023).

3.1 Problem statement

The investigated problem in this study involves of the construction of hourly learning activity

plans based on learner demands. Every student provides preferences or demands for different

modules, which are used to assign students to activities. An activity is defined as the assignment

of a group of learners to a module, classroom and teacher. Activities are categorised as either

instruction activities, where a qualified teacher teaches a module to a group of learners who the

module demand, or self-study activities, where learners work independently on a module with a

teacher present solely for supervision. Each activity is part of a module that defines the precise

learning topics, and each module is part of a course.

Not all classrooms are usable for each activity. For example, activities of the course informatics

can only be taught in a classroom with computers and these constraints should be included in the

model. Moreover, there are differences between teachers’ qualifications. We make a distinction

between first-degree teachers who are allowed to teach all modules in a course, second-degree

teachers who are allowed to teach only the first half of the modules of a course (the less advanced

4

modules) and third-degree teachers who are only qualified to supervise self-study sessions. First-

and seconds-degree teachers are also allowed to supervise self-study sessions.

In this problem, we incorporate the assumption that self-study sessions are less efficient

than instruction activities. The fraction that self-study activities satisfy of the learner demands

is a subjective parameter that schools can choose for themselves and is called the self-study

fulfilment level.

In PL schools, it is likely that group sizes per activity are smaller because learners work on

different activities at any time. Current school buildings probably have too large classrooms

and therefore we also include the policy of splitting all existing instruction classrooms in two.

3.2 Variable and parameter notation

To model the HLAPP, some sets, parameters and variables need to be defined. The set L

includes all learners l who demand certain course modules m ∈ M . The demand of learner l

for module m is denoted as Dlm ∈ R≥0 and is zero if the learner is ineligible for module m.

A teacher t ∈ T can instruct or supervise an activity in classroom c ∈ C. The objective of

the model is to assign learners to their most demanded learning modules. As mentioned in

Section 3.1, self-study activities only satisfy a fraction w (0 ≤ w ≤ 1) of the demand Dlm. In

order to keep track of the learners assigned to self-study activities, we create a module mS ∈M

that denotes the self-study module. The demand for this module DlmS
can be calculated as

w maxm∈M\mS
Dlm because during a self-study session, learners are assumed to work on their

most-preferred module.

As noted previously, not every teacher is qualified to teach every course. In the binary

qualification matrix QT is specified if teacher t can teach modulem, which is denoted as QT
tm = 1.

In the same way, in the classroom binary qualification matrix QC
cm ∈ {0, 1} is tracked if a

classroom c can be used for a module m.

Every classroom c has its own seating capacity Nc ∈ N, which is an upper bound on the

maximum number of learners that can attend an activity in this classroom. Besides, δ− ∈ N
and δ+ ∈ N specify the minimum and maximum number of learners needed to schedule an

instruction activity respectively. For self-study activities, δ+ is not imposed. We use a lower

bound δ− to prevent scheduling activities that are too small as this is assumed as an inefficient

use of classroom space and teachers.

4 The integer linear programming model

In this section, we introduce the integer linear programming model (ILP) as a method to solve

the problem to optimality. Therefore, two decision variables are required in addition to the

notation of Section 3.2. The assignment of learner l to module m is modeled with the binary

decision variable ylm. Additionally, the binary decision variable xmct indicates if an activity of

module m is scheduled in classroom c, taught by teacher t. The integer linear programming

model we aim to optimise is the following:

max
x,y

∑
l∈L

∑
m∈M

Dlmylm (1)

5

s.t.
∑
l∈L

ylm ≤
∑
c∈C

min(δ+, Nc)
∑
t∈T

xmct ∀m ∈M \ {mS} (2)∑
l∈L

ylmS
≤

∑
c∈C

Nc

∑
t∈T

xmSct (3)∑
l∈L

ylm ≥ δ−
∑
c∈C

∑
t∈T

xmct ∀m ∈M (4)∑
m∈M

ylm = 1 ∀l ∈ L (5)∑
m∈M

∑
c∈C

xmct ≤ 1 ∀t ∈ T (6)∑
m∈M

∑
t∈T

xmct ≤ 1 ∀c ∈ C (7)∑
c∈C

xmct ≤ QT
tm ∀t ∈ T, ∀m ∈M (8)∑

t∈T
xmct ≤ QC

cm ∀c ∈ C,∀m ∈M (9)

ylm ≤ 1Dlm>0 ∀l ∈ L,∀m ∈M (10)

xmct ∈ {0, 1} ∀m ∈M, ∀c ∈ C,∀t ∈ T (11)

ylm ∈ {0, 1} ∀l ∈ L,∀m ∈M (12)

The objective (1) aims to maximise the assignment of learners to their most demanded modules.

Constraints (2) concern the instruction activities and ensure that neither the maximum instruction

size nor the classroom capacity is exceeded. Similarly, (3) guarantees the maximum group size

is not exceeded for self-study activities, which should only take into account Nc. Constraints (4)

make sure the minimum number of learners is reached in every module. Every learner should

be assigned to a module, which is ensured by constraints (5). Constraints (6) and (7) guarantee

that every teacher and classroom are used for at most one module, respectively. Constraints (8)

and (9) use the qualification matrices to ensure that only qualified teachers and classrooms are

assigned to a module activity. With the use of constraints (10), learners are only assigned to

modules they are eligible to take, that is if Dlm > 0. Lastly, constraints (11) and (12) impose

bounds on the binary variables x and y.

When the model is solved to optimality, a schedule can implicitly be derived with the

two-dimensional variable y and the three-dimensional variable x. Due to this latter variable, the

problem turns into a variant of the three-dimensional assignment problem, which is classified as

NP -hard. Therefore, we propose metaheuristics to solve the problem instead.

5 Adaptive Large Neighborhood Search metaheuristic

In this section, the Adaptive Large Neighborhood Search (ALNS) is introduced as metaheuristic

to solve the HLAPP. Røpke and Pisinger (2006) originally introduced this heuristic and later

expanded upon in their work on vehicle routing problems, describing a general treatment of

the metaheuristic (Pisinger and Røpke, 2010). In this research, we follow the applied variant

on the HLAPP of Wouda et al. (2023). A description of the pseudo-code of the metaheuristic

is provided in Algorithm 1. In short, the algorithm starts with an initial feasible solution and

6

iterates a predefined maximum number of times. In every iteration, it chooses a destroy and

repair operator, which transform the current solution s into a candidate solution sc. If sc is a

new best solution, the algorithm uses a Local Search procedure to improve the solution further.

Finally, the operator selection mechanism is updated. An extensive description of the steps is

provided in the subsequent sections.

Algorithm 1 Adaptive Large Neighbourhood Search

1: Input: Initial feasible solution s.
2: Output: Best observed solution s∗.
3: s∗ := s, ρD := (1, . . . , 1), ρR := (1, . . . , 1).
4: repeat
5: Select destroy and repair methods dop ∈ OD, rop ∈ OR using ρD and ρR.
6: sc := rop(dop(s))
7: if sc is accepted then
8: s := sc
9: if sc has a better objective value than s∗ then

10: s∗ := Local-Search(sc)
11: s := s∗

12: end if
13: Update ρD and ρR
14: end if
15: until maximum number of iterations is exceeded
16: return s∗

Initial solution: by assigning all learners to self-study activities, the initial solution is

generated. Qualified classrooms and teachers (note that every teacher is qualified to supervise

a self-study activity) are randomly selected and up to Nc learners are added to the activities.

The theoretical situation of insufficiently qualified classrooms is never observed in practice and

therefore unlikely to happen.

Destroy operators: similar to Wouda et al. (2023), four different destroy operators are

used. These operators remove a predetermined fixed amount of learners d > 0 from their current

assignments.

1. Random activity removal: this operator randomly eliminates complete activities from the

solution. The corresponding teacher, classroom and learners are marked unassigned. The

operator continues removing activities until at least d learners are removed.

2. Smallest activity removal: the smallest activity is defined as the activity with the lowest

number of learners assigned to it. This operator keeps removing the smallest activity until

at least d learners are removed. With the use of this operator, a classroom and teacher

with few learners are marked unassigned, who can subsequently be re-inserted (using a

repair operator) in activities with more learners.

3. Random learner removal: this operator involves randomly removing a learner from an

assignment, after which the learner is marked as unassigned. However, at least δ− learners

should remain in the activity. The operator continues until d learners are removed or until

there is no possibility anymore to remove learners without violating constraints about the

minimum activity size.

7

4. Worst regret learner removal: this operator removes learners with the worst regret, which

is defined as the difference between their best and current assignment. In other words,

it removes learners that are least met in their demand. The regret rlm of learner l ∈ L

assigned to module m ∈M , can be calculated as

rlm = max
m′∈M

{Dlm′} −Dlm (13)

After calculating the regret for every learner, the regrets are listed in decreasing order

while keeping track of the corresponding learners. With the use of a skewed distribution

(which favours larger regrets), d learners are selected. The distribution is constructed as

a (decreasing) triangular for the first d values and subsequently uniformly flat. Then, the

probability for a learner l with costs at index j ∈ {1, ..., |L|} to be selected is:

Pr(select l) =


d−j+1∑d

i=1 i+|L|−j
if j ≤ d,

1∑d
i=1 i+|L|−j

otherwise.
(14)

The operator removes all d learners, unless less than δ− learners remain in their activities.

Repair operators: the two repair operators insert all unassigned learners back into the

solution, ensuring that the resulting solution is feasible.

1. Break-out activity: this operator groups unassigned learners by modules they demand,

whereafter the modules are listed in decreasing order by aggregating demand. An activity

of such a module is scheduled for the grouped learners if there are at least δ− learners,

a qualified classroom and a qualified teacher. The algorithm prefers second-degree to

teach second-degree modules. As a result, first-degree teachers can be preserved to teach

first-degree modules. Besides, the operator chooses the smallest possible classroom for the

new activity. If not all learners fit in the classroom, the largest classroom is chosen and

part of the learners is not assigned to the new activity. When creating the new activity,

the operator considers all learners in self-study activities and assigns learners to the new

activity for which it is an improvement. If no new activities can be created, the remaining

unassigned learners are assigned using the greedy learner insert operator.

