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Abstract

Witten et al. (2009) introduce a framework known as the penalized matrix decomposition

(PMD), which uses low-rank approximations of the data matrix to derive sparse principal

components. To obtain multiple sparse principal components, PMD performs matrix defla-

tion using Hotelling’s deflation scheme (Hotelling, 1933). However, Mackey (2008) states

that utilizing Hotelling’s deflation is inappropriate in the context of sparse principal com-

ponent analysis (PCA) and thus introduces two new deflation schemes: Schur complement

deflation and the generalized deflation method. In this paper, we extend the research of Wit-

ten et al. (2009) by incorporating the deflation schemes of Mackey (2008) within the PMD

framework and comparing their performance in comparison to Hotelling’s deflation method.

To perform the comparative study, we replicate part of the research done by Witten et al.

(2009). Namely, we apply the corresponding three variants of PMD to the gene expression

data set used by Witten et al. (2009). When we apply the variations of PMD to the gene

expression data set, we compare the deflation schemes in terms of how well PMD is able the

capture the variance in the data and to what extent the interpretation of the sparse principal

components is hindered by artifacts, new directions introduced in the deflated data matrix

that are not present in the original data. As part of our extension to the research of Witten

et al. (2009), we also generate simulated data. We use the cosine similarity to evaluate how

well each variant of PMD is able to recover the sparse loading vectors used to simulate the

data. We find that the variant of PMD that is able to recover the sparse loading vectors

most optimally is dependent on the number of observations in the simulated data matrix.

Additionally, when we apply the three variants of PMD to the gene expression data set, we

observe that PMD with Mackey’s generalized deflation method is the most preferred method

as it captures the most variance in the data and its components have a fairly low percentage

of artifacts.
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1 Introduction

In today’s digital age, the amount of data generated has grown exponentially, resulting in an

increase in the size and complexity of the data sets used in fields such as business analytics,

healthcare and finance. It can be quite a difficult task to extract meaningful insights from data

sets with a large number of variables. Principal component analysis (PCA), invented by Pearson

(1901) and further developed by Hotelling (1933), is a powerful statistical technique that can

help address this challenge by reducing the number of variables in the data set while minimizing

the amount of information that is lost. PCA does this by constructing principal components.

These are linear combinations of the variables from the data set, which aim to capture as much

of the variance in the data as possible. The coefficients in these linear combinations are called

loadings.

Nevertheless, PCA has a drawback. Namely, the principal components are typically a linear

combination of all the variables from the data set. This results in the principal components

often being difficult to interpret when the data set contains a large number of variables (Zou

et al., 2006). For this reason, sparse PCA has been a topic of extensive research in the past

couple of decades (e.g. Jolliffe et al., 2003; Zou et al., 2006; Witten et al., 2009; Lai et al.,

2014; Guerra-Urzola et al., 2021). This variant of PCA aims to improve the interpretability

of the principal components by simply setting some of the loadings to zero. However, using

less variables sacrifices some of the variance in the data captured by the principal components.

Thus, sparse PCA tries to strike a balance between two conflicting goals (Journée et al., 2010).

On one hand, it seeks to capture the maximum amount of variation in the data. On the other

hand, it aims to achieve this by constructing principal components that use the fewest possible

variables.

Many approaches to derive sparse principal components have been put forward by research-

ers. In this paper, we focus on the penalized matrix decomposition (PMD) proposed by Witten

et al. (2009). To find a single sparse principal component using PMD, we perform the follow-

ing two steps. First, we find a rank-1 approximation of the data matrix, which among other

things consists of a vector containing the sparse loadings of the principal component, known as

the sparse loading vector. Subsequently, we deflate the data matrix by subtracting the rank-1

approximation from it; we can use the deflated data matrix to find the next sparse principal com-

ponent. The deflation method used is known as Hotelling’s deflation (Hotelling, 1933; Weylandt,

2019). Mackey (2008) states that it is often not appropriate to utilize Hotelling’s deflation in the

context of sparse PCA. Namely, since the sparse loading vectors are typically non-orthogonal in

contrast to ordinary PCA, it is possible that two different sparse principal components found
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by PMD might capture some of the same variance in the data. This makes it more difficult to

interpret the components, as it is harder to attribute specific patterns or variations in the data

to a single component (Mackey, 2008; Camacho et al., 2020). Hence, Mackey (2008) introduces

the deflation schemes Schur complement deflation and the generalized deflation method to rec-

tify this issue. The goal of this paper is to extend the research done by Witten et al. (2009) by

assessing the performance of Hotelling’s deflation scheme in comparison to Schur complement

deflation and the generalized deflation method when we incorporate these deflation methods

within the PMD framework.

For our comparative study, we replicate part of the research done by Witten et al. (2009).

Specifically, we apply the corresponding three variants of PMD to the gene expression data set

used by Witten et al. (2009). When we apply the variations of PMD to this gene expression

data set, we compare the deflation schemes in terms of how well PMD is able the capture the

variance in the data and to what extent the interpretation of the sparse principal components is

hindered by artifacts, new directions introduced in the deflated data matrix that are not present

in the original data. To measure these two factors, we compute the cumulative proportion of

variance explained and the percentage of artifacts in each principal component, respectively.

As part of our extension to the research of Witten et al. (2009), we create simulated data.

To generate the data matrices for the simulation study, we need to manually specify the sparse

loading vectors. After we have created a data matrix, we apply the three variations of PMD

to it which try to recover the sparse loading vectors we specified previously. In order to assess

how well the variants of PMD are able to recover the true sparse loading vectors, we compute

the cosine similarities between the true sparse loading vectors and the loading vectors found by

the variants of PMD. We perform this simulation study multiple times by varying the number

of observations in the data matrix.

We obtain the following results when we perform our comparative analysis. To begin, we

find that none of the deflation schemes have a dominant performance when we apply PMD to

our simulated data. Specifically, the variant of PMD that best recovers the true sparse loading

vectors is dependent on the number of observations present in this particular simulated data

set. Moreover, when we apply the three variants of PMD to the gene expression data set, we

observe that PMD with Mackey’s generalized deflation method is the most preferred method as

it captures the most variance in the data and its components have a fairly low percentage of

artifacts.

