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Abstract

In this paper we analyze if incorporating multiple features in a single node of a decision

tree has an effect on the performance (in terms of in sample classification accuracy) of decision

trees under time constraints. We use trees as found by CART as warm starts for the solver and

analyse if either the univariate or multivariate decision tree performs better. We find that for

small datasets having multiple features in a node has a slight positive effect on the classification

accuracy. For medium sized and larger datasets we find that using multiple features in a node

gives even or worse results. We conclude that making decisions on multiple features in a node

does not increase the speed at which the solver improves trees found by a heuristic.

1 Introduction

Decision trees are rapidly increasing in popularity due to the rise of machine learning. Due to the

fact that learning optimal decision trees is NP-complete [5], heuristics such as CART [2] and ID3

[7] are very popular in finding suboptimal trees in good time. A tree is called suboptimal if there

exists a tree which has a higher classification accuracy for the same data and tree depth. To instead

find optimal trees [8] and [1] formulate mixed integer optimization programs. The MIO program in

[8] finds good results in reasonable time for small to medium sized data sets but, when the number

of features and data points gets too big the program in and of itself produces poor results in a

restricted time frame. The authors of [1] show that their formulation almost always outperforms

heuristic methods on self-generated trees and outperforms heuristic methods in most cases on real

life data. The authors do mention that while for most cases the solving time was limited to 30

minutes, for some of the larger data sets this time was extended to 2 hours since the solver could

not produce good results otherwise.

While [8] find that their program performs poorly for larger data sets, that is trees produced

in a restricted time frame of 30 minutes are significantly worse than trees produced by CART, the

authors do show that the program can improve trees found by CART.

Both heuristics and the MIO formulation in [8] are restricted by the fact that they use single

variate decision making (ie, at every node only a single feature value is assessed). However, since

cross-information between certain feature values could contain very valuable information for clas-

sification, this restriction may be very much undesirable. The chance that certain features hold

more information when combined grows with the number of features. This is counterbalanced by

the fact that the number of combinations also grows with the number of features. This leads to

the possibility that the desire to incorporate these combinations when number of features grows, is

balanced by the increase in computation time this would involve.

Since MIO formulations appear to perform poorly on larger data sets, as shown above, and thus,

for larger data sets, seem to have their best use in trying to improve trees as found by a heuristic,

the focus of the MIO formulation is easily shifted in this direction. When looking to improve a tree

as found by CART it is reasonable to direct attention to using information which is not accounted

for yet. [3] and [1] find that allowing multivariate splits generally results in higher accuracy trees.
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This is not entirely unexpected since the combination of multiple distinct features could be a very

clear indication of a certain class, and this is not used in the CART algorithm. An obvious idea

to improve trees as found by this algorithm is to incorporate multivariate decision making in the

MIO formulation. Because we would use the tree as found by CART as our starting point, and

this requires a lot less computation from a solver, the balance between increase in computation

time and chance of increase in information, as mentioned above, could very well shift to the point

where incorporating combinations of feature values could lead to a faster improvement of the trees

as found by a heuristic.

The improvement of trees using multivariate decision making comes at a cost of interpretability,

since splitting on a multitude of values is hard to interpret. To balance interpretability and optimal-

ity of a tree it seems reasonable to restrict the number of features used per node. In other words we

would like to be able to limit the number of dimensions of every decision made in the tree. While

[1] shows that their MIO formulation can be rewritten for the case of multivariate decision making

their formulation does not allow for the restriction of the number of dimensions of the decision,

such that to our knowledge we are the first to investigate this case.

In this paper we investigate if incorporating multi variate decision making in the mixed integer

formulation of a decision tree, while limiting the dimensions of the decisions, results in improving

trees, as found by a heuristic, faster than single variate decision making.

Note that since [6] notes that C4.5 and CART gave close to identical results, in this analysis it

seems unnecessary to use both and therefore we will only use CART.

In section 2 we will construct an MIO program where the number of feature values is a free vari-

able which can be filled in later. In section 3 we experiment with the formulation on datasets from

the UCI machine learning repository and analyze these results. Finally in section 4 we summarize

and conclude our findings.