2. Greedy learner insert: this operator assigns a randomly selected unassigned learner to his

or her most demanded feasible instruction activity. The activity is feasible if there are

currently less than min{δ+, Nc} learners assigned to the activity and the learners demand

for the activity is not zero. The learner is assigned to a self-study activity if no feasible

instruction activity exist and a new self-study activity is created if necessary. If this is

also not possible, a new self-study activity is created by converting the instruction activity

with the smallest contribution to the objective into a self-study activity. The operator

continues until all unassigned learners are assigned to an activity.

Acceptance criterion: the acceptance criterion is extracted from simulating annealing

(SA), similar to Santini et al. (2018) who obtained good results. If the objective value of sc is

higher than s, the solution is accepted. Otherwise, the solution is accepted with the following

8

probability:

Pr(accept sc) = exp

{
f(sc)− f(s)

T

}
, (15)

where f(·) represents the objective value of the solution. The parameter T is the temperature,

which decreases in every iteration at a cooling rate γ ∈ (0, 1). The starting value of T is

determined at the begin of the heuristic.

Local search: if s is replaced by sc, the algorithm applies local search to possibly further

improve sc. The operator used for this purpose, the reinsert learner operator, determines all

improving relocation moves out of self-study and applies them in order of decreasing objective

gain. An improving move to self-study is unlikely to exist due to the structure of the repair

operators. If a relocation move has become infeasible due to a previous move, the move is

skipped. Calling this operator is repeated until no further improving moves are found.

Updating and operator selection: The destroy and repair operator are determined in

each iteration with the use of the roulette wheel mechanism (Røpke and Pisinger, 2006). The

probability of selecting operator j, assuming there are k ∈ N operators each with weight zi ≥
0, i ∈ {1, ...k}, is:

Pr(select j) =
zj∑k
i=1 zi

.

The weights are tracked in two lists: ρD and ρR for the destroy and repair operators respectively.

The initial value of every operators weight is set to 1.

After using an operator j, its performance is determined based on (i) it finds a new best

solution, (ii) it improves the current solution, (iii) it does not improve the current solution but

the solution is accepted. Each of these performance measures is given a score ωi, i ∈ {1, ...3}.
The weight zj of operator j is updated as the convex combination θzj + (1 − θ)ωi, where the

predefined decay parameter θ ∈ [0.1] controls the influence of the operator effectiveness on its

weight. Both the destroy and the repair operator are updated by the same factor as we cannot

differentiate between theirs effect.

6 Max-Min Ant System metaheuristic

The Max-Min Ant System (MMAS) is a metaheuristic that is introduced in Stützle and Hoos

(1996) but in general described in Stützle and Hoos (2000). In the MMAS each ant of a

predefined number of artificial ants A, constructs a feasible candidate solution sc. The activities

in sc are constructed by repeatedly selecting a classroom and assigning a module, teacher and

learners to it. The assignment of the module and learners are based on pheromone levels, where a

higher pheromone level indicates a higher chance of choosing the assignment. The distinguishing

aspect of the MMAS compared to other ant colony optimisation heuristics is the use of only

the best solution to spread pheromone rather than using all found solutions. The solution with

the highest objective f(·) of all ants is saved as sit. This process is repeated for a predefined

number of iterations N and if f(sit) > f(sbest), a new best solution is found and sbest = sit.

Every iteration, the pheromone trails are updated using either sit or sbest, depending of the

9

progress of the algorithm. The pseudo-code for the MMAS is given in Algorithm 2. In the next

sections, we elaborate further on the construction of a candidate solution and the initialization

and updating procedure of the pheromone levels.

Algorithm 2 Max-Min Ant System

1: Input: An upper bound for the solution.

2: Output: Best observed solution sbest.

3: Initialize pheromone trails τmc and τlm.

4: Initialize f(sbest) = 0

5: while maximum number of iterations is not reached do

6: S ← ∅
7: for each ant do

8: Construct a candidate solution sc with τmc and τlm

9: add sc to S

10: end for

11: sit = argmax{f(s)|s ∈ S}
12: sbest = argmax{f(s)|s ∈ {sit, sbest}}
13: Update pheromone trails

14: end while

6.1 Solution construction

In every iteration, an ant constructs a feasible candidate solution sc according to the following

procedure. An ant starts with marking all classrooms, teachers and learners unassigned. Subsequently,

instruction activities are added to the solution by repeatedly selecting a classroom, module,

teacher and learners. In the module and learners selection, pheromone trails are included which

encourage the repetition of good choices. We use separate pheromone trails for module and

learners selection due to the possibly varying importance of their retention. The pseudo-code

for this process is described in Algorithm 3 and the details of the different steps are as follows.

Algorithm 3 Solution construction

1: while creating a new instruction activity is possible do

2: Choose a random instruction classroom c ∈ C

3: Choose a module m ∈M \ {mS}
4: if no module can be assigned to c then

5: Return to step 2

6: end if

7: Choose randomly a qualified teacher t ∈ T

8: Choose learners for the module

9: Create an instruction activity with c, m, t and the learners and add to the solution

10: end while

11: If there are unassigned learners left, create self-study activities and assign those learners to

them.

12: Perform local search on the solution

10

Choosing a classroom: the available classrooms are limited and therefore in most solutions

almost all classrooms will be used. For this reason, we decide to randomly choose a classroom

from all unassigned classrooms as first step. Considering that we want to add an instruction

activity to the solution, only instruction classrooms can be selected.

Choosing a module: choosing a module depends on the selected classroom as not all

classrooms are qualified for each module. Certain classroom module combinations can yield

high objectives and thus, preserving these beneficial combinations can improve the algorithm.

The preservation of beneficial pairs is accomplished by using pheromone trails.

Once a classroom is selected, all qualified modules (i.e. at least one unassigned teacher is

available for the module and the classroom is qualified for the module) are determined. Besides,

there must be at least δ− unassigned learners that prefer the module over self-study. This

criterion ensures that the remaining students, who will be assigned to self-study at the end, are

likely to prefer it over all created instruction activities. The module-classroom combinations mc

are stored in a set M and in case no such combinations exist, another classroom is chosen.

Otherwise, similar to Stützle and Hoos (2000), the probability pmc(t) to choose a module

classroom combination in iteration t is defined as:

pmc(t) =
[τmc(t)]

α · [ηmc]
β∑

mc∈M[τmc(t)]α · [ηmc]β
(16)

where τmc(t) is the pheromone level of a combination at iteration t and ηmc is a locally available

heuristic. In this case, the aggregated demand per module is employed as local heuristic because

high demand contributes to a high objective value. α and β determine the relative importance

of the pheromone level and the local heuristic, respectively.

Choosing a teacher: in the design of choosing a module, we already include the guarantee

of an available teacher. Therefore, we only determine the unassigned and qualified teachers for

this module and randomly select a teacher from this group.

Choosing learners: when the classroom, module and teacher are chosen, the learners can

be selected. First, all unassigned learners that prefer this module over self-study are determined

and the possible learner module combinations are stored in a set L. In the selection of the

module is already included that enough learners are available. Then, the probability of choosing

a learner module combination is again determined with the definition of Stützle and Hoos (2000):

plm(t) =
[τlm(t)]ζ · [ηlm]ξ∑

lm∈L[τlm(t)]ζ · [ηlm]ξ
(17)

Now, the pheromone levels τlm of learner module combinations are used and ηlm is defined as

the demand of learner l for module m since higher demand should increase the probability of

choosing the learner. The number of learners that are selected is min(λ·Nc, δ
−), where λ ∈ (0, 1]

is a fraction that determines how much of the classroom capacity is used. The activity is partly

filled because this allows the local search later to add learners.

An ant creates an instruction activity with the chosen classroom, module, teacher and

learners, adds it to the solution and marks the classroom, teacher and learners as assigned.

The process is repeated until one of the following criteria is reached: (i) no available classroom

11

can be found that satisfies the requirements of a qualified module and teacher and a sufficient

number of learners that prefer the module over self-study, (ii) the aggregated capacity of available

classrooms where self-study is allowed exceeds the number of unassigned learners, thereby we

ensure that there is always enough capacity left to assign the remaining learners to self-study,

or (iii) the number of available teachers falls below the number of self-study classrooms that

are needed to assign the remaining learners to self-study. After reaching one of the criteria,

self-study activities are created for the remaining unassigned learners with the largest unassigned

classrooms and random unassigned teachers.

The solution is improved with the reinsert learner local search, which is described in Section

5. This local search remains beneficial in this context again because the classrooms of the

instruction activities are partly filled and learners from self-study could benefit from moving

to an instruction activity. Besides, moving from an instruction activity to a self-study activity

is again unlikely to be preferred since only learners are selected that prefer the module over

self-study.

6.2 Pheromone updating

The pheromone levels are updated after iteration t in a similar manner to Stützle and Hoos

(2000), although some changes need to be made since we maximise an objective instead of

minimise. Because pheromone levels determine the chance of choosing certain solution components,

a decent balance between exploration and exploitation is crucial. Exploration is defined as the

ability to explore new solution regions, while exploitation is the ability to exploit good solutions

and improve them. Insufficient exploration could result in convergence towards a local optimum.

On the other hand, absence of exploitation could result in a sub optimal solution.

Updating the pheromone levels in the MMAS is performed by multiplying all levels with a

constant factor ρ and using one solution per iteration to spread pheromone. The corresponding

rule is:

τij(t+ 1) = ρ · τij(t) + ∆τ bestij (18)

Only the solution of one single ant is used to update the pheromone levels in every iteration.

To ensure a good balance between first exploration and second exploitation, the first ϵ (0 ≤ ϵ ≤
N) iterations ∆τ bestij is defined as γ · f(sit), allowing the algorithm to reward locally optimal

solutions. After ϵ iterations, ∆τ bestij = γ · f(sbest) to guarantee exploitation. Using the objective

value for updating, results in rewarding good solutions since more pheromone is spread for high

objective values. The proportional ratio γ, likewise utilized by Lin et al. (2013), ensures the

same order of magnitude for τij and ηij in Equation 16 and 17.