Our contribution to the broader literature is two-fold. Firstly, we obtain results which

contradict the outcomes of the previous works by Mackey (2008), Weylandt (2019) and Camacho
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et al. (2021), stimulating researchers to further investigate the comparative performance of these

deflation techniques. Secondly, although Camacho et al. (2021) incorporate the generalized

deflation method of Mackey (2008) within the PMD framework, to our knowledge there is

currently no literature available on the application of Schur complement deflation to PMD. Thus,

we fill this gap in the literature by exploring the application of Schur complement deflation to

PMD, providing novel insights into the performance of this deflation scheme.

We structure the remainder of the paper in the following way. In Section 2, we summarize

and discuss some of the research that has been done on matrix deflation in the context of sparse

PCA. Then, in Section 3 we describe all the methods that are relevant to retrieve the results for

our research. Subsequently, we describe the data used in the comparative study in Section 4.

In Section 5 we apply our methods to the data and report our results. Finally, in Section 6 we

conclude this paper by summarizing our key findings, discussing the limitations of our research,

and offering suggestions for future investigations.

2 Literature review

There is a plethora of research on the comparison of various deflation techniques in the context

of sparse PCA. One of the pioneers in this topic is Mackey (2008), who highlights that deflation

methods do not receive attention in the literature of sparse PCA, as many authors typically bor-

row Hotelling’s deflation scheme from ordinary PCA without proper reasoning. Mackey (2008)

demonstrates that Hotelling’s deflation is often not appropriate when deriving sparse principal

components. Therefore, they propose several deflation schemes which are more suitable for the

sparse PCA setting. These methods are projection deflation, Schur complement deflation, or-

thogonalized Hotelling’s deflation and the generalized deflation method. Mackey (2008) applies

these deflation schemes to the methods generalized spectral bounds for sparse linear discrimin-

ant analysis (GSLDA) and sparse PCA using difference of convex functions (D.C.) programming

(DC-PCA), and performs some analyses on real data sets. Mackey (2008) finds that all defla-

tion schemes except for the orthogonalized Hotelling’s deflation scheme allow for DC-PCA and

GSLDA to explain more of the variance in the data than Hotelling’s deflation.

In a more recent study, Weylandt (2019) extends the projection deflation and Schur com-

plement deflation approaches proposed by Mackey (2008). Most sparse PCA methods depend

on the covariance matrix of the data matrix and its eigenvectors. Thus, Mackey (2008) uses

these elements to formulate the deflation schemes. However, Weylandt (2019) reformulates the

deflation methods such that they consist of the (deflated) data matrix and its corresponding

singular vectors. This reformulation makes these deflation schemes appropriate for sparse PCA
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methods which utilize low-rank approximations and the singular value decomposition (SVD) like

PMD or the sparse and functional principal components analysis (SPFCA) method introduced

by Allen and Weylandt (2019). When applying the reformulated projection deflation and Schur

complement deflation to SPFCA, Weylandt (2019) finds that SPCFA is able to capture more

variability in the data when projection deflation or Schur complement deflation is used instead

of Hotelling’s deflation. This result is similar to that found by Mackey (2008).

Camacho et al. (2021) incorporate the generalized deflation method of Mackey (2008) within

the PMD framework and compare this deflation scheme to Hotelling’s deflation. Instead of

measuring the amount variance that PMD is able to capture with each of the deflation schemes,

Camacho et al. (2020) utilize other metrics to evaluate the deflation methods. Namely, they

manually specify sparse loading vectors and generate data using these loading vectors. Sub-

sequently, they apply PMD with the various deflation methods to these simulated data and

try to recover the loading vectors used to generate the data. To assess how well PMD is able

to recover the true loading vectors with each of the deflation methods, Camacho et al. (2021)

compute the cosine similarity between the true loading vector and the loading vector obtained

by PMD. They find that PMD with the generalized deflation method of Mackey (2008) is able

to better recover the true sparse loading vectors compared to PMD with Hotelling’s deflation.

Similarly to Mackey (2008) and Weylandt (2019), Camacho et al. (2021) provides evidence in

favor against the usage of Hotelling’s deflation in the sparse PCA setting.

3 Methodology

Section 3 gives an overview of the methods we use in this paper. Specifically, in Section 3.1 we

describe PCA and its connection to the SVD and low-rank approximations of matrices. Then,

we introduce the PMD framework proposed by Witten et al. (2009) in Section 3.2. In Section

3.3, we present the deflation schemes which we apply to PMD and compare to one another.

Lastly, in Section 3.4 we discuss the metrics used to evaluate the deflation methods.

3.1 Principal component analysis

3.1.1 The method

Let X ∈ RN×P be the data matrix containing N observations and P variables x1, . . . ,xP and

Σ ∈ RP×P the covariance matrix of X. Without loss of generality, we assume for the remainder

of the paper that the variables of X are centered. PCA aims to reduce the dimensionality of X

by constructing K ≤ min{N,P} linear combinations of the variables x1, . . . ,xP . These linear
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combinations are known as principal components. We can write the K principal components

z1, . . . ,zK as follows:

z1 = Xv1 = v11x1 + v12x2 + · · ·+ v1PxP

z2 = Xv2 = v21x1 + v22x2 + · · ·+ v2PxP

...

zK = XvK = vK1x1 + vK2x2 + · · ·+ vKPxP ,

(1)

where v1, . . . ,vK are the loading vectors and vki is element i of vk, k = 1, . . . ,K.

Since we are reducing the dimensionality of X, we are losing some information contained in

the matrix. Hence, we want to minimize this loss of information. We do this by sequentially

constructing principal components that are uncorrelated and maximize their own variance. We

determine the first principal component by finding the linear combination z1 = Xv1 such that

V̂ ar(z1) = v⊤
1 Σ̂v1 is maximized, where Σ̂ = X⊤X

N is the sample covariance matrix of X (Zou

and Xue, 2018). As we can increase V̂ ar(z1) by multiplying v1 by some constant, we restrict

v1 to have unit length i.e. v⊤
1 v1 = 1. Subsequently, we look for the second principal component

z2 = Xv2 that maximizes V̂ ar(z2) subject to v⊤
2 v2 = 1 and Ĉov(z2, z1) = v⊤

2 Σ̂v1 = 0. We

can generalize this procedure for the k’th principal component. Namely, we determine the k’th

principal component by finding the linear combination Xvk that maximizes V̂ ar(zk) subject to

v⊤
k vk = 1 and Ĉov(zk, zl) = 0, l < k.