2 Formulating an MIO program

To start modelling the decision we tree we begin by defining the tree itself. We use the model as

described in [8], with some slight adjustments. While [8] denotes their process of modelling the

decision tree, for clarification the formulation will be explained in detail below as well.

2.1 Decision trees

In this research we analyze decision trees, if the reader is not familiar with this concept we will

explain the concept here briefly. If the reader is familiar this section can be skipped.

A decision tree consists of a number of nodes, every node has (in this case) either 0 or 2 children.

When a node has children we consider this a branch or internal node. When a node does not have

children we consider this a leaf or external node. Every internal node of a decision tree contains a

threshold and information about which variable it uses. Each observation in our data consists of

multiple variables and a class. For each observation in each node of the decision tree we compare the
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value of the variable specified in the node with the threshold of the node. If this value is less than or

equal to the threshold we send our observation to the left. If the value is higher than the threshold

we send our observation to the right. We continue through this process until an observation reaches

an external node. Every external node of a decision tree contains a single class. Finally we compare

the class of the observation to the class of the external node where it ends up. If the classes are the

same the classification is correct, if the classes are not the same the classification is incorrect. The

goal of a decision tree is to maximize the percentage of observations classified correctly.

2.2 Data transformation

The MIO program in [8] maps all feature values to integers. They do this because they argue that

this makes the solver faster, which makes it very reasonable. In this formulation however we will

use a multivariate split on basis of a linear constraint of 2 different feature values. Because of this

mapping the feature values to integers would not result in a decision tree as desired, since a linear

constraint does not work properly when the mapping of feature values is non-linear. Therefore in

this research we linearly map our feature values to [0,1]. This allows us to use a linear combination

of feature values and as a bonus does not require us to use a big-M formulation.

The bank database contains certain categorical feature values. In this analysis every category is

assigned a numerical value between 0 and 1 and treated as such. We realise that [8] creates dummy

variables for each category and that this might lead to some slightly different results.

2.3 Mixed integer formulation

Now that our data is defined on a set range we can start modeling the tree. For every node k in

the tree we need a decision variable ck ∈ [0, 1] which is the threshold on basis of which we decide to

go left or right.

Second we need to keep track of which feature value is used in the decision of each node. We

do this by introducing binary variable

fi,k ∈ B ∀i,∀k

which is 1 if and only if feature i is used in the decision of node k. We need to model that only one

feature is used in every node, by setting

m∑
i=1

fi,k = 1 ∀k

we achieve this. Next we model if data row r takes a left or right at node k by means of binary

variable dh,r. In this formulation dh,r takes value 1 if the feature value v(r, i) is less than the

threshold value ck (from here also written as going left), and value 0 if it is more than the threshold

value (from here also written as going right). Let m be the number of variables per observation

then
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ck −
m∑
i=1

v(r, i) ∗ fi,k + 1 ≥ dh,r ∀k, ∀r (1)

and

ck −
m∑
i=1

v(r, i) ∗ fi,k ≤ dh,r ∀k, ∀r (2)

model our decision-making per node. Note that formulations above hold specifically since v(r, i) is

always between 0 and 1.

We only need these restrictions to hold if the mapping of row r actually goes through node k.

To do this we define a new variable: path(h, k, r). This variable is equal to dh,r if the path to node

k goes left at depth h and is equal to 1 − dh,r if the path to node k goes right at depth h. What

this does is essentially give value 1 to the variable path(h, k, r) if the mapping of datarow r goes in

the direction of node k at depth h and 0 otherwise. Adding this to the restrictions makes sure that

the dh,r variable is free when the datarow does not pass through node k. Adding this to equations

1 and 2 and rewriting to omit subtractions gives:

depth(k) + ck + 1 ≥ ddepth(k),r +

depth(k)−1∑
h=0

path(h, k, r) +
m∑
i=1

v(r, i) ∗ fi,k ∀k, ∀r (3)

depth(k)−1∑
h=0

path(h, k, r) + ck ≤ ddepth(k),r +
m∑
i=1

v(r, i) ∗ fi,k + depth(k) ∀k, ∀r (4)