The constant ρ ∈ [0, 1) is the trail persistence, which means 1−ρ models the evaporation. If

a combination is not used in several consecutive best solutions, the trail decreases exponentially,

resulting in “forgetting” bad combinations.

The different pheromone trails for the module classroom combinations and the learner module

combinations are updated with a separate evaporation rate. The underlying rationale is that

for either module classroom combinations or learner module combinations it may be required

to be more prone to being forgotten.

12

Another measure to avoid stagnation of the search and therefore ensure exploration, is

limiting the pheromone levels to an interval [τmin, τmax]. This way, the influence of the pheromone

levels relative to the locally heuristic information is limited and the chance of one combination

outperforming all others is lowered. After each iteration, the pheromone levels are verified and

set to τmin or τmax if the levels are too low or too high, respectively.

6.3 Pheromone initialization and bounds

The maximum pheromone level τmax in iteration t is asymptotically bounded and calculated the

following way, based on the definition of Stützle and Hoos (2000) but adapted for the maximising

problem:

τmax(t) =
1

1− ρ
· γ · f(sopt) (19)

where sopt is the same solution used for updating the trail, that is sit first and sbest after ϵ

iterations. As a result, τmax is an estimate of the asymptotically maximum value and fluctuates

during the algorithm. Therefore, τmax is updated after every iteration. We aim to initialize all

pheromone levels at τmax, since this leads to a high level of exploration at the beginning of the

algorithm. However, no solutions are computed at the start of the algorithm. Therefore, we

initialize the pheromone levels in such a way that after the first iteration all pheromone levels are

automatically set to τmax(1), the pheromone level computed with the first iteration-best solution.

This is accomplished by setting f(sopt) to an upper bound of the solution when initializing the

pheromone levels, leading to high values of τ(0). Considering that the pheromone levels are

limited to values within the imposed bounds, all pheromone levels are set to τmax(1) after

the first iteration. The upper bound is calculated by summing the maximum demand of each

learner. Given the constraint that a learner can only be assigned to one module, the upper

bound represents the highest attainable objective in theory.

For determining the minimum value for the pheromone level, we need the probability pbest of

constructing the optimal solution. For the sake of simplicity, we assume that pdec, the probability

of choosing the solution component that leads to the optimal solution, is constant during the

process. Let n be the number of times an ant has to choose a component. Then, the formula to

compute the pbest is:

pbest = (
τmax

τmax + (avg − 1) · τmin
)n (20)

with avg the average number of components an ant has to choose from. Hence, the formula to

determine τmin is:

τmin =
τmax · (1− n

√
pbest)

(avg − 1) · n
√
pbest

(21)

For the module classroom pheromone trail, avg is set to half of the total classrooms and n to

the total number of classrooms. When setting the values for the learner module combinations,

avg is set to half of the learners and n to the total number of learners. Since τmin depends on

τmax, the value is also updated after every iteration.

13

7 Experiments

This section gives an overview of the experiments that are performed to compare three methods

to solve the Hourly Learning Activity Planning Problem, namely solving the integer linear

programming (ILP) problem to optimality, the Adaptive Large Neighborhood Search (ALNS)

heuristic and the Max-Min Ant System (MMAS) heuristic. In Section 7.1, we explain the

experimental design and in Section 7.2 we show the results of the parameter tuning. Comparison

of the two heuristics in terms of performance and a parameter sensitivity analysis are shown in

Section 7.3.

7.1 Experimental design

No standardised benchmarks for personalised learning in the Dutch setting were available, which

is the data needed for this research. Hence, benchmark cases are formulated based on expert

estimates. In order to investigate the influence of certain parameters and policy decisions, a

set of experiments each consisting of 100 instances are constructed. Each experiment contains

classrooms, course modules, teachers and learners to represent a six-year secondary education

program. Within each experiment we differ between several parameters to investigate their

influence.

The different school sizes we consider are medium (M), large (L) and extra large (XL),

all having their own characteristics. The M, L and XL size schools contain 800, 1200 and

1600 learners respectively. Besides, in the schools are 80, 120 and 160 teachers, 40, 60 and

80 instruction classrooms and 3, 4 and 6 large self-study classrooms included in M, L and XL

schools respectively. The capacity of the classrooms are 32 learners for an instruction classroom

and 80 learners for a self-study classroom. These capacities are the same for all school sizes.

A school teaches 12 representative courses, based on expert estimates, each consisting of

48 modules. Therefore, there are 576 instruction modules in total. The required classroom

qualifications and the average number of hours learners typically devote, are determined per

course. The division of classrooms and teachers over courses is based on the fraction of hours

spent on the course by students. For example, for a course that is scheduled 3 hours in a 30 hours

schedule, 10% of the teachers is assigned to this course and 10% of the instruction classrooms

are assigned the course’s room type. We assume that self-study activities can be scheduled in

the “regular” classrooms and in the large self-study classrooms.

The minimum number of learners needed for an activity to be scheduled δ− is set to 5 and the

maximum δ+ to 30 for all experiments. These numbers have been established based on expert

estimates and are expected to remain unchanged under the personalised learning criterion.

The qualification distribution of teachers is expressed as (p; q; 1 − p − q) for the fraction of

first-degree, second-degree and third-degree teachers. Their specifications are given in Section

3.1. The distributions we investigate are (1; 0; 0), representing a school with only first-degree

teachers, (0.5; 0, 5; 0), which is commonly used in Dutch secondary schools, and (0.4; 0.4; 0.2),

which could be a economically interesting due to the lower costs for third-degree teachers.

The learner demand for each course is randomly generated from a normal distribution with

N(µl, σ). Nominal progression, which represents the typical pace of learning that a learner is

14

expected, is used as a basis to compute µl. The nominal learning path is 8 modules per year

yl ∈ {0, 1, ..., 5} and therefore µl = 8yl + 4. The σ parameter represents the demand spread

between learners. In the experiment, we let the parameter vary between 0, 1, 2 and 3. Higher

values of σ means that learner demands are more widely distributed across the modules. From

the formula, it can be derived that 95% of learners from the same group work on course modules

that are 5 (for σ = 1), 9 (for σ = 2), or 13 (for σ = 3) modules from each other. When σ = 0, all

students from the same group work on the same module. The generated learner demand value

is rounded to the nearest integer in {1, 2, ..., 48}.
The demand value that is generated for the module is drawn from a Exp(β = 2) distribution.

For the self-study fulfilment level w, which is the fraction that satisfies a learners demand if the

activity is a self-study session, we investigate 0.50 and 0.75.

We use a full factorial design to investigate the effects of the parameters, which results in

144 experiments of 100 instances that are generated. An overview of the parameter setting per

experiment is given in Table 2 in Appendix B.

7.2 Tuning

In both the ALNS and MMAS heuristic, parameters need to be tuned.

For the parameters in the ALNS, we rely on the parameter configurations as determined

by Wouda et al. (2023) since they obtained good results. The parameters were tuned with

the optimisation package SMAC3 (Lindauer, 2022), which uses Bayesian optimisation to tune

hyperparameters. 144 tuning instances were given twenty independent runs, which resulted

in the following parameter values: ω = (21.8, 13.6, 3.8), θ = 0.8 and d = 15%. The initial

temperature for the acceptance criterion is set such that a solution with an objective up to 5%

worse than the initial solution is accepted with a probability of 50%. The number of iteration

is set to 25,000.

The parameters for the MMAS are also tuned with SMAC3 (Lindauer, 2022) during a

configuration run of four hours. After attempting various methods, the tuned parameter values

of only the first tuning instance led to the best results and are used for the experiment runs.

For the process of tuning parameters, it is necessary to set tuning intervals. According

to Gentile (2015), setting the number of ants A to 25 is commonly accepted for the MMAS.

Nevertheless, a higher value of A logically leads to higher objective values but also to higher

running-times, which could result in a disproportionate comparison of two heuristics. Hence

the tuning interval of A is set to [0, 20]. The tuned value of A is 19 ants. Gentile (2015) also

mentions α = 1 and β = 2 as a rule of thumb in the MMAS. Since ζ and α are equivalent in

meaning, both intervals are set to [0.5, 3]. Using the same logic, the intervals of ξ and β are [0.5,

3]. The tuned values of α = 1.801 and β = 2.813 can be explained with the order of magnitude

of the pheromone level and aggregated demand. Since the first is higher than the second, α

and β counterbalance this. The same reasoning holds when choosing learners, concluding from

ζ = 1.678 and ξ = 2.824. An interesting observation is that the corresponding parameters for

module classroom combinations and learner module combinations are nearly equal. Therefore, a

worthwhile possibility for future research is to investigate the option of using solely 2 parameters,

that is α = ζ and β = ξ. The tuned trail persistence rates ρmc = 0.841 and ρlm = 0.624 indicate

15

that learner module combinations are more easily forgotten, which is a surprising outcome since

learners directly influence the objective and modules only indirectly. The interval of pbest is set

to [5e-10, 1.0], with a tuned value of 0.044. The lower bound of λ, the fraction of classroom

capacity that is initially filled, is set to 0.5. A lower value would choose less than δ− learners

for an activity and no instruction activities would be created. The tuned value is 0.811. The

interval of the proportional ratio γ is set to [0.000001, 0.1] since the goal of the ratio is to decrease

the magnitude of the objective value in comparison with the locally used heuristic (explained in

Section 6.2). The obtained value for γ is 0.042. The interval for the number of iterations N is set

to [0,40] because again too many iterations could cause a disproportionate comparison between

the heuristics in terms of running time. After tuning, N = 37 is determined, while using sbest

after 35 iterations, that is ϵ = 35. An overview of the tuned parameters, their interpretation,

tuning intervals and the configuration values are shown in Table 1.