From the iterative process described above, we can establish the following properties of PCA:

1. Ordered maximized variances: V̂ ar(z1) ≥ · · · ≥ V̂ ar(zK) ≥ 0.

2. Orthogonal loading vectors: v⊤
k vl = 0 for k, l = 1, . . . ,K, k ̸= l.

3. Uncorrelated principal components: Ĉov(zk, zl) = 0 for k, l = 1, . . . ,K, k ̸= l.

It is easy to obtain linear combinations that satisfy all three conditions. Johnson and Wichern

(2014) provide a detailed proof in Section 8.2 that the eigenvectors of Σ satisfy all the conditions.

3.1.2 Connection to the singular value decomposition & low-rank approximations

Suppose that rank(X) = R and K ≤ R. Then, it is possible to approximate X using a rank-K

matrix. Such a matrix is known as a low-rank approximation, which we denote as X̂. We can

find X̂ by optimizing the criterion

argmin
X̂∈M(K)

||X− X̂||2F , (2)
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where ||.||F is the Frobenius norm and M(K) is the set of rank-K N × P matrices. To solve

this optimization problem, we use the SVD of X which is given by

X = UDV⊤. (3)

Here, U ∈ RN×N and V ∈ RP×P are orthogonal matrices with the columns u1, . . . ,uN and

v1, . . . ,vP , respectively. D ∈ RN×P is a rectangular diagonal matrix containing the non-negative

diagonal elements d11, . . . , dMM such that M = min{N,P} and d11 ≥ · · · ≥ dMM ≥ 0.

Denote UK ∈ RN×K and VK ∈ RP×K as orthogonal matrices which contain the first

K columns of U and V, respectively. Additionally, let DK ∈ RK×K be a diagonal matrix

containing the K largest diagonal elements from D, d11, . . . , dKK . Then, we can compute the

rank-K approximation X̂ using the solution proposed by Eckart and Young (1936):

X̂ = UKDKV⊤
K . (4)

This low-rank approximation of X is connected to PCA. Namely, it can be shown that the

columns of VK (the rows of V⊤
K) are the eigenvectors of Σ. In other words, VK holds the

desired K loading vectors that we need to construct the principal components (Zou et al., 2006;

Shen and Huang, 2008). This fact motivates the use of low-rank approximations in the PMD

framework to determine sparse principal components. We introduce PMD in Section 3.2.

3.2 Penalized matrix decomposition

Witten et al. (2009) introduce a new framework for computing a rank-K approximation of a

matrix known as PMD. This framework imposes ℓ1- or fused LASSO penalties on the columns of

UK and VK to ensure that they are sparse i.e. the column vectors contain many zero elements.

To derive the rank-K approximation of the data matrix X, we start with the rank-1 approxim-

ation. Let d = D1, u = U1 and v = V1. Then, we can determine the rank-1 approximation by

optimizing the PMD(ℓ1, ℓ1) criterion, which is given by the following expression:

max
u,v

u⊤Xv s.t. ||u||1 ≤ c1, ||v||1 ≤ c2, ||u||22 ≤ 1, ||v||22 ≤ 1, (5)

where ||.||1 is the ℓ1-norm, ||.||2 is the ℓ2-norm and c1 ∈ [1,
√
N ] and c2 ∈ [1,

√
P ] are parameters

that control the amount of sparsity imposed on u and v, respectively. The larger the value

for c1, the less sparsity we induce on u. The same holds for c2. Optimizing the PMD(ℓ1, ℓ1)

criterion gives us u and v, which we use to compute d = u⊤Xv.
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Since the optimization problem given in Equation (5) is biconvex, Witten et al. (2009)

propose an iterative procedure for solving it. We present this procedure in Algorithm 1.

Algorithm 1: Rank-1 approximation using PMD(ℓ1, ℓ1)

Input: X, c1, c2

Output: d, u, v

1 Initialize v to be a random vector with an ℓ2-norm equal to 1.

2 repeat

3 u = S(Xv,λ1)
||S(Xv,λ1)||2 , where λ1 = 0 if this ensures that ||u||1 ≤ c1; otherwise, use binary

search to find the value of λ1 such that ||u||1 = c1.

4 vold = v.

5 v = S(X⊤u,λ2)
||S(X⊤u,λ2)||2

, where λ2 = 0 if this ensures that ||v||1 ≤ c2; otherwise, use binary

search to find the value of λ2 such that ||v||1 = c2.

6 until |v − vold| ≤ 10−7

7 d = u⊤Xv.

In lines 3 and 4 of Algorithm 1, we use the soft thresholding operator S to determine u and

v. This operator ensures that all elements in u and v are shrunk towards 0 such that the

conditions ||u||1 ≤ c1 and ||v||1 ≤ c2 are satisfied (Liu and Foygel Barber, 2020). We define the

soft thresholding operator as S(a, b) = sgn(a)(|a| − b)+, where b > 0 and x+ is equal to x if

x > 0 and 0 otherwise.

In order to obtain the rank-K approximation of X, we utilize Algorithm 2.

Algorithm 2: PMD(ℓ1, ℓ1) rank-K approximation using Hotelling’s deflation

Input: X, c1, c2

Output: dk, uk, vk for k = 1, . . . ,K

1 Let X1 = X.

2 for k = 1, . . . ,K do

3 Find dk,uk and vk by applying Algorithm 1 to Xk.

4 Xk+1 = Xk − dkukv
⊤
k .

This procedure finds the matricesUK ,VK andDK by repeatedly performing Algorithm 1. In the

first iteration, we apply Algorithm 1 to the matrix X1 = X to obtain the rank-1 approximation

d1u1v
⊤
1 . We cannot apply Algorithm 1 to X1 to get d2, u2 and v2. Thus, we deflate X1 by

subtracting d1u1v
⊤
1 from it, giving us the new matrix X2. In Section 3.3, we explain in more

detail the potential problems of utilizing this particular deflation method. If we now apply

Algorithm 1 to X2, we retrieve d2, u2 and v2. We subtract d2u2v
⊤
2 from X2 to obtain X3.