It must be noted here that when the feature value is exactly equal to the threshhold of a node,

that is:
∑m

i=1 v(r, i) ∗ fi,k = ck, then the ddepth(k),r variable can take either value 0 or 1. The solver

could use this to select a certain threshold to be equal to feature values such that different datarows

with the same feature value could be sent in different directions from the same node. To omit this

problem we add a small constant δ which forces the ddepth(k),r variable to be 1 if the values are

equal. Adding this to constraint 4 gives :

depth(k)−1∑
h=0

path(h, k, r) + ck + δ ≤ ddepth(k),r +
m∑
i=1

v(r, i) ∗ fi,k + depth(k) ∀k, ∀r (5)

We need to select our variable δ such that it can not influence other decisions, in other words we

need it to be smaller than the smallest difference between feature values of different observations.

In implementation we found the lowest difference in feature values and set our δ parameter to be

95% of this.

Now that we defined our nodes and datarow mappings we focus on the classification errors. We

define the classification error as a binary variable and our objective function as minimizing the sum
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of the classification errors. To begin we define for every data row a binary variable

er ∈ B

which is 0 if the row was classified correctly and 1 otherwise. We aim to minimize the sum of the

classification errors by

min
n∑

r=1

er

To establish the classification errors we first define predictors for every individual leaf. We define

pl,t ∈ B,

which is 1 if the prediction of leaf l is class t and 0 otherwise. We set

g∑
t=1

pl,t = 1 ∀l

to model that every leaf has exactly one prediction:

Let t(r) denote the actual class of row r. Now we need that if the classification is wrong we add

1 to our error total. ∑
t̸=t(r)

pl,t ≤ er ∀r, ∀l (6)

We do of course need that the error total is only updated if row r actually ends in leaf l. We

can use the path variable again. With y denoting the depth of the tree we add this to equation 6

giving:
y−1∑
h=1

path(h, l, r)− y + 1 +
∑
t̸=t(r)

pl,t ≤ er ∀r, ∀l

2.4 Multivariate decisions

To allow for multivariate decisions we use a technique as shown in [1]. We relax the restriction that

fi,k is binary and instead let it range between -1 and 1. This allows us to have a value for fi,k that

is nonzero for multiple values of i in the same node. To track the number of features used in each

node we introduce a new binary variable si,k which is 1 if and only if feature i is used in node k.

We make sure this holds by the following restrictions.

si,k ≤ fi,k ∀i,∀k

si,k ≥ −fi,k ∀i,∀k
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To limit the number of features used in each node to Q, we impose the following restriction.

m∑
i=1

si,k ≤ Q ∀k
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Finally combining all of the above we get the following MIP:

min
n∑

r=1

er (7)

subject to:

m∑
i=1

fi,k = 1 ∀k (8)

depth(k) + ck + 1 ≥ ddepth(k),r +

depth(k)−1∑
h=0

path(h, k, r) +

m∑
i=1

v(r, i) ∗ fi,k ∀k, ∀r (9)

depth(k)−1∑
h=0

path(h, k, r) + ck + δ ≤ ddepth(k),r +

m∑
i=1

v(r, i) ∗ fi,k + depth(k) ∀k, ∀r (10)

g∑
t=1

pl,t = 1 ∀l (11)

y−1∑
h=0

path(h, l, r) +
∑
t̸=t(r)

pl,t ≤ er + y ∀r, ∀l (12)

si,k ≥ fi,k ∀i,∀k (13)

− si,k ≤ fi,k ∀i,∀k (14)
m∑
i=1

si,k ≤ Q ∀k (15)

fi,k ∈ [−1, 1] (16)

ck ∈ [0, 1] (17)

dh,r ∈ B (18)

pl,t ∈ B (19)

er ∈ B (20)

si,k ∈ B (21)

We use the model as defined here in the multivariate decisions section for modelling both the

case where we analyse only one feature per node and the case where we analyse 2 features per node.