Table 1: Tuned parameters used for the Max-Min Ant System, including the considered
interval and the configuration value

Parameter Interpretation Interval Value

N number of iterations [0, 40] 37
A number of ants [0, 20] 19
ϵ number of iterations before sbest is used for updating [0, 40] 35

the pheromone
α relative importance of pheromone level τmc [0.5, 3] 1.801
β relative importance of aggregated demand [0.5, 3] 2.813
ζ relative importance of pheromone level τlm [0.5, 3] 1.678
ξ relative importance of individual demand [0.5, 3] 2.824
ρmc trail persistence of τmc [0.02, 0.99] 0.841
ρlm trail persistence of τlm [0.02, 0.99] 0.624
pbest probability of choosing the the solution component [5e-10, 0.1] 0.044

that leads to the optimal solution
λ fraction of the classroom capacity that is initially filled [0.5, 1.0] 0.811
γ proportional ratio for the objective value [0.000001, 0.1] 0.042

7.3 Comparison experimental results

The ILP model and both heuristics are implemented in Python 3.9. The first three instances

of each experiment are used to establish information about the different methods, parameters

and policy choices. The information about the ILP performance is derived from the runs done

by Wouda et al. (2023) (for experiment 15, 21, 39 and 93 it was necessary to use a fourth or

fifth instance as there was no ILP information made available by Wouda et al. (2023) about the

desired instances). A complete overview of the performance results of the three methods is given

in Table 3 in Appendix C. In Section 7.3.1, we discuss and compare the general performances of

the MMAS. Subsequently, in Section 7.3.2 we analyse the performance of the MMAS compared

with ALNS per parameter and policy decision.

16

7.3.1 Performance comparison

In this research, the relative gap with the optimal objective is used as a measure to compare the

heuristic performances. Considering that heuristics try to find the highest possible objective,

this seems to be a good measure for comparison. The average computation time of the MMAS

exceeds ALNS, with 145 seconds against 96 seconds. Still, its average running time is far

below the running time of ILP, which is 2272 seconds, and sufficient for calculating a school

schedule. In Figure 1, the three solving methods are compared based on optimality gaps, which

are calculated as the relative difference of the optimal objective with the objective of the solving

method. For the ILP method, the gap with optimality after 600 seconds is implemented and

for the heuristics the objective after the stopping criterion is satisfied. We observe that the ILP

method provides small optimality gaps, particularly in experiments with low demand spread.

This is likely caused by the extended computation time of the method. Comparing the two

heuristics leads to the conclusion that MMAS outperforms ALNS for all demand spreads. On

average, the objective of the MMAS deviates 1.66% from the optimal objective value, while

ALNS deviates 2.22% on average. Besides, the length of the boxplot boxes indicate that the

MMAS has a lower variability than ALNS for all types of demand spread, meaning that the

MMAS performs more predictable. In 91 of the 144 experiments, the MMAS outperformed

ALNS by obtaining a higher objective value. These results indicate that MMAS is an effective

heuristic for solving the HLAPP. Considering the longer running times of the MMAS compared

to ALNS, an interesting improvement of this research would involve reducing running times of

MMAS (by decreasing the number of iterations and ants) and reevaluating the performance of

the heuristics again.

0.0% 2.0% 4.0% 6.0% 8.0% 10.0% 12.0% 14.0%
Gap (%)

0

1

2

3

De
m

an
d

sp
re

ad

Method
ILP
ALNS
MMAS

Figure 1: Boxplots to compare the optimality gaps between the ILP, ALNS and MMAS
solution methods. For the ILP, the optimality gap after 600 seconds is used

7.3.2 Parameter sensitivity analysis

In this section, we consider the influence of the included parameters on the MMAS and its

relative performance compared to ALNS when varying certain parameters. In Figure 2a we

17

observe that already a modest learner demand spread leads to high optimality gaps for MMAS.

The explanation is that lower demand spreads indicate stronger preferences among learners for

the same modules, which results in creating activities easier. For σ = 0 and σ = 1, ALNS

and the MMAS exhibit similar performance, in both cases the optimality gap difference is less

than 0.5 percentage point. Analysing σ = 2 and σ = 3 leads to the conclusion that the MMAS

outperforms ALNS with average optimality gap differences of 0.76 and 1.05 percentage point

respectively. In consequence, the MMAS is preferred over ALNS especially for high levels of

learner demand spread.

After investigating the influence of the self-study fulfillment parameter w in Figure 2b, we

notice that the performances of the MMAS are more influenced by a high percentage of w

than those of ALNS. The optimality gap of MMAS changes from 2.34% to 0.97%, while the

gaps of ALNS changes from 2.67% to 1.77%. The underlying reason is that ALNS pays less

attention to self-study than the MMAS. For example, in only one destroy operator (i.e. the

worst regret learner removal), the algorithm considers learners’ preferences regarding self-study.

By comparison, the MMAS devotes considerable focus on the influence of self-study activities on

the objective. Since the algorithm only assigns learners to instruction activities that prefer those

over self-study, the remaining unassigned learners prefer self-study over all created activities.

Considering that a high penalty value increases the impact of self-study activities on the objective,

the MMAS tends to favour a high penalty.

Figure 2: Objective value gaps by learner demand spread and self-study penalty, comparing
ALNS and MMAS

(a) Learner demand spread

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0% 3.5%
Gap (%)

0

1

2

3

De
m

an
d

sp
re

ad

Method
ALNS
MMAS

(b) Self-study penalty

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%
Gap (%)

50%

75%

Pe
na

lty

Method
ALNS
MMAS

Figure 3 compares the two heuristics based on school specific parameters, namely teacher

distribution and school size. The average optimality gaps of the MMAS show less than 0.5

percentage point difference with varying teacher distributions in Figure 3a. We conclude that

the method performs consistently for all types of teacher distributions. Comparing the method

to ALNS indicates that the MMAS is preferred since their optimality gaps differences are higher

than 0.5 percentage points for all types of distributions.

In Figure 3b, we differentiate between the school sizes. The performance of MMAS is not

influenced by the school size since 0.12 percentage point is the highest optimality gap difference,

that is between XL and L schools. When comparing the MMAS with ALNS, we conclude the

optimality gaps of ALNS are the highest for medium size schools, which is in line with the

18

findings of Wouda et al. (2023). The MMAS appears to be a good alternative in this case since

its optimality gaps are lower (1.62% for MMAS against 2.59% for ALNS), indicating better

solutions. For large and extra large school sizes, MMAS also performs better, although the

differences are not considerably large with differences of 0.38 and 0.33 percentage point for L

and XL school respectively.

Figure 3: Objective value gaps by teacher distribution and school size, comparing ALNS and
MMAS

(a) Teacher distribution

0.0% 0.5% 1.0% 1.5% 2.0%
Gap (%)

(0.4; 0.4; 0.2)

(0.5; 0.5; 0)

(1; 0; 0)

Te
ac

he
r d

ist
rib

ut
io

n

Method
ALNS
MMAS

(b) School size

0.0% 0.5% 1.0% 1.5% 2.0% 2.5%
Gap (%)

M

L

XL

Sc
ho

ol
 si

ze

Method
ALNS
MMAS

The last policy we investigate is splitting all the classrooms of a school. Then, the capacity

of all classrooms is reduced to 16 learners instead of 32 but this also leads to a duplication of

the number of available classrooms. From Figure 4 we conclude that the splitting policy has

obviously more effect on the performance of the ALNS compared to MMAS, since its average

optimality gap increases from 1.21% to 3.23%. The underlying factor behind this is that ALNS

is less concerned about learner demands. For instance, the random activity removal and the

smallest activity removal remove learners without considering their personal demand. With an

increased number of classrooms, the chance to choose the ”good” classroom to remove is smaller.

In conclusion, the MMAS is preferred as heuristic for schools that have implemented classroom

splitting, while no evidently superior method emerges for schools who have not.

Figure 4: Objective value gaps by splitting the classrooms, comparing ALNS and MMAS

0.0% 0.5% 1.0% 1.5% 2.0% 2.5% 3.0%
Gap (%)

No

Yes

Sp
lit

 c
la

ss
ro

om

Method
ALNS
MMAS

19

8 Conclusion

In this research, the Max-Min Ant System (MMAS) metaheuristic is proposed to solve the Hourly

Learning Activity Planning Problem (HLAPP). The problem covers constructing a timetable

by assigning learners to classrooms, modules and teachers while satisfying as much as demand

possible. The MMAS is an innovative heuristic in which several solutions are generated by

ants that uses pheromone trails to encourage the repetition of good assignments. To analyse

its performance, two methods are introduced. First, an integer linear programming (ILP)

model, which is evaluated when solving the model to optimality and for a running time of 600

seconds. Second, the results of the Adaptive Large Neighborhood Search (ALNS) metaheuristic

are used as benchmark to determine the relative performance of the MMAS. This algorithm

repeats destroying and repairing a solution and thereby advances to a high-quality solution.

The methods are compared using a wide-ranging set of experiments, based on expert insight.

We conclude that the computation times of the ILP method are too long to solve the

problem and therefore the use of a heuristic is preferred. We observe that the MMAS shows

superior performance results since its average optimality gap is 1.7% against 2.2% for the ALNS.

The average running times of ALNS are slightly lower but both running times are perfectly

suitable for generating a school schedule quickly. The investigation of varying parameters shows

that adapting learner demand spread, changing the fulfilment of self-study or splitting the

classrooms in a school, results in significantly different performance results for the MMAS. Other

examined parameters did not influence the optimality gap more than 0.5 percentage point. In

the comparison between the two heuristics, MMAS surpasses ALNS particularly for high levels

of learners demand spread and if the policy of splitting classrooms is maintained. Additionally,

for high fulfilment of self-study and small school sizes, the MMAS also showed relative better

results, although to a lesser extent. Eventually, we conclude that MMAS emerges as a more

effective heuristic compared to ALNS. Therefore, the MMAS proves itself as an effective heuristic

for solving the HLAPP.

For further research, several options can be considered. In this study, two separate pheromone

trails with corresponding parameters are used in the MMAS to model the assignment probabilities

when selecting modules and learners. However, it is worthwhile to investigate if one single trail

with all possible combinations can improve the heuristic since this would make the heuristic less

dependent on the initially chosen classroom and module. Besides, extending the heuristic with

a tabu search could improve the algorithm. There are a number of inferior solutions for the

problem due the enormous number of combinations possible. Eliminating those solutions could

enhance the global optimisation.