Repeating this procedure K − 2 more times gives us u1, . . . ,uK , v1, . . . ,vK and d11, . . . , dKK .
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To derive sparse principal components, Witten et al. (2009) modify the PMD(ℓ1, ℓ1) criterion

such that an ℓ1-penalty is imposed on v but not u. This new criterion is known as PMD(., ℓ1)

and is given by the expression

max
u,v

u⊤Xv s.t. ||v||1 ≤ c2, ||u||22 ≤ 1, ||v||22 ≤ 1. (6)

We can still use Algorithms 1 and 2 to optimize the PMD(., ℓ1) criterion. However, since we do

not impose sparsity on the elements of u, we update u using u = Xv
||Xv||2 in line 3 of Algorithm

1.

3.3 Deflation techniques

As mentioned in Section 3.2, deflating the matrix Xk is a crucial step when iteratively determ-

ining the rank-K approximation of X using PMD. In Section 3.3.1, we discuss the deflation

technique known as Hotelling’s deflation, which is used in Algorithm 2, and the issues that may

arise when using it in the context of sparse PCA. In Sections 3.3.2 and 3.3.3, we present the

Schur complement deflation and the generalized deflation method, respectively. These deflation

methods aim to solve the problem presented in Section 3.3.1.

3.3.1 Hotelling’s deflation

Let X1 = X. Then, we use Hotelling’s deflation to sequentially obtain the deflated matrices

X2, . . . ,XK as follows:

Xk+1 = Xk − dkukv
⊤
k . (7)

Recall from Section 3.1 that the loading vectors should be orthogonal in the context of ordinary

PCA. We can easily satisfy this condition by setting the loading vectors equal to the eigenvectors

of the covariance matrix of X. Nevertheless, the sparse loading vectors found by PMD are

generally not eigenvectors and non-orthogonal (Mackey, 2008). This has negative implications

for the usage of Hotelling’s deflation scheme. Namely, when we are sequentially deflating the

data matrix with respect to a series of non-orthogonal loading vectors, this deflation technique

does not guarantee that Xk+svk = 0N , k = 1, . . . ,K, s > 0 (Weylandt, 2019). In other words,

principal component k + s could explain some of the same variability in the data as principal

component k. This makes it more difficult to interpret the components since it is harder to

attribute specific patterns or variations in the data to a single component (Camacho et al.,

2020; Mackey, 2008).

For the remainder of the paper, we refer to the variant of PMD using Hotelling’s deflation
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scheme as PMD-HD.

3.3.2 Schur complement deflation

To rectify the issue discussed in Section 3.3.1, Mackey (2008) introduces a new deflation scheme

known as Schur complement deflation, which is given by the following expression:

Xk+1 =
(
IN −−

Xkvkv
⊤
k X

⊤
k

v⊤
k Xkvk

)
Xk, (8)

where IN is the N × N identity matrix. We can interpret this expression as the projection

of the columns of Xk onto the orthogonal complement of the space spanned by the principal

component k. Although it may not seem intuitive from this interpretation that Xk+svk =

0N , k = 1, . . . ,K, s > 0, in Section 2.3.3 Mackey (2008) gives a detailed mathematical proof

that the deflated matrices found using Schur complement deflation satisfy this condition.

In order to incorporate this deflation scheme within PMD framework, we simply replace line

4 of Algorithm 2 with the expression from (8). We refer to the variant of PMD using Schur

complement deflation as PMD-SC.

3.3.3 Mackey’s generalized deflation method

Mackey (2008) introduces another deflation technique known as the generalized deflation method

for sparse PCA. This method is based on the projection deflation scheme, which deflates the

matrix Xk using

Xk+1 = Xk(IP − vkv
⊤
k ). (9)

By projectingXk onto the orthogonal complement of the space spanned by vk and thus removing

the variance in the data captured by principal component k, we ensure that we satisfy the

condition Xk+1vk = 0N , k = 1, . . . ,K. However, using projection deflation repeatedly does not

guarantee that Xk+svk = 0N , k = 1, . . . ,K, s > 1, leading to the same problem discussed in

Section 3.3.1 (Mackey, 2008; Weylandt, 2019; Camacho et al., 2020).

Mackey (2008) addresses the shortcoming of projection deflation as follows. Let q1 = v1 and

qk = (IP − Pk)vk, where Pk is the projection onto the space spanned by v1, . . . ,vk. Mackey

(2008) suggests that we rewrite (9) to

Xk+1 = Xk(IP − qkq
⊤
k ), (10)

as this expression eliminates the variance in the data captured by the first k principal compon-

ents.
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In contrast to Hotelling’s deflation and Schur complement deflation, it is slightly more diffi-

cult to implement Mackey’s generalized deflation method in the PMD framework. That is, we

can not simply only replace line 4 of Algorithm 2 with (10). Namely, we also need to update qk

in each step. To do this, we use the fact that q1, . . . , qk form an orthonormal basis for the space

spanned by the loading vectors v1, . . . ,vk, and thus IP−Pk = IP−
∑k

l=1 qlq
⊤
l =

∏k
l=1(IP−qlq

⊤
l ).

This allows us to summarize the generalized deflation method as follows in Algorithm 3.

Algorithm 3: PMD(ℓ1, ℓ1) rank-K approximation using Mackey’s generalized deflation

method
Input: X, c1, c2

Output: dk, uk, vk for k = 1, . . . ,K

1 Let X1 = X.

2 Let B1 = IP .

3 for k = 1, . . . ,K do

4 Find dk,uk and vk by applying Algorithm 1 to Xk.

5 qk = Bkvk.