This is because we analyze the effect of having a different number of feature values in a node and

using a different formulation could skew the results. This means that for the case where we use just

one feature value in a node we simply use the model stated above and set Q to 1.

In implementation we set the preciseness of some aspects of the solver to non-standard values. We

needed to do this since some differences in observations were really small and we had some problems

especially with the dh,r variable. Since this greatly influenced some classification accuracy’s this

problem had to be addressed. While changing these settings might not seem like a big problem,

this might impact the speed of the solver.
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3 Computational experiments

We tested our program on several datasets from the UCI machine learning repository [4]. Specifically

we tested on the Iris, Red wine and Bank datasets. The Iris dataset consists of 150 observations of

4 features, mapping to 3 different classes. The Red wine dataset is a portion of the wine dataset,

consisting of 1599 observations of 11 features and an integer score between 1 and 10 of how good

the wine is. Finally the Bank dataset consists of 4521 observations of 16 features values and a

binary target variable. Since we are trying to find the optimal trees in this paper we use all data

to construct the best tree, i.e. there is no performance evaluation out of sample.

The implementation of the CART algorithm was done by the scikit-learn package in Python

(sklearn). The trees found by CART were manually transferred to the Java environment where

they were used as warm starts for the solver.

For ease of notation from now on we will refer to the program with a maximum of Q features

per node as SolverQ.

The time limit for each solver was set to 30 minutes and all experiments were performed with

a Ryzen 7 3800 CPU and 32 GB RAM. We used CPLEX 22.1.1 as our solver.

3.1 Results

Table 1 shows the results from the experiments.

Table 1: Classification accuracy

d=1 d=2 d=3 d=4 d=5

Iris
Cart 0.667* 0.96* 0.973 0.993 1*
Solver1 0.667* 0.96* 0.993* 1* 1*
Solver2 0.667** 0.98** 1** 1** 1**

Red wine
Cart 0.561* 0.561 0.576 0.630 0.665
Solver1 0.561* 0.583 0.607 0.637 0.665
Solver2 0.574 0.564 0.580 0.633 0.665

Bank
Cart 0.885 0.901 0.904 0.912 0.918
Solver1 0.893* 0.901 0.905 0.912 0.919
Solver2 0.898 0.901 0.905 0.912 0.919

* Indicates that this is the optimal value when restricted to 1 feature per node.
** Indicates that this is the optimal value when restricted to 2 features per node.

3.2 Comparison to previous results

We first compare our found results to the results as found in [8]. As we use the same datasets we

expect to get at least very comparable and in some cases identical results.

For the Iris dataset we see that both the CART algorithm and Solver1 produce identical results

as in [8]. This is of course expected since the find optimal results and a slight change in formulation
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should not have changed the optimal solution.

For the Red Wine dataset we run into the slight problem that [8] uses a regression tree to

indicate a score for each datarow while we use a classification. However when we scale the numbers

found we see that results are very comparable in increase in accuracy when increasing depth. This,

combined with the fact that the solver only find an optimal solution for depth 1, shows that output

for this dataset is not much different from previous results. The only notable difference is that our

formulation appears to find slight improvements for depth 2,3 and 4 while [8] does not find any or

very small ones. This is most likely due to the fact that we use a classification tree instead of a

regression tree.

Comparing results for the Bank dataset show that CART gives slightly better results in [8] for

depth 5. This is almost certainly due to the fact that they use dummy variables for categorical

variables while we do not. This appears to be the only notable difference in results. CART and

Solver1 give near identical results for every depth and only for depth 1 do both solvers state that it

found the optimal solution. ([8] states that for depth 2 CART is optimal but they do not state this

for their solver which has the same classification accuracy. We suspect this is a typo of some sorts,

or this is the optimal solution however the solver can not say this with certainty within the time

frame). Both their and our solver find the optimal solution for depth 1 and no improvements at

depth 2. Both their and our solver find a very small improvement for depth 3. Finally for depth 4

and 5 we find no improvement while [8] again finds some very small improvements. This difference

is most probably an effect of a different treatment of categorical variables and data transformation.