20

References

Bell, J. E. and McMullen, P. R. (2004). Ant colony optimization techniques for the vehicle

routing problem. Advanced Engineering Informatics, 18(1):41–48.

Birbas, T., Daskalaki, S., and Housos, E. (1997). Timetabling for greek high schools. Journal

of the Operational Research Society, 48(12):1191–1200.

Crawford, B., Soto, R., Johnson, F., Monfroy, E., and Paredes, F. (2014). A max–min ant

system algorithm to solve the software project scheduling problem. Expert Systems with

Applications, 41(15):6634–6645.

Dorigo, M., Maniezzo, V., and Colorni, A. (1996). Ant system: optimization by a colony

of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B

(Cybernetics), 26(1):29–41.

European Commission and European Political Strategy Centre (2019). 10 trends transforming

education as we know it. Publications Office.

Gentile, M. (2015). A theoretical consideration of theparameters of the max min ant system.

Jangra, R. and Kait, R. (2017). Analysis and comparison among ant system; ant colony

system and max-min ant system with different parameters setting. 2017 3rd International

Conference on Computational Intelligence amp;amp; Communication Technology (CICT).

Kalyuga, S., Ayres, P., Chandler, P., and Sweller, J. (2003). The expertise reversal effect.

Educational Psychologist, 38(1):23–31.

Kannan, A., van den Berg, G., and Kuo, A. (2012). Ischedule to personalize learning. Interfaces,

42(5):437–448.

Kristiansen, S., Sørensen, M., and Stidsen, T. R. (2011). Elective course planning. European

Journal of Operational Research, 215(3):713–720.

Lin, M.-H., Tsai, J.-F., and Lee, L.-Y. (2013). Ant colony optimization for social

utility maximization in a multiuser communication system. Mathematical Problems in

Engineering, 2013:1–8.

Lindauer, Marius, E. (2022). Smac3: A versatile bayesian optimization package for

hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9.

Pillay, N. (2013). A survey of school timetabling research. Annals of Operations Research,

218(1):261–293.

Pisinger, D. and Røpke, S. (2010). Large neighborhood search. International Series in Operations

Research amp; Management Science, page 399–419.

Røpke, S. and Pisinger, D. (2006). An adaptive large neighborhood search heuristic for the

pickup and delivery problem with time windows. Transportation Science, 40(4):455–472.

Santiago-Mozos, R., Salcedo-Sanz, S., DePrado-Cumplido, M., and Bousoño-Calzón, C. (2005).

A two-phase heuristic evolutionary algorithm for personalizing course timetables: A case

study in a spanish university. Computers amp; Operations Research, 32(7):1761–1776.

Santini, A., Ropke, S., and Hvattum, L. M. (2018). A comparison of acceptance criteria for the

adaptive large neighbourhood search metaheuristic. Journal of Heuristics, 24(5):783–815.

Saviniec, L. and Constantino, A. A. (2017). Effective local search algorithms for high school

timetabling problems. Applied Soft Computing, 60:363–373.

Shemshack, A. and Spector, J. M. (2020). A systematic literature review of personalized learning

21

terms. Smart Learning Environments, 7(1).

Stützle, T. and Hoos, H. H. (1996). Improving the ant system: A detailed report on the

max–min ant system. FG Intellektik, FB Informatik, TU Darmstadt, Germany, Tech.

Rep. AIDA–96–12.

Stützle, T. and Hoos, H. H. (2000). Max-min ant system. Future Gener. Comput. Syst.,

16:889–914.

Wouda, N. A., Aslan, A., and Vis, I. F. (2023). An adaptive large neighbourhood search

metaheuristic for hourly learning activity planning in personalised learning. Computers

amp;amp; Operations Research, 151:106089.

22

Appendices

A Code description

The code used in this research contains the Adaptive Large Neighborhood Search, the Max-Min

Ant System algorithm and files to analyse the algorithms. The used directory of the code, now

programmed as ..., should be adapted to the users own directory. Besides, the repository assumes

an ‘/experiments’ directory is set-up, and populated with the experimental data, similar to the

data of Wouda et al. (2023) (the data can be obtained by downloading the first revision.zip file

at this website).

A.1 Max-Min Ant System

All files corresponding to the Max-Min Ant System can be found in the extension directory.

The general algorithm code for the Max-Min Ant System is in the

antColonyOptimization.py file. It includes a loop for several experiments and instances and

makes use of the tuned values of the variables. The methods to select teacher, modules,

classrooms and learners are also programmed in this file. In several iterations, ants generate

solutions and their objective values are compared. The code keeps track of the best solution

and running times. The files are saved in the map outputExtension.

The classesExtension directory contains the used dataclasses of the algorithm. Most classes

are similar to the code of Wouda et al. (2023), sometimes with little adaptions. In the Problem

class, all possible learner module combinations and module classroom combinations can be

calculated. Besides, a method to compute the upper bound is added. A new created class

is Pheromone, which keep track of the possible combinations for learners and modules and for

modules and classrooms. It saves their pheromone levels in an efficient way. The MaxPheromone

and MinPheromone classes keep track of the maximum and minimum amount of pheromone for

the combinations respectively and update the levels. The Statistics class is created to keep track

of the objective values and run-times of the algorithm. Finally, the TeacherDictionary keeps

track of teachers and their qualified modules efficiently.

The variables are tuned in the file tuning extension.py. In this code, the proposed intervals

of the variables, as described in Table 1, are included. The program runs for four hours and

prints the tuned values thereafter.

In analyse extension.py, the results of the algorithm are analysed. This means, the instances

are aggregated per experiment. The results are from the outputExtension directory and the

analyses are saved in the directory cache directory.

The table generating.py and figure generating.py files generate the used tables and figures

from this research, respectively. Both use the analysed data from the cache directory directory.

The generated tables are printed and the figures are saved in the figures directory.

A.2 Adaptive Large Neighborhood Search

The code for the Adaptive Large Neighborhood Search (ALNS) is similar to the code of Wouda

et al. (2023), although some changes were made. The code can be found in the src directory. In

23

https://dataverse.nl/dataset.xhtml?persistentId=doi:10.34894/E2L6WC

the following files, modifications were implemented.

In the file heuristics, the algorithm for ALNS is located. The parser for the command-line

is removed and exchanged for a main function. It includes a loop for the experiments and

the instances, allowing to do runs consecutively. Inside the loop, the data location and result

location are defined and the problem is set. The output of the results of the ALNS is in saved

in the experiments directory and named ’heuristic’. Another modification is that the algorithm

initializes the stop criterion for every loop iteration.

In the analyse file is also a loop included. This file is used to analyse the files of the ALNS

and the ILP per experiment. The files are saved in the cache directory, which must be set-up

by the user beforehand.

The Problem class is also changed. Since the problem must be set for every instance and

experiment again, the cache of the class must be initialized multiple times again. This is done by

initializing cache for the methods every time a new problem is set. This way, the class remains

using cached properties which provides computational advantage.

24

B Experiments

Table 2: Parameter levels per experiment

Experiment w σ Size Split? Qualifications

1 50% 0 M Yes (1, 0, 0)

2 50% 0 L Yes (1, 0, 0)

3 50% 0 XL Yes (1, 0, 0)

4 75% 0 M Yes (1, 0, 0)

5 75% 0 L Yes (1, 0, 0)

6 75% 0 XL Yes (1, 0, 0)

7 50% 1 M Yes (1, 0, 0)

8 50% 1 L Yes (1, 0, 0)

9 50% 1 XL Yes (1, 0, 0)

10 75% 1 M Yes (1, 0, 0)

11 75% 1 L Yes (1, 0, 0)

12 75% 1 XL Yes (1, 0, 0)

13 50% 2 M Yes (1, 0, 0)

14 50% 2 L Yes (1, 0, 0)

15 50% 2 XL Yes (1, 0, 0)

16 75% 2 M Yes (1, 0, 0)

17 75% 2 L Yes (1, 0, 0)

18 75% 2 XL Yes (1, 0, 0)

19 50% 3 M Yes (1, 0, 0)

20 50% 3 L Yes (1, 0, 0)

21 50% 3 XL Yes (1, 0, 0)

22 75% 3 M Yes (1, 0, 0)

23 75% 3 L Yes (1, 0, 0)

24 75% 3 XL Yes (1, 0, 0)

25 50% 0 M Yes (0.5, 0.5, 0)

26 50% 0 L Yes (0.5, 0.5, 0)

27 50% 0 XL Yes (0.5, 0.5, 0)

28 75% 0 M Yes (0.5, 0.5, 0)

29 75% 0 L Yes (0.5, 0.5, 0)

30 75% 0 XL Yes (0.5, 0.5, 0)

31 50% 1 M Yes (0.5, 0.5, 0)

32 50% 1 L Yes (0.5, 0.5, 0)

33 50% 1 XL Yes (0.5, 0.5, 0)

34 75% 1 M Yes (0.5, 0.5, 0)

35 75% 1 L Yes (0.5, 0.5, 0)

36 75% 1 XL Yes (0.5, 0.5, 0)

37 50% 2 M Yes (0.5, 0.5, 0)

38 50% 2 L Yes (0.5, 0.5, 0)

39 50% 2 XL Yes (0.5, 0.5, 0)

40 75% 2 M Yes (0.5, 0.5, 0)

41 75% 2 L Yes (0.5, 0.5, 0)

42 75% 2 XL Yes (0.5, 0.5, 0)

43 50% 3 M Yes (0.5, 0.5, 0)

44 50% 3 L Yes (0.5, 0.5, 0)

45 50% 3 XL Yes (0.5, 0.5, 0)

46 75% 3 M Yes (0.5, 0.5, 0)

47 75% 3 L Yes (0.5, 0.5, 0)

48 75% 3 XL Yes (0.5, 0.5, 0)

49 50% 0 M Yes (0.4, 0.4, 0.2)

50 50% 0 L Yes (0.4, 0.4, 0.2)

51 50% 0 XL Yes (0.4, 0.4, 0.2)

52 75% 0 M Yes (0.4, 0.4, 0.2)

25

Experiment w σ Size Split? Qualifications

53 75% 0 L Yes (0.4, 0.4, 0.2)