6 Xk+1 = Xk(IP − qkq
⊤
k ).

7 Bk+1 = Bk(IP − qkq
⊤
k ).

We refer to the variant of PMD using Mackey’s generalized deflation method as PMD-GD.

3.4 Evaluation metrics

We compare the performance of the PMD-HD, PMD-SC and PMD-GD by applying these meth-

ods to simulated data and real data, which we describe in Section 4. In this section, we introduce

the metrics that we use to compare the three methods. First, in Section 3.4.1 we present the

formulation used to compute the cumulative proportion of variance explained. Next, in Section

3.4.2 we describe how we calculate the percentage of artifacts that is present in the principal

components found by PMD. Finally, in Section 3.4.3 we introduce the cosine similarity.

3.4.1 Cumulative proportion of variance explained

We use the same metric as Witten et al. (2009) to evaluate the performance of PMD when

applied to the gene expression data set. This metric is the cumulative proportion of variance

explained, which measures how much of the variance in the data the first k principal components

are able to explain. The formulation of this metric is introduced by Shen and Huang (2008) and

is given by the expression

CPV Ek =
tr(X⊤

k Xk)

tr(X⊤X)
, (11)
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where tr(.) is the trace of a matrix and Xk = XVk(V
⊤
k Vk)

−1V⊤
k is the projection of X onto

the subspace spanned by the first k sparse loading vectors v1, . . . ,vk.

3.4.2 Percentage of artifacts in the principal components

Let X1 = X and R(X1) be the row space of X1. If we obtain X2 by deflating X1 using any of the

methods mentioned in Section 3.3, it is possible that R(X2) ̸⊆ R(X1). Thus, we incorporate new

directions in X2 that are not initially present in the original data matrix X1 (Camacho et al.,

2021). We refer to these new directions as artifacts. These artifacts are potentially harmful,

because the principal component obtained from X2 may capture some of the variance pertaining

to the artifacts, leading to interpretations of the data that are incorrect.

Although artifacts may be present in a deflated matrix, the derived principal components

are not necessarily affected by them. Camacho et al. (2021) propose a metric which measures

the percentage of artifacts in principal component k + 1. We can compute this metric using

V arAk+1 = 100×
tr(O⊤

k+1Ok+1)

tr(d2k+1vk+1u
⊤
k+1uk+1v

⊤
k+1)

, (12)

where Ok+1 = (IP −X⊤
1 (X

⊤
1 )

+)(X⊤
k (X

⊤
k )

+)dk+1vk+1u
⊤
k+1 and A+ is the Moore-Penrose inverse

of the matrixA. Ok+1 measures how much of the variance captured by principal component k+1,

which Camacho et al. (2021) represent as dk+1vk+1u
⊤
k+1, lies in R(Xk), denoted as (X⊤

k (X
⊤
k )

+),

and not in R(X1), represented by (IP − X⊤
1 (X

⊤
1 )

+). In other words, we can interpret Ok+1

as the amount of variance captured by principal component k + 1 that can not be attributed

to the original data in X1. We use (12) to assess to what extent the deflation techniques from

Section 3.3 introduce artifacts, as interpretation of the data and the principal components is an

important aspect of sparse PCA. We apply this metric to the gene expression data only.

3.4.3 Cosine similarity

Since we specify the structure of the simulated data, denote vk as the true k’th sparse loading

vector and v̂k as the k’th sparse loading vector estimated by PMD. Similarly to Camacho et al.

(2021), we use the absolute value of the cosine similarity between vk and v̂k to measure how

well the variants of PMD are able to recover the true sparse loading vectors. We can write this

metric as

Similarity(vk, v̂k) =

∣∣∣∣ vk · v̂k

||vk||2||v̂k||2

∣∣∣∣. (13)

The absolute value of the cosine similarity takes a value between 0 and 1. If Similarity(vk, v̂k) =

0, then PMD completely fails to recover the true sparse loading vector, while Similarity(vk, v̂k) =
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1 indicates that PMD is able to fully recover the sparse loading vector.

As we discuss in Section 4.1.2, using the same procedure we generate multiple data matrices

for which we try to recover the true sparse loading vectors. Suppose that we create n data

matrices X1, . . . ,Xn. For i = 1, . . . , n, let vk,i be the true k’th sparse loading vector corres-

ponding to Xi and v̂k,i be the k’th sparse loading vector corresponding to Xi estimated by

PMD. Then, to assess how well PMD is able to recover the structure of vk, we use the following

expression to compute the average of the cosine similarities over the n data matrices:

AvgSim(vk, v̂k) =
1

n

n∑
i=1

Similarity(vk,i, v̂k,i). (14)

4 Data

We use Section 4 to describe the data we use for our research. In Section 4.1, we explain how

we obtain the simulated data for an example and the comparative study. Then, in Section 4.2

we briefly describe the gene expression data set.

4.1 Simulated data

4.1.1 Simulated data for the example

Before we perform the comparative study, we demonstrate PMD on a simulated example. We

replicate the simulation performed by Witten et al. (2009). This example involves simulated

comparative genomic hybridization (CGH) data. These data measure genomic DNA copy num-

ber changes, which are key genetic events in the growth of many cancers (Lingjærde et al., 2005).

According to Witten et al. (2009), we can characterize some cancers in the data by regions of

chromosomal gain or loss.

Suppose that the data matrix X ∈ RN×P contains N = 12 CGH samples and P = 1000 copy

number measurements on CGH spots on a single chromosome. Then, we generate the CGH

data for X utilizing the procedure described by Witten et al. (2009):

1. Xij ∼ N(1, 1) for i = 1, . . . , 5 and j = 100, . . . , 500.

2. Xij ∼ N(0, 1) for i = 6, . . . , 12 and j = 1, . . . , 99, 501, . . . , 1000.

Here, Xij is the element present on the i’th row and j’th column of X. We generate the data

such that five of the twelve samples contain a region of gain on the spots 100 to 500. We can

clearly see this in Figure 1a and 1b, where we show the true vectors u and v from the rank-1

approximation of X which correspond to the samples and the chromosomal regions, respectively.