It seems clear that the results we obtained are very similar to those reported in [8]. While some

previously found results are slightly better, because the size of the difference is so small we can say

with confidence that above mention of non-ideal settings for the solver and a slightly less optimal

data-transformation has had a minimal effect on the results in our research.

9



3.3 Comparing univariate and multivariate trees

Table 2: Running times for Iris dataset (ms)

d=1 d=2 d=3 d=4 d=5

Solver1 300 1129 4468 6850 10364
Solver2 356 1300 4827 8496 13554

In the Iris dataset we observe that for each depth optimal solutions are reached. We of course

expect Solver2 to always outperform Solver1 because restrictions for Solver2 are less strict. This

does make it hard to analyze the solvers performance under time constraint. Therefore we ran all

experiments for the Iris database again and collected the time needed for the solver. Results for

this can be found in table 2. We see that Solver2 always requires a bit more time which is somewhat

expected since the program is bigger. Increase in computation time does not appear to big for

almost every depth. We see the biggest relative increase for depth 5 which points to the conclusion

that Solver2 is worse for bigger programs.

For the Red Wine dataset we first observe that none of the solvers find any improvements for

depth 5. Secondly we see that Solver1 outperforms Solver2 at depth 2, 3 and 4. This indicates

that for medium sized programs where the solver is able to find an improvement but no optimal

solution Solver1 performs better. For depth = 1 we observe that this program is small enough again

such that for depth 1 Solver1 finds an optimal solution but Solver2 performs slightly better. This

indicates that for the smaller programs the relaxation that Solver2 brings with it outweighs the

extra computation time.

The Bank dataset appears to be simply too big for the program as none of the solvers find any

improvement greater than 0.001 for depth 2 and higher. This shows that the Bank dataset is too

big to analyze for the program in 30 minutes with our hardware setup. Again for depth 1 Solver2

performs slightly better than Solver1 which finds the optimal solution.

From the results above it seems rather clear that incorporating multiple features in a node does

not improve trees found by CART faster then single feature decision-making. For all of the datasets

and depths if Solver2 does not find an optimal solution it always performs worse than Solver1.

From the classification accuracy’s of the Iris database and the Red Wine and Bank database on

depth 1 we can conclude that incorporating multiple features in a single node can lead to higher

classification accuracies when the time constraint is not of essence. This is of course expected since

we are relaxing restrictions.

We can see from the running times of the Iris database that Solver2 starts becoming a bit

slower than Solver1 when the size of the program increases. From the results of the Red Wine

and Bank databases we can conclude that when the databases become larger, the relaxations that

Solver2 enables do not weigh up against the increase in program size this brings with it in terms of

performing under time constraints.
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It is also noteworthy that the formulation of Solver1 works the same but is computationally

slightly worse than the formulation and data-transformation as in [8]. The authors themselves

explain why their formulation is better so we refer to their paper for an explanation. Since this

formulation is computationally worse and still outperforming Solver2 it seems very clear that the

use of the MIP as described in [8] almost always has the preference over Solver2.

4 Conclusion

We analyzed what relaxing the number of features in a node of a decision tree does to the im-

provement of the CART heuristic under time-constraints. Results show that when using an MIP to

establish a decision tree, allowing the tree to split on multiple, in our case 2, features at the same

node, does not improve trees, as found by a heuristic, faster than restricting the number of features

per node to 1. Since allowing for multiple features in a node is still a relaxation, for depths where

the solver is able to find optimal solutions in the time frame allowing for multivariate splits can still

give a good improvement of the classification.

Since it is not entirely clear to what extend Solver2 is slower than Solver1 and we have no SolverQ

for q ≥ 3, for future research it seems interesting to look at classification accuracy’s and running

times for different solvers (that is different values of Q) and different sized databases, if we let the

solver run to optimality. This way some benchmarks could be set in literature for which version

and variation of the version of the general program that is described in [8], [1] and this paper, is

best used for different sized datasets.
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