54 75% 0 XL Yes (0.4, 0.4, 0.2)

55 50% 1 M Yes (0.4, 0.4, 0.2)

56 50% 1 L Yes (0.4, 0.4, 0.2)

57 50% 1 XL Yes (0.4, 0.4, 0.2)

58 75% 1 M Yes (0.4, 0.4, 0.2)

59 75% 1 L Yes (0.4, 0.4, 0.2)

60 75% 1 XL Yes (0.4, 0.4, 0.2)

61 50% 2 M Yes (0.4, 0.4, 0.2)

62 50% 2 L Yes (0.4, 0.4, 0.2)

63 50% 2 XL Yes (0.4, 0.4, 0.2)

64 75% 2 M Yes (0.4, 0.4, 0.2)

65 75% 2 L Yes (0.4, 0.4, 0.2)

66 75% 2 XL Yes (0.4, 0.4, 0.2)

67 50% 3 M Yes (0.4, 0.4, 0.2)

68 50% 3 L Yes (0.4, 0.4, 0.2)

69 50% 3 XL Yes (0.4, 0.4, 0.2)

70 75% 3 M Yes (0.4, 0.4, 0.2)

71 75% 3 L Yes (0.4, 0.4, 0.2)

72 75% 3 XL Yes (0.4, 0.4, 0.2)

73 50% 0 M No (1, 0, 0)

74 50% 0 L No (1, 0, 0)

75 50% 0 XL No (1, 0, 0)

76 75% 0 M No (1, 0, 0)

77 75% 0 L No (1, 0, 0)

78 75% 0 XL No (1, 0, 0)

79 50% 1 M No (1, 0, 0)

80 50% 1 L No (1, 0, 0)

81 50% 1 XL No (1, 0, 0)

82 75% 1 M No (1, 0, 0)

83 75% 1 L No (1, 0, 0)

84 75% 1 XL No (1, 0, 0)

85 50% 2 M No (1, 0, 0)

86 50% 2 L No (1, 0, 0)

87 50% 2 XL No (1, 0, 0)

88 75% 2 M No (1, 0, 0)

89 75% 2 L No (1, 0, 0)

90 75% 2 XL No (1, 0, 0)

91 50% 3 M No (1, 0, 0)

92 50% 3 L No (1, 0, 0)

93 50% 3 XL No (1, 0, 0)

94 75% 3 M No (1, 0, 0)

95 75% 3 L No (1, 0, 0)

96 75% 3 XL No (1, 0, 0)

97 50% 0 M No (0.5, 0.5, 0)

98 50% 0 L No (0.5, 0.5, 0)

99 50% 0 XL No (0.5, 0.5, 0)

100 75% 0 M No (0.5, 0.5, 0)

101 75% 0 L No (0.5, 0.5, 0)

102 75% 0 XL No (0.5, 0.5, 0)

103 50% 1 M No (0.5, 0.5, 0)

104 50% 1 L No (0.5, 0.5, 0)

105 50% 1 XL No (0.5, 0.5, 0)

106 75% 1 M No (0.5, 0.5, 0)

107 75% 1 L No (0.5, 0.5, 0)

108 75% 1 XL No (0.5, 0.5, 0)

109 50% 2 M No (0.5, 0.5, 0)

26

Experiment w σ Size Split? Qualifications

110 50% 2 L No (0.5, 0.5, 0)

111 50% 2 XL No (0.5, 0.5, 0)

112 75% 2 M No (0.5, 0.5, 0)

113 75% 2 L No (0.5, 0.5, 0)

114 75% 2 XL No (0.5, 0.5, 0)

115 50% 3 M No (0.5, 0.5, 0)

116 50% 3 L No (0.5, 0.5, 0)

117 50% 3 XL No (0.5, 0.5, 0)

118 75% 3 M No (0.5, 0.5, 0)

119 75% 3 L No (0.5, 0.5, 0)

120 75% 3 XL No (0.5, 0.5, 0)

121 50% 0 M No (0.4, 0.4, 0.2)

122 50% 0 L No (0.4, 0.4, 0.2)

123 50% 0 XL No (0.4, 0.4, 0.2)

124 75% 0 M No (0.4, 0.4, 0.2)

125 75% 0 L No (0.4, 0.4, 0.2)

126 75% 0 XL No (0.4, 0.4, 0.2)

127 50% 1 M No (0.4, 0.4, 0.2)

128 50% 1 L No (0.4, 0.4, 0.2)

129 50% 1 XL No (0.4, 0.4, 0.2)

130 75% 1 M No (0.4, 0.4, 0.2)

131 75% 1 L No (0.4, 0.4, 0.2)

132 75% 1 XL No (0.4, 0.4, 0.2)

133 50% 2 M No (0.4, 0.4, 0.2)

134 50% 2 L No (0.4, 0.4, 0.2)

135 50% 2 XL No (0.4, 0.4, 0.2)

136 75% 2 M No (0.4, 0.4, 0.2)

137 75% 2 L No (0.4, 0.4, 0.2)

138 75% 2 XL No (0.4, 0.4, 0.2)

139 50% 3 M No (0.4, 0.4, 0.2)

140 50% 3 L No (0.4, 0.4, 0.2)

141 50% 3 XL No (0.4, 0.4, 0.2)

142 75% 3 M No (0.4, 0.4, 0.2)

143 75% 3 L No (0.4, 0.4, 0.2)

144 75% 3 XL No (0.4, 0.4, 0.2)

C Heuristics performance

Table 3: Comparison of the ILP performance with the ALNS heuristic and the MMAS heuristic.
The Obj. columns show the average objective values of the three methods, determined with three
instances of each experiment. The Run columns represent the running times of the ILP until

optimality and for the ALNS and MMAS until the stopping criterion is satisfied. For ILP, the Avg.
and Max. columns show the average and maximum gap after 600 seconds respectively. For the two
heuristics, the Avg., Max. and Min. columns show the relative objective gap, when comparing the

objectives to the optimal objective.

ILP ALNS MMAS

Exp Obj. Run Avg. Max. Obj. Run Avg. Max. Min. Obj. Run Avg. Max. Min.

1 4749.10 28 0.00% 0.01% 4731.49 62 0.37% 0.21% 0.62% 4730.27 97.16 0.40% 0.21% 0.52%

2 7341.47 56 0.01% 0.01% 7248.95 90 1.28% 1.19% 1.32% 7322.62 170.80 0.26% 0.21% 0.32%

3 9885.60 169 0.00% 0.00% 9743.91 122 1.46% 1.12% 1.68% 9852.14 275.81 0.34% 0.25% 0.39%

27

ILP ALNS MMAS

Exp Obj. Run Avg. Max. Obj. Run Avg. Max. Min. Obj. Run Avg. Max. Min.

4 4896.61 25 0.00% 0.01% 4889.27 59 0.15% 0.11% 0.19% 4894.99 82.85 0.03% 0.01% 0.06%

5 7335.74 47 0.00% 0.00% 7298.31 88 0.51% 0.51% 0.52% 7330.06 152.96 0.08% 0.06% 0.11%

6 9931.40 83 0.01% 0.01% 9855.50 125 0.77% 0.60% 0.97% 9926.06 237.85 0.05% 0.04% 0.07%

7 4009.26 783 0.13% 0.37% 3873.64 69 3.50% 3.23% 4.02% 3924.19 100.64 2.17% 1.78% 2.70%

8 6572.08 2369 0.66% 1.19% 6379.13 102 3.02% 2.78% 3.25% 6389.56 179.45 2.86% 2.73% 2.98%

9 9095.60 2291 0.41% 0.60% 8861.89 136 2.64% 2.38% 2.95% 8833.89 279.71 2.96% 2.87% 3.05%

10 4432.53 139 0.01% 0.01% 4319.65 65 2.62% 1.94% 3.21% 4384.14 88.67 1.11% 0.92% 1.37%

11 6897.25 1004 0.01% 0.03% 6729.05 106 2.50% 2.02% 2.91% 6825.40 159.68 1.06% 0.50% 1.40%

12 9233.98 309 0.01% 0.01% 9060.61 149 1.91% 1.81% 2.11% 9132.72 246.54 1.11% 1.04% 1.15%

13 3622.72 4472 1.18% 1.40% 3440.36 70 5.29% 4.43% 6.34% 3518.27 104.93 2.97% 2.71% 3.39%

14 5808.76 5653 3.20% 4.24% 5533.77 111 4.96% 4.17% 6.18% 5643.11 195.77 2.94% 2.67% 3.18%

15 8183.71 17494 5.86% 6.28% 7841.62 198 4.37% 3.80% 5.23% 7926.21 305.16 3.25% 3.02% 3.39%

16 4156.17 515 0.02% 0.04% 3947.00 58 5.30% 4.78% 5.68% 4065.60 92.14 2.23% 2.01% 2.38%

17 6478.19 1113 0.03% 0.04% 6264.25 101 3.42% 3.21% 3.69% 6400.00 165.95 1.22% 1.05% 1.41%

18 8967.14 1009 1.84% 2.75% 8713.02 152 2.92% 2.73% 3.09% 8859.54 265.06 1.22% 1.06% 1.35%

19 3452.68 4303 2.06% 2.19% 3254.77 68 6.08% 6.05% 6.10% 3364.97 105.40 2.61% 2.45% 2.82%

20 5643.51 13028 5.70% 5.87% 5343.31 112 5.62% 4.93% 6.24% 5509.02 211.88 2.44% 2.22% 2.70%

21 7857.91 33205 10.66% 12.34% 7540.51 212 4.22% 3.31% 5.00% 7671.20 320.85 2.43% 2.20% 2.59%

22 4128.93 363 0.00% 0.00% 3857.59 54 7.04% 6.61% 7.56% 4010.85 90.85 2.95% 2.65% 3.26%

23 6294.43 899 0.18% 0.48% 6050.90 94 4.03% 3.83% 4.30% 6217.72 160.96 1.23% 1.03% 1.39%

24 8637.68 8106 3.42% 3.86% 8367.05 144 3.24% 2.63% 3.83% 8561.30 274.12 0.89% 0.75% 1.06%