12



By optimizing the PMD(ℓ1, ℓ1) criterion, we try to uncover these regions of gain in the simulated

data.

4.1.2 Simulated data for the comparative study

As mentioned previously, we extend the research of Witten et al. (2009) by incorporating the

deflation schemes from Section 3.3 within the PMD framework and assessing the performance of

these deflation methods. To perform this comparative study, we generate random data following

the procedure proposed by Shen and Huang (2008) and Journée et al. (2010). LetΣ = VSV⊤ be

the eigendecomposition of the covariance matrixΣ ∈ RP×P of the data matrixX ∈ RN×P , where

the columns v1, . . . ,vP of V ∈ RP×P are the eigenvectors of Σ and the elements s11, . . . , sPP

of the diagonal matrix S ∈ RP×P are the eigenvalues corresponding to the eigenvectors. The

elements of S are ordered in decreasing order i.e. s11 ≥ · · · ≥ sPP ≥ 0. Furthermore, we assume

that the first q < P columns of V are manually specified to sparse and orthonormal. For this

simulation study, we consider a setup with q = 5 to be able to make a good assessment on the

comparative performance of the deflation methods. We vary N across the values 50, 100, 200

and 500 and we set P = 100.

To begin, we form a full-rank matrix V∗ = [v1| . . . |vq|v∗
q+1| . . . |v∗

P ]. As mentioned previ-

ously, we manually specify the first q = 5 eigenvectors to be sparse and orthonormal. Denote vij

as element i of the eigenvector vj . We define the elements of the first q eigenvectors as follows:

vij =


1√
10

for i = 10(j − 1), . . . , 10(j − 1) + 10

0 otherwise

Subsequently, we determine the vectors v∗
q+1, . . . ,v

∗
P in V∗

2. We randomly draw the elements

for these vectors from U(0, 1) until V∗ is a full-rank matrix. Then, we apply the Gram-Schmidt

process to V∗ in order to retrieve its QR decomposition. From this QR decomposition, we need

the matrix Q as this is the desired orthogonal matrix V = [v1| . . . |vq|vq+1| . . . |vP ]. To construct

the matrix S we specify the eigenvalues of the first q = 5 sparse eigenvectors to be 600, 500,

400, 300 and 200, respectively. Similarly to Journée et al. (2010), we set the eigenvalues of the

remaining P − q eigenvectors to 1. Now, we can use the expression VSV⊤ to construct Σ. We

use the fact that X ∼ NP (0,Σ) to generate the data. We repeat the data generating procedure

100 times for each value of N .
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4.2 Real data

We apply the variants of PMD to same real gene expression data set used by Witten et al.

(2009).1 This data set contains a total of P = 19672 gene expressions and N = 89 samples.

Similarly to Witten et al. (2009), we only consider 5% of the genes with the highest variance

due to computational reasons.

5 Results

In Section 3, we report our findings. Specifically, in Section 5.1 we present the results after

applying the three variants of PMD to the simulated data sets described in the previous section.

Subsequently, in Section 5.2 we describe and discuss the findings when we apply the variations

of PMD to the gene expression data set.

5.1 Simulated data

5.1.1 Example

We optimize the PMD(ℓ1, ℓ1) criterion to find the rank-1 approximation of the matrix X con-

taining the CGH data described in Section 4.1.1. In order to obtain results that closely resemble

the ones found in Figure 2 of the paper by Witten et al. (2009), we set c1 = 2.80 and c2 = 6.00.

These parameter values ensure that PMD only chooses five samples to exhibit a region of gain

while also identifying the region of gain within CGH spot indices 100 to 500.

In Figure 1, we show the true u and v along with the vectors u and v found by optimizing

the PMD(ℓ1, ℓ1) criterion.

1Downloaded from: https://tibshirani.su.domains/PMA on May 10th 2023.
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(a) True u (b) True v

(c) u found by optimizing PMD(ℓ1, ℓ1) (d) v found by optimizing PMD(ℓ1, ℓ1)

Figure 1: u and v from the generative model and PMD

Similarly to Figure 2 in the paper written by Witten et al. (2009), we find that optimizing the

PMD(ℓ1, ℓ1) criterion does not precisely uncover the samples that have a region of gain and the

region of gain itself. Namely, in Figure 1c we see that PMD incorrectly specifies sample 7 to

be one of the samples with a region of gain instead of sample 2. Moreover, in Figure 1d we

observe that PMD does not smoothly identify the region of gain within spot indices 100 to 500.

Specifically, some spots have a much lower gain than others or no gain at all, while we expect

all spots to have equal gain like we see in Figure 1b. Witten et al. (2009) state that PMD yields

better results if we impose the fused LASSO penalty on v instead of an ℓ1 penalty. However,

we do not discuss this new penalty as it falls outside the scope of this paper.

5.1.2 Comparative study

For all three variants of PMD, we use c2 = 3.00 as this value achieves the true level of sparsity

for these simulated data. Specifically, this value of c2 allows for all variants of PMD to generate

sparse loading vectors which each have exactly 10 nonzero elements similarly to the true sparse

loading vectors. In Table 1, we report the average cosine similarities between the actual loading

vector and the loading vector obtained by one of the three variants of PMD. As mentioned

previously, these average cosine similarities are computed over 100 data matrices. Furthermore,

we highlight the variants of PMD with the highest cosine similarity for a given loading vector.