25 4805.10 27 0.00% 0.00% 4774.74 62 0.64% 0.45% 0.87% 4751.00 92.38 1.14% 1.08% 1.21%

26 7291.23 79 0.01% 0.01% 7202.09 89 1.24% 1.05% 1.42% 7213.34 170.01 1.08% 0.93% 1.27%

27 9907.64 92 0.01% 0.01% 9762.33 121 1.49% 1.26% 1.67% 9837.51 269.29 0.71% 0.61% 0.81%

28 4892.27 28 0.00% 0.01% 4885.71 59 0.13% 0.10% 0.20% 4887.86 82.48 0.09% 0.06% 0.13%

29 7404.10 51 0.01% 0.01% 7374.19 88 0.41% 0.39% 0.43% 7382.79 150.08 0.29% 0.24% 0.32%

30 9922.47 103 0.01% 0.01% 9855.42 124 0.68% 0.59% 0.80% 9895.49 238.26 0.27% 0.23% 0.30%

31 4045.82 604 0.13% 0.30% 3866.70 69 4.63% 4.35% 4.78% 3905.66 99.12 3.59% 3.28% 3.92%

32 6427.72 1507 0.51% 0.87% 6207.56 103 3.55% 3.20% 4.07% 6144.08 177.14 4.62% 4.50% 4.84%

33 9061.64 1735 0.80% 2.36% 8778.31 139 3.23% 2.35% 4.09% 8673.73 275.18 4.47% 4.25% 4.79%

34 4322.18 135 0.01% 0.01% 4204.05 65 2.81% 2.70% 2.90% 4250.99 88.63 1.67% 1.45% 1.79%

35 6834.61 388 0.01% 0.01% 6677.17 105 2.36% 2.17% 2.63% 6716.01 159.02 1.77% 1.62% 2.00%

36 9262.91 337 0.01% 0.01% 9072.59 149 2.10% 2.03% 2.23% 9113.75 245.95 1.64% 1.54% 1.75%

37 3634.56 1998 0.99% 1.73% 3388.12 69 7.27% 6.90% 7.66% 3501.67 105.05 3.79% 3.64% 4.04%

38 5802.38 3222 3.19% 5.36% 5499.78 110 5.50% 4.22% 7.23% 5528.98 194.00 4.94% 4.66% 5.19%

39 8127.71 13374 3.98% 4.58% 7801.54 202 4.18% 3.70% 4.96% 7750.68 301.77 4.87% 4.52% 5.30%

40 4163.47 296 0.01% 0.01% 3948.64 58 5.44% 4.60% 6.00% 4068.71 91.45 2.33% 2.26% 2.46%

41 6389.48 735 0.07% 0.17% 6193.02 99 3.18% 2.56% 3.61% 6297.86 163.21 1.45% 1.33% 1.53%

42 8806.23 1597 1.48% 1.89% 8532.16 150 3.21% 3.07% 3.30% 8653.07 259.78 1.77% 1.63% 1.85%

43 3431.07 2974 1.70% 2.26% 3256.22 68 5.37% 4.93% 5.68% 3320.86 104.19 3.32% 2.76% 3.75%

44 5601.71 15260 4.70% 5.47% 5297.08 110 5.76% 4.43% 6.60% 5388.08 207.99 3.97% 3.75% 4.33%

45 7910.41 20131 8.91% 9.70% 7552.17 157 4.74% 4.51% 4.94% 7566.43 317.08 4.55% 4.26% 4.76%

46 4048.49 217 0.01% 0.01% 3798.64 56 6.58% 6.12% 7.04% 3919.53 88.66 3.29% 3.28% 3.30%

47 6359.29 700 0.01% 0.03% 6111.16 95 4.07% 3.22% 4.60% 6251.55 165.21 1.73% 1.42% 1.97%

48 8706.85 1148 1.21% 1.54% 8457.79 144 2.95% 2.71% 3.38% 8576.43 263.17 1.52% 1.39% 1.71%

49 4694.49 31 0.01% 0.01% 4641.29 62 1.14% 0.82% 1.49% 4605.02 90.01 1.94% 1.64% 2.10%

50 7351.26 59 0.01% 0.01% 7220.07 93 1.82% 1.60% 1.97% 7191.16 166.25 2.23% 2.10% 2.43%

51 9729.10 159 0.01% 0.01% 9515.41 130 2.25% 2.00% 2.46% 9609.31 268.67 1.25% 0.96% 1.40%

52 4847.10 28 0.01% 0.01% 4837.01 58 0.21% 0.06% 0.30% 4821.83 80.00 0.52% 0.29% 0.73%

53 7189.56 45 0.00% 0.01% 7128.71 90 0.85% 0.78% 0.99% 7142.67 145.73 0.66% 0.57% 0.78%

28

ILP ALNS MMAS

Exp Obj. Run Avg. Max. Obj. Run Avg. Max. Min. Obj. Run Avg. Max. Min.

54 9772.28 115 0.01% 0.01% 9665.60 127 1.10% 1.03% 1.21% 9714.48 229.03 0.60% 0.49% 0.67%

55 3820.56 209 0.00% 0.01% 3728.36 67 2.49% 1.35% 3.21% 3717.10 96.55 2.79% 2.45% 3.16%

56 6098.11 673 0.04% 0.11% 5973.53 100 2.09% 1.86% 2.44% 5912.69 172.74 3.14% 2.94% 3.43%

57 8668.89 560 0.02% 0.03% 8458.97 133 2.48% 2.15% 2.71% 8353.80 271.37 3.77% 3.58% 3.91%

58 4283.18 61 0.01% 0.01% 4169.09 63 2.73% 2.02% 3.29% 4245.83 84.22 0.88% 0.82% 0.91%

59 6749.47 193 0.01% 0.01% 6602.20 102 2.23% 2.21% 2.26% 6663.85 152.40 1.29% 1.09% 1.39%

60 9065.04 193 0.00% 0.01% 8921.69 144 1.61% 1.39% 1.74% 8952.84 237.44 1.25% 1.22% 1.28%

61 3425.95 506 0.27% 0.80% 3288.66 69 4.17% 4.05% 4.40% 3327.08 100.89 2.97% 2.72% 3.33%

62 5450.43 1028 0.47% 0.81% 5264.35 107 3.53% 3.29% 3.78% 5279.51 188.89 3.24% 2.84% 3.48%

63 7779.36 2654 2.35% 3.19% 7468.48 147 4.16% 3.42% 4.59% 7537.47 291.07 3.21% 2.81% 3.44%

64 4121.77 187 0.01% 0.01% 3913.45 57 5.32% 5.08% 5.46% 4035.94 84.79 2.13% 1.84% 2.38%

65 6482.76 425 0.01% 0.01% 6247.54 99 3.76% 3.64% 3.86% 6403.38 155.38 1.24% 1.16% 1.28%

66 8654.35 753 0.01% 0.02% 8440.87 149 2.53% 2.43% 2.70% 8542.02 248.74 1.31% 1.16% 1.46%

67 3378.47 245 0.00% 0.01% 3164.75 66 6.75% 6.42% 7.03% 3264.43 102.39 3.49% 2.87% 3.93%

68 5338.90 2071 1.12% 1.51% 5097.64 109 4.73% 4.42% 5.04% 5173.91 193.13 3.19% 3.15% 3.24%

69 7565.09 7319 4.09% 6.54% 7214.95 152 4.86% 3.75% 5.76% 7329.47 305.40 3.21% 2.89% 3.44%

70 4099.38 270 0.01% 0.01% 3870.97 56 5.90% 5.16% 6.51% 4004.54 86.47 2.37% 1.85% 2.83%

71 6343.46 2992 0.18% 0.27% 6081.88 94 4.30% 4.09% 4.64% 6244.43 159.05 1.59% 1.44% 1.74%

72 8577.49 509 0.01% 0.02% 8317.01 142 3.13% 2.99% 3.36% 8451.75 251.38 1.49% 1.27% 1.62%

73 4364.12 72 0.00% 0.01% 4345.22 56 0.43% 0.34% 0.55% 4359.66 65.52 0.10% 0.02% 0.15%

74 7149.39 30 0.00% 0.01% 7140.65 81 0.12% 0.00% 0.20% 7117.63 111.97 0.45% 0.35% 0.56%

75 9648.08 61 0.00% 0.01% 9627.32 107 0.21% 0.12% 0.27% 9644.56 168.42 0.04% 0.01% 0.08%

76 4527.97 29 0.00% 0.01% 4516.71 55 0.25% 0.19% 0.32% 4525.65 61.82 0.05% 0.00% 0.08%

77 7189.87 42 0.00% 0.00% 7189.34 76 0.01% 0.00% 0.02% 7189.74 102.31 0.00% -0.00% 0.01%

78 9816.09 62 0.00% 0.00% 9807.70 100 0.09% 0.05% 0.11% 9816.10 150.49 -0.00% -0.00% 0.00%

79 3435.61 468 0.12% 0.37% 3371.53 60 1.90% 1.73% 2.03% 3371.66 70.03 1.90% 1.63% 2.12%

80 5578.46 1001 0.64% 0.74% 5441.48 90 2.52% 2.16% 3.24% 5490.52 124.42 1.61% 1.25% 2.15%

81 7996.11 753 0.17% 0.42% 7884.72 119 1.41% 1.20% 1.58% 7957.54 191.95 0.48% 0.39% 0.54%

82 4032.57 74 0.01% 0.01% 4006.55 59 0.65% 0.56% 0.74% 4007.98 56.05 0.62% 0.27% 0.99%

83 6340.58 184 0.01% 0.01% 6302.07 93 0.61% 0.42% 0.76% 6279.87 98.83 0.97% 0.83% 1.22%

84 8793.85 467 0.01% 0.02% 8739.25 128 0.62% 0.49% 0.78% 8727.24 164.51 0.76% 0.69% 0.83%

85 3034.93 281 0.00% 0.01% 2977.78 63 1.92% 1.77% 2.16% 2967.43 66.27 2.27% 1.75% 2.85%

86 4930.07 4182 2.04% 2.77% 4809.87 104 2.50% 1.82% 2.87% 4778.75 118.71 3.17% 2.84% 3.57%

87 6977.08 11775 3.70% 4.22% 6790.64 149 2.75% 2.56% 2.91% 6802.56 195.62 2.57% 2.14% 2.98%

88 3944.24 117 0.01% 0.01% 3878.76 54 1.69% 1.61% 1.80% 3918.96 51.36 0.65% 0.61% 0.71%

89 5985.58 286 0.01% 0.01% 5947.55 91 0.64% 0.55% 0.72% 5942.40 90.29 0.73% 0.49% 0.87%

90 8161.11 269 0.00% 0.00% 8106.61 136 0.67% 0.54% 0.89% 8078.18 148.28 1.03% 0.92% 1.22%

91 3055.85 247 0.01% 0.01% 3005.93 62 1.66% 1.34% 2.12% 2989.24 63.60 2.23% 2.14% 2.29%

92 4773.80 2101 2.56% 4.18% 4666.97 99 2.29% 2.08% 2.44% 4634.34 116.92 3.02% 2.48% 3.29%

93 6657.48 26143 4.99% 6.12% 6478.88 180 2.76% 2.54% 2.88% 6431.29 197.18 3.52% 2.96% 4.21%

94 3946.04 279 0.01% 0.02% 3858.16 50 2.28% 2.15% 2.49% 3911.16 49.73 0.89% 0.78% 1.03%

95 5920.63 254 0.01% 0.01% 5869.48 89 0.87% 0.55% 1.05% 5864.11 87.78 0.96% 0.95% 0.97%

96 8108.35 325 0.00% 0.01% 8053.98 131 0.68% 0.51% 0.79% 8013.96 145.30 1.18% 0.95% 1.31%

97 4389.15 43 0.00% 0.01% 4366.00 55 0.53% 0.16% 0.94% 4381.69 65.10 0.17% 0.11% 0.21%

98 7178.44 73 0.00% 0.01% 7174.51 81 0.05% 0.04% 0.07% 7160.87 111.05 0.25% 0.06% 0.35%

99 9549.44 64 0.00% 0.00% 9529.23 103 0.21% 0.20% 0.23% 9545.74 167.23 0.04% 0.02% 0.06%

100 4630.84 24 0.00% 0.01% 4614.01 54 0.37% 0.21% 0.48% 4629.84 61.50 0.02% 0.02% 0.03%

101 7359.44 31 0.01% 0.01% 7359.04 74 0.01% -0.00% 0.02% 7359.45 100.84 -0.00% -0.00% 0.00%

102 9721.76 52 0.00% 0.01% 9719.14 99 0.03% 0.00% 0.05% 9721.75 150.47 0.00% -0.00% 0.00%

103 3447.71 466 0.09% 0.25% 3363.98 61 2.49% 1.98% 3.22% 3377.69 69.51 2.08% 1.63% 2.73%

29

ILP ALNS MMAS

Exp Obj. Run Avg. Max. Obj. Run Avg. Max. Min. Obj. Run Avg. Max. Min.

104 5627.86 763 0.45% 0.68% 5510.74 89 2.13% 1.76% 2.34% 5542.39 123.99 1.54% 1.33% 1.69%

105 7869.06 796 0.20% 0.32% 7774.91 119 1.21% 0.80% 1.55% 7836.54 189.30 0.41% 0.22% 0.54%

106 4094.97 72 0.01% 0.01% 4076.74 59 0.45% 0.40% 0.49% 4071.60 55.45 0.57% 0.47% 0.70%

107 6429.25 330 0.02% 0.04% 6388.50 93 0.64% 0.56% 0.69% 6363.19 98.12 1.04% 0.81% 1.26%

108 8642.73 394 0.01% 0.01% 8574.60 129 0.80% 0.74% 0.88% 8577.51 161.31 0.76% 0.72% 0.83%

109 3104.25 305 0.01% 0.01% 3050.48 63 1.76% 1.68% 1.83% 3033.91 64.93 2.32% 1.94% 2.72%

110 4936.31 3915 1.95% 2.42% 4829.22 95 2.22% 1.89% 2.41% 4763.97 118.91 3.62% 2.83% 4.49%

111 6998.90 22473 4.96% 6.69% 6825.15 128 2.55% 2.29% 2.77% 6822.17 199.63 2.59% 2.14% 3.03%

112 3926.87 68 0.00% 0.01% 3863.42 51 1.64% 1.51% 1.82% 3894.88 51.03 0.82% 0.72% 0.89%

113 6065.60 209 0.01% 0.01% 6023.91 86 0.69% 0.56% 0.92% 6010.57 89.72 0.92% 0.85% 1.03%

114 8213.20 287 0.01% 0.01% 8165.60 130 0.58% 0.44% 0.69% 8128.15 146.81 1.05% 0.98% 1.18%

115 3007.18 308 0.03% 0.09% 2942.74 61 2.19% 1.71% 2.60% 2933.68 64.08 2.51% 1.87% 3.19%

116 4744.33 2124 1.77% 2.47% 4658.93 96 1.83% 1.40% 2.08% 4599.19 118.21 3.16% 2.86% 3.72%

117 6738.27 17395 4.88% 6.05% 6564.28 128 2.65% 2.41% 3.11% 6500.37 194.92 3.66% 3.47% 3.86%

118 3879.82 7165 0.03% 0.04% 3809.42 49 1.85% 1.25% 2.63% 3858.40 50.20 0.55% 0.47% 0.61%

119 5993.35 232 0.01% 0.01% 5949.43 80 0.74% 0.67% 0.81% 5931.87 87.51 1.04% 0.96% 1.12%

120 8126.78 364 0.00% 0.01% 8074.14 124 0.65% 0.58% 0.76% 8045.30 146.08 1.01% 0.93% 1.18%

121 4414.96 66 0.00% 0.01% 4393.40 53 0.50% 0.17% 0.95% 4409.45 65.05 0.13% 0.06% 0.19%

122 7165.23 33 0.00% 0.00% 7156.98 76 0.12% 0.03% 0.23% 7111.75 110.10 0.75% 0.66% 0.90%

123 9574.51 55 0.00% 0.01% 9546.88 100 0.29% 0.18% 0.44% 9567.46 167.55 0.07% 0.02% 0.15%

124 4626.42 24 0.00% 0.01% 4618.35 51 0.17% 0.04% 0.26% 4624.12 61.57 0.05% 0.00% 0.11%

125 7184.48 34 0.01% 0.01% 7184.51 71 -0.00% -0.00% -0.00% 7184.09 100.55 0.01% -0.00% 0.02%

126 9791.84 70 0.00% 0.01% 9788.13 96 0.04% 0.00% 0.06% 9791.09 150.08 0.01% -0.00% 0.03%

127 3424.06 491 0.19% 0.56% 3355.91 58 2.04% 1.39% 2.92% 3351.76 69.15 2.16% 1.64% 2.75%

128 5620.04 730 0.53% 1.58% 5495.40 85 2.27% 1.89% 2.53% 5542.25 122.81 1.42% 0.86% 1.94%

129 7906.55 962 0.27% 0.58% 7782.53 114 1.60% 1.35% 2.03% 7857.36 187.31 0.63% 0.47% 0.76%

130 4087.31 72 0.00% 0.01% 4068.73 57 0.46% 0.39% 0.50% 4054.84 55.97 0.80% 0.68% 0.95%

131 6277.29 198 0.00% 0.00% 6232.53 88 0.72% 0.40% 1.16% 6217.13 98.76 0.97% 0.88% 1.05%

132 8727.65 704 0.03% 0.08% 8674.27 122 0.62% 0.54% 0.69% 8660.29 159.37 0.78% 0.61% 0.94%

133 3082.98 273 0.01% 0.01% 3022.29 60 2.01% 1.38% 2.75% 3003.54 65.00 2.65% 2.27% 2.89%

134 4936.30 2889 0.98% 1.58% 4820.96 90 2.39% 1.94% 2.78% 4787.55 118.41 3.11% 2.79% 3.46%

135 7005.19 7403 2.61% 3.15% 6802.84 122 2.98% 2.86% 3.18% 6800.44 218.31 3.02% 2.81% 3.38%

136 3919.05 78 0.01% 0.01% 3866.45 51 1.36% 1.06% 1.74% 3892.13 51.21 0.69% 0.28% 0.92%

137 6111.60 174 0.01% 0.01% 6081.95 87 0.49% 0.35% 0.64% 6045.34 91.73 1.10% 1.06% 1.13%

138 8198.21 423 0.01% 0.01% 8144.45 128 0.66% 0.46% 0.99% 8095.42 146.30 1.27% 1.12% 1.43%

139 2996.26 171 0.01% 0.01% 2944.13 60 1.78% 1.26% 2.47% 2935.30 63.79 2.08% 2.07% 2.09%

140 4757.47 1275 1.14% 1.87% 4648.11 94 2.35% 1.83% 2.86% 4563.65 115.65 4.25% 4.00% 4.42%

141 6682.17 16735 8.23% 12.46% 6499.09 127 2.82% 2.61% 2.99% 6451.22 193.88 3.58% 3.18% 3.98%

142 3934.95 704 0.02% 0.05% 3858.66 48 1.98% 1.74% 2.38% 3916.46 49.18 0.47% 0.37% 0.54%

143 5951.61 204 0.01% 0.01% 5898.95 81 0.89% 0.58% 1.13% 5887.38 86.74 1.09% 0.90% 1.29%

144 8148.55 415 0.01% 0.01% 8087.43 162 0.76% 0.51% 0.92% 8065.04 144.35 1.03% 0.75% 1.35%

30

	Introduction
	Literature review
	The Hourly Learning Activity Planning Problem
	Problem statement
	Variable and parameter notation

	The integer linear programming model
	Adaptive Large Neighborhood Search metaheuristic
	Max-Min Ant System metaheuristic
	Solution construction
	Pheromone updating
	Pheromone initialization and bounds

	Experiments
	Experimental design
	Tuning
	Comparison experimental results
	Performance comparison
	Parameter sensitivity analysis

	Conclusion
	Code description
	Max-Min Ant System
	Adaptive Large Neighborhood Search

	Experiments
	Heuristics performance