Lastly, we denote the standard errors in parenthesis.
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Table 1: Average cosine similarities between the actual loading vector and the loading vector
obtained by one of the three variants of PMD over 100 data matrices

N = 25

Method AvgSim(v1, v̂1) AvgSim(v2, v̂2) AvgSim(v3, v̂3) AvgSim(v4, v̂4) AvgSim(v5, v̂5)
PMD-HD 0.5313 (0.4733) 0.3795 (0.4671) 0.4079 (0.4720) 0.4079 (0.4720) 0.7149 (0.4063)
PMD-SC 0.5313 (0.4733) 0.3984 (0.4706) 0.4364 (0.4752) 0.4459 (0.4759) 0.7020 (0.4182)
PMD-GD 0.5313 (0.4733) 0.3795 (0.4671) 0.4079 (0.4720) 0.4079 (0.4720) 0.7149 (0.4063)

N = 50

PMD-HD 0.7400 (0.3950) 0.5597 (0.4689) 0.6167 (0.4548) 0.7400 (0.3950) 0.8823 (0.2433)
PMD-SC 0.7400 (0.3950) 0.5787 (0.4650) 0.6167 (0.4548) 0.7495 (0.3883) 0.9012 (0.2078)
PMD-GD 0.7400 (0.3950) 0.5597 (0.4689) 0.6167 (0.4548) 0.7400 (0.3950) 0.8823 (0.2433)

N = 100

PMD-HD 0.7495 (0.3884) 0.6451 (0.4448) 0.7495 (0.3884) 0.8633 (0.2729) 0.9392 (0.095)
PMD-SC 0.7495 (0.3884) 0.6451 (0.4448) 0.7684 (0.3740) 0.8728 (0.2587) 0.9392 (0.095)
PMD-GD 0.7495 (0.3884) 0.6451 (0.4448) 0.7495 (0.3884) 0.8633 (0.2729) 0.9392 (0.095)

N = 200

PMD-HD 0.8254 (0.3206) 0.7684 (0.3740) 0.8633 (0.2786) 0.9297 (0.1335) 0.9487 (1.4970× 10−16)
PMD-SC 0.8254 (0.3206) 0.7589 (0.3814) 0.8443 (0.2983) 0.9202 (0.1626) 0.9487 (1.3666× 10−16

PMD-GD 0.8254 (0.3206) 0.7684 (0.3740) 0.8633 (0.2786) 0.9297 (0.1335) 0.9487 (1.5701× 10−16)

N = 500

PMD-HD 0.9012 (0.2078) 0.8918 (0.2643) 0.9392 (0.0949) 0.9487 (2.7671× 10−16) 0.9487 (2.2840× 10−16)
PMD-SC 0.9012 (0.2078) 0.8918 (0.2264) 0.9392 (0.0949) 0.9487 (2.6001× 10−16) 0.9487 (2.0994× 10−16)
PMD-GD 0.9012 (0.2078) 0.8918 (0.2643) 0.9392 (0.0949) 0.9487 (2.4035× 10−16) 0.9487 (2.2428× 10−16)

When N = 25, we observe that PMD-SC has a higher average cosine similarity for the com-

ponents 2 to 4. Only for the fifth component are PMD-GD and PMD-HD able to outperform

PMD-SC. This implies that overall PMD-SC is able to recover the sparse loading vectors the

best for this particular value of N.

We arrive at the same conclusion for N = 50 and N = 100. Namely, if N = 50 we see

that PMD-SC has a higher average cosine similarity for the second, fourth and fifth component.

For the remaining components, all three variants of PMD have exactly the same value for the

average cosine similarity. When N = 100, PMD-SC is slightly less dominant as it only has a

higher average cosine similarity for the third and fourth component. However, none of the other

variants are able to outperform PMD-SC.

Nevertheless, we are not able to draw the same conclusion when N = 200. Namely, we

observe that both PMD-HD and PMD-GD manage to outperform PMD-SC in recovering the

sparse loading vectors for components 2 to 4. For the other components, all three variants of

PMD have exactly the same average cosine similarity.

All the variants of PMD on average perform equally when N = 500. Moreover, we see a

significant increase in the average cosine similarities for all components compared to N = 50.

Hence, we can infer from this observation that PMD is better able to recover the sparse loading

vectors on average as N increases.

Interestingly, we notice that PMD-HD and PMD-GD share the same value for the average

cosine similarity for each component across all values of N . This could highly suggest that
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PMD-HD and PMD-GD are equivalent when trying to recover the sparse loading vectors for

these particular data. To further investigate this notion, in Figure 2 we plot the individual

cosine similarities across all runs of the simulations for the fourth principal component when

N = 50 and N = 100.

(a) N = 50 (b) N = 100

Figure 2: Individual cosine similarities between v4 and v̂4 for all 100 data matrices

From this figure, we see that, indeed, PMD-HD and PMD-GD have equal values for the cosine

similarity. One possible cause for this could be the structure of the sparse loading vectors.

Namely, the true sparse loading vectors are specified in a way that the non-zero elements do not

overlap. Thus, PMD-HD and PMD-GD may have differing performances when the structure of

the loading vectors changes.

All in all, we conclude that no single deflation scheme is the best at recovering the true

sparse loading vectors. For these particular data, we observe that PMD-SC is able to recover

the sparse loading vectors the best when N ≤ P . However, when P > N , both PMD-HD and

PMD-GD outperform PMD-SC. For a value of N that is large enough, all deflation methods

perform equally.

5.2 Real data

When applying PMD to the gene expression data set, Witten et al. (2009) choose a value for c2

such that the average number of nonzero elements in the sparse loading vectors is approximately

195. For the methods PMD-HD, PMD-SC and PMD-GD, we find the values 9.55, 9.42, and

9.60, respectively.

In Figure 3, we show the cumulative proportion of variance explained and the percentage of

17



artifact corresponding to the first 25 principal components found by PCA and the three variants

of PMD.

(a) Proportion of variance explained (b) Percentage of artifacts

Figure 3: Cumulative proportion of variance explained and the percentage of artifacts in the
loading vectors corresponding to the three variants of PMD

We find that the first 25 principal components found by PMD-HD and PMD-GD manage

to explain 56.61% and 56.90% of the variance in the data, respectively. In contrast, the first

25 principal components obtained by PMD-SC only capture 47.99% of the variance. Therefore,

both PMD-HD and PMD-GD outperform PMD-SC in terms of capturing the variability in the

data. Nevertheless, none of the variants of PMD manage to explain more variance in the data

than ordinary PCA, since the first 25 principal components found by the latter method explain

70.7% of the variance in the data. We expect this since the sparsity constraints imposed on the

loading vectors result in some of the information captured by the principal components to be

lost, as discussed in Section 1.

Furthermore, in Figure 3a we see that overall PMD-HD and PMD-GD have a very compar-

able performance, though PMD-GD does explain slightly more of the variance in the data for

some of the components compared to PMD-HD. This observation suggests that PMD-GD is the

most preferred method in terms of capturing the variability in these particular data. However,

PMD-HD is also a good option if one wishes to capture as much variance in these data as pos-

sible using PMD, especially when we consider that it is easier to implement Hotelling’s deflation

scheme in the PMD framework than Mackey’s generalized deflation method.

When we look at Figure 3b, we see that the principal components found by PMD-SC are not

affected by artifacts, whereas the components obtained by PMD-HD and PMD-GD do contain

artifacts. Nonetheless, the percentage of artifacts in the components found by PMD-HD and
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PMD-GD is fairly low. Namely, the average percentage of artifacts contained in the principal

components of PMD-HD and PMD-GD is only 6.63% and 6.45%, respectively. Moreover, none of

the percentages ever go above 15.71%. According to Camacho et al. (2021), these percentages are

considered very low and should not hamper the interpretation of the sparse principal components

too much.

Thus, if we take into account the low average percentage of artifacts for PMD-GD along with

its good comparative performance in terms of explaining the variance in these data, then we can

conclude that for these gene expression data Mackey’s generalized deflation method seems to

be the most preferred method. Though, one could make a case for Hotelling’s deflation scheme,

as it is easier to implement than Mackey’s generalized deflation method and the performance of

PMD-HD is very comparable to PMD-GD.

6 Conclusion & discussion

In this paper, we extend the research done by Witten et al. (2009) by assessing the comparative

performance of three different deflation schemes when applied to the PMD framework —a frame-

work used for deriving sparse principal components. Specifically, we compare the performance

of Hotelling’s deflation, Schur complement deflation and Mackey’s generalized deflation method.

We perform this study by first replicating part of the research of Witten et al. (2009). Namely,

we apply the corresponding three variants of PMD to the gene expression data set used by Wit-

ten et al. (2009). Subsequently, we compare the different deflation schemes in terms of how well

PMD is able the capture the variability in the data and to what extent the interpretation of the

sparse principal components is hindered by artifacts. To measure these two factors, we compute

the cumulative proportion of variance explained and the percentage of artifacts in each principal

component, respectively. In our extension to the research done by Witten et al. (2009), we gen-

erate simulated data. Utilizing the simulation study, we assess how well PMD is able to recover

the structure of the true sparse loading vectors with each of the different deflation methods. We

measure the recovery by computing the cosine similarity between the true sparse loading vector

and the loading vector found by PMD. We generate the data matrices for different number of

observations.

From our comparative analysis, we obtain the following results. To begin, we find that the

variant of PMD that is able to recover the sparse loading vectors most optimally is dependent

on the number of observations in the simulated data matrix. Namely, when the number of

observations is smaller or equal to the number of variables in the data set, we observe that PMD

with Schur complement deflation recovers the true sparse loading vectors the best. Though, if
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there are more observations than variables in the data set, both PMD with Hotelling’s deflation

and Mackey’s generalized deflation method perform equally, and recover the loading vectors

much better than PMD with Schur complement deflation. When the number of observations is

large enough, all deflation schemes have equal performance.

Additionally, we find that PMD with Mackey’s generalized method is able to capture most

of the variance in the gene expression data, though PMD with Hotelling’s deflation has a very

comparable performance. PMD with Schur complement deflation explains the least variability

in the data. Even so, PMD with Schur complement deflation introduces no artifacts at all in all

of its components, whereas the two other variants of PMD do. However, the average percentage

of artifacts introduced by PMD with Hotelling’s deflation and Mackey’s generalized deflation

method is low enough that it does not hinder the interpretation of the principal components too

much (Camacho et al., 2021). Hence, Mackey’s deflation scheme is the most preferred method

if we take into account its high cumulative proportion of variance explained in comparison the

other variants of PMD and fairly low average percentage of artifacts in the principal components.

Nevertheless, there are limitations to our research which we address along with suggestions

for future research. Firstly, due to time constraints the number of data sets we use is very

limited. This does not allow us to draw definitive conclusions or make strong generalizations

about the performance of the deflation schemes. Thus, for future research we suggest to apply

the three variants of PMD to other data sets in order to obtain a more conclusive result.

Secondly, we believe that our simulation study could be extended to better assess the beha-

viour and the comparative performance of the deflation methods. In our simulation study, we

vary the number of observations. Though, one could consider varying the number of variables

in the data set or adjusting the level of sparsity in the loading vectors. Additionally, we specify

the sparse loading vectors such that none of the vectors have overlapping non-zero elements.

In general, sparse loading vectors may have non-zero elements that are overlapping. Hence, we

suggest for a future analysis to consider a simulation study in which the loading vectors have

overlapping non-zero elements. One way to achieve this is to consider utilizing Given’s rotation.

Finally, when we apply the three variants of PMD to the gene expression data, we keep

the value of each variant’s respective sparsity controlling parameter constant for all principal

components. We fix the values to ensure that the average number of nonzero elements in the

loading vectors obtained by each variant of PMD is equal. However, the comparison may be more

fair if we specify the sparsity controlling parameter for each principal component separately. In

other words, we ensure that the number of nonzero elements in the loading vectors is the same

for a specific principal component across all variants of PMD.
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A Programming code

We attach a .zip file to this paper which contains the R code used to obtain the results for this

study. We provide a short description of all the files contained in the .zip file.

1. PMD.R - This script runs the penalized matrix decomposition by Witten et al. (2009) to

find a sparse rank-K approximation of a matrix X.

2. utils.R - This script contains some of the methods that we need to run PMD.R.

3. PCA.R - This script runs ordinary PCA.

4. geneexpression.R - This script contains the R code for the analysis we perform on the

gene expression data.

5. simulation1.R - This script generates the data using the procedure described in Section

4.1.1 and applies PMD to these data. Furthermore, the script generates the images for

Figure 1.

22



6. simulation2.R - This script generates the data using the procedure described in Section

4.1.2 and applies the three variants of PMD to these data. Moreover, the script obtains

the cosine similarities that we report in Table 1.
